Sample records for co2 increase experiment

  1. A tracer analysis study on the redistribution and oxidization of endogenous carbon monoxide in the human body.

    PubMed

    Sawano, Makoto; Shimouchi, Akito

    2010-09-01

    Past studies have suggested that some carbon monoxide (CO) moves from blood haemoglobin to tissue cells and that mitochondrial cytochrome c oxidase oxidizes CO to carbon dioxide (CO(2)). However, no study has demonstrated this redistribution and oxidization of CO under physiological conditions. The objective of this study was to trace the redistribution and oxidization of CO in the human body by detecting (13)CO(2) production after the inhalation of (13)CO. In Experiment 1, we asked a healthy subject to inhale 50 ppm (13)CO gas. In Experiment 2, we circulated heparinized human blood in a cardio-pulmonary bypass circuit and supplied 50 ppm (13)CO gas to the oxygenator. We sequentially sampled exhaled and output gases and measured the (13)CO(2)/(12)CO(2) ratios. In Experiment 1, the exhaled (13)CO(2)/(12)CO(2) ratio increased significantly between 4 to 31 h of (13)CO inhalation. In Experiment 2, the output (13)CO(2)/(12)CO(2) ratio showed no significant increase within 36 h of (13)CO input. Experiment 1 demonstrated the oxidization of CO in the human body under physiological conditions. Experiment 2 confirmed that oxidization does not occur in the circulating blood and indicated the redistribution of CO from blood carboxyhaemoglobin to tissue cells.

  2. Seedling tree responses to nutrient stress under atmospheric CO/sub 2/ enrichment. [Quercus alba; Liriodendron tulipifera; Pinus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Norby, R.J.; O'Neill, E.G.

    1986-01-01

    Three species of seedling trees were grown in pots containing low-nutrient soil for periods of up to 40 weeks under a range of atmospheric CO/sub 2/ concentrations. In all cases, total dry weight increased with CO/sub 2/ enrichment, with a greater relative increase in root weight than shoot weight. In an experiment with Pinus virginiana in open-top field chambers, phosphorus and potassium uptake did not increase with an increase in CO/sub 2/ from 365 to 690 ..mu..L/L, even though dry matter gain increased by 37% during the exposure period. In experiments with Quercus alba and Liriodendron tulipifera under controlled environmentmore » conditions there were obvious symptoms of nitrogen deficiency and total nitrogen uptake did not increase with CO/sub 2/ enrichment. However, dry weight gain was more than 90% higher at 690 ..mu..L/L CO/sub 2/. The three experiments with CO/sub 2/ enrichment treatments demonstrate that increases in plant dry weight can occur without increased uptake of some nutrients from the low-nutrient soil. A mechanism for these responses may involve increased mobilization of nutrients in association with increased sucrose transport under elevated CO/sub 2/ conditions.« less

  3. CO2 Retention: The key to Stopping Hiccups.

    PubMed

    Obuchi, Toshiro; Shimamura, Satoshi; Miyahara, Naofumi; Fujimura, Naoyuki; Iwasaki, Akinori

    2018-05-05

    While investigating the mechanisms behind hiccups, our team discovered what could be the sufficient physiological conditions for terminating even persistent cases. To investigate the role of CO2 retention, a healthy male volunteer was asked to perform 3 kinds of rebreathing experiments using different materials: (I) a 20L air-filled plastic bag, (II) a 20L air-filled plastic bag with a 1.5 × 1.5 cm hole, and (III) a 20L oxygen-filled plastic bag. During each experiment, CO2 level upon expiration (EtCO2) and inspiration (InspCO2) were measured until the volunteer gave up. Once the safety of this maneuver was demonstrated with the volunteer, we performed the technique using the materials from experiment (I) on two actual patients with persistent hiccups. In experiments (I) and (III), InspCO2 increased from the beginning and reached almost the same level as EtCO2 after 90 seconds. Both levels continued simultaneously increasing, finally reaching 56 mmHg in (I) and 79 mmHg in (III), respectively. In (II), both increased; however, after 120 seconds, EtCO2 plateaued at 47 mmHg and InspCO2 at 37 mmHg. In the actual patients, both CO2 levels reached the same value of 35.9 mmHg at 60 seconds and 37.0 mmHg at 90 seconds, and hiccups stopped at 195 seconds and at 359 seconds when EtCO2 reached 50 mmHg and 53 mmHg, respectively. The study determined that to successfully obstruct the mechanisms causing hiccups, it is necessary that the level of InspCO2 not only increases at the same level as EtCO2, but also reaches approximately 50 mmHg. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  4. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    NASA Astrophysics Data System (ADS)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  5. The influence of abrupt increases in seawater pCO2 on plankton productivity in the subtropical North Pacific Ocean

    PubMed Central

    Böttjer, Daniela; Letelier, Ricardo M.; Church, Matthew J.

    2018-01-01

    We conducted a series of experiments to examine short-term (2–5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45’ N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (~1100 μatm) compared to ambient pCO2 (~387 μatm). In 2 of 10 experiments, rates of 14C-PP decreased significantly (~43%) under elevated pCO2 treatments relative to controls. Similarly, no significant differences between treatments were observed in 6 of 7 experiments where bacterial production was measured via incorporation of 3H-leucine (3H-Leu), while in 1 experiment, rates of 3H-Leu incorporation measured in the dark (3H-LeuDark) increased more than 2-fold under high pCO2 conditions. We also examined photoperiod-length, depth-dependent (0–125 m) responses in rates of 14C-PP and 3H-Leu incorporation to abrupt pCO2 increases (to ~750 μatm). In the majority of these depth-resolved experiments (4 of 5 total), rates of 14C-PP demonstrated no consistent response to elevated pCO2. In 2 of 5 depth-resolved experiments, rates of 3H-LeuDark incorporation were lower (10% to 15%) under elevated pCO2 compared to controls. Our results revealed that rates of 14C-PP and bacterial production in this persistently oligotrophic habitat generally demonstrated no or weak responses to abrupt changes in pCO2. We postulate that any effects caused by changes in pCO2 may be masked or outweighed by the role that nutrient availability and temperature play in controlling metabolism in this ecosystem. PMID:29694353

  6. Long-term response of a Mojave Desert winter annual plant community to a whole-ecosystem atmospheric CO2 manipulation (FACE).

    PubMed

    Smith, Stanley D; Charlet, Therese N; Zitzer, Stephen F; Abella, Scott R; Vanier, Cheryl H; Huxman, Travis E

    2014-03-01

    Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2 ) because of their high potential growth rates and flexible phenology. During the 10-year life of the Nevada Desert FACE (free-air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long-term elevated (CO2 ) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2 ) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2 ) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2 ). This long-term experiment resulted in two primary conclusions: (i) elevated (CO2 ) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots. © 2013 John Wiley & Sons Ltd.

  7. Are there interactive effects of physiological and radiative forcing produced by increased CO2 concentration on changes of land hydrological cycle?

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Dan, Li; Dong, Wenjie

    2014-01-01

    Three coupled climate-carbon cycle models including CESM (Community Earth System Model), CanEsm (the Canadian Centre for Climate Modelling and Analysis Earth System Model) and BCC (Beijing Climate Center Climate System Model) were used to estimate whether changes in land hydrological cycle responded to the interactive effects of CO2-physiological forcing and CO2-radiative forcing. No signs could be indicated that the interactive effects of CO2-physiological forcing and CO2-radiative forcing on the hydrological variables (e.g. precipitation, evapotranspiration and runoff) were detected at global and regional scales. For each model, increases in precipitation, evapotranspiration and runoff (e.g. 0.37, 0.18 and 0.25 mm/year2) were simulated in response to CO2-radiative forcing (experiment M3). Decreases in precipitation and evapotranspiration (about - 0.02 and - 0.09 mm/year2) were captured if the CO2 physiological effect was only accounted for (experiment M2). In this experiment, a reverse sign in runoff (the increase of 0.08 mm/year2) in contrast to M3 is presented. All models simulated the same signs across Eastern Asia in response to the CO2 physiological forcing and radiative forcing: increases in precipitation and evapotranspiration only considering greenhouse effect; reductions in precipitation and evapotranspiration in response to CO2-physiological effect; and enhanced trends in runoff from all experiments. However, there was still a large uncertainty on the magnitude of the effect of transpiration on runoff (decreased transpiration accounting for 8% to 250% of the increased runoff) from the three models. Two models (CanEsm and BCC) attributed most of the increase in runoff to the decrease in transpiration if the CO2-physiological effect was only accounted for, whereas CESM exhibited that the decrease in transpiration could not totally explain the increase in runoff. The attribution of the CO2-physiological forcing to changes in stomatal conductance versus changes in vegetation structure (e.g. increased Leaf Area Index) is an issue to discuss, and among the three models, no agreement appeared.

  8. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    PubMed

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 to 400 mol mol -1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO 2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2  = 0.32, P < 0.01) before 1950, with no correlation (r 2  = 0.00, P = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C 3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . This study suggests that (i) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and (ii) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. © 2016 John Wiley & Sons Ltd.

  9. Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Oviedo, A. M.; Ziveri, P.; Gazeau, F.

    2017-02-01

    The effects of elevated partial pressure of CO2 (pCO2) on plankton communities in oligotrophic ecosystems were studied during two mesocosm experiments: one during summer 2012 in the Bay of Calvi, France, and another during winter 2013 in the Bay of Villefranche, France. Here we report on the relative abundances of coccolithophores versus siliceous phytoplankton, coccolithophore community structure, Emiliania huxleyi coccolith morphology and calcification degree. A pCO2 mediated succession of phytoplankton groups did not occur. During both experiments, coccolithophore abundance and community structure varied with time independently of pCO2 levels. Changes in the community structure were partly explained by the concentration of phosphate during the winter experiment. During the summer experiment, it was not clearly related to any of the parameters measured but possibly to changes in temperature. Phenological changes in the community and an attenuated response due to the low biomass building during the winter experiment could have masked the response to pCO2. E. huxleyi dominated the coccolithophore community in winter; it was not affected by elevated pCO2 at any time. In contrast, the abundance of Rabdosphaera clavigera, the dominant species in summer, increased with time and this increase was affected at elevated pCO2. Thus, a different coccolithophore community response based on species-specific sensitivities to pCO2 is still likely. Finally, elevated pCO2 had no traceable effect on E. huxleyi (type A) coccolith morphology or on the degree of coccolith calcification. Our results highlight the possibility that, in oligotrophic regions, nutrient availability, temperature or intrinsic phenological changes might exert larger constrains on the coccolithophore community structure than high pCO2 does solely.

  10. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.; Knutti, Reto

    2016-06-01

    The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.

  11. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel

    NASA Astrophysics Data System (ADS)

    Keys, Matthew; Tilstone, Gavin; Findlay, Helen S.; Widdicombe, Claire E.; Lawson, Tracy

    2018-05-01

    The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5 °C) and pCO2 levels (800 µatm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90 % of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85 % of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( ˜ 40 %). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased > 6-fold under elevated pCO2 and > 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC.

  12. Photosynthetic Response to Long- and Short-Term Changes in Carbon Dioxide in Sweetpotatoes Grown Hydroponically with Enhanced Mineral Nutrition

    NASA Technical Reports Server (NTRS)

    Hamilton, Casey; Terse, Anita; Hileman, Douglas R.; Mortley, Desmond G.; Hill, Jill

    1998-01-01

    Sweetpotato [Ipomoea batatas L.(Lam.)] has been selected by NASA as a potential food for long-term space missions. In previous experiments, sweetpotato plants grown hydroponically under elevated levels of CO2 depleted the nitrogen in the nutrient solution between the hi-weekly solution replacements. In this experiment, the effect of enhanced nutrient replenishment on photosynthetic rates of sweetpotato was determined. CO2 response curves were determined for "TU-82-155" and "Georgia-Jet" sweetpotatoes grown hydroponically in growth chambers at three different CO2 concentrations (400, 750, and 1000 micro-mol/mol CO2). Gas exchange measurements were made using infrared gas analysis, an open-flow gas exchange system, and a controlled-climate cuvette. Photosynthetic measurements were made at CO2 concentrations from 50-1000 micro-mol/mol CO2. Net photosynthetic rates showed an increase with increasing measurement CO2 in all nutrient regimes, but the response of photosynthetic rates to the growth CO2 conditions varied among the experiments and between the two varieties. Enhanced mineral nutrition led to increased net photosynthetic rates in "Georgia Jet" plants, but not in "TU-82-155" plants. The results of this study will help to determine the CO2 requirements for growth of sweetpotato on proposed space missions.

  13. Agroecosystem productivity in a warmer and CO2 enriched atmosphere

    NASA Astrophysics Data System (ADS)

    Bernacchi, Carl; Köhler, Iris; Ort, Donald; Long, Steven; Clemente, Thomas

    2017-04-01

    A number of in-field manipulative experiments have been conducted that address the response of key ecosystem services of major agronomic species to rising CO2. Global warming, however, is inextricably linked to rising greenhouse gases in general, of which CO2 is the most dominant. Therefore, agroecosystem functioning in future conditions requires an understanding of plant responses to both rising CO2 and increased temperatures. Few in-field manipulative experiments have been conducted that supplement both heating and CO2 above background concentrations. Here, the results of six years of experimentation using a coupled Free Air CO2 Enrichment (FACE) technology with variable output infrared heating arrays are reported. The manipulative experiment increased temperatures (+ 3.5˚ C) and CO2 (+ 200 μmol mol-1) above background levels for on two major agronomic crop species grown throughout the world, Zea mays (maize) and Glycine max (soybean). The first phase of this research addresses the response of plant physiological parameters to growth in elevated CO2 and warmer temperatures for maize and soybean grown in an open-air manipulative experiment. The results show that any increase in ecosystem productivity associated with rising CO2 is either similar or is offset by growth at higher temperatures, inconsistent with the perceived benefits of higher CO2 plus warmer temperatures on agroecosystem productivity. The second phase of this research addresses the opportunity to genetically modify soybean to allow for improved productivity under high CO2 and warmer temperatures by increasing a key photosynthetic carbon reduction cycle enzyme, SPBase. The results from this research demonstrates that manipulation of the photosynthetic pathway can lead to higher productivity in high CO2 and temperature relative to the wild-type control soybean. Overall, this research advances the understanding of the physiological responses of two major crops, and the impact on ecosystem services, to atmospheric conditions with the ultimate goals of better understanding agronomic responses to global change and improved representation of these processes in ecosystem models.

  14. Effect of CO2 enrichment on phytoplankton photosynthesis in the North Atlantic sub-tropical gyre

    NASA Astrophysics Data System (ADS)

    Tilstone, Gavin; Šedivá, Barbora; Tarran, Glen; Kaňa, Radek; Prášil, Ondřej

    2017-11-01

    The effects of changes in CO2 concentration in seawater on phytoplankton community structure and photosynthesis were studied in the North Atlantic sub-tropical gyre. Three shipboard incubations were conducted for 48 h at ∼760 ppm CO2 and control (360 ppm CO2) from 49°N to 7°N during October and November 2010. Elevated CO2 caused a decrease in pH to ∼7.94 compared to ∼8.27 in the control. During one experiment, the biomass of nano- and picoeukaryotes increased under CO2 enrichment, but primary production decreased relative to the control. In two of the experiments the biomass was dominated by dinoflagellates, and there was a significant increase in the maximum photosynthetic rate (PmB) and light-limited slope of photosynthesis (αB) at CO2 concentrations of 760 ppm relative to the controls. 77 K emission spectroscopy showed that the higher photosynthetic rates measured under CO2 enrichment increased the connection of reversible photosystem antennae, which resulted in an increase in light harvesting efficiency and carbon fixation.

  15. Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases

    NASA Astrophysics Data System (ADS)

    Jackson, L. C.; Schaller, N.; Smith, R. S.; Palmer, M. D.; Vellinga, M.

    2014-06-01

    The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.

  16. The impact of geoengineering on vegetation in experiment G1 of the GeoMIP

    NASA Astrophysics Data System (ADS)

    Glienke, Susanne; Irvine, Peter J.; Lawrence, Mark G.

    2015-10-01

    Solar Radiation Management (SRM) has been proposed as a mean to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) has simulated the climate consequences of a number of SRM techniques. Thus far, the effects on vegetation have not yet been thoroughly analyzed. Here the vegetation response to the idealized GeoMIP G1 experiment from eight fully coupled Earth system models (ESMs) is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations (abrupt4 × CO2). For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will reduce temperatures relative to abrupt4 × CO2, in high latitudes this will offset increases in NPP. In low latitudes, this cooling relative to the abrupt4 × CO2 simulation decreases plant respiration while having little effect on gross primary productivity, thus increasing NPP. In Central America and the Mediterranean, generally dry regions which are expected to experience increased water stress with global warming, NPP is highest in the G1 experiment for all models due to the easing of water limitations from increased water use efficiency at high-CO2 concentrations and the reduced evaporative demand in a geoengineered climate. The largest differences in the vegetation response are between models with and without a nitrogen cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.

  17. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core-perpendicular fracture, the Young's modulus decreased quickly with increasing CO2 saturation. Attenuation increased with increasing CO2 saturation until the CO2 front reached the fracture, after which it fell to below that for the brine-saturated case, increasing again as the CO2 invaded the downstream core region.

  18. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.

  19. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration.

    PubMed

    Drake, John E; Macdonald, Catriona A; Tjoelker, Mark G; Crous, Kristine Y; Gimeno, Teresa E; Singh, Brajesh K; Reich, Peter B; Anderson, Ian C; Ellsworth, David S

    2016-01-01

    Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2 ) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short-term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil ) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2 ) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light-saturated photosynthesis of canopy leaves (Asat ) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2 . The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research. © 2015 John Wiley & Sons Ltd.

  20. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf

    2016-11-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.

  1. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    PubMed

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1), and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of maize. Similarly, the stomatal conductance (Gs) and transpiration rate (Tr) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (Rd) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  2. Interactive Effects of Elevated CO2 Concentration and Irrigation on Photosynthetic Parameters and Yield of Maize in Northeast China

    PubMed Central

    Meng, Fanchao; Zhang, Jiahua; Yao, Fengmei; Hao, Cui

    2014-01-01

    Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol−1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5–9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (P n) and intercellular CO2 concentration (C i) of maize. Similarly, the stomatal conductance (G s) and transpiration rate (T r) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (P nmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (R d) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China. PMID:24848097

  3. Control of yellow and purple nutsedge in elevated co2 environments with glyphosate and halosulfuron

    USDA-ARS?s Scientific Manuscript database

    Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue increasing in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase. An experiment was conduct...

  4. Crayfish behavioral changes with CO2

    NASA Astrophysics Data System (ADS)

    Ellis, J.

    2017-12-01

    Changes in carbon dioxide (CO2) could have a major impact on aquatic life. We examined the effects of different levels of CO2 on the behavior of crayfish. The shelter treatments showed that crayfish became less active with increased CO2. The predator treatments showed that crayfish became more aggressive with increased CO2. From these experiments, we conclude that the roles of crayfish in the ecosystem could change.

  5. Effects of competition and herbivory over woody seedling growth in a temperate woodland trump the effects of elevated CO2.

    PubMed

    Collins, L; Boer, M M; de Dios, V Resco; Power, S A; Bendall, E R; Hasegawa, S; Hueso, R Ochoa; Nevado, J Piñeiro; Bradstock, R A

    2018-04-27

    A trend of increasing woody plant density, or woody thickening, has been observed across grassland and woodland ecosystems globally. It has been proposed that increasing atmospheric [CO 2 ] is a major driver of broad scale woody thickening, though few field-based experiments have tested this hypothesis. Our study utilises a Free Air CO 2 Enrichment experiment to examine the effect of elevated [CO 2 ] (eCO 2 ) on three mechanisms that can cause woody thickening, namely (i) woody plant recruitment, (ii) seedling growth, and (iii) post-disturbance resprouting. The study took place in a eucalypt-dominated temperate grassy woodland. Annual assessments show that juvenile woody plant recruitment occurred over the first 3 years of CO 2 fumigation, though eCO 2 did not affect rates of recruitment. Manipulative experiments were established to examine the effect of eCO 2 on above-ground seedling growth using transplanted Eucalyptus tereticornis (Myrtaceae) and Hakea sericea (Proteaceae) seedlings. There was no positive effect of eCO 2 on biomass of either species following 12 months of exposure to treatments. Lignotubers (i.e., resprouting organs) of harvested E. tereticornis seedlings that were retained in situ for an additional year were used to examine resprouting response. The likelihood of resprouting and biomass of resprouts increased with lignotuber volume, which was not itself affected by eCO 2 . The presence of herbaceous competitors and defoliation by invertebrates and pathogens were found to greatly reduce growth and/or resprouting response of seedlings. Our findings do not support the hypothesis that future increases in atmospheric [CO 2 ] will, by itself, promote woody plant recruitment in eucalypt-dominated temperate grassy woodlands.

  6. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure.

    PubMed

    Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A

    2013-07-01

    Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 . © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. The Monitoring of Sallow CO2 Leakage From the CO2 Release Experiment in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    This study was conducted to analyze the in-soil CO2 gas diffusion from the K-COSEM shallow CO2 release experiment. The study site consisting of five zones was built in Eumseong, South Korea, and approximately 1.8 t CO2 were injected from the perforated release well at Zones 1 to 4 from June 1 to 30, 2016. In-soil CO2 concentrations were measured once a day at 15 cm and 60 cm depths at 0 m, 2.5 m, 5.0 m, and 10.0 m away from the CO2 releasing well using a portable gas analyzer (GA5000) from May 11 to July 27, 2016. On June 4, CO2 leakage was simultaneously detected at 15 cm (8.8 %) and 60 cm (44.0 %) depths at 0 m from the well at Zone 3, and were increased up to about 30 % and 70 %, respectively. During the CO2 injection period, CO2 concentrations measured at 15 cm depth were significantly lower than those measured at 60 cm depth because of the atmospheric pressure effect. After stopping the CO2 injection, CO2 concentrations gradually decreased until July 27, but were still higher than the natural background concentration. This result suggested the possibility of long-term CO2 leakage. In addition, low levels of CO2 leakage were determined using CO2 regression analysis and CO2:O2 ratio. CO2 concentrations measured at 60 cm depth at 0 m from the well at Zones 1 to 4 consistently showed sigmoid increasing patterns with the injection time (R2=0.60-0.99). O2 concentrations at 15 cm and 60 cm depths from the CO2 release experiment were reached 0 % at about 76 % and 84 % of CO2 concentrations, respectively, whereas, those from biological reaction approached 0 % when CO2 increased to about 21 %. Therefore, deep underground monitoring would be able to detect CO2 leakage faster than near-surface monitoring, and CO2 regression and CO2:O2 ratio analyses seemed to be useful as clear indicators of CO2 leakage.

  8. Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lischka, Silke; Bach, Lennart T.; Schulz, Kai-Georg; Riebesell, Ulf

    2017-01-01

    Community approaches to investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis. We conducted a large-scale mesocosm CO2 enrichment experiment ( ˜ 55 m3) enclosing the natural plankton community in Tvärminne-Storfjärden for 8 weeks during June-August 2012 and studied community and species-taxon response of ciliates and mesozooplankton to CO2 elevations expected for this century. In addition to the response to fCO2, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of ciliates significantly decreased with fCO2 and temperature with a greater dominance of smaller species. The mixotrophic Myrionecta rubra seemed to indirectly and directly benefit from higher CO2 concentrations in the post-bloom phase through increased occurrence of picoeukaryotes (most likely Cryptophytes) and Dinophyta at higher CO2 levels. With respect to mesozooplankton, we did not detect significant effects for either total abundance or for Shannon diversity. The cladocera Bosmina sp. occurred at distinctly higher abundance for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina sp. with empty to embryo- or resting-egg-bearing brood chambers, however, was significantly affected by CO2, temperature, and chlorophyll a. An indirect CO2 effect via increased food availability (Cyanobacteria) stimulating Bosmina sp. reproduction cannot be ruled out. Although increased regenerated primary production diminishes trophic transfer in general, the presence of organisms able to graze on bacteria such as cladocerans may positively impact organic matter transfer to higher trophic levels. Thus, under increasing OA in cladoceran-dominated mesozooplankton communities, the importance of the microbial loop in the pelagic zone may be temporarily enhanced and carbon transfer to higher trophic levels may be stimulated.

  9. [Research on early fire detection with CO-CO2 FTIR-spectroscopy].

    PubMed

    Du, Jian-hua; Zhang, Ren-cheng; Huang, Xiang-ying; Gong, Xue; Zhang, Xiao-hua

    2007-05-01

    A new fire detection method is put forward based on the theory of FTIR spectroscopy through analyzing all kinds of detection methods, in which CO and CO2 are chosen as early fire detection objects, and an early fire experiment system has been set up. The concentration characters of CO and CO2 were obtained through early fire experiments including real alarm sources and nuisance alarm sources. In real alarm sources there are abundant CO and CO2 which change regularly. In nuisance alarm sources there is almost no CO. So it's feasible to reduce the false alarms and increase the sensitivity of early fire detectors through analyzing the concentration characters of CO and CO2.

  10. Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems

    PubMed Central

    Rezende, Renan de Souza; Gonçalves Júnior, José Francisco; Lopes, Aline; Piedade, Maria Teresa Fernandez; Cavalcante, Heloide de Lima; Hamada, Neusa

    2017-01-01

    Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2) on leaf detritus of Hevea spruceana (Benth) Müll. and decomposers (insect shredders and microorganisms). We hypothesized that simulated climate change (warming and elevated CO2) would: i) decrease leaf-litter quality, ii) decrease survival and leaf breakdown by shredders, and iii) increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin) was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity) of global warming for tropical streams. PMID:29190723

  11. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  12. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  13. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    PubMed

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae

    PubMed Central

    Young, Craig S.; Gobler, Christopher J.

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades. PMID:27176637

  15. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.

    PubMed

    Young, Craig S; Gobler, Christopher J

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades.

  16. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3.

    PubMed

    Riikonen, Johanna; Percy, Kevin E; Kivimäenpää, Minna; Kubiske, Mark E; Nelson, Neil D; Vapaavuori, Elina; Karnosky, David F

    2010-04-01

    Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone. 2009 Elsevier Ltd. All rights reserved.

  17. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  18. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.

    PubMed

    Ryan, Michael G

    2013-11-01

    Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.

  19. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but TMP tended to increase due to increasing bicarbonate concentration. Although total VFA concentration and molar percentage of butyrate were unchanged, the molar percentage of acetate, and acetate-to-propionate ratio decreased, whereas the molar percentage of propionate increased quadratically with increasing bicarbonate concentration. This study demonstrated for the first time that headspace composition, especially CO2 content, and bicarbonate concentration in media could significantly influence gas and methane production, and rumen fermentation in gas production techniques. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Paul, Allanah J.; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai G.; Ludwig, Andrea; Riebesell, Ulf

    2016-08-01

    Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms ( ˜ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient ( ˜ 240 µatm), used as control, to high CO2 (up to ˜ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high-CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC), decreased from ˜ 26 % at t0 to ˜ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration leads to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and consequently did not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

  1. A CO2 concentration gradient facility for testing CO2 enrichment and soil effects on grassland ecosystem function

    USDA-ARS?s Scientific Manuscript database

    Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...

  2. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological signals is a fundamental advantage of isotopomer ratios (Augusti et al., Chem. Geol 2008). These results demonstrate that increasing [CO2] has reduced the ratio of photorespiration to photosynthesis on a global scale. Photorespiration is a side reaction that decreases the C gain of plants; the suppression of photorespiration in all analyzed trees indicates that increasing atmospheric [CO2] is enhancing the photosynthetic efficiency of trees world-wide. The consensus response of the trees agrees with the response of annual plants in greenhouse experiments, with three important conclusions. First, the generality of the isotopomer shift confirms that the CO2 response reflects the ratio of photosynthesis to photorespiration, and that it creates a robust signal in tree rings. Second, the agreement between greenhouse-grown plants and trees indicates that there has not been an acclimation response of the trees during the past centuries. Third, the results show that the regulation of tree gas exchange has during past centuries been governed by the same rules as observed in manipulative experiments, in contradiction to recent reports (Keenan et al., Nature 2013).

  3. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments are in agreement with field results, and (d) we can numerically simulate the main characteristics of CO2 leakage and associated electrical geophysical signatures.

  4. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites

    PubMed Central

    De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J

    2014-01-01

    Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873

  5. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    USDA-ARS?s Scientific Manuscript database

    In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([CO2]) and temperature has illustrated the importance of multi-factorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased u...

  6. The Effect of Increased CO2 Mixing Ratio on Water Use Efficiency, Evapo-transpiration, Soil Moisture Content and Stem Flow in two Long-term Field Experiments

    NASA Astrophysics Data System (ADS)

    Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.

    2007-12-01

    Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.

  7. Experimental research on the infrared gas fire detection system

    NASA Astrophysics Data System (ADS)

    Jiang, Yalong; Liu, Yangyang

    2018-02-01

    Open fires and smoldering fires were differentiated using five experiments: wood pyrolysis, polyurethane smoldering, wood fire, polyurethane fire and cotton rope smoldering. At the same time, the distribution of CO2 and CO concentration in combustion products at different heights was studied. Real fire and environmental interference were distinguished using burning cigarettes and sandalwood. The results showed that open fires and smoldering fires produced significantly different ratios of CO2 and CO concentrations. By judging the order of magnitudes of the ratio CO2 and CO concentrations in the combustion products, open fire and smoldering fire could be effectively distinguished. At the same time, the comparison experiment showed that the rate of increase of the concentration of CO in the smoldering fire was higher than that under non-fire conditions. With the criterion of the rate of increase of CO concentration, smoldering fire and non-fire could be distinguished.

  8. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    PubMed

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  9. The Effect of CO2 on Partial Reactive Crystallization of MORB-Eclogite-derived Basaltic Andesite in Peridotite and Generation of Silica-Undersaturated Basalts

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.

    2012-12-01

    Recycled oceanic crust (MORB-eclogite) is considered to be the dominant heterogeneity in Earth's mantle. Because MORB-eclogite is more fusible than peridotite, siliceous partial melt derived from it must react with peridotite while the latter is still in the subsolidus state. Thus, studying such reactive process is important in understanding melting dynamics of the Earth's mantle. Reaction of MORB-eclogite-derived andesitic partial melt with peridotite can produce alkalic melts by partial reactive crystallization but these melts are not as silica-undersaturated as many natural basanites, nephelinites or melititites [1]. In this study, we constrain how dissolved CO2 in a siliceous MORB-eclogite-derived partial melt affects the reaction phase equilibria involving peridotite and can produce nephelinitic melts. Here we compare experiments on CO2-free [1] and 2.6 wt.% CO2 bearing andesitic melt+lherzolite mixtures conducted at 1375 °C and 3 GPa with added melt fraction of 8-50 wt.%. In both CO2-free and CO2-bearing experiments, melt and olivine are consumed and opx and garnet are produced, with the extent of modal change for a given melt-rock ratio being greater for the CO2-bearing experiments. While the residue evolves to a garnet websterite by adding 40% of CO2-bearing melt, the residue becomes olivine-free by adding 50% of the CO2-free melt. Opx mode increases from 12 to ~55 wt.% for 0 to 40% melt addition in CO2-bearing system and 12 to ~43 wt.% for 0 to 50% melt addition in CO2-free system. Garnet mode, for a similar range of melt-rock ratio, increases from ~10 to ~15 wt.% for CO2 bearing system and to ~11 wt.% for CO2-free system. Reacted melts from 25-33% of CO2-bearing melt-added runs contain ~39 wt.% SiO2 , ~11-13 wt.% TiO2, ~9 wt.% Al2O3, ~11 wt.% FeO*, 16 wt.% MgO, 10-11 wt.% CaO, and 3 wt.% Na2O whereas experiments with a similar melt-rock ratio in a CO2-free system yield melts with 44-45 wt.% SiO2, 6-7 wt.% TiO2, 13-14 wt.% Al2O3, 10-11 wt.% FeO*, 12-13 wt.% MgO, ~8 wt.% CaO, and ~4 wt.% Na2O. Our study shows that with only 2.6 wt.% CO2, andesites, owing to partial reactive crystallization in a peridotite matrix, can evolve to nephelinites (as opposed to basanites for CO2-free runs) that match with silica-undersaturated oceanic basalts better than reacted melts from CO2-free conditions. The effects of CO2 on the partial reactive crystallization of andesite in a fertile peridotite matrix thus are: a) lowered melt- SiO2 owing to increased stability of opx at the liquidus of basalt, b) lowered Al2O3 content of basalts owing to increased crystallization of garnet. Experiments with 1 and 5 wt.% CO2-bearing andesite-peridotite mixture are underway and will be presented. [1] Mallik and Dasgupta (2012), EPSL, 329-330, 97-108.

  10. Detecting plant-climate interactions over decades-millennia using NMR isotopomer analysis

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Augusti, Angela; Köhler, Iris; Wieloch, Thomas; Zuidema, Pieter; Robertson, Iain; Nilsson, Mats; Marshall, John; Schleucher, Jürgen

    2016-04-01

    Increasing CO2 and climate change affect photosynthesis, which creates a critical influence on the global C cycle and on the future productivity of crops and forests. Manipulative experiments (e.g. FACE) impose step increases in [CO2], and are limited to few locations and to time spans of years, while responses over decades and centuries are critical for Earth system models. To overcome these limitations, we have developed a new method - isotopomer analysis - that allows deducing plant C metabolism by analysis of primary plant photosynthates (Ehlers et al., PNAS 2015, 15585) or tree rings. We apply the method to material from manipulation (CO2, T) experiments, and to remnant - including subfossil - plant material. Thus, metabolic responses can be identified in FACE experiments, and it can be tested to what degree these responses are maintained during gradual environmental changes over decades-millennia. Isotopomer proxies developed using FACE experiments can then be used to reconstruct physiological and climatic changes by retrospective analysis, thus bridging a gap between experimental plant sciences and paleo research. In experiments on annual plants, we have found that specific deuterium isotopomers in photosynthetic glucose reflect the ratio of oxygenation to carboxylation at Rubisco, a central metabolic branching that is the origin of the photorespiration flux in all C3 plants. We found that increasing atmospheric [CO2] over the 20th century has reduced the photorespiration / photosynthesis ratio in all investigated C3 species, with no evidence for acclimatory reactions by the plants. Results on the peat moss Spagnum fuscum suggest a mechanism for increasing peat accumulation rates, a major global C sink. For 12 tree species from five continents, we observe that the CO2 increase since industrialization has reduced the photorespiration / photosynthesis ratio. However, the observed reduction is ca. 50 % smaller than expected from CO2 manipulation experiments. The smaller suppression of photorespiration in trees may be explained by increases in leaf temperature, suggesting that increasing temperatures may already be reducing the CO2 fertilization effect on the global scale. These results may explain the discrepancy between strong CO2 fertilization inferred from 13C measurements yet lack of biomass increases. Finally, we will stress advantages of isotopomers for studies of plant metabolism on millennial time scales: First, isotopomers multiply the information content, because glucose contains seven deuterium and six 13C isotopomers. Second, RATIOS of isotopomers are independent of the isotope compositions of a plant's substrates H2O and CO2, which often are poorly constrained over paleo time scales. Third, because isotopomer abundances are set by specific biochemical reactions, very strong correlations between isotopomers and environmental variables are observed. Forth, parallel reconstructions of physiological and climate signals from the same samples may inform analyses of plant-climate interactions (Augusti et al., Chem. Geol 2008).

  11. Biochar has no effect on soil respiration across Chinese agricultural soils.

    PubMed

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  12. Response of surface CH4 and CO2 fluxes to whole ecosystem warming and elevated CO2 in a boreal black spruce peatland, northern Minnesota

    NASA Astrophysics Data System (ADS)

    Hsieh, I. F.; Gill, A. L.; Finzi, A.

    2017-12-01

    Potential increase in peatland C losses by environmental change has been presented by impacting the balance of CO2 and CH4 sequestration and release. While temperature warming may accelerate the temperature-sensitive processes and release CO2 and CH4 from peat C stores, factors associated with warming and that associated with elevated CO2 concentration may alter the intrinsic characteristics of CO2 and CH4 emission from peatland. By leveraging Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, we measured peat surface CO2 and CH4 fluxes and their i13C signatures across a gradient of warming temperatures in a boreal black spruce peat bog in 2015 and 2016 growing seasons. Elevated CO2 (eCO2) treatment was added to the warming experiment in June, 2016. Our results show both CH4 and CO2 flux increased with warming temperature in the two-year measurement period. Total emission for both gases were higher in 2016 with whole ecosystem warming than that in 2015 with deep peat heat warming. The 2016 increase in CO2 emission was significantly larger in the hummock microtopographic position compared to hollows. The opposite was true for CH4 fluxes, where the increase was strongest in the hollows. In fact, CH4 flux from hummocks declined in 2016 compared to 2015, suggesting lower overall rates of CH4 production and/or greater rates of methanotrophy. The increase (less depleted) in i13C -CH4 signatures suggest acetoclastic methanogensis increased its contribution to total CH4 production across the growing season and in response to experimental warming, while hydrogenotrophic methanogenesis dominated total CH4 production. On the contrary, results of i13C-CO2 show no significant change in the contribution of different sources to total CO2 emission through time or across warming temperature. On the other hand, i13C-CO2 signatures under CO2 fumigation in 2016 was significantly depleted since the eCO2 initiation, indicating a rapid increase in plant productivity and the subsequent belowground transfer of photosynthate. Our results emphasize the susceptibleness of northern peat bog to changes in the environment by illustrating measureable influences of whole ecosystem warming and elevated CO2 on greenhouse gases emission.

  13. Leakage of CO2 from sub-seafloor CO2 storage sites to the seabed; Impacts on sediment microorganisms and geochemical parameters during in situ and laboratory leakage experiments

    NASA Astrophysics Data System (ADS)

    Reigstad, L. J.; Hannisdal, B.; Hoffmann, F. U.; Sweetman, A. K.; Baumberger, T.; Eickmann, B.; Røy, H.; Thorseth, I. H.; Pedersen, R. B.

    2013-12-01

    Since 1996, 14 million tons of CO2 extracted from natural gas have been injected into the Utsira Formation, a saline aquifer at ~1000 m depth in the North Sea. The injected CO2 covers today an area of 4 x 2 km2. At present, there are three international treaties protecting the oceans, and all three allow CO2 storage in sub-seabed geological formations. One of these, the EU Directive 2009/31, states that monitoring must take place before, during and after CO2 storage in order to detect leakage of CO2 and significant adverse effects on the surrounding environment. However, few environmental studies have investigated the potential impacts of a CO2 leakage on the microbial life and geochemical conditions in seafloor sediment. To remedy this, we performed two experiments with abrupt CO2 acidification on the top 10 cm of the seafloor close to the North Sea storage site: 1) One laboratory CO2 acidification experiment on undisturbed sediment cores from the seafloor overlying the CO2 storage site (80 m water depth). The continuous flow of CO2 acidified seawater (pH 6.4) with 20 000 μatm pCO2 over the cores lasted for 1.5 months with sediment core terminations at regular intervals. 2) In situ CO2 acidification experiments carried out on the seafloor at 350 m water depth, with life span of 40 hours and exposure to 20 000 μatm pCO2. Both experiments showed increased O2 consumption in the water overlying the CO2 acidified sediment relative to the control sediment, indicating a rise in metabolic activity due to the treatment. After about 12 hours of acidification and throughout the laboratory experimental period, an increase in macrofauna burial activity could be seen, with dead/dying macrofauna appearing on the sediment surface. The pyrosequencing amplicon dataset obtained after bacterial and archaeal 16S rRNA amplification (RNA level) was subjected to multivariate analyses (PCA, NMDS), revealing changes in the active community on phylum, class and OTU levels. Changes were detected on all three levels in all depths investigated, but the response to acidification appeared among less-abundant prokaryotic groups in the sediment, rather than the numerically dominant groups. Quantification of the 16S rRNA genes (DNA level) indicated no increase in cell numbers in response to the treatment. However, an increase in the in situ microbial sulfate reduction rates and/or expression of marker genes for sulfate reduction (RNA level) was discovered. Analyses of marker gene expression for other prokaryotic metabolisms will be presented as well as correlations between specific organisms and geochemical parameters. Within the limitations of the experimental set up, our studies indicate that a leakage of CO2 from a sub-seafloor storage site may not dramatically change the composition of the active microbial community in the seabed sediment though we did register activity changes in some metabolisms.

  14. Effects of 7.5% Carbon Dioxide Inhalation on Anxiety and Mood in Cigarette Smokers

    PubMed Central

    Attwood, Angela S.; Ataya, Alia F.; Bailey, Jayne E.; Lightman, Stafford L.; Munafò, Marcus R.

    2016-01-01

    Cigarette smoking is associated with elevated risk of anxiety and mood disorder. Using the 7.5% carbon dioxide (CO2) inhalation model of anxiety induction, we examined the effects of smoking status and abstinence from smoking on anxiety responses. Physiological and subjective responses to CO2 and medical air were compared in smokers and non-smokers (Experiment One) and in overnight abstinent and non-abstinent smokers (Experiment Two). CO2 induced greater increases in blood pressure in non-smokers compared with smokers (ps < 0.043), and greater increases in anxiety (p = 0.005) and negative affect (p = 0.054) in non-abstinent compared with abstinent smokers. CO2 increased physiological and subjective indices of anxiety. There were differences across smoking groups indicating that the CO2 inhalation model is a useful tool for examining the relationship between smoking and anxiety. The findings suggested that both acute smoking and acute abstinence may protect against anxious responding. Further investigation is needed in long-term heavy smokers. PMID:24763184

  15. Effects of 7.5% carbon dioxide inhalation on anxiety and mood in cigarette smokers.

    PubMed

    Attwood, Angela S; Ataya, Alia F; Bailey, Jayne E; Lightman, Stafford L; Munafò, Marcus R

    2014-08-01

    Cigarette smoking is associated with elevated risk of anxiety and mood disorder. Using the 7.5% carbon dioxide (CO2) inhalation model of anxiety induction, we examined the effects of smoking status and abstinence from smoking on anxiety responses. Physiological and subjective responses to CO2 and medical air were compared in smokers and non-smokers (Experiment One) and in overnight abstinent and non-abstinent smokers (Experiment Two). CO2 induced greater increases in blood pressure in non-smokers compared with smokers (ps < 0.043), and greater increases in anxiety (p = 0.005) and negative affect (p = 0.054) in non-abstinent compared with abstinent smokers. CO2 increased physiological and subjective indices of anxiety. There were differences across smoking groups indicating that the CO2 inhalation model is a useful tool for examining the relationship between smoking and anxiety. The findings suggested that both acute smoking and acute abstinence may protect against anxious responding. Further investigation is needed in long-term heavy smokers. © The Author(s) 2014.

  16. Effects of dissolved CO2 on Shallow Freshwater Microbial Communities simulating a CO2 Leakage Scenario

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Lowry, G. V.; Gregory, K.

    2013-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2 following leakage and lead to better strategies for ensuring the quality of potable aquifer water.

  17. Predicting long-term carbon sequestration in response to CO 2 enrichment: How and why do current ecosystem models differ?

    DOE PAGES

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...

    2015-04-27

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less

  18. The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA 2- to goethite and a subsurface sediment

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Smith, Steven C.; Fredrickson, James K.

    2000-04-01

    Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA 2-, a representative metal-ligand complex of intermediate stability (log K Co(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m 2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co 2+, Fe 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- on the two sorbents in 0.001 mol/L Ca(ClO 4) 2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5-7.0 were spiked with Co(II)EDTA 2- (10 -5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1-6 × 10 8 organisms/mL), and the headspace filled with a N 2/H 2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO 43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II) TOT, Fe (aq)2+, 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe (aq)2+ was added in increasing concentration to Co(II)EDTA 2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe 2+ increased during the experiment as surfaces became saturated; Fe (aq)2+ induced the dissociation of Co(II)EDTA 2- into a mixture of Co 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- (log K Fe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA 2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post dissociation sorption behavior of Co 2+ was dependent on pH and the intrinsic sorptivity of the solid phases. Dissociation generally lead to an increase in the sorption (e.g., K d) of Co 2+ relative to EDTA 4- (form unspecified). Sorbed biogenic Fe(II) competed with free Co (aq)2+and reduced its sorption relative to unreduced material. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA 4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative.

  19. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping (Capillary trapping) capacity. There is a positive possibility to conduct CCS in the low-quality reservoir (low permeable sandstone).

  20. Microgravity Droplet Combustion in CO2 Enriched Environments at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Nayagam, V.; Williams, F. A.

    2007-01-01

    Microgravity droplet combustion experiments were performed in elevated concentrations of CO2 at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm supported on a quartz fiber, were used in these experiments. The ambient O2 concentration was held constant at 21% and the CO2 concentrations ranged from 0% to a maximum of 70%, by volume with the balance consisting of N2 . Results from the methanol tests showed slight decreases in burning rates with increased CO2 concentrations at all ambient pressures. The n-heptane tests show slight increases in burning rates with increasing CO2 concentrations at each pressure level. Instantaneous radiative heat flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 microns to 40.0 microns) and a narrowband radiometer (i.e., centered at 5.6 microns with a filter width at half maximum of 1.5 microns). Radiative exchanges between the droplet and surrounding gases as well as the soot field produce departures from the classical quasisteady theory which would predict a decrease in burning rates with increasing CO2 concentrations in microgravity.

  1. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.

    2014-12-01

    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing on reaction rate laws in the literature, we used the reactive surface area to fit the models to the experimental data. The values of the reactive surface area were much smaller than those calculated of the geometric areas.

  2. Calcification in Caribbean reef-building corals at high pCO2 levels in a recirculating ocean acidification exposure system.

    PubMed

    Enzor, Laura A; Hankins, Cheryl; Vivian, Deborah N; Fisher, William S; Barron, Mace G

    2018-02-01

    Projected increases in ocean p CO 2 levels are anticipated to affect calcifying organisms more rapidly and to a greater extent than other marine organisms. The effects of ocean acidification (OA) have been documented in numerous species of corals in laboratory studies, largely tested using flow-through exposure systems. We developed a recirculating ocean acidification exposure system that allows precise p CO 2 control using a combination of off-gassing measures including aeration, water retention devices, venturi injectors, and CO 2 scrubbing. We evaluated the recirculating system performance in off-gassing effectiveness and maintenance of target p CO 2 levels over an 84-day experiment. The system was used to identify changes in calcification and tissue growth in response to elevated p CO 2 (1000 μatm) in three reef-building corals of the Caribbean: Pseudodiploria clivosa , Montastraea cavernosa , and Orbicella faveolata . All three species displayed an overall increase in net calcification over the 84-day exposure period regardless of p CO 2 level (control +0.28- 1.12 g, elevated p CO 2 +0.18- 1.16 g), and the system was effective at both off-gassing acidified water to ambient p CO 2 levels, and maintaining target elevated p CO 2 levels over the 3-month experiment.

  3. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    PubMed

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  4. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.

  5. Micro- and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lischka, S.; Bach, L. T.; Schulz, K.-G.; Riebesell, U.

    2015-12-01

    Community approaches investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis, thus some level of tolerance/adaptation may be expected. We conducted a large-scale mesocosm CO2 enrichment experiment (~ 55 m3) enclosing the natural plankton community in Tvärminne/Storfjärden for eight weeks during June-August 2012 and studied community and species/taxon response of microzooplankton (ciliates) and mesozooplankton to CO2 elevations expected for this century. Besides the response to fCO2 and associate changes in carbonate chemistry speciation, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of microzooplankton significantly decreased with fCO2 and temperature with a greater dominance of smaller species. Small sized ciliates (Myrionecta rubra, Balanion comatum, Strombidium cf. epidemum, Strobilidium sp.) showed significant relations with one or more of the factors. The phototrophic Myrionecta rubra seemed to directly benefit from higher CO2 concentrations and showed increased abundance in the pre-bloom phase. With respect to meszooplankton, we neither detected significant effects for total abundance nor for Shannon diversity. The cladocera Bosmina occurred at distinctly higher abundance (more than twice as high compared to the control mesocosms) for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina with empty to embryo/resting egg bearing brood chambers, however, was significantly affected by all three factors. An indirect CO2 effect via increased food availability stimulating Bosmina reproduction is suggested, but too low sampling frequency of this highly flexible organism probably entailed proving a significant relation with fCO2. Filter-feeding cladocerans effectively transfer microbial loop carbon to higher trophic levels. Thus, under increasing OA in cladoceran dominated mesozooplankton communities the importance of the microbial loop in the pelagic zone may be enhanced and carbon transfer to higher trophic levels stimulated.

  6. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed Central

    Huang, Xiaokun; Zhang, Weiyi

    2016-01-01

    The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119

  7. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed

    Huang, Xiaokun; Zhang, Weiyi

    2016-11-30

    The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.

  8. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR).

    PubMed

    Kim, Hyun Woo; Marcus, Andrew K; Shin, Jeong Hoon; Rittmann, Bruce E

    2011-06-01

    A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.

  9. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses.

    PubMed

    Hachiya, Takushi; Sugiura, Daisuke; Kojima, Mikiko; Sato, Shigeru; Yanagisawa, Shuichi; Sakakibara, Hitoshi; Terashima, Ichiro; Noguchi, Ko

    2014-02-01

    Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.

  10. High CO2 Triggers Preferential Root Growth of Arabidopsis thaliana Via Two Distinct Systems Under Low pH and Low N Stresses

    PubMed Central

    Hachiya, Takushi; Sugiura, Daisuke; Kojima, Mikiko; Sato, Shigeru; Yanagisawa, Shuichi; Sakakibara, Hitoshi; Terashima, Ichiro; Noguchi, Ko

    2014-01-01

    Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs. PMID:24401956

  11. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Tilmes, Simone; Fasullo, John; Lamarque, Jean-Francois; Marsh, Daniel R.; Mills, Michael; Alterskjær, Kari; Muri, Helene; Kristjánsson, Jón E.; Boucher, Olivier; Schulz, Michael; Cole, Jason N. S.; Curry, Charles L.; Jones, Andy; Haywood, Jim; Irvine, Peter J.; Ji, Duoying; Moore, John C.; Karam, Diana B.; Kravitz, Ben; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Yang, Shuting; Watanabe, Shingo

    2013-10-01

    The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.

  12. Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.

    2017-12-01

    Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.

  13. Experimental investigation of CO2-brine-rock interactions at simulated in-situ conditions

    NASA Astrophysics Data System (ADS)

    Słomski, Piotr; Lutyński, Marcin; Mastalerz, Maria; Szczepański, Jacek; Derkowski, Arkadiusz; Topór, Tomasz

    2017-04-01

    Geological sequestration of carbon dioxide (CO2) in deep formations (e.g. saline aquifers, oil and gas reservoirs and coalbeds) is one of the most promising options for reducing concentration of this anthropogenic greenhouse gas in the atmosphere. CO2 injected into the rock formations can be trapped by several mechanisms including structural and stratigraphic trapping, capillary CO2 trapping, dissolution trapping and mineral trapping. During dissolution trapping, CO2 dissolves in the formation brine and sinks in the reservoir as the CO2-enriched brine has an increased density. In comparison, in mineral trapping, CO2 is bound by precipitating new carbonate minerals. The latter two mechanisms depend on the temperature, pressure, and the mineralogy of the reservoir rock and the chemical composition of the brine. This study discusses laboratory scale alterations of Ordovician and Silurian shale rocks from potential CO2 sequestration site B1 in the Baltic Basin. In the reported experiment, rocks submerged in brine in specially constructed reactors were subjected to CO2 pressure of 30-35 MPa for 30-45 days at temperature of 80 oC. Shale samples were analyzed in terms of mineral composition and mesopore surface area and volume, before and after experiments, by means of X-ray diffraction and N2 low-pressure adsorption, respectively, for possible CO2 induced changes. Comparison of mineral composition before and after experiments demonstrated subtle mineral changes. The most conspicuous was a release of Fe in the form of Fe-oxyhydroxides, most probably related to the decomposition of Fe-bearing minerals like pyrite, chlorite and, less frequently, ankerite. With regard to porosity, interestingly, the most significant increase in mesopore surface area and mesopore volume was observed in samples with the largest drop of chlorite amount. The less significant mineral changes were associated with formation of kaolinite related to breakdown of feldspars and dissolution of carbonate minerals represented by calcite, dolomite, and ankerite. In the analyzed samples, no new carbonate minerals were formed during the experiments. An increase of carbonates was recorded only in three out of 13 samples. However, concentration of carbonates in these three samples is too low to conclude CO2 mineral trapping in new carbonate phases. Acknowledgments: the study was supported from grant SHALESEQ (No PL12-0109) funded by the National Centre for Research and Development.

  14. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  15. Experimental observation and numerical simulation of permeability changes in dolomite at CO2 sequestration conditions

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.

  16. Responses of soil Collembola to long-term atmospheric CO2 enrichment in a mature temperate forest.

    PubMed

    Xu, Guo-Liang; Fu, Sheng-Lei; Schleppi, Patrick; Li, Mai-He

    2013-02-01

    Responses of Collembola to 7 years of CO(2) enrichment (550 ppm) in a Swiss free-air CO(2) enrichment (FACE) experiment in a forest with 80- to 120-year-old trees were investigated in this study. Contrary to our expectations, increased CO(2) caused a significant decrease in Collembola numbers, including a significant decrease in euedaphic Collembola. Increased CO(2), however, did not affect community group richness. Collembola biomass was not significantly changed by CO(2) enrichment, regardless of whether it was considered in terms of the total community, life-strategy groups, or individual species (with an exception of Mesaphorura krausbaueri). The reason for this is that CO(2) enrichment caused a general increase in individual body size, which compensated for reduced abundances. The results are consistent with the idea that the rhizosphere is important for soil fauna, and the combination of reduced fine root growth and increased soil moisture might trigger a reduction in Collembola abundance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of elevated CO{sub 2} on plant-grazer interactions: The importance of urine-hits and simulated grazing on the response of a C{sub 3} grass from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilsey, B.J.; Coleman, J.S.; McNaughton, S.J.

    1995-06-01

    Although grazing mammals are an important component of most grassland ecosystems, previous research on plant responses to elevated CO{sub 2} has rarely considered their effects. In a growth chamber experiment, we tested whether regrowth following simulated grazing was affected by elevated CO{sub 2} and urine hits (40 g/m{sup 2} urea N) in the C{sub 3} grass, Stipa occidentalis, which is common in Yellowstone National Park. Plant response (end of experiment biomass and productivity [biomass + clippings]) to elevated CO{sub 2} depended on whether plants received urine-hits and were clipped: plants only had increased growth in response to CO{sub 2} enrichmentmore » if they had received urea and were not clipped. Plants that received the entire grazing treatment (urea and clipping) had biomass and productivity values that were similar to controls. Thus, grazing mammals will tend to dampen the predicted CO{sub 2} effect in grasslands by significantly lowering increases in plant growth response to elevated CO{sub 2} levels.« less

  18. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    PubMed Central

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  19. Predicting Effects of Coastal Acidification on Marine Bivalve Populations

    EPA Science Inventory

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survi...

  20. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase, promoting porosity-reducing precipitation reactions in aquifers near saturation with mineral phases. Published by Elsevier B.V.

  1. EFFECTS OF ELEVATED CO2 AND OTHER ENVIRONMENTAL STRESSES ON WESTERN CONIFER SEEDLINGS

    EPA Science Inventory

    The future productivity of forests will be affected by increased levels of atmospheric CO2 which will likely be associated with climate change and regional air pollutants such as O3. We have conducted two long-term experiments to determine the effects of elevated CO2 and other s...

  2. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  3. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Daniel J; Kicklighter, David W.; McGuire, A. David

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulatedmore » active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.« less

  4. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NASA Astrophysics Data System (ADS)

    Webb, Alison L.; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E.; Malin, Gill; Bach, Lennart T.; Schulz, Kai; Crawfurd, Kate; Brussaard, Corina P. D.; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S.

    2016-08-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region.

  5. Structural study of Co doped MnV2O4 from first principles

    NASA Astrophysics Data System (ADS)

    Krishna, Jyoti; Maitra, Tulika

    2017-05-01

    Inspired by the recent experiments, we have theoretically investigated the compound Mn1-xCoxV2O4 using first-principles density functional theory for x = 0.0, 0.25, 0.5, 0.75. On increasing Co doping on Mn site, chemical pressure on V-V bonds increases which make the system more itinerant as indicated by decrease in the calculated RV-V values with increasing x. The calculated band gap is also seen to decrease with increasing x. This Co-doping induced itinerancy facilitates superexchange interaction among Co and V ions leading to an increase in the magnetic transition temperature.

  6. Elevated CO(2) and nitrogen effects on a dominant N(2)- fixing shrub

    NASA Astrophysics Data System (ADS)

    Wallace, Alison Marie

    The responses of N2-fixing species to global change are likely to be an important component in predicting the existence and direction of feedbacks between carbon and nitrogen cycles, as both are radically changing at an unprecedented pace. Increased carbon storage may be more likely in ecosystems not limited by available nitrogen, such as those with abundant N2-fixing species. If elevated CO2 affects growth and N2-fixation of dominant N2-fixers, then non-fixers in the system may experience indirect effects through changes in competitive interactions and nitrogen availability. The goal of this research was to investigate these effects on the growth, competitive ability, leaf and litter chemistry, and litter decomposition of Lupinus arboreus, a N2-fixing evergreen shrub, and to test the central hypothesis that an increase in growth and competitive ability would occur at low nitrogen and high CO2. In a growth chamber experiment, three CO2 levels, 350, 500, and 650 ppm were crossed with two nitrogen levels. Lupins were grown alone or in competition with an introduced annual grass, Bromus diandrus. Contrary to findings from previous studies of positive growth and competition responses by N2-fixers, Lupinus seedlings demonstrated no significant responses to CO2. Nitrogen was far more important than CO2 in affecting relative competitive ability. Nitrogen, alkaloids, and C:N ratios in fresh foliage did not change with CO2 or nitrogen. Carbon and biomass increased slightly in lupins at 500 ppm only, suggesting an early but limited growth response. Nitrogen did decrease in lupin litter at elevated CO2, but there were no effects on litter decomposition rates in the field. Simulations by the CENTURY surface litter decomposition model predicted the litter decomposition rates of field-grown litter nearly perfectly, and predicted the general direction but underestimated the rate of litter from the greenhouse grown at different CO2 levels. Very low or high nitrogen decreased growth and competitive ability of lupin seedlings in an additional greenhouse experiment. Slight increases of nitrogen in the field did not affect lupin aboveground biomass. In conclusion, it is unlikely that Lupinus abundance or rate of its nitrogen inputs will be affected by elevated CO2 and/or changes in nitrogen availability.

  7. Predation of freshwater fish in environments with elevated carbon dioxide

    USGS Publications Warehouse

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  8. Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution

    NASA Astrophysics Data System (ADS)

    Olsen, A. A.; Morra, B.

    2016-12-01

    We ran a series of experiments to test the hypothesis that release of plant nutrients contained in apatite will be accelerated by the growth of Langstrath Stringless green bean in the presence of atmospheric CO2 meant to simulate possible future atmospheric conditions due a higher demand of nutrients and growth rate caused by elevated CO2. We hypothesize that elevated atmospheric CO2 will lead to both increased root growth and organic acid exudation. These two traits will lead to improved acquisition of P derived from apatite. Experiments were designed to investigate the effect of these changes on soil mineral weathering using plants grown under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Plants were grown in flow-through microcosms consisting of a mixture of quartz and apatite sands. Mini-greenhouses were utilized to control CO2 levels. Plant growth was sustained by a nutrient solution lacking in Ca and P. Calcium and P content of the leachate and plant tissue served as a proxy for apatite dissolution. Plants were harvested biweekly during the eight-week experiment and analyzed for Ca and P to calculate apatite dissolution kinetics. Preliminary results suggest that approximately four times more P and Ca are present in the leachate from experiments containing plants under both ambient and elevated CO2 levels than in abiotic experiments; however, the amounts of both P and Ca released in experiments conducted under both ambient and elevated CO2 levels are similar. Additionally, the amount of P in plant tissue grown under ambient and elevated CO2 conditions is similar. Plants grown in elevated CO2 had a greater root to shoot ratio. The planted microcosms were found to have a lower pH than abiotic controls most likely due to root respiration and exudation of organic acids.

  9. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.

    PubMed

    Olszyk, D M; Johnson, M G; Phillips, D L; Seidler, R J; Tingey, D T; Watrud, L S

    2001-01-01

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.

  10. Element mobilization and immobilization from carbonate rocks between CO2 storage reservoirs and the overlying aquifers during a potential CO2 leakage.

    PubMed

    Lawter, Amanda R; Qafoku, Nikolla P; Asmussen, R Matthew; Kukkadapu, Ravi K; Qafoku, Odeta; Bacon, Diana H; Brown, Christopher F

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO 2 -acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2 -reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2 -laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    DOE PAGES

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; ...

    2018-01-04

    In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less

  12. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew

    In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less

  13. Bicarbonate uptake by Southern Ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.

    2004-06-01

    Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world's ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.

  14. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability in the former case and possibly a minor decrease in the latter case.

  15. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T; Classen, Aimee T; Norby, Richard J

    2009-01-01

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatmentsmore » with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.« less

  16. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    PubMed

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  17. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  18. Intramolecular isotope distributions reveal lower than expected increases in photosynthesis over the past 200 years

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Robertson, Iain; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    The ability of the biosphere to act as CO2 sink through photosynthesis strongly influences future atmospheric CO2 concentrations and crop productivity. However, plant responses to increasing atmospheric CO2 are poorly understood, in particular on time scales of decades that are most relevant for the global carbon cycle. Most plants in the global terrestrial vegetation and most crops use the C3 photosynthetic pathway. Photorespiration is a side reaction of C3 photosynthesis that reduces CO2 assimilation in all C3 plants. By studying intramolecular isotope distributions (isotopomer abundances) in century-long archives of plant material, we reconstruct how the atmospheric CO2 increase since industrialization has changed the ratio of photorespiration to photosynthesis. For 12 tree species from five continents, we observe that the CO2 increase has reduced the photorespiration / photosynthesis ratio. However, the observed reduction is on average 50 % smaller than expected from CO2 manipulation experiments. This apparent discrepancy is explained by results from a factorial CO2 / temperature manipulation experiment, which shows that isotopomers reflect the integrated effect of CO2 and temperature on the photorespiration / photosynthesis ratio. Thus, the 50 % smaller suppression of photorespiration in trees is explained by increases in leaf temperature of 2 ° C, due to global warming and a possible contribution of reduced transpirational cooling due to stomatal closure. Previous studies of long-term effects of increasing CO2 on trees have measured 13C fractionation of leaf gas exchange (Δ13C) in tree-ring series. In several studies a discrepancy was observed: strong historic increases in photosynthesis are estimated, but increases in biomass are not observed. The temperature influence revealed by our isotopomer data resolves this discrepancy; the lower estimate of CO2 fertilization has major implications for the future role of forests as CO2 sink and for vegetation-climate interactions. Isotopomer abundances reflect metabolic regulation, because enzyme isotope effects alter the isotope abundance in individual intramolecular positions. Thus, isotopomers of long-lived metabolites of historic plant material are the first tool to connect plant ecophysiology with paleo research. Another strength is that ratios of isotopomers are independent of source isotopic signatures (δ13C of CO2 and δD of water). Thus, isotopomer ratios and source isotopic signatures are orthogonal signals of plant processes and of environmental changes, respectively. Glucose has seven deuterium- and six 13C isotopomers, each influenced by specific fractionation mechanisms, therefore several climatic and/or physiological signals may be retrieved from just one metabolite.

  19. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems

    USDA-ARS?s Scientific Manuscript database

    With increasing demand for agricultural products, more confidence is needed concerning impacts of rising atmospheric CO2 on crop yields. Despite debate about the merits of free-air CO2 enrichment (FACE) and open top chamber (OTC) systems, there has been only one reported experiment directly compari...

  20. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN

    2017-12-01

    Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.

  1. Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-04-29

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} withinmore » the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.« less

  2. Influence Of The Redox State On The Electrical Conductivity Of Basaltic Melts

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2007-12-01

    The electrical conductivity is an efficient probe of mass transfer processes within silicate melts and magmas. Previous studies have established that the electrical conductivity is sensitive to parameters such as temperature, melt composition and pressure. In contrast to what is known for Fe-bearing minerals, little attention has been given to the influence of redox state on the electrical conductivity of melts. Experiments were performed on tephritic and basaltic compositions respectively from Mt. Vesuvius and Pu'u 'O'o. Measurements were carried out on cylindrical glass samples (OD: 6 mm, ID: 1 mm, L: 8 mm) drilled from glass obtained by fusing each rock sample at 1400°C in air. A two-electrode configuration was adopted, with the electrical impedance being radially measured. A Pt wire was used as the internal electrode whereas a Pt tube served as the external electrode. Experiments were conducted at 1 atm in a vertical furnace between 1200°C and 1300°C, both in air and in a CO-CO2 atmosphere at a fO2 corresponding to NNO+1. Both reduction and oxidation experiments were performed. In reduction experiments (pure CO2 then CO-CO2 gas mixture), electrical conductivities progressively increase with time. The reverse is observed in oxidation experiments (CO-CO2 gas mixture then pure CO2). These variations of electrical conductivities are correlated with modifications of the Fe2+/Fe3+ ratio in the melt, and are consistent with the respective structural roles of Fe2+ and Fe3+. In both types of experiments, a minimum of about 400 mn is necessary before a plateau is reached, interpreted to reflect the kinetics of attainment of the equilibrium Fe2+/Fe3+ ratio in the melt. Differences between plateau and initial values are typically of a few ohms, much higher than the sensitivity of our measurements (better than 0.1 ohm). When increasing temperature, the time required for reaching plateau values decreases. At NNO+1, the electrical activation energy (Ea) was determined for both compositions: Ea=137 kJ/mol (tephrite) and 73 kJ/mol (basalt). Further experiments are necessary to quantify the influence of redox state on electrical conductivity, especially at fO2 below NNO+1.

  3. Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2

    NASA Astrophysics Data System (ADS)

    Kent, J.; Paustian, K.

    2017-12-01

    Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.

  4. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.

  5. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    NASA Astrophysics Data System (ADS)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.

  6. Peculiarities of CO2 sequestration in the Permafrost area

    NASA Astrophysics Data System (ADS)

    Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir

    2010-05-01

    Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the sediment may be either in frozen or liquid states. To study these processes, an experimental investigation of hydrate formation kinetics from liquid and gaseous CO2 has been performed using the method of NMR imaging*. Experiments were made with samples of quartz sand (particles' diameter 0,21-0,297mm) with different water saturation in the range of temperatures between -3 and +8oC and pressures between 3 and 6 MPa. The experiments performed revealed the main regularities of hydrate accumulation from liquid CO2 in sediment. The influence of temperature on the rate of pore hydrate growth was analyzed. For example, the rate of hydrate growth at +7.2oC was 6 times smaller then at -3 оС. Fast hydrate formation from liquid CO2 was observed in sand samples with water saturation below 20-30%. With an increase in water saturation to 50%, the rate of hydrate formation decreased significantly, and when water saturation was 60% or more, nucleation was not observed during the time of the experiment (1-3 days). Experimental results revealed that pressure variation in the range between 4 and 6 MPa does not have any influence on the kinetics of hydrate formation from liquid CO2. Comparison of kinetics of hydrate formation from liquid and gas CO2 showed that hydrate accumulation is faster from gas CO2 then from liquid CO2. Thus, 50% of pore water that reacted with liquid CO2 transformed into hydrate in 0.8 hours after nucleation, and when reacted with CO2-gas, it transformed in 0.3 hours. The completed experiments allowed us to consider the peculiarities of hydrate formation and filtration of liquid and gaseous CO2 towards the hydrate stability zone, which is important to take into account during the elaboration of industrial techniques of CO2 injection in under-permafrost collectors. * Experiments have been made in the laboratory of NRC of Canada.

  7. Drought stress and tree size determine stem CO2 efflux in a tropical forest.

    PubMed

    Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick

    2018-06-01

    CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  8. MECHANICAL AND CHEMICAL PROPERTIES OF CEMENTITIOUS MATERIALS USING γ-2CaO.SiO2 UNDER THE SEVERAL CONDITIONS IN ACCELERATED CARBONATION CURING

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenzo; Yokozeki, Kosuke; Torichigai, Takeshi; Sakai, Etsuo

    The experiments have been conducted in order to investigate the mechanical and chemical properties of mortar with three different binders under the several conditions in accelerated carbonation curing. As the results, the depth of carbonation varied among each mix proportion. It is proven that by increasing CO2 density in the mortar having γ-2CaO.SiO2, the CaCO3 production will increase, which leads to the increase of filling ability in the pore of mortar. Furthermore, as a result from the calculation of Tritium permeation, it shows that the permeation decreases with an increase of CO2 density.

  9. The Global Carbon Cycle: It's a Small World

    NASA Astrophysics Data System (ADS)

    Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas

    2010-05-01

    Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric temperatures, or cessation of CO2 additions, showed rapid and proportionate decreases in atmospheric CO2 concentrations. The results indicate that short term terrestrial feedbacks are not sufficient to induce a CO2-temperature runaway scenario and suggest that predictions of atmospheric CO2 by current GCMs may under-estimate the CO2 fertilisation effect on plants and, hence, over-estimate future atmospheric CO2 increases. Perhaps, more importantly, the experiments show that the impacts of imposed elevated CO2 and temperature increase can be reversed. Whilst clearly representing a simplified version of terrestrial CO2 dynamics, it is proposed that closed system research represents a new form of test-bed for validation of processes represented within digital global CO2 models.

  10. Iron in the Ross Sea: 2. Impact of discrete iron addition strategies

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; Tagliabue, Alessandro

    2005-03-01

    Presented are results of a regional-scale numerical investigation into the effectiveness of Fe fertilization as a means to increase the efficiency of the biological pump in Fe-limited waters of the Ross Sea, Antarctica. This investigation was conducted using a modified version of the Coupled Ice And Ocean (CIAO) ecosystem model of the Ross Sea sector of the Southern Ocean. Four sets of experiments were performed, investigating the impacts of differences in (1) timing of fertilization, (2) duration of fertilization, (3) amount of Fe added, and (4) size of the fertilized patch. Results show that the stimulation of air-sea CO2 exchange (FCO2) depends primarily on the timing of fertilization, regardless of the amount of Fe added. When Fe was added at the optimal time of year, FCO2 from the atmosphere into the Ross Sea was increased by 3-22%, depending on fertilization strategy. Increasing patch size produced the largest response, and increasing initial Fe concentration produced the smallest. In all cases, as the intensity of Fe fertilization increased, the fertilization efficiency (increase in CO2 uptake per unit added Fe) dropped. Strategies that maximized the fertilization efficiency resulted in relatively little additional CO2 being drawn out of the atmosphere. To markedly increase oceanic uptake of atmospheric CO2 would require the addition of large amounts of Fe due to the low fertilization efficiencies associated with maximum air-sea CO2 exchange. Our results also show that differences in the fertilization strategy should be kept in mind when comparing the results of different Fe fertilization experiments.

  11. Nitrous Oxide Emissions in a Managed Grassland are Strongly Influenced by CO2 Concentrations Across a Range of Soil Moisture Levels

    NASA Astrophysics Data System (ADS)

    Brown, Z. A.; Hovenden, M. J.; Hunt, M.

    2017-12-01

    Though the atmosphere contains less nitrous oxide (N2O, 324 ppb) than carbon dioxide (CO2, 400 ppm­), N2O has 298 times the global warming potential of CO2 on a 100-year horizon. Nitrous oxide emissions tend to be greater in moist soils because denitrification is an anaerobic process. The rising concentration of CO2 in the atmosphere reduces plant stomatal aperture, thereby slowing transpiration and water use and leading to higher soil moisture levels. Thus, the rising CO2 concentration could stimulate N2O emissions indirectly via increasing soil moisture. Further, results from field experiments in which CO2 is elevated have demonstrated nitrification is accelerated at elevated CO2 concentrations (eCO2). Hence, N2O emissions could be substantially increased by the impacts of rising CO2 concentrations on plant and ecosystem physiology. However, the scale of this impact could be influenced by the amount of water supplied through irrigation or rainfall since both nitrification and denitrification are sensitive to soil moisture. Here, we use measurements of CO2 and N2O emissions from the TasFACE2 experiment to explore the ways in which the impact of CO2 concentration on greenhouse gas emissions is influenced by water supply in a managed temperate pasture. TasFACE2 is the world's only experiment that explicitly controls soil water availability at three different CO2 concentrations. Application of chemical nitrification inhibitor severely reduces N2O flux from soils regardless of CO2 level, water treatment and time following urea application. This inhibitor reduced soil respiration in plots exposed to ambient CO2 plots but not in eCO2 plots. N2O flux is stimulated by eCO2 but not consistently among watering treatments or seasons. Soil respiration is strongly enhanced by CO2 effect regardless of watering treatment. The results demonstrate that CO2 concentration has a sustained impact on CO2 and N2O flux across a range of water availabilities in this fertilised, ryegrass pasture. Thus, the impacts of rising CO2 concentrations on greenhouse gas emissions are not dependent upon soil water availability, with substantial impacts occurring even in drier soils. Thus, the impact of CO2 concentration on emissions might be stronger than has been believed to this point, with major ramifications for future climate.

  12. Effect of CO sub 2 enrichment and high photosynthetic photon flux densities (PPFD) on rubisco and PEP-case activities of in vitro cultured strawberry plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Y.; Beeson, R.; Gosselin, A.

    1989-04-01

    Standard growing conditions in vitro (low light and CO{sub 2}) are not conducive to autotrophy. An experiment was conducted to improve photosynthesis in vitro in the hope of increasing survival in acclimatization. A factorial experiment was elaborated where CO{sub 2} and PPFD were supplied to in vitro cultured strawberry plants in the rooting stage. Activities of carboxylating enzymes were determined after 4 weeks of culture. The activities of non-activated and activated rubisco and PEP-Case were measured after extraction of the enzymes and a reaction with NaH{sup 14}CO{sub 3} followed by scintillation counting spectroscopy. High CO{sub 2} concentration significantly increased netmore » assimilation rates (NAR) by 165% over the control for both 1650 and 3000 ppm CO{sub 2}. High PPFD only increased NAR by 12 and 35% for 150 and 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} respectively over the control. Plants grown at 3000 ppm CO{sub 2} had the highest level of chlorophyll/g FW with 97% more than the control. The activity of PEP-Case was the highest at high light levels and high CO{sub 2} with rates of 1.65 for 1650 ppm versus 1.22 mmol CO{sub 2} mg{sup {minus}1} chl. h{sup {minus}1} at 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}. There was no difference in PEP activity at low light levels. The rubisco activity was lower at 1650 and 3000 ppm CO{sub 2}. Increases in NAR correlate more closely to the PEP-Case than to Rubisco activity. Physiological significance of high activity of PEP-Case over rubisco will be discussed.« less

  13. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    PubMed Central

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  14. Changing concentrations of CO, CH(4), C(5)H(8), CH(3)Br, CH(3)I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments.

    PubMed

    Wingenter, Oliver W; Haase, Karl B; Strutton, Peter; Friederich, Gernot; Meinardi, Simone; Blake, Donald R; Rowland, F Sherwood

    2004-06-08

    Oceanic iron (Fe) fertilization experiments have advanced the understanding of how Fe regulates biological productivity and air-sea carbon dioxide (CO(2)) exchange. However, little is known about the production and consumption of halocarbons and other gases as a result of Fe addition. Besides metabolizing inorganic carbon, marine microorganisms produce and consume many other trace gases. Several of these gases, which individually impact global climate, stratospheric ozone concentration, or local photochemistry, have not been previously quantified during an Fe-enrichment experiment. We describe results for selected dissolved trace gases including methane (CH(4)), isoprene (C(5)H(8)), methyl bromide (CH(3)Br), dimethyl sulfide, and oxygen (O(2)), which increased subsequent to Fe fertilization, and the associated decreases in concentrations of carbon monoxide (CO), methyl iodide (CH(3)I), and CO(2) observed during the Southern Ocean Iron Enrichment Experiments.

  15. Larval development and settling of Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels

    NASA Astrophysics Data System (ADS)

    Jansson, A.; Lischka, S.; Boxhammer, T.; Schulz, K. G.; Norkko, J.

    2015-12-01

    Anthropogenic carbon dioxide (CO2) emissions are causing severe changes in the global inorganic carbon balance of the oceans. Associated ocean acidification is expected to impose a major threat to marine ecosystems worldwide, and it is also expected to be amplified in the Baltic Sea where the system is already at present exposed to relatively large natural seasonal and diel pH fluctuations. The response of organisms to future ocean acidification has primarily been studied in single-species experiments, whereas the knowledge of community-wide responses is still limited. To study responses of the Baltic Sea pelagic community to a range of future CO2-scenarios, six ∼ 55 m3 pelagic mesocosms were deployed in the northern Baltic Sea in June 2012. In this specific study we focused on the tolerance, development and subsequent settlement process of the larvae of the benthic key-species Macoma balthica when exposed to different levels of future CO2. We found that the settling of M. balthica was delayed along the increasing CO2 gradient of the mesocosms. Also, when exposed to increasing CO2 levels larvae settled at a larger size, indicating a developmental delay. With on-going climate change, both the frequency and extent of regularly occurring high CO2 conditions is likely to increase, and a permanent pH decrease will likely occur. The strong impact of increasing CO2 levels on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations, and a failure in their recruitment would ultimately lead to negative effects on the population.

  16. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  17. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  18. Assessing model sensitivity and uncertainty across multiple Free-Air CO2 Enrichment experiments.

    NASA Astrophysics Data System (ADS)

    Cowdery, E.; Dietze, M.

    2015-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentrations are highly variable and contain a considerable amount of uncertainty. It is necessary that we understand which factors are driving this uncertainty. The Free-Air CO2 Enrichment (FACE) experiments have equipped us with a rich data source that can be used to calibrate and validate these model predictions. To identify and evaluate the assumptions causing inter-model differences we performed model sensitivity and uncertainty analysis across ambient and elevated CO2 treatments using the Data Assimilation Linked Ecosystem Carbon (DALEC) model and the Ecosystem Demography Model (ED2), two process-based models ranging from low to high complexity respectively. These modeled process responses were compared to experimental data from the Kennedy Space Center Open Top Chamber Experiment, the Nevada Desert Free Air CO2 Enrichment Facility, the Rhinelander FACE experiment, the Wyoming Prairie Heating and CO2 Enrichment Experiment, the Duke Forest Face experiment and the Oak Ridge Experiment on CO2 Enrichment. By leveraging data access proxy and data tilling services provided by the BrownDog data curation project alongside analysis modules available in the Predictive Ecosystem Analyzer (PEcAn), we produced automated, repeatable benchmarking workflows that are generalized to incorporate different sites and ecological models. Combining the observed patterns of uncertainty between the two models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.

  19. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  20. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.

    PubMed

    Little, Mark G; Jackson, Robert B

    2010-12-01

    Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

  1. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  2. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    PubMed

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A; Davis, Andrew R; Byrne, Maria

    2010-06-29

    As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  3. Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    PubMed Central

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A.; Davis, Andrew R.; Byrne, Maria

    2010-01-01

    Background As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations. PMID:20613879

  4. Investigation of the relationship between CO2 reservoir rock property change and the surface roughness change originating from the supercritical CO2-sandstone-groundwater geochemical reaction at CO2 sequestration condition

    NASA Astrophysics Data System (ADS)

    Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung

    2015-04-01

    Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2 injection site could be possible from the extrapolation process of SRrms and rocks property change rates, acquired from laboratory scale experiments. It will be aslo useful to determine the favorite CO2 injection site from the viewpoint of the safety.

  5. The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii.

    PubMed

    Goldman, Johanna A L; Bender, Michael L; Morel, François M M

    2017-04-01

    The response of marine phytoplankton to the ongoing increase in atmospheric pCO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii, we explored the effects of varying pCO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or pCO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of pCO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii, it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric pCO 2 predicted for the twenty-first century.

  6. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field

    PubMed Central

    Locke, Anna M.; Sack, Lawren; Bernacchi, Carl J.; Ort, Donald R.

    2013-01-01

    Background and Aims Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Methods Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. Key results In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Conclusions Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change. PMID:23864003

  7. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish

    NASA Astrophysics Data System (ADS)

    Miller, Gabrielle M.; Watson, Sue-Ann; Donelson, Jennifer M.; McCormick, Mark I.; Munday, Philip L.

    2012-12-01

    Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000μatm CO2 and a temperature rise of 1.5-3.0°C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

  8. Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy

    DOE PAGES

    Grills, David Charles; Lymar, Sergei

    2018-03-29

    In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less

  9. Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grills, David Charles; Lymar, Sergei

    In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less

  10. Marine CDOM accumulation during a coastal Arctic mesocosm experiment: No response to elevated pCO2 levels

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey K.; Silyakova, Anna; Granskog, Mats A.; Bellerby, Richard G. J.; Engel, Anja; Schulz, Kai G.; Brussaard, Corina P. D.

    2014-06-01

    A large-scale multidisciplinary mesocosm experiment in an Arctic fjord (Kongsfjorden, Svalbard; 78°56.2'N) was used to study Arctic marine food webs and biogeochemical elements cycling at natural and elevated future carbon dioxide (CO2) levels. At the start of the experiment, marine-derived chromophoric dissolved organic matter (CDOM) dominated the CDOM pool. Thus, this experiment constituted a convenient case to study production of autochthonous CDOM, which is typically masked by high levels of CDOM of terrestrial origin in the Arctic Ocean proper. CDOM accumulated during the experiment in line with an increase in bacterial abundance; however, no response was observed to increased pCO2 levels. Changes in CDOM absorption spectral slopes indicate that bacteria were most likely responsible for the observed CDOM dynamics. Distinct absorption peaks (at 330 and 360 nm) were likely associated with mycosporine-like amino acids (MAAs). Due to the experimental setup, MAAs were produced in absence of ultraviolet exposure providing evidence for MAAs to be considered as multipurpose metabolites rather than simple photoprotective compounds. We showed that a small increase in CDOM during the experiment made it a major contributor to total absorption in a range of photosynthetically active radiation (PAR, 400-700 nm) and, therefore, is important for spectral light availability and may be important for photosynthesis and phytoplankton groups composition in a rapidly changing Arctic marine ecosystem.

  11. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    NASA Astrophysics Data System (ADS)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual increments across all treatments. However, the relative difference in growth between CO2-elevated and ambient plots was greater during drought years, providing evidence that tree growth in the future might become less sensitive to water shortages under elevated CO2 conditions.

  12. The Interrelationship of pCO2, Soil Moisture Content, and Biomass Fertilization Expressed in the Carbon Isotope Signature of C3 Plant Tissue

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.

  13. Response to CO2 Transient Increase in the GISS Coupled Model: Regional Coolings in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Rind, David

    1999-01-01

    The (GISS) Goddard Institute for Space Studies coupled atmosphere-ocean model is used to investigate the effect of increased atmospheric CO2 by comparing a compounded 1 percent CO2 increase experiment with a control simulation. After 70 years of integration, the global surface air temperature in the 1 percent CO2 experiment is 1.43 C warmer. In spite of this global warming, there are two distinct regions, the northern Atlantic Ocean and the southern Pacific Ocean, where the surface air temperature is up to 4 C cooler. This situation is maintained by two positive feedbacks: a local effect on convection in the South Pacific and a non-local impact on the meridional circulation in the North Atlantic. The poleward transport of latent energy and dry static energy by the atmosphere is greater in the 1 percent CO2 experiment, caused by warming and therefore increased water vapor and greater greenhouse capacity at lower latitudes. The larger atmospheric transports tend to reduce upward vertical fluxes of heat and moisture from the ocean surface at high latitudes, which has the effect of stabilizing the ocean, reducing both convection and the thermohaline circulation. With less convection, less warm water is brought up from below, and with a reduced North Atlantic thermohaline circulation (by 30 percent at time of CO2 doubling), the poleward energy transport by the oceans decreases. The colder water then leads to further reductions in evaporation, decreases of salinity at high latitudes, continued stabilization of the ocean, and maintenance of reduced convection and meridional overturning. Although sea ice decreases globally, it increases in the cooling regions which reduces the overall climate sensitivity; its effect is most pronounced in the Southern Hemisphere. Tropical warming has been observed over the past several decades; if modeling studies such as this and others which have produced similar effects are valid, these processes may already be beginning.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, D.T.; Flint, E.P.

    Research report: Mathematical growth analysis techniques were used to determine the effects of carbon dioxide on the growth and biomass partitioning in corn (zea mays), itchgrass (Rottbiellia exalata concentrations of 350 ppM, 600 ppM, and 1000 ppM were considered. Dry matter production in soybean and velvetleaf was increased significantly by raising the CO2 concentration above 350 ppM. Dry matter production in itchgrass was greatest at 600 ppM; CO2 levels did not affect dry matter production in corn. Weed growth with each plant at the various CO2 concentrations was also measured. CO2 enrichment increased weed growth in weeds planted with soybeanmore » and velvetleaf; weeds planted with corn and itchgrass did not experience any significant increase in growth. (18 references, 4 tables)« less

  15. CO Metabolism in the Acetogen Acetobacterium woodii

    PubMed Central

    Bertsch, Johannes

    2015-01-01

    The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed. PMID:26092462

  16. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    PubMed

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. © 2012 Blackwell Publishing Ltd.

  17. Low Temperature Thermodynamic Equilibrium of CO2 Dimer Anion Species in Cryogenic Argon and Krypton Matrices

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    The separated CO2 dimer anion, (CO2)(CO2-), is observed by FTIR spectroscopy in matrix isolation experiments at 1652 cm-1 upon deposition of high energy argon ions into an argon matrix doped with 0.5% CO2. It has previously been reported by Andrews that upon annealing the matrix to 25K, the separated species converts to an oxalate-like C2O4- species which appears at 1856 cm-1.a We have observed that subsequently holding the matrix at 10K caused the C2O4- species to fully convert back to (CO2)(CO2-). Upon further investigation, we determined that the two species reversibly interconvert between 19K and 23K, suggesting the species are in thermodynamic equilibrium. The associated van't Hoff plot has a linear trend and indicates an endothermic reaction driven by a large increase in entropy. An analogous experiment in a krypton matrix was performed, and the equilibrium was found to occur between 26K and 31K. Interestingly, analysis revealed the reaction in krypton is more endothermic, but has nearly the same entropy value as was observed in the argon experiment. aZhou, M.; Andrews, L.; J. Chem. Phys. 110, 2414 (1999).

  18. Bottleneck Effect of N,N-Dimethylformamide in InOF-1: Increasing CO2 Capture in Porous Coordination Polymers.

    PubMed

    Sánchez-González, Elí; González-Zamora, Eduardo; Martínez-Otero, Diego; Jancik, Vojtech; Ibarra, Ilich A

    2017-05-15

    The bottleneck effect of confined N,N-dimethylformamide (DMF) molecules was observed in InOF-1 for the first time: CO 2 capture was remarkably enhanced in samples of as-synthesized InOF-1, thermally activated in such a way that a small residual amount of DMF molecules remained confined within the pores (DMF@InOF-1). Dynamic CO 2 adsorption experiments on DMF@InOF-1 exhibited a CO 2 capture of 8.06 wt % [1.5-fold higher than that of a fully activated InOF-1 (5.24%)]. DMF@InOF-1 can reversibly adsorb/desorb 8.09% CO 2 with no loss of CO 2 capacity after 10 cycles, and the desorption is accomplished by only turning the CO 2 flow off. Static CO 2 adsorption experiments (at 196 K) demonstrated a 1.4-fold CO 2 capture increase (from 5.5 mmol·g -1 , fully activated InOF-1, to 7.5 mmol·g -1 , DMF@InOF-1). Therefore, these CO 2 capture properties are the result of the presence of residual-confined DMF molecules within the InOF-1 framework and their interactions via a very strong hydrogen bond with the In 2 (μ-OH) groups, which prevent DMF leaching. The stability of this hydrogen bond is given by a perfect fit of the DMF molecule in the "dent" around the OH group that allows a nearly ideal orientation of the DMF molecule towards the OH group.

  19. Measurement of heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  20. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the Madison Limestone, but pyrite will persist and iron oxyhydroxides will not recrystallize.

  1. Hydro-geochemical impact of CO2 leakage from geological storage on shallow potable aquifers: A field scale pilot experiment.

    NASA Astrophysics Data System (ADS)

    Cahill, A.; Jakobsen, R.

    2012-04-01

    In order to assess the environmental implications of leakage of CO2 from a geological sequestration site into overlying shallow potable aquifers, a 3 month field release experiment is planned to commence in spring 2012 at Vrøgum plantation, Western Denmark. To test the injection and sampling methodologies and as a study of short term effects, a pilot experiment was conducted at the field site: 45 kg of food grade CO2 was injected at 10 m depth over 48 hours into an unconfined, aeolian/glacial sand aquifer and the effects on water chemistry studied. The CO2 was injected through an inclined well installed with a 1 m length of porous polyethylene well screen (20 µm pore size) initially at a rate of 5 litres per minute increasing to 10 litres per minute after 24 hours. Water samples were taken from a network of multi-level sample points (8, 4 and 2.4m depth) before, during and after the injection and measured for physico-chemical parameters and major/trace element composition. Although the site possesses a relatively high hydraulic conductivity (12-16 m/day), due to the small hydraulic gradient (0.0039) 6 days elapsed before effects of CO2 on the ground water were detected in the first sampling point located 0.5 m down flow from the injection well. The dissolved plume of CO2 was observed only in the 8 m depth sample points and moved with flow (approximately 0.10 - 0.12 m/day). The plume spread laterally to 2m width as little as 1 m from the injection screen after 26 days, indicating that CO2 bubbles change the hydraulics of the medium. Dissolved CO2 was not detected in sample points at 4 or 2.4 m depth at any time during the experiment, suggesting gas could not move into the slightly finer grained upper sand. Effects of CO2 dissolution at 8 m depth were manifest as a clear and stable increase in electrical conductivity (approximately 160 to 300 µS/cm), a relatively small increase in total dissolved ions (approximately 30 to 50 mg/l) and an unstable depression of pH (approximately 5.8 to 4.73). The dissolved CO2 plume evolved with a distinct maximal front observed to pass through sample points followed by a slowly dissipating tail. After 56 days the CO2 plume reached the end of the monitoring network and was at its greatest extent (5 m length by 1 m width) however still appeared to be increasing in size suggesting residual gas phase CO2 trapped within the pore space continuously dissolving. Water quality did not significantly deteriorate and only small increases in major and trace elements were observed. Overall, groundwater chemistry results indicate that for an aquifer composed primarily of slowly reacting silicate sediments, such as Vrøgum, the risks to water resources from a short term leak from CCS into shallow overlying aquifers are minimal. However, a potential accumulation effect within the plume front as it moves through the formation was observed inferring a large scale leak may develop a CO2 charged plume exceeding guideline values for major and trace elements.

  2. Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia.

    NASA Astrophysics Data System (ADS)

    Costa, Marcos Heil; Foley, Jonathan A.

    2000-01-01

    It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: 1) increasing areas of forest will be converted to pasture and cropland, and 2) concentrations of atmospheric CO2 will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO2 concentrations (including both physiological and radiative effects) on Amazonian climate.In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day1 over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO2 concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day1. The combined effect of deforestation and doubled CO2, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day1. While the effects of deforestation and increasing CO2 concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO2 concentrations both tend to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO2. The combined effect of deforestation and doubled CO2, including the interactions among the processes, increases the basin-average temperature by roughly 3.5°C.

  3. Effects of Solar Geoengineering on Meridional Energy Transport and the ITCZ

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.; Frierson, D. M.

    2016-12-01

    The polar amplification of warming and the ability of the intertropical convergence zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering, but also for understanding how these processes work under increased CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. In this study we examine changes in MSE transport in 10 fully coupled GCMs in Experiment G1 of the Geoengineering Model Intercomparison Project, in which the solar constant is reduced to compensate for abruptly quadrupled CO2 concentrations. In this experiment, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. The increase in poleward MSE transport under increased CO2 is due to latent heat transport, as specific humidity increases faster in the tropics than at the poles; this mechanism is not present under G1 conditions, so the reduction in dry static energy transport due to a weakened equator-to-pole temperature gradient leads to weaker energy transport overall. Changes in cross-equatorial MSE transport in G1, meanwhile, are anticorrelated with shifts in the ITCZ. The northward ITCZ shift in G1 is 0.14 degrees in the multi-model mean and ranges from -0.33 to 0.89 degrees between the models. We examine the specific forcing and feedback terms responsible for changes in MSE transport in G1 by running experiments with a moist energy balance model. This work will help identify the largest sources of uncertainty regarding ITCZ shifts under solar geoengineering, and will help improve our understanding of the reasons for the residual polar amplification that occurs in the G1 experiment.

  4. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.

    PubMed

    Anderson, Laurel J; Cipollini, Don

    2013-08-01

    Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.

  5. Interacting hands: the role of attention for the joint Simon effect

    PubMed Central

    Liepelt, Roman

    2014-01-01

    Recent research in monkeys and humans has shown that the presence of the hands near an object enhances spatial processing for objects presented near the hand. This study aimed to test the effect of hand position on the joint Simon effect. In Experiment 1, two human co-actors shared a Simon task while placing their response hands either near the objects appearing on the monitor or away from the monitor. Experiment 2 varied each co-actor’s hand position independently. Experiment 3 tested whether enhanced spatial processing for objects presented near the hand is obtained when replacing one of the two co-actors by a non-human event-producing rubber hand. Experiment 1 provided evidence for a Simon effect. Hand position significantly modulated the size of the Simon effect in the joint Simon task showing an increased Simon effect when the hands of both actors were located near the objects on the monitor, than when they were located away from the monitor. Experiment 2 replicated this finding showing an increased Simon effect when the actor’s hand was located near the objects on the monitor, but only when the co-actor also produced action events in spatial reference. A similar hand position effect was observed in Experiment 3 when a non-human rubber hand replaced the human co-actor. These findings suggest that external action events that are produced in spatial reference bias the distribution of attention to the area near the hand. This strengthens the weight of the spatial response codes (referential coding) and hence increases the joint Simon effect. PMID:25566140

  6. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2016-02-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. This can involve increased stress in populations, and alteration in individual physiology, which can eventually be expressed through an organism's behavior. If sustained, CO2 induced ocean acidification has the potential to cause major impacts on marine food chains, including on services they provide. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crab Clibanarius digueti, a crustacean inhabiting the littoral zone. We hypothesized that an increase in dissolved carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the physiology of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into the treatment tank and measured as dissolved CO2 by using a NaOH titration method. Additionally, water conditions were characterized for light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We found a marked treatment effect on C. digueti behavior. The population experiencing increased CO2 performed daily shell changes after first day of exposure for each of the 4-day trials, as compared to individuals unexposed to dissolved CO2, that experienced no shell changes. From this study we conclude that the behavior of C. Digueti can be a good indicator of changes in dissolved CO2. This would allow us to better interpret patterns in marine animal behavior in response to climate change.

  7. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    NASA Astrophysics Data System (ADS)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2 alone, at which those with silicate phases have a lower pH (between 2 and 3) than experiments with carbonates. Fluid-mineral-interactions using scCO2-SO2 are thus much stronger and the concentrations of SO4 and cations in the reacting fluids are generally much higher, especially for Fe, Si and Al of silicates. However, intensity and rate of reactions are controlled by the availability of SO2 and apparently buffered by dissolution and precipitation processes. EMPA and Raman spectroscopy analyses are in progress to identify possible precipitated secondary products on mineral surfaces.

  8. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-07-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  9. Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes

    NASA Technical Reports Server (NTRS)

    Andre, M.; Ducloux, H.; Richaud, C.

    1986-01-01

    When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.

  10. Anxiogenic CO2 Stimulus Elicits Exacerbated Hot Flash-like Responses in a Rat Menopause Model and Hot Flashes in Menopausal Women

    PubMed Central

    Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.

    2016-01-01

    Objective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments. PMID:27465717

  11. Upscaling nitrogen-mycorrhizal effects to quantify CO2 fertilization.

    NASA Astrophysics Data System (ADS)

    Terrer, C.; Franklin, O.; Kaiser, C.; Vicca, S.; Stocker, B.; Prentice, I. C.; Soudzilovskaia, N.

    2016-12-01

    Terrestrial ecosystems sequester annually about a quarter of anthropogenic carbon dioxide (CO2) emissions. However, it has been proposed that nitrogen (N) availability will limit plants' capacity to absorb increasing quantities of CO2 in the atmosphere. Experiments in which plants are fumigated with elevated CO2 show contrasting results, leaving open the debate of whether the magnitude of the CO2 fertilization effect will be limited by N. By synthesizing data from CO2 experiments through meta-analysis, we found that the magnitude of the CO2 fertilization effect can be explained based on the interaction between N availability and type of mycorrhizal association. Indeed, N availability is the most important driver of the CO2 fertilization effect, however, plants that associate with ectomycorrhizal fungi can overcome N limitations and grow about 30% more under 650ppm than under 400ppm of atmospheric CO2. On the other hand, plants that associate with arbuscular mycorrhizal fungi show no CO2 fertilization effect under low N availability. Using this framework, we quantified biomass responses to CO2 as a function of the soil parameters that determine N availability for the two mycorrhizal types. Then, by overlaying the distribution of mycorrhizal plants with global projections of the soil parameters that determine N availability, we estimated the amount of extra CO2 that terrestrial plants can sequester in biomass for an increase in CO2, as well as the distribution of the CO2 fertilization effect. This synthesis reconciles contrasting views of the role of N in terrestrial carbon uptake and emphasizes the plant control on N availability through interaction with ectomycorrhizal fungi. Large-scale ecosystem models should account for the influence of nitrogen and mycorrhizae reported here, which will improve representation of the CO2 fertilization effect, critical for projecting ecosystem responses and feedbacks to climate change.

  12. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Raper, C. D. Jr

    1990-01-01

    Plants grown on porous media at elevated CO2 levels generally have low concentrations of tissue N and often appear to require increased levels of external N to maximize growth response. This study determines if soybean [Glycine max (L.) Merr. Ransom'] grown hydroponically at elevated CO2 requires increases in external NO3- concentrations beyond levels that are optimal at ambient CO2 to maintain tissue N concentrations and maximize the growth response. This study also investigates temporal influences of elevated CO2 on growth responses by soybean. Plants were grown vegetatively for 34 d in hydroponic culture at atmospheric CO2 concentrations of 400, 650, and 900 microliters L-1 and during the final 18 d at NO3- concentrations of 0.5, 1.0, 5.0 and 10.0 mM in the culture solution. At 650 and 900 microliters L-1 CO2, plants had maximum increases of 31 and 45% in dry weight during the experimental period. Plant growth at 900 microliters L-1 CO2 was stimulated earlier than at 650 microliters L-1. During the final 18 d of the experiment, the relative growth rates (RGR) of plants grown at elevated CO2 declined. Elevated CO2 caused increases in total N and total NO3(-)-N content and leaf area but not leaf number. Enhancing CO2 levels also caused a decrease in root:shoot ratios. Stomatal resistance increased by 2.1- and 2.8-fold for plants at the 650 and 900 microliters L-1 CO2, respectively. Nitrate level in the culture solutions had no effect on growth or on C:N ratios of tissues, nor did increases in CO2 levels cause a decrease in N concentration of plant tissues. Hence, increases in NO3- concentration of the hydroponic solution were not necessary to maintain the N status of the plants or to maximize the growth response to elevated CO2.

  13. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    NASA Astrophysics Data System (ADS)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  14. Low Temperature Reaction Experiments Between Basalt, Seawater and CO2, and Implications for Carbon Dioxide Sequestration in Deep-Sea Basalts

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Teagle, D. A. H.; Matter, J. M.

    2015-12-01

    Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.

  15. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding

    USGS Publications Warehouse

    Vann, C.D.; Megonigal, J.P.

    2002-01-01

    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  16. CO 2 Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk

    2013-01-02

    Geologic storage of CO 2 requires that the caprock sealing the storage rock is highly impermeable to CO 2. Swelling clays, which are important components of caprocks, may interact with CO 2 leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO 2 with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of ≈0.15 g/cm 3, followed by an approximately linear decrease of excess sorption to zero and negativemore » values with increasing CO 2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO 2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO 2 in the clay pores is relatively stable over a wide range of CO 2 pressures at a given temperature, indicating the formation of a clay-CO 2 phase. Finally, at the excess sorption maximum, increasing CO 2 sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.« less

  17. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is continuously injected through the core. The MRI results indicate dissolution of the carbonates during the experiments since the porosity has been increased after the core-flooding experiments. The mineral dissolution changes the pore structure by enlarging the throat diameters and decreasing the pore specific surface areas, resulting in lower CO 2 /water capillary pressures and changes in the relative permeability. When the reservoir pressure decreases, the CO 2 exsolution occurs due to the reduction of solubility. The CO 2 bubbles preferentially grow toward the larger pores instead of toward the throats or the finer pores during the depressurization. After exsolution, the exsolved CO 2 phase shows low mobility due to the highly dispersed pore-scale morphology, and the well dispersed small bubbles tend to merge without interface contact driven by the Ostwald ripening mechanism. During depressurization, the dissolved carbonate could also precipitate as a result of increasing pH. There is increasing formation water flow resistance and low mobility of the CO 2 in the presence of CO 2 exsolution and carbonate precipitation. These effects produce a self-sealing mechanism that may reduce unfavorable CO 2 migration even in the presence of sudden reservoir depressurization.

  18. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    PubMed

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  19. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    NASA Astrophysics Data System (ADS)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  20. Recent Carbon Cycle Dynamics in an Ombrotrophic Peatland: Implications From Warming and eCO2 Treatments and the Role of Vegetation Layers in the Flux of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Hanson, P. J.; Phillips, J. R.; Nettles, W. R., IV; Heiderman, R.

    2017-12-01

    Following 2 years of sustained whole-ecosystem warming treatments spanning a range from 0 to +9 °C (SPRUCE experiment), the net fluxes of CO2 and CH4 from a raised-bog peatland in northern Minnesota show increased emissions of both gases from the community of woody ericaceous shrubs, forbs and Sphagnum moss. Increased emissions for CO2 and CH4 are primarily driven by sustaining temperature conditions for metabolic activity throughout the growing season. Seasonal temperature relationships for each gas suggest that warming affected growth and metabolic processes in a consistent manner across a wide range of temperature treatments. Elevated CO2 treatments (eCO2) have not yet shown anticipated increases in the input and processing of recent carbon. Quantitative annual estimates of the amount of net C and greenhouse gas flux increases will be calculated and presented for all treatments. A mid-season deconstruction of the contribution of vegetation layers to net ecosystem exchange of C and community respiration processes was also completed for replicate ambient shrub communities. The deconstruction data demonstrate the fractional contribution of wood shrubs, forbs/sedges and moss to the community to the flux of C and provide further evidence that the current C cycle of the bog is driven primarily by surface phenomenon fed be recently fixed C. These results should be considered early results from the SPRUCE experiment anticipated to operate through 2025. Affiliated studies will add mechanisms to these observations and long-term cumulative effects may differ.

  1. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  2. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  3. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  4. North African savanna fires and atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Iacobellis, Sam F.; Frouin, Robert; Razafimpanilo, Herisoa; Somerville, Richard C. J.; Piper, Stephen C.

    1994-01-01

    The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical structure of the CO2 concentration increase due to biomass burning differs substantially, depending on whether sources are local or remote. A prominent maximum of CO2 concentration increase in the lower layers characterizes the effect of local sources, whereas a more homogeneous profile of CO2 concentration increase characterizes the effect of remote sources. The results demonstrate the strong remote effects of African biomoass burning which, owing to the general circulation of the atmosphere, are felt as far away as South America.

  5. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  6. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation.

    PubMed

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-28

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  7. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    PubMed Central

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure. PMID:26817784

  8. Multispectral imaging of plant stress for detection of CO2 leaking from underground

    NASA Astrophysics Data System (ADS)

    Rouse, J.; Shaw, J. A.; Repasky, K. S.; Lawrence, R. L.

    2008-12-01

    Multispectral imaging of plant stress is a potentially useful method of detecting CO2 leaking from underground. During the summers of 2007 and 2008, we deployed a multispectral imager for vegetation sensing as part of an underground CO2 release experiment conducted at the Zero Emission Research and Technology (ZERT) field site near the Montana State University campus in Bozeman, Montana. The imager was mounted on a low tower and observed the vegetation in a region near an underground pipe during a multi-week CO2 release. The imager was calibrated to measure absolute reflectance, from which vegetation indices were calculated as a measure of vegetation health. The temporal evolution of these indices over the course of the experiment show that the vegetation nearest the pipe exhibited more stress than the vegetation located further from the pipe. The imager observed notably increased stress in vegetation at locations exhibiting particularly high flux of CO2 from the ground into the atmosphere. These data from the 2007 and 2008 experiments will be used to demonstrate the utility of a tower-mounted multispectral imaging system for detecting CO2 leakage from below ground with the ability to operate continuously during clear and cloudy conditions.

  9. Growth and yield responses of field-grown sweetpotato to elevated carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, P.K.; Hileman, D.R.; Ghosh, P.P.

    1996-09-01

    Root crops are important in developing countries, where food supplies are frequently marginal. Increases in atmospheric CO{sub 2} usually lead to increases in plant growth and yield, but little is known about the response of root crops to CO{sub 2} enrichment under field conditions. This experiment was conducted to investigate the effects of CO{sub 2} enrichment on growth and yield of field-grown sweetpotato. Plants were grown in open-top chambers in the field at four CO{sub 2} levels ranging from 354 (ambient) to 665 {mu}mol mol{sup {minus}1} in two growing seasons. Shoot growth was not affected significantly by elevated CO{sub 2}.more » Yield of storage roots increased 46 and 75% at the highest CO{sub 2} level in the 2 yr. The yield enhancement occurred through increases in the number of storage roots in the second year. Storage-root/shoot ratios increased 44% and leaf nitrogen concentrations decreased by 24% at the highest CO{sub 2} level. A comparison of plants grown in the open field to plants grown in open-top chambers at ambient CO{sub 2} concentrations indicated that open-top chambers reduced shoot growth in the first year and storage-root yield in both years. These results are consistent with the majority of CO{sub 2}-enrichment studies done on pot-grown sweetpotato. 37 refs., 2 figs., 5 tabs.« less

  10. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myshakin, Evgeniy; Saidi, Wissam; Romanov, Vyacheslav

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO 2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO 2 storage. Of particular interest are the structural and transport properties of interlayer species after CO 2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO 2 and H 2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO 2, compare it to the experiment, and estimate changesmore » in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO 2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO 2. Interaction of supercritical CO 2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO 2 and H 2O increase with the increased CO 2 load; this can contribute to faster migration of CO 2 throughout the formation.« less

  11. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    NASA Astrophysics Data System (ADS)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.

  12. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2.

    PubMed

    Mohan, Jacqueline E; Ziska, Lewis H; Schlesinger, William H; Thomas, Richard B; Sicher, Richard C; George, Kate; Clark, James S

    2006-06-13

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.

  13. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2

    PubMed Central

    Mohan, Jacqueline E.; Ziska, Lewis H.; Schlesinger, William H.; Thomas, Richard B.; Sicher, Richard C.; George, Kate; Clark, James S.

    2006-01-01

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO2), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO2. Rising CO2 is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO2 Enrichment experiment, we show that elevated atmospheric CO2 in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO2 growth stimulation exceeds that of most other woody species. Furthermore, high-CO2 plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more “toxic” in the future, potentially affecting global forest dynamics and human health. PMID:16754866

  14. Mechanism of thermal electron attachment in N/sub 2/O--CO/sub 2/ mixtures in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamori, H.; Fessenden, R.W.

    1978-12-01

    The attachment of thermal electrons to nitrous oxide in N/sub 2/O--CO/sub 2/ mixtures has been studied at room temperature in the pressure range 5--120 torr. Ionization was by pulse radiolysis and the electron concentration was measured as a function of time by microwave conductivity. Addition of even less than 0.1% CO/sub 2/ to N/sub 2/O causes a marked increase in attachment rate. However, this enhancement soon saturates in that further additions of CO/sub 2/ have less and less effect. Experiments with ternary mixtures including C/sub 2/H/sub 6/ showed a further enhancement which was much larger than the additive effects ofmore » CO/sub 2/ and C/sub 2/H/sub 6/ alone. These observations can be explained by a two step three-body process producing vibrationally excited N/sub 2/O/sup -/* if the rate constant for stabilization of N/sub 2/O/sup -/* by CO/sub 2/ is 4 x 10/sup -30/ cm/sup 6//molecule/sup 2/xsec. The decrease in effectiveness with increased CO/sub 2/ pressure is interpreted as the collisional ionization of a complex ion, (N/sub 2/OxCO/sub 2/)/sup -/*. The nonadditive effect of hydrocarbon results from the rapid reactive destruction of such complexes by collision with the hydrocarbon. A detailed quantitative treatment of the proposed mechanism was successful in explaining most features of the data. In a limited set of experiments, allene : N/sub 2/O mixtures were found to behave much like CO/sub 2/--N/sub 2/O.« less

  15. High pressure solubility of carbon dioxide (CO2) in aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) solvent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Nawaz; Hailegiorgis, Sintayehu Mekuria; Man, Zakaria; Shariff, Azmi Mohd

    2017-10-01

    In this study, the solubility of carbon dioxide (CO2) in the aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) was investigated. In the aqueous solution the concentrations of the N-methyldiethanolamine (MDEA) and piperazine (PZ) were kept constant at 30 wt. % and 3 wt. %, respectively. The solubility experiments were carried out between the temperatures ranges of 303.15 to 333.15 K. The pressure range was selected as 2-50 bar for solubility of carbon dioxide in the aqueous solution. The solubility of the CO2 is reported in terms of CO2 loading capacity of the solvent. The loading capacity of the solvent is the ratio between the numbers of moles of CO2 absorbed to the numbers of moles of solvent used. The experimental data showed that the CO2 loading increased with increase in CO2 partial pressure, while it decreased with increase in system's temperature. It was also observed from the experimental data that the higher pressure favors the absorption process while the increased temperature hinders the absorption process of CO2 capture. The loading capacity of the investigated solvent was compared with the loading capacity of the solvents reported in the literature. The investigated solvent showed better solubility in terms of loading capacity.

  16. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    PubMed Central

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  17. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States.

    PubMed

    Ruiz-Vera, Ursula M; Siebers, Matthew; Gray, Sharon B; Drag, David W; Rosenthal, David M; Kimball, Bruce A; Ort, Donald R; Bernacchi, Carl J

    2013-05-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol(-1)) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops.

  18. Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.

    2015-12-01

    Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.

  19. Ocean acidification changes the structure of an Antarctic coastal protistan community

    NASA Astrophysics Data System (ADS)

    Hancock, Alyce M.; Davidson, Andrew T.; McKinlay, John; McMinn, Andrew; Schulz, Kai G.; van den Enden, Rick L.

    2018-04-01

    Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose-response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( > 20 µm) increased in abundance with low to moderate fCO2 (343-634 µatm) but decreased at fCO2 ≥ 953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤ 20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  20. Impacts of CO2 Leakage on a Shallow Aquifer System: Laboratory Column Experiments and Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Ha, Jong Heon; Jeen, Sung-Wook

    2017-04-01

    Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.

  1. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    PubMed

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  2. pCO2 Effects on Species Composition and Growth of an Estuarine Phytoplankton Community

    NASA Astrophysics Data System (ADS)

    Grear, J. S.; Rynearson, T. A.; Montalbano, A. L.; Govenar, B. W.; Menden-Deuer, S.

    2016-02-01

    Ocean and coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increasing atmospheric CO2 concentration and the microbial degradation of organic matter associated with nutrient enrichment. The effects of this change on plankton communities have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding responses of phytoplankton species and communities to experimental CO2 enrichment. We performed winter "ecostat" incubations of natural plankton communities from lower Narragansett Bay at ambient bay temperatures (5-13 C), light, and nutrients under three levels of CO2 enrichment simulating past, present and future conditions (mean pCO2 levels were 224, 361, and 724 uatm). Major increases in relative diatom abundance occurred during the experiment but were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 varied as a function of cell size. The smallest size fraction (<5 µm) grew faster at the elevated pCO2 level. In contrast, the 5-20 µm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the > 20 µm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. These non-monotonic effects of increasing pCO2 may be related to opposing physiological effects of high CO2 vs low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses would produce misleading predictions of ocean acidification impacts on plankton production.

  3. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  4. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.

  5. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    PubMed Central

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R2 > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  6. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    PubMed

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  7. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    PubMed Central

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470

  8. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios.

    PubMed

    Rouco, Mónica; Branson, Oscar; Lebrato, Mario; Iglesias-Rodríguez, M Débora

    2013-01-01

    Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.

  9. Effects of Ocean Acidification on Fish Eggs and Larvae in Laboratory Experiments and Naturally High-pCO2 Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Shen, S.; Checkley, D. M., Jr.

    2016-02-01

    We investigated the effects of elevated pCO2 on (1) the morphology and behavior of fish larvae in laboratory experiments and (2) the distribution and abundance of fish eggs and larvae in an upwelling system. The vestibulo-ocular reflex (VOR) is a compensatory eye rotation that stabilizes images during movement and is initiated by utricular otolith movement. It is critically important for survival. We identified a 38% increase in the area of the utricular otoliths of larval white seabass (Atractoscion nobilis) reared at 2500 μatm pCO2 (treatment) compared to that of larvae reared at 400 μatm pCO2 (control). Despite the increase in otolith size, the mean gain of treatment larvae (0.39 ± 0.05, n= 28) was not statistically different from that of control larvae (0.30 ± 0.03, n= 20). During a fisheries research cruise in the Peruvian upwelling system in 2013, we collected eggs and larvae of Peruvian anchoveta (Engraulis ringens) over a wide range of pCO2, from 200-1200 μatm. Anchoveta support the world's largest single-species fishery and reside in arguably the most persistently high-pCO2 environment in the ocean. The probability of egg capture was maximal at the lowest (<350 μatm) as well as highest (>1000 μatm) pCO2 and increased with increasing chlorophyll a concentration. Larval abundance was maximal in the mid-range of zooplankton biovolume (1-3 cm3/1,000 m3). The occurrence of eggs in high pCO2 and relationship of eggs and larvae to food availability are consistent with the hypothesis that anchoveta tolerate a high pCO2 and food environment. Our research on the early life stages of these two fish leads us to believe that species that have evolved in high-pCO2 environments (e.g., anchoveta) may be able to cope with OA. Furthermore, OA may have only subtle effects on behaviors that are critical for survival (e.g., VOR).

  10. Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”

    DOE PAGES

    Norby, R. J.; De Kauwe, M. G.; Walker, A. P.; ...

    2017-01-26

    Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of CO 2 enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. The comment presented here challenges their database and biomass as the response metric, and hence their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO 2.

  11. Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R. J.; De Kauwe, M. G.; Walker, A. P.

    Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of CO 2 enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. The comment presented here challenges their database and biomass as the response metric, and hence their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO 2.

  12. On-farm euthanasia of broiler chickens: effects of different gas mixtures on behavior and brain activity.

    PubMed

    Gerritzen, M A; Lambooij, B; Reimert, H; Stegeman, A; Spruijt, B

    2004-08-01

    The purpose of this study was to investigate the suitability of gas mixtures for euthanasia of groups of broilers in their housing by increasing the percentage of CO2. The suitability was assessed by the level of discomfort before loss of consciousness, and the killing rate. The gas mixtures injected into the housing were 1) 100% CO2, 2) 50% N2 + 50% CO2, and 3) 30% O2 + 40% CO2 + 30% N2, followed by 100% CO2. At 2 and 6 wk of age, groups of 20 broiler chickens per trial were exposed to increasing CO2 percentages due to the injection of these gas mixtures. Behavior and killing rate were examined. At the same time, 2 broilers per trial equipped with brain electrodes were observed for behavior and brain activity. Ten percent of the 2-wk-old broilers survived the increasing CO2 percentage due to the injection of 30% O2 + 40% CO2 + 30% N2 mixture, therefore this mixture was excluded for further testing at 6 wk of age. At 6 wk of age, 30% of the broilers survived in the 50% N2 + 50% CO2 group. The highest level of CO2 in the breathing air (42%) was reached by the injection of the 100% CO2 mixture, vs. 25% for the other 2 mixtures. In all 3 gas mixtures, head shaking, gasping, and convulsions were observed before loss of posture. Loss of posture and suppression of electrical activity of the brain (n = 7) occurred almost simultaneously. The results of this experiment indicate that euthanasia of groups of 2- and 6-wk-old broilers by gradually increasing the percentage of CO2 in the breathing air up to 40% is possible.

  13. The planning of a passive seismic experiment: the Ketzin case

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Petronio, L.

    2009-04-01

    In the last years, it has been recognized the importance of using microseismic activity data to gain information on the state and dynamics of a reservoir, notwithstanding the difficulties of recording, localizing the events, interpret them correctly, in terms of developing fractures, or thermal effects. The increasing number of CO2 storage experiments, with the necessity of providing efficient, economic, and long-term monitoring methods, both in the injection and post-injection phases, further encourage the development and improvement of recording and processing techniques. Microseismic signals are typically recorded with downhole sensors. Monitoring with surface sensors is problematic due to increased noise levels and signal attenuation particularly in the near surface. The actual detection distance depends on background noise conditions, seismic attenuation and the microseismic source strength. In the frame of the European project Co2ReMoVe and of the European Network of Excellence Co2GeoNet, a passive seismic experiment was planned in the Ketzin site for geological storage of CO2, a former gas store near Potsdam, object of the CO2SINK European project and inserted also in the European project Co2ReMoVe. Aim of the survey is to complement the CO2-SINK active seismic downhole experiments, adding precious information on the microseismicity induced by stress field changes at the reservoir level and in the overburden, due to the CO2 injection. The baseline survey was done in May 2008 by the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS (Italy), with the support of the Deutsches GeoForschungsZentrum-GFZ (Germany) and the collaboration of the Institut für Geowissenschaftliche Gemeinschaftsaufgaben-GGA (Germany), shortly before the starting of the CO2 injection (June 30th 2008). A continuous monitoring (about 5 days) was performed by 2 downhole 3C geophones, and 3 surface 3C geophones located around the wells. This paper, based on the analysis of the baseline data, is focused on the design and planning of the next seismic passive surveys, optimizing the recording geometry and instrumentation, to record the microseismic events that could be induced by the redistribution of the stresses following the injection, and help the understanding of the injected CO2 behaviour.

  14. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts

    NASA Astrophysics Data System (ADS)

    Hikami, Mana; Ushie, Hiroyuki; Irie, Takahiro; Fujita, Kazuhiko; Kuroyanagi, Azumi; Sakai, Kazuhiko; Nojiri, Yukihiro; Suzuki, Atsushi; Kawahata, Hodaka

    2011-10-01

    Ocean acidification, which like global warming is an outcome of anthropogenic CO2 emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 μatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth of Amphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.

  15. Combined effects of deforestation and doubled atmospheric CO{sub 2} concentrations on the climate of Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, M.H.; Foley, J.A.

    2000-01-01

    It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73more » mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.« less

  16. Effects of calcium magnesium carbonate and roughage level on feedlot performance, ruminal metabolism, and site and extent of digestion in steers fed high-grain diets.

    PubMed

    Crawford, G I; Keeler, C D; Wagner, J J; Krehbiel, C R; Erickson, G E; Crombie, M B; Nunnery, G A

    2008-11-01

    A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P < 0.01) as dietary roughage increased. Ruminal pH tended (P = 0.08) to increase as dietary roughage increased but was not affected (P = 0.60) by CaMg(CO(3))(2). In Exp. 3, DMI and ruminal pH were continuously monitored in a 6 x 6 Latin square design using 6 ruminally and duodenally fistulated Holstein steers (229 +/- 10 kg of initial BW). A 3 x 2 factorial treatment structure was utilized, with factors consisting of dietary roughage concentration (4.5, 9.0, or 13.5%) and CaMg(CO(3))(2) inclusion (0 or 1.0%) to replace MgO and partially replace lime-stone. A dietary roughage x CaMg(CO(3))(2) interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets.

  17. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    PubMed

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the ability to quantitatively predict it are currently limited although recent advances have been made. Moreover, data for real storage rock and real injection gas (which contains impurities) is scarce and it is an open question how realistic subsurface conditions can be reproduced in laboratory experiments. In conclusion, however, it is clear that in principal CO 2 -wettability can vary drastically from completely water-wet to almost completely CO 2 -wet, and this possible variation introduces a large uncertainty into trapping capacity and containment security predictions.

  18. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field.

    PubMed

    Riikonen, Johanna; Holopainen, Toini; Oksanen, Elina; Vapaavuori, Elina

    2005-05-01

    Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.

  19. Biological instrumentation for the Viking 1975 mission to Mars.

    PubMed

    Klein, H P; Vishniac, W

    1972-01-01

    A brief introduction is given on why Mars is of interest from a biological point of view, along with an overview of the Viking 1975 mission. Details are given about the four biology instruments aboard the spacecraft and the experiments for which they are to be used. These are: the carbon assimilation experiment to determine whether the soil is biologically active, by incubation in presence of 14C-labelled CO and CO2 (known to be present in the Martian atmosphere); the label release experiment to detect metabolic activity by the release of radioactive CO2, from 14C-labelled simple organic substrates; the gas exchange experiment to detect biological activity by repeated gas chromatography analysis of soil samples; the light scattering experiment, where increase of scattering and decrease of light transmission would indicate the growth of organisms. Examples are given of data obtained with terrestrial soils in these experiments.

  20. Plant responses to elevated atmospheric CO/sub 2/ with emphasis on belowground processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Luxmoore, R.J.; O'Neill, E.G.

    1984-12-01

    Consideration of the interrelationships between carbon, water, and nutrient pathways in soil-plant systems has led to the hypothesis that stimulation of root and rhizosphere processes by elevated levels of CO/sub 2/ will increase nutrient availability and lead to an increase in plant growth. Several experiments were conducted to investigate the effects of CO/sub 2/ concentration on carbon allocation, root exudation, nitrogen utilization, and microbial responses, as well as overall plant growth and nutrient utilization. Increases in the growth of yellow-poplar (Liriodendron tulipifera L.) seedlings in response to elevated CO/sub 2/ were demonstrated even when the plants were under apparent nutrientmore » limitation in a forest soil. The proportion of photosynthetically fixed carbon that was allocated to the roots of yellow-poplar and hazel alder (Alnus serrulata (Ait.) Willd.) seedlings was greater at 700 ppM CO/sub 2/ than at ambient CO/sub 2/. Exudation of carbon from yellow-poplar roots also tended to be higher in elevated CO/sub 2/. Responses of rhizosphere microbial populations to elevated CO/sub 2/ were inconsistent, but there was a trend toward relatively fewer ammonium oxidizers, nitrite oxidizers, and phosphate solubilizers in the rhizosphere population of yellow-poplar seedlings grown in 700 ppM CO/sub 2/ compared to that of seedlings grown in ambient CO/sub 2/. Other observed trends included increased nodulation and nitrogenase activity and decreased nitrate reductase activity in hazel alder seedlings in elevated CO/sub 2/. Net uptake of some essential plant nutrients, aluminum, and other trace metals by Virginia pine (Pinus virginiana Mill.) increased with increasing CO/sub 2/ concentration. There was less leaching of some nutrients from soil-plant systems with Virginia pine and yellow-poplar seedlings but increased leaching of zinc. 123 references, 16 figures, 17 tables.« less

  1. Influence of design parameters in Water-Alternating-Gas Injection on enhancement of CO2 trapping in heterogeneous formations: A numerical study

    NASA Astrophysics Data System (ADS)

    Joodaki, S.; Yang, Z.; Niemi, A. P.

    2016-12-01

    CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.

  2. Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Niehoff, B.; Schmithüsen, T.; Knüppel, N.; Daase, M.; Czerny, J.; Boxhammer, T.

    2013-03-01

    The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.

  3. Increased wintertime CO2 loss as a result of sustained tundra warming

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.; Oken, Kiva L.; Bracho, Rosvel; Krapek, John P.; Risk, David; Nickerson, Nick R.

    2016-02-01

    Permafrost soils currently store approximately 1672 Pg of carbon (C), but as high latitudes warm, this temperature-protected C reservoir will become vulnerable to higher rates of decomposition. In recent decades, air temperatures in the high latitudes have warmed more than any other region globally, particularly during the winter. Over the coming century, the arctic winter is also expected to experience the most warming of any region or season, yet it is notably understudied. Here we present nonsummer season (NSS) CO2 flux data from the Carbon in Permafrost Experimental Heating Research project, an ecosystem warming experiment of moist acidic tussock tundra in interior Alaska. Our goals were to quantify the relationship between environmental variables and winter CO2 production, account for subnivean photosynthesis and late fall plant C uptake in our estimate of NSS CO2 exchange, constrain NSS CO2 loss estimates using multiple methods of measuring winter CO2 flux, and quantify the effect of winter soil warming on total NSS CO2 balance. We measured CO2 flux using four methods: two chamber techniques (the snow pit method and one where a chamber is left under the snow for the entire season), eddy covariance, and soda lime adsorption, and found that NSS CO2 loss varied up to fourfold, depending on the method used. CO2 production was dependent on soil temperature and day of season but atmospheric pressure and air temperature were also important in explaining CO2 diffusion out of the soil. Warming stimulated both ecosystem respiration and productivity during the NSS and increased overall CO2 loss during this period by 14% (this effect varied by year, ranging from 7 to 24%). When combined with the summertime CO2 fluxes from the same site, our results suggest that this subarctic tundra ecosystem is shifting away from its historical function as a C sink to a C source.

  4. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  5. High Latitude Reefs: A Potential Refuge for Reef Builders

    NASA Astrophysics Data System (ADS)

    Amat, A.; Bates, N.

    2003-04-01

    Coral reefs globally show variable signs of deterioration or community structure changes due to a host of anthropogenic and natural factors. In these global scenarios, rates of calcification by reef builders such as Scleractinian corals are predicted to significantly decline in the future due to the increase in atmospheric CO_2. When considering the response of reefs to the present climate change, temperature effects should also be taken into account. Here, we investigate the simultaneous impact of temperature and CO_2 on the high-latitude Bermuda coral reef system (32^oN, 64^oE)through a series of in vitro experiments at different CO_2 levels and seasonally different summer (27^oC) and winter (20^oC) temperature conditions. Four species of Scleractinian corals (Porites astreoides, Diploria labyrinthiformis, Madracis mirabilis and decactis) were acclimated for three months at: 20^oC and 27^oC (both with CO_2 levels at 400 ppm (control) and 700 ppm). Growth was assessed by buoyant weight techniques during the acclimation period. Photosynthesis, respiration and calcification were measured at the end of this period using respirometric chambers. A reproduction experiment was also undertaken under 27^oC. Photosynthesis mainly remains constant or increases under high CO_2 conditions. The results of the integrated calcification measurements confirm the hypothesis that an increase in CO_2 induces a decrease in calcification. However an increase in photosynthesis can be observed when CO_2 is unfavorable for calcification suggesting that a biological control of calcification through photosynthesis could prevent a drop in the calcification potential. Buoyant weight results indicate that the CO_2 impact could be less detrimental under lower temperature. This result will be compared with the instantaneous calcification measurements in the chambers and some in situ coral growth assessments in winter and summer conditions. The consequences for the response of marginal reefs undergoing high seasonal temperature variations will finally be discussed.

  6. Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells.

    PubMed

    Miranda, Moysés S; Nascimento, Hamilton S; Costa, Mayra P R; Costa, Nathália N; Brito, Karynne N L; Lopes, Cinthia T A; Santos, Simone S D; Cordeiro, Marcela S; Ohashi, Otávio M

    2016-10-01

    Despite advances in the composition of defined embryo culture media, co-culture with somatic cells is still used for bovine in vitro embryo production (IVEP) in many laboratories worldwide. Granulosa cells are most often used for this purpose, although recent work suggests that co-culture with stem cells of adult or embryonic origin or their derived biomaterials may improve mouse, cattle, and pig embryo development. In experiment 1, in vitro produced bovine embryos were co-cultured in the presence of two concentrations of bovine adipose tissue-derived mesenchymal cells (b-ATMSCs; 10 3 and 10 4 cells/mL), in b-ATMSC preconditioned medium (SOF-Cond), or SOF alone (control). In experiment 2, co-culture with 10 4 b-ATMSCs/mL was compared to the traditional granulosa cell co-culture system (Gran). In experiment 1, co-culture with 10 4 b-ATMSCs/mL improved blastocyst rates in comparison to conditioned and control media (p < 0.05). Despite that it did not show difference with 10 3 b-ATMSCs/mL (p = 0.051), group 10 4 b-ATMSCs/mL yielded higher results of blastocyst production. In experiment 2, when compared to group Gran, co-culture with 10 4 b-ATMSCs/mL improved not only blastocyst rates but also quality as assessed by increased total cell numbers and mRNA expression levels for POU5F1 and G6PDH (p < 0.05). Co-culture of bovine embryos with b-ATMSCs was more beneficial than the traditional co-culture system with granulosa cells. We speculate that the microenvironmental modulatory potential of MSCs, by means of soluble substances and exosome secretions, could be responsible for the positive effects observed. Further experiments must be done to evaluate if this beneficial effect in vitro also translates to an increase in offspring following embryo transfer. Moreover, this study provides an interesting platform to study the basic requirements during preimplantation embryo development, which, in turn, may aid the improvement of embryo culture protocols in bovine and other species.

  7. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions.

    PubMed

    Chen, Yu; Li, Yaofa; Valocchi, Albert J; Christensen, Kenneth T

    2018-05-01

    We employed the color-fluid lattice Boltzmann multiphase model to simulate liquid CO 2 displacing water documented in experiments in a 2D heterogeneous micromodel at reservoir pressure conditions. The main purpose is to investigate whether lattice Boltzmann simulation can reproduce the CO 2 invasion patterns observed in these experiments for a range of capillary numbers. Although the viscosity ratio used in the simulation matches the experimental conditions, the viscosity of the fluids in the simulation is higher than that of the actual fluids used in the experiments. Doing so is required to enhance numerical stability, and is a common strategy employed in the literature when using the lattice Boltzmann method to simulate CO 2 displacing water. The simulations reproduce qualitatively similar trends of changes in invasion patterns as the capillary number is increased. However, the development of secondary CO 2 pathways, a key feature of the invasion patterns in the simulations and experiments, is found to occur at a much higher capillary number in the simulations compared with the experiments. Additional numerical simulations were conducted to investigate the effect of the absolute value of viscosity on the invasion patterns while maintaining the viscosity ratio and capillary number fixed. These results indicate that the use of a high viscosity (which significantly reduces the inertial effect in the simulations) suppresses the development of secondary CO 2 pathways, leading to a different fluid distribution compared with corresponding experiments at the same capillary number. Therefore, inertial effects are not negligible in drainage process with liquid CO 2 and water despite the low Reynolds number based on the average velocity, as the local velocity can be much higher due to Haines jump events. These higher velocities, coupled with the low viscosity of CO 2 , further amplifies the inertial effect. Therefore, we conclude that caution should be taken when using proxy fluids that only rely on the capillary number and viscosity ratio in both experiment and simulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analogue micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. Highmore » resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and enhanced dissolution of large scCO2 clusters. The three stages of scCO2 depletion, common to experiments with time-independent water-flow paths, are revealed by zoom-in image analysis of individual scCO2 bubbles and clusters. The measured relative permeability of water, affected by scCO2 dissolution and bi-modal permeability, shows a non-monotonic dependence on saturation. The results for experiments with different injection rates imply that the non-equilibrium nature of scCO2 dissolution becomes less important when water flow is relatively low and the time scale for dissolution is large, and more pronounced when heterogeneity is strong.« less

  9. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    NASA Astrophysics Data System (ADS)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.

  10. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneafsey, T.; Pruess, K.

    2009-09-01

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualizationmore » tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.« less

  11. Multi-model trends in East African rainfall associated with increased CO2

    NASA Astrophysics Data System (ADS)

    McHugh, Maurice J.

    2005-01-01

    Nineteen coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Program (CMIP) were used to analyze future rainfall conditions over East Africa under enhanced CO2 conditions. 80 year control runs of these models indicated that four models produced mean annual rainfall distributions closely resembling climatological means and all four models had normalized root mean square errors well within the bounds of observed variability. East African (10°N-20°S, 25°-50°E) rainfall data from transient 80 year experiments which featured CO2 increases of 1% per year were compared with 80 year control simulations. Results indicate enhanced annual and seasonal rainfall rates, and increased extreme wet period frequency. These results indicate that East Africa may face a future in which mosquito-borne diseases such as malaria and Rift Valley fever proliferate resulting from increased CO2.

  12. Coupled phase and aqueous species equilibrium of the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhao; Li, Dedong

    2008-10-01

    A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.

  13. Potential climate-change impacts on the Chesapeake Bay

    Treesearch

    Raymond G. Najjar; Christopher R. Pyke; Mary Beth Adams; Denise Breitburg; Carl Hershner; Michael Kemp; Robert Howarth; Margaret R. Mulholland; Michael Paolisso; David Secor; Kevin Sellner; Denice Wardrop; Robert Wood

    2010-01-01

    We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO2 concentrations,...

  14. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...

  15. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined th...

  16. Carbon-nutrient interactions in response to CO/sub 2/ enrichment: physiological and long-term perspectives. [Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Pastor, J.; Melillo, J.M.

    1985-01-01

    The responses of forest trees to atmospheric CO/sub 2/ enrichment will depend in part on carbon-nutrient linkages. Insights into the possible long-term ecological consequences of CO/sub 2/ enrichment can be gained from studying physiological responses in short-term experiments. One-year-old white oak (Quercus alba L.) seedlings were grown in an unfertilized forest soil for 40 weeks in controlled-environment chambers with ambient (362 ..mu..L.L/sup -1/) or elevated (690 ..mu..L.L/sup -1/) CO/sub 2/. Seedling dry weight was 85% greater in the elevated CO/sub 2/ environment, despite a severe nitrogen deficiency in all seedlings. The increase in growth occurred without a concomitant increase inmore » nitrogen uptake, indicating an increase in nitrogen-use efficiency in elevated CO/sub 2/. The weight of new buds was greater in elevated CO/sub 2/, suggesting that shoot growth in the next year would have been enhanced relative to that of seedlings in ambient CO/sub 2/. However, there was a lower amount of translocatable nitrogen in perennial woody tissue in elevated CO/sub 2/; thus, further increases in nitrogen-use efficiency may not be possible. The leaves that abscised from seedlings in elevated CO/sub 2/ contained higher amounts of soluble sugars and tannin and a lower amount of lignin compared with amounts in abscised leaves in ambient CO/sub 2/. Based on lignin to N and lignin to P ratios, the rates of litter decomposition might not be greatly affected by CO/sub 2/ enrichment, but the total amount of nitrogen returned to soil would be lower in elevated CO/sub 2/.« less

  17. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  18. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  19. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.

    PubMed

    Usui, Yasuhiro; Sakai, Hidemitsu; Tokida, Takeshi; Nakamura, Hirofumi; Nakagawa, Hiroshi; Hasegawa, Toshihiro

    2016-03-01

    Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 μmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of rice. © 2015 John Wiley & Sons Ltd.

  1. The system Na2CO3-CaCO3 at 3 GPa

    NASA Astrophysics Data System (ADS)

    Podborodnikov, Ivan V.; Shatskiy, Anton; Arefiev, Anton V.; Rashchenko, Sergey V.; Chanyshev, Artem D.; Litasov, Konstantin D.

    2018-04-01

    It was suggested that alkali-alkaline earth carbonates may have a substantial role in petrological processes relevant to metasomatism and melting of the Earth's mantle. Because natrite, Na2CO3, Na-Ca carbonate (shortite and/or nyerereite), and calcite, CaCO3, have been recently reported from xenoliths of shallow mantle (110-115 km) origin, we performed experiments on phase relations in the system Na2CO3-CaCO3 at 3 GPa and 800-1300 °C. We found that the system has one intermediate compound, Na2Ca3(CO3)4, at 800 °C, and two intermediate compounds, Na2Ca(CO3)2 and Na2Ca3(CO3)4, at 850 °C. CaCO3 crystals recovered from experiments at 950 and 1000 °C are aragonite and calcite, respectively. Maximum solid solution of CaCO3 in Na2CO3 is 20 mol% at 850 °C. The Na-carbonate-Na2Ca(CO3)2 eutectic locates near 860 °C and 56 mol% Na2CO3. Na2Ca(CO3)2 melts incongruently near 880 °C to produce Na2Ca3(CO3)4 and a liquid containing about 51 mol% Na2CO3. Na2Ca3(CO3)4 disappears above 1000 °C via incongruent melting to calcite and a liquid containing about 43 mol% Na2CO3. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 87 mol% Na2CO3. Na-carbonate remains solid up to 1150 °C and melts at 1200 °C. The Na2CO3 content in the liquid coexisting with calcite decreases to 15 mol% as temperature increases to 1300 °C. Considering the present and previous data, a range of the intermediate compounds on the liquidus of the Na2CO3-CaCO3 join changes as pressure increases in the following sequence: Na2Ca(CO3)2 (0.1 GPa) → Na2Ca(CO3)2, Na2Ca3(CO3)4 (3 GPa) → Na4Ca(CO3)3, Na2Ca3(CO3)4 (6 GPa). Thus, the Na2Ca(CO3)2 nyerereite stability field extends to the shallow mantle pressures. Consequently, findings of nyerereite among daughter phases in the melt inclusions in olivine from the sheared garnet peridotites are consistent with their mantle origin.

  2. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and hollow Sphagnum species in controlled green-house experiments under varying combinations of water table, CO2 and temperature. Preliminary results confirm our interpretations of data from field peat cores. Ehlers, I., Augusti, A., Betson, T.R., Nilsson, M.B., Marshall, J.D. and J. Schleucher (2015) Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century, Proceedings National Academy of Sciences (PNAS), doi: 10.1073/pnas.1504493112

  3. Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Wilsey, Brian J; Fay, Philip A

    2014-07-01

    Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPP-driver response differed among experiments because community responses and effects differed. ANPP increased by 80-120g m(-2) per 100 μl l(-1) rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21-38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    PubMed

    Baig, Sofia; Medlyn, Belinda E; Mercado, Lina M; Zaehle, Sönke

    2015-12-01

    The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO2 (eCa ) will increase with rising temperature and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eCa experiments by carrying out two meta-analyses. Firstly, we tested for an interaction effect on growth responses in factorial eCa  × temperature experiments. This analysis showed a positive, but nonsignificant interaction effect (95% CI for above-ground biomass response = -0.8, 18.0%) between eCa and temperature. Secondly, we tested field-based eCa experiments on woody plants across the globe for a relationship between the eCa effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but nonsignificant correlation between the eCa response and MAT. The magnitude of the interactions between CO2 and temperature found in both meta-analyses were consistent with model predictions, even though both analyses gave nonsignificant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction vs. an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction. © 2015 John Wiley & Sons Ltd.

  5. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

    NASA Astrophysics Data System (ADS)

    Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.

    2007-11-01

    Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.

  6. Antarctic Phytoplankton down-regulate Their Carbon-Concentrating Mechanisms under High CO2 with no Change in Growth Rates

    NASA Astrophysics Data System (ADS)

    Kranz, S. A.; Young, J. N.; Goldman, J.; Tortell, P. D.; Morel, F. M.

    2016-02-01

    High-latitude oceans, in particular the coastal Western Antarctic Peninsula (WAP) region of the Southern Ocean, are experiencing a rapidly changing environment due to rising surface ocean temperatures and CO2 concentrations. However, the direct effect of increasing CO2 on polar ocean primary production is unclear, with a number of experiments showing conflicting results. It has been hypothesized that increased CO2 may cause a reduction of the energy-intensive carbon concentrating mechanism (CCM) in phytoplankton, and these energy savings may lead to increased productivity. To test this hypothesis, we incubated natural phytoplankton communities in the WAP under high (800 ppm), current (400 ppm) and low (100 ppm) CO2 for 2 to 3 wk during the austral spring-summer of 2012/2013. In 2 incubations with diatom-dominated phytoplankton assemblages, high CO2 led to a clear down-regulation of CCM activity, as evidenced by an increase in half-saturation constants for CO2, a decrease in external carbonic anhydrase activity and a higher biological fractionation of stable carbon isotopes. In a third incubation, there was no observable regulation of the CCM. We did not observe a significant effect of CO2 on growth rates or community composition in the diatom-dominated communities. The lack of a measureable effect on growth despite CCM down-regulation is likely explained by a very small energetic requirement to concentrate CO2 and saturate Rubisco at low temperatures.

  7. Performance of CO2 enrich CNG in direct injection engine

    NASA Astrophysics Data System (ADS)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  8. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations.

    PubMed

    de Orte, Manoela Romanó; Sarmiento, Aguasanta M; Basallote, Maria Dolores; Rodríguez-Romero, Araceli; Riba, Inmaculada; Delvalls, Angel

    2014-02-01

    Carbon dioxide capture and storage (CCS) in submarine geological formations has been proposed as a mitigation measure for the prevention of global warming. However, leakage of CO2 to overlying sediments may occur over time, leading to various effects on ecosystems. Laboratory-scale experiments were performed, involving direct release of carbon dioxide into sediment, inside non-pressurized chambers, in order to provide data on the possible effects of CO2 leakage from geological storage sites on the fate of several metals. Marine sediments from three sites with different levels of contamination were sampled and submitted to acidification by means of CO2 injection. The experiment lasted 10 days and sediment samples were collected at the beginning and end of the experiment and pore water was extracted for metal analysis. The results revealed that mobility of metals from sediment to pore water depends on the site, metal and length of time exposed. Mobilization of the metals Al, Fe, Zn, Co, Pb and Cu increases with acidification, and this response generally increases with time of exposure to CO2 injection. The geochemical model applied suggests that acidification also influences the speciation of metals, transforming metals and metalloids, like As, into species much more toxic to biota. The data obtained from this study will be useful for calculating the potential risk of CCS activities to the marine environment. © 2013.

  9. Formation and Release of Cobalt(II) Sorption and Precipitation Products in Aging Kaolinite-Water Slurries.

    PubMed

    Thompson; Parks; Brown

    2000-02-15

    The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2

  10. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.

    PubMed

    Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.

  11. System Assessment of Carbon Dioxide Used as Gas Oxidant and Coolant in Vanadium-Extraction Converter

    NASA Astrophysics Data System (ADS)

    Du, Wei Tong; Wang, Yu; Liang, Xiao Ping

    2017-10-01

    With the aim of reducing carbon dioxide (CO2) emissions and of using waste resources in steel plants, the use of CO2 as a gas oxidant and coolant in the converter to increase productivity and energy efficiency was investigated in this study. Experiments were performed in combination with thermodynamic theory on vanadium-extraction with CO2 and oxygen (O2) mixed injections. The results indicate that the temperature of the hot metal bath decreased as the amount of CO2 introduced into O2 increased. At an injection of 85 vol.% O2 and 15 vol.% CO2, approximately 12% of additional carbon was retained in the hot metal. Moreover, the content of vanadium trioxide in the slag was higher. In addition, the O2 consumption per ton of hot metal was reduced by 8.5% and additional chemical energy was recovered by the controlled injection of CO2 into the converter. Therefore, using CO2 as a gas coolant was conducive to vanadium extraction, and O2 consumption was reduced.

  12. Measurements of 222Rn, 220Rn, and CO 2 Emissions in Natural CO 2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, John; Sims, Kenneth

    An integrated field-laboratory program evaluated the use of radon and CO 2 flux measurements to constrain source and timescale of CO 2 fluxes in environments proximate to CO 2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO 2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO 2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensuremore » 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO 2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO 2-bearing environments. The field program also identified issues with radon and CO 2-flux measurements in soil gases at a natural CO 2 analog. A systematic survey of radon and CO 2 flux in soil gases at the LaBarge CO 2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO 2 flux may not be a robust method for monitoring the integrity of a CO 2 storage reservoir. The field program was also not able to correlate radon and CO 2 flux in the CO 2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO 2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO 2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO 2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO 2-bearing experiments is greater at all temperatures compared to the experiments without CO 2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO 2-rich waters.« less

  13. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system

    PubMed Central

    Calosi, Piero; Rastrick, Samuel P. S.; Lombardi, Chiara; de Guzman, Heidi J.; Davidson, Laura; Jahnke, Marlene; Giangrande, Adriana; Hardege, Jörg D.; Schulze, Anja; Spicer, John I.; Gambi, Maria-Cristina

    2013-01-01

    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification. PMID:23980245

  14. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.

    PubMed

    Calosi, Piero; Rastrick, Samuel P S; Lombardi, Chiara; de Guzman, Heidi J; Davidson, Laura; Jahnke, Marlene; Giangrande, Adriana; Hardege, Jörg D; Schulze, Anja; Spicer, John I; Gambi, Maria-Cristina

    2013-01-01

    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.

  15. Influence of Atmospheric CO{sub 2} enrichment on rangeland forage quality and animal grazing. Final technical report, September 1, 1989--August 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sionit, N.

    1992-12-31

    Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less

  16. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    PubMed Central

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  17. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem

    PubMed Central

    Silbiger, Nyssa J.; Bernatchez, Genevieve; Sorte, Cascade J.B.

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, pCO2, net ecosystem calcification (NEC), and O2 concentrations were strongly related to rates of net community production (NCP). CO2 was added to pools during daytime low tides, which should have reduced pH and enhanced pCO2. However, photosynthesis rapidly reduced pCO2 and increased pH, so effects of CO2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO2 addition caused pH to decline by ∼0.6 units and pCO2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO2 addition declined because more CO2 was absorbed due to photosynthesis. Effects of CO2addition were, therefore, modified by feedbacks between NCP, pH, pCO2, and NEC. Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification. PMID:29761055

  18. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    PubMed

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  19. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    PubMed

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  20. Harvesting Duke FACE: improving estimates of productivity and biomass under elevated CO2

    NASA Astrophysics Data System (ADS)

    McCarthy, H. R.; Oren, R.; Kim, D.; Tor-ngern, P.; Johnsen, K. H.; Maier, C. A.

    2013-12-01

    Free air CO2 enrichment experiments (FACE) have greatly advanced our knowledge on the impacts of increasing atmospheric CO2 concentrations in developing and mature ecosystems. These experiments have provided years of data on changes in physiology and ecosystem functions, such as photosynthesis, water use, net primary productivity (NPP), ecosystem carbon storage, and nutrient cycling. As these experiments come to a close, there has also been the opportunity to add critically lacking biometric data, which can be obtained only through destructive measurements. After 15 years of CO2 elevation at the Duke Forest FACE, a 28 year old pine plantation with a hardwood understory, a vast array of biometric data was obtained through harvesting of >1150 trees in both elevated and ambient CO2 plots. Harvested trees included pines and hardwoods, understory and overstory trees. The harvest provided direct assessments of leaf, stem and branch biomass, as well as the vertical distribution of these masses. In combination with leaf and wood level properties (e.g. specific leaf area, wood density), it was possible to explore potential CO2 effects on allometric relationships between plant parts, and stem and canopy shape and distribution. Although stimulatory effects of elevated CO2 on NPP are well established in this forest (averaging 27%), harvest results thus far indicate few changes in basic allometric relationships, such as height-diameter relationships, proportion of mass contained in different plant parts (stems vs. leaves vs. branches), distribution of leaves within the canopy and stem shape. The coupling of site-specific biometric relationships with long-term data on tree growth and mortality will reduce current sources of uncertainty in estimates of NPP and carbon storage under future increased CO2 conditions. Recent efforts in data-model synthesis have demonstrated the critical need for such data as constraints and initial values in ecosystem and earth system models; these outcomes suggest that we are well positioned to represent future forest growth and function.

  1. Interactions between above- and belowground organisms modified in climate change experiments

    NASA Astrophysics Data System (ADS)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  2. Studies of solid carbon dioxide in interstellar ice analogs subject to thermal processing

    NASA Astrophysics Data System (ADS)

    White, Douglas W.

    2010-09-01

    Solid CO2 has been detected in many lines of sight in the interstellar medium from infrared observatories. Spectral profiles from space-based observatories have suggested that CO2 on icy grain mantles is mixed with other common molecules such as H2O and CH 3OH in interstellar regions and that thermal annealing has occurred. The vibrational mode at 658 cm-1 (15.2 mum) is suspected to be a powerful diagnostic tool as to the composition of species on icy grain mantles as well as thermal histories. However, previous studies have not systematically investigated ice composition and temperature. Laboratory spectra of interstellar ice analogs have been created in this study order to better understand the physical properties of solid CO2 in these interstellar environments. Existing databases of ice composition studies and effects of ice thermal history were updated in this study to include a more systematic approach. The 658 cm-1 (15.2 mum) bending mode feature of CO2 is examined here and the subsequent astrophysical implications stated. In the first set of experiments, 47 mixtures of H2O,CH3OH, andCO2 were slowly warmed and mid-infrared absorption spectra were recorded at 5K intervals. The second set of experiments involved examining the CO2 bending mode feature of 10 different CO2-containing ice mixtures at different temperatures where ice segregation was suspected. In these experiments, the ice mixtures were slowly heated to the desired temperature for increasing time intervals before cooling down and recording mid-IR absorption spectra. These studies may be used to analyze IR data from space-based observatories such as the Spitzer Space Telescope Infrared Spectrograph as well other future IR observations of the interstellar medium. Finally, mass spectroscopy measurements were taken from temperature programmed desorption (TPD) experiments performed on several binary mixtures of H2O + CO2 and CH 3OH + CO2. Physical properties such as desorption energy of CO2 can be determined from the TPD traces of these experiments. The work provided here addresses the physical properties of solid CO 2 thermally processed in ice mixtures in interstellar environments by laboratory simulations spectroscopically analyzed by mid-infrared absorption profiles and TPD.

  3. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages

    NASA Astrophysics Data System (ADS)

    Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.

    2017-12-01

    Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.

  4. Crop responses to elevated CO2 and interactions with H2O, N, and temperature.

    PubMed

    Kimball, Bruce A

    2016-06-01

    About twenty-seven years ago, free-air CO2 enrichment (FACE) technology was developed that enabled the air above open-field plots to be enriched with CO2 for entire growing seasons. Since then, FACE experiments have been conducted on cotton, wheat, ryegrass, clover, potato, grape, rice, barley, sugar beet, soybean, cassava, rape, mustard, coffee (C3 crops), and sorghum and maize (C4 crops). Elevated CO2 (550ppm from an ambient concentration of about 353ppm in 1990) decreased evapotranspiration about 10% on average and increased canopy temperatures about 0.7°C. Biomass and yield were increased by FACE in all C3 species, but not in C4 species except when water was limiting. Yields of C3 grain crops were increased on average about 19%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Guiding the Next Generation of Forest FACE Experiments with Lessons from the Past

    NASA Astrophysics Data System (ADS)

    Norby, Richard

    2016-04-01

    The free air CO2 enrichment (FACE) experiments that were initiated in forest ecosystems 20 years ago represented a large commitment of time and energy of many students, early career, and senior scientists, and they were a substantial investment of funding from government science agencies. The experiments produced hundreds of primary research papers and dozens of synthesis and review papers, so it is highly appropriate to ask: What did we learn from this enterprise about how trees and forests will respond to an ever increasing concentration of CO2 in the atmosphere? The diversity of sites and species preclude any single, simple answer. Nevertheless, the FACE experiments were successful in building upon earlier, smaller scale elevated CO2 experiments to provide the data needed to evaluate hypotheses derived from past results, and they provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems. Important lessons include: (1) Net primary productivity is increased by elevated CO2, but the response can diminish over time. (2) Carbon accumulation is driven by the distribution of carbon among plant and soil components with differing turnover rates and by interactions between the carbon and nitrogen cycles. (3) Plant community structure may change, but elevated CO2 has only minor effects on microbial community structure. However, despite these insights, the size and longevity of forests preclude experimental evaluation, even in decade-long experiments, of the critical global-scale issues associated with forest responses to rising atmospheric CO2 concentration and the feedbacks provided to the climate system. Instead, we must rely on models that simulate the exchange of carbon, water, and energy in the terrestrial biosphere. An important objective of FACE experiments has always been to provide data and evaluation tools for ecosystem models and thereby contribute to our ability to project how ecosystems will respond to future CO2 concentrations. The FACE model-data synthesis (FACE-MDS) project challenged 11 terrestrial ecosystem models with data from the Oak Ridge National Laboratory FACE experiment in Tennessee, USA, and Duke FACE in North Carolina, USA. This exercise was valuable in identifying critical model assumptions and evaluating whether the assumptions were supported by the experimental data, and it provided a framework to evaluate forest processes that occur over much longer time frames than the duration of the experiments. The next generation of forest FACE experiments will greatly expand the breadth of our knowledge base on responses to elevated CO2 by investigating responses of mature forest ecosystems in boreal to tropical biomes over a wide range of climatic and edaphic conditions. Our experience with the FACE-MDS has shown the value in initiating the model-data interaction as an integral part of experimental design. The FACE-MDS framework has led to a set of model-guided, cross-site science questions for new FACE experiments, including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. This sets an exciting research agenda for the next decade.

  6. Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations

    NASA Astrophysics Data System (ADS)

    Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.

    2008-12-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.

  7. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    PubMed Central

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  8. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    PubMed

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  9. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ].

    PubMed

    Collins, Luke; Bradstock, Ross A; Resco de Dios, Victor; Duursma, Remko A; Velasco, Sabrina; Boer, Matthias M

    2018-06-01

    Rising atmospheric [CO 2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO 2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO 2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO 2 ] (eCO 2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO 2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 m 3  m -3 ) reducing productivity. However, eCO 2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO 2 to offset these changes. © 2018 John Wiley & Sons Ltd.

  10. Nutrient Removal Vis-à-Vis Change in Partial Pressure of CO2 During Post-Monsoon Season in a Tropical Lentic and Lotic Aquatic Body: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sourav; Chanda, Abhra; Das, Sourav; Akhand, Anirban; Pattanaik, Suchismita; Choudhury, S. B.; Dutta, Dibyendu; Hazra, Sugata

    2018-04-01

    The rate of nutrient removal and changes in pCO2 (water) were compared between a lentic aquaculture pond [East Kolkata Wetlands (EKW), India] and a lotic estuarine system [Diamond Harbor (DH) in Hugli Estuary, India] during the post-monsoon season (experiencing a similar tropical climate) by means of ex situ microcosm experiment. Though the DH waters were found to be substantial source of CO2 towards atmosphere and EKW waters to be sink for CO2 (according to the initial concentration of CO2), the eight consecutive days microcosm experiment revealed that the nutrient removal and pCO2 reduction efficiency were significantly higher in DH (ΔpCO2—90%) compared to EKW (ΔpCO2—78%). Among the five nutrients studied [dissolved nitrate-nitrogen (NO3-N), dissolved ammonium nitrogen (NH4-N), silicate, phosphate and iron], dissolved NO3-N followed by NH4-N was the most utilized in both EKW and DH. Except silicate, the other nutrients reduced to 78-91% in EKW and 84-99% in DH samples of their initial concentrations. Chlorophyll-a concentration steadily depleted in EKW ( 68-26 mg m-3) during the experiment indicating intense zooplankton grazing, whereas in DH it increased rapidly ( 3.4-23 mg m-3) with decreasing pCO2 (water). The present observations further indicated that regular flushing of EKW aquaculture ponds is required to avoid stagnation of water column which would enhance the zooplankton grazing and hamper the primary production of an otherwise sink of CO2. In DH, controlled freshwater discharge from Farakka and reduction of untreated organic waste might allow the existing phytoplankton community to enhance their photosynthetic activity.

  11. Solubility of reduced C-O-H volatiles in basalt as a function of fCO: Implications for the early Earth, the moon, and Mars

    NASA Astrophysics Data System (ADS)

    Armstrong, L. S.; Hirschmann, M. M.

    2013-12-01

    Magmatic C-O-H volatiles influence the evolution of planetary atmospheres and, when precipitated and stored in solidified mantles, the dynamical evolution of planetary interiors. In the case of the Earth, the fO2 of the mantle near the end of core formation should have been ~IW-2, and subsequently increased to present-day values [1]. In experiments with fO2 ≤ IW, a variety of reduced volatile species have been found dissolved in magmas, including H2, CH4, CO, Fe(CO)5 and possibly Fe(CO)62+. However, there remains significant disagreement regarding the identity and concentrations of these volatiles in natural magmas, as well as their dependencies on intensive variables (T, P, fO2, fCO, fH2)[2-6]. Previous experiments document the importance of CO-related species [2,6], but were conducted over a limited range of fCO and had potentially interfering effects from poorly controlled variations in H2O. We aim to experimentally determine the solubility of C-O-H volatiles in basaltic magmas under reduced, C-saturated conditions while minimizing water content. The relationship between volatile speciation, fO2, and fCO at 1.2 GPa and 1400°C are constrained, laying the groundwork for a more extensive study at a range of conditions relevant to the interiors of the terrestrial planets and the moon. Both MORB and a martian basalt were studied, contained in Pt-C capsules with Fe × Pt × Si metal added to generate reducing conditions and to monitor fO2. A nominal amount of H2O is unavoidable in experimental charges, but was minimized by drying capsules prior to welding. Phase compositions were determined by electron microprobe and volatile concentrations were measured by FTIR spectroscopy. In preliminary experiments with fO2 of IW-0.70 to +1.75 (corresponding to log fCO of 3.3-4.5), H2O and CO2 concentrations as determined by FTIR are 113-13283 and 12-721 ppm, respectively. Most experiments also display a small FTIR peak at 2205 cm-1, whereas the most reduced experiments lack this peak but have peaks at 3370 and/or 1615 cm-1. The 2205 cm-1 peak was previously observed in similar experiments [6], and attributed to a C=O bond, possibly in the Fe-carbonyl Fe(CO)62+ [7]. The normalized intensity of the 2205 cm-1 peak is zero at IW -0.70 and increases with greater fO2 and fCO. This suggests that over a small fO2 and fCO range with the CCO buffer as an upper limit, CO-bearing species account for a portion of the dissolved C in reduced, graphite-saturated magmas. These volatiles could play an important role in martian magmatism, in the early Earth's mantle post-core formation, and in more oxidized regions of the lunar mantle. However, the fO2 during terrestrial core formation would have been too low for CO2 or the CO-bearing species to dissolve in a magma ocean. Ongoing work will extend the study to more reducing conditions and determine total C and H2O concentrations by SIMS. References: [1] Frost et al. (2008) Phil. Trans. R. Soc. A 366, 4315-4337. [2] Wetzel D. et al. (2013) PNAS, doi:10.1073/pnas.1219266110. [3] Dasgupta et al. (2013) GCA 102, 191-212. [4] Hirschmann et al. (2012) EPSL 345, 38-48. [5] Ardia et al. (2013) GCA 114, 52-71. [6] Stanley et al. (in review), GCA. [7] Bley et al. (1997) Inorg. Chem. 36, 158-160.

  12. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO 2 concentrations

    NASA Astrophysics Data System (ADS)

    Hattas, D.; Stock, W. D.; Mabusela, W. T.; Green, I. R.

    2005-07-01

    The effects of elevated atmospheric CO 2 concentrations on plant polyphenolic, tannin, nitrogen, phosphorus and total nonstructural carbohydrate concentrations were investigated in leaves of subtropical grass and fynbos shrub species. The hypothesis tested was that carbon-based secondary compounds would increase when carbon gain is in excess of growth requirements. This premise was tested in two ecosystems involving plants with different photosynthetic mechanisms and growth strategies. The first ecosystem comprised grasses from a C 4-dominated, subtropical grassland, where three plots were subjected to three different free air CO 2 enrichment treatments, i.e., elevated (600 to 800 μmol mol -1), intermediate (400 μmol mol -1) and ambient atmospheric CO 2. One of the seven grass species, Alloteropsis semialata, had a C 3 photosynthetic pathway while the other grasses were all C 4. The second ecosystem was simulated in a microcosm experiment where three fynbos species were grown in open-top chambers at ambient and 700 μmol mol -1 atmospheric CO 2 in low nutrient acid sands typical of south western coastal and mountain fynbos ecosystems. Results showed that polyphenolics and tannins did not increase in the grass species under elevated CO 2 and only in Leucadendron laureolum among the fynbos species. Similarly, foliar nitrogen content of grasses was largely unaffected by elevated CO 2, and among the fynbos species, only L. laureolum and Leucadendron xanthoconus showed changes in foliar nitrogen content under elevated CO 2, but these were of different magnitude. The overall decrease in nitrogen and phosphorus and consequent increase in C:N and C:P ratio in both ecosystems, along with the increase in polyphenolics and tannins in L. laureolum in the fynbos ecosystem, may negatively affect forage quality and decomposition rates. It is concluded that fast growing grasses do not experience sink limitation and invest extra carbon into growth rather than polyphenolics and tannins and show small species-specific chemical changes at elevated atmospheric CO 2 concentrations. Responses of fynbos species are varied and were species-specific.

  13. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice.

    PubMed

    Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K

    2013-10-01

    Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.

  14. LAI is the major cause of divergence in CO2 fertilization effect in land surface models

    NASA Astrophysics Data System (ADS)

    Li, Q.; Luo, Y.; Lu, X.; Wang, Y.; Huang, X.; Lin, G., Sr.

    2017-12-01

    Concentration-carbon feedback (β), also called CO2 fertilization effect, is an important feedback between terrestrial ecosystems and atmosphere to alleviate global climate change. However, models participating in C4MIP and CMIP5 predicted diverse CO2 fertilization effects under future CO2 inceasing scenarios. Hence identifing the key processes dominating the divergence of β in land surface models is of significance. We calculated CO2 fertilization effects from leaf level, canopy gross productivity level, net ecosystem productivity level and ecosystem carbon stock level in Community Atmosphere Biosphere Land Exchange (CABLE) model. Our results identified LAI is the key factor dominating the divergence of β among C3 plants in CABLE model. Saturation of the ecosystem productivity to increasing CO2 is not only regulated by leaf-level response, but also the response of LAI to increasing CO2. The greatest variation among C3 plants at ecosystem level suggests that other processes such as different allocation patterns and soil carbon dynamics of various vegetation types are also responsible for the divergence. Our results indicate that processes regarding to LAI need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem productivity to increasing CO2.

  15. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the atmosphere, air temperature, and plant iWUE. This positive feedback is expressed by (a) nonparallel changes of δ13C signal of atmospheric CO2 (δa) and plant samples (δp), (b) negative correlation between the Δ and average temperatures during the growth season, although only for temperatures up to 21°C. The lack of effect at higher temperatures suggests a negative influence of growing season warming on the iWUE. These results suggest a complex feedback between atmospheric CO2 increase, plant physiology, ecosystem productivity, and soil CO2 fluxes. These complex effects support our hypothesis of a CO2 fertilization effect on plant productivity, and they raise additional questions regarding adaptation of plants to changing atmospheric CO2 and climate.

  16. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  17. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas leakage into unsaturated zones. Finally, knowing the flow characteristic of gas mixture can guide CO2 storage, CO2-EOR and CO2-ECBM projects. Future studies should pay attention to the effects of saline water with different salt types and concentrations on the multi-phase flow behavior with applications to geological CO2 storage and energy storage using CH4.

  18. Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality

    PubMed Central

    Waqas, Muhammad Ahmed; Wang, Song-he; Xiong, Xiang-yang; Wan, Yun-fan

    2017-01-01

    The increased atmospheric temperatures resulting from the increased concentration of atmospheric carbon dioxide (CO2) have had a profound influence on global rice production. China serves as an important area for producing and consuming rice. Therefore, exploring the effects of the simultaneously rising levels of atmospheric CO2 and temperatures on rice growth and quality in the future is very important. The present study was designed to measure the most important aspects of variation for rice-related physiological, ecological and quality indices in different growing periods under a simultaneous increase of CO2 and temperature, through simulation experiments in climate-controlled growth chambers, with southern rice as the study object. The results indicated that the ecological indices, rice phenology, and leaf area would decrease under a simultaneous increase of CO2 and temperature. For the physiological indices, Malondialdehyde (MDA) levels increased significantly in the seedling period. However, it showed the trend of increase and subsequent decrease in the heading and filling periods. In addition, the decomposition of soluble protein (SP) and soluble sugar (SS) accelerated in filling period. The rice quality index of the Head Rice Rate showed the decreasing trend and subsequent increase, but the Chalky Rice Rate and Protein Content indices gradually decreased while the Gel Consistency gradually increased. PMID:29145420

  19. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance

    PubMed Central

    Connell, Sean D.; Kroeker, Kristy J.; Fabricius, Katharina E.; Kline, David I.; Russell, Bayden D.

    2013-01-01

    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from ‘natural’ volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects. PMID:23980244

  20. Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla.

    PubMed

    Oliveira, J V; Alves, M M; Costa, J C

    2014-06-01

    A design of experiments was applied to evaluate different strategies to enhance the methane yield of macroalgae Gracilaria vermiculophylla. Biochemical Methane Potential (BMP) of G. vermiculophylla after physical pre-treatment (washing and maceration) reached 481±9 L CH4 kg(-1) VS, corresponding to a methane yield of 79±2%. No significant effects were achieved in the BMP after thermochemical pre-treatment, although the seaweeds solubilisation increased up to 44%. Co-digestion with glycerol or sewage sludge has proved to be effective for increasing the methane production. Addition of 2% glycerol (w:w) increased the BMP by 18%, achieving almost complete methanation of the substrate (96±3%). Co-digestion of seaweed and secondary sludge (15:85%, TS/TS) increased the BMP by 25% (605±4 L CH4 kg(-1) VS) compared to the seaweed individual digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    Assay procedures for analysis of four groups of allelochemicals in Artemisia tridentata, big sagebrush, were established. Growth of Artemisia under high and low light at three CO/sub 2/ levels demonstrated that this species also undegoes a ''dilution'' of the leaf nitrogen content and is useful as test species for herbivory response to CO/sub 2/ induced effects. The initiial experiment also showed that high irradiance is a necessary growth condition. Plants from a single population of A. Tridentata were grown at the Duke Phytotron in three CO/sub 2/ regimed and fed to two species of grasshoppers. Sagabrush plants grew more andmore » had lower leaf nitrogen contents as CO/sub 2/ concentration increased. However, the plants had on average lowere leaf carbon as well as lower leaf niitrogen contents with elevated CO/sub 2/. The source of the lower leaf nutritional value does not appear to be solely an increase in carbon content. Grasshopper consumption was greater on leaves from elevated future and from reduced historical CO/sub 2/ regimes, compared to the current concentration. The increased consumption of leaves from elevated CO/sub 2/ is in agreement with previous results. Grasshopper consumption was significantly related to leaf allelochemical content, but not to leaf nitrogen content. The consumption difference among CO/sub 2/ regimes appeared to result from allelochemical differences, which in turn may result from genetic variation or from CO/sub 2/ treatments. 17 refs., 2 figs., 4 tabs.« less

  2. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails

    PubMed Central

    Sanford, Eric; Gaylord, Brian; Hettinger, Annaliese; Lenz, Elizabeth A.; Meyer, Kirstin; Hill, Tessa M.

    2014-01-01

    There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO2 oysters were consumed. The invasive snails were tolerant of elevated CO2 with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29–40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators. PMID:24430847

  3. Study of the effect of bacteria on the disappearance and transformation of CO in the sealed fire zone of coal mine

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai

    2017-01-01

    When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.

  4. Growth, shoot phenology and physiology of diverse seed sources of black spruce: I Seedling responses to varied atmospheric CO2 concentrations and photoperiods

    Treesearch

    Kurt H. Johnsen; John R. Seiler

    1996-01-01

    We conducted a greenhouse experiment to determine: (1) if diverse provenances of black spruce (Picea mariana (Mill.) B.S.P.) respond similarly in growth, phenology and physiology to an approximately 300 ppm increase in atmospheric CO2...

  5. In situ detection of microbial respiration in soils and salt flats. [Nevada desert

    NASA Technical Reports Server (NTRS)

    Tew, R. W.

    1973-01-01

    Increase in CO2 partial pressures over a desert soil treated with casamino-acids glucose solution correlated with bacterial growth. Few or no increases in numbers of bacteria or CO2 concentrations were noted in similar plots treated with water only or receiving no treatment. Growth in the soil appeared to be severely nutrient limited during the 10 day experiment. Especially rapid growth took place between the third and fifth day, when temperatures ranged from 0 deg. (night) to a maximum of 17.4 deg. (day). Under the conditions of the experiment, intermittent CO2 assay was an insensitive indicator of growth, possibly because of restiction of gas escape by the desert pavement or solution, exchange, or precipitation of carbonate, but more likely because of inefficient sealing of hoods to and below the soil surface. CO2 assay was unable to detect microbial successions. The unpredictable course of these successions, plus unpredictable relative retentions mitigates against assay of organic gases as reliable in situ detection of microbial activity, except perhaps in very alkaline environments such as Owens Lake salts.

  6. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. © 2015 John Wiley & Sons Ltd.

  7. Polyethylenimine-magadiite layered silicate sorbent for CO2 capture.

    PubMed

    Vieira, Rômulo B; Pastore, Heloise O

    2014-02-18

    This paper describes the preparation of a Layered Silicate Sorbent (LSS) for CO2 capture using the layered silicate magadiite and organo-magadiite modified with polyethylenimine (PEI). The sorbents were characterized and revealed the presence of PEI as well as its interaction with CO2 at low temperatures. The thermal stability of sorbents was confirmed by thermogravimetry experiments, and the adsorption capacity was evaluated by CO2-TPD experiments. Two kinds of PEI are present in the sorbent, one exposed PEI layer that is responsible for higher CO2 adsorption because its sites are external and another one, bulky PEI, capable of low CO2 adsorption due to the internal position of sites. The contribution of the exposed PEI layer may be increased by a previous exchange of CTA(+), but the presence of the surfactant decreased the total adsorption capacity. MAG-PEI25 reached a maximum adsorption capacity of 6.11 mmol g(-1) at 75 °C for 3 h of adsorption and showed a kinetic desorption of around 15 min at 150 °C.

  8. No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees.

    PubMed

    Marvin, David C; Winter, Klaus; Burnham, Robyn J; Schnitzer, Stefan A

    2015-05-01

    Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana-induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2 . We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co-occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open-top growth chambers maintained at ambient or twice-ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics. © 2014 John Wiley & Sons Ltd.

  9. Convective Instability and Mass Transport of the Diffusion Layer in CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Backhaus, S.

    2011-12-01

    The long-term fate of supercritical (sc) CO2 in saline aquifers is critical to the security of carbon sequestration, an important option for eliminating or reducing the emissions of this most prevalent greenhouse gas. scCO2 is less dense than brine and floats to the top of the aquifer where it is trapped in a metastable state by a geologic feature such as a low permeability cap rock. Dissolution into the underlying brine creates a CO2-brine mixture that is denser than brine, eliminating buoyancy and removing the threat of CO2 escaping back to the atmosphere. If molecular diffusion were the only dissolution mechanism, the CO2 waste stream from a typical large coal-fired electrical power plant may take upward of 10,000 years to no longer pose a threat, however, a convective instability of the dense diffusion boundary layer between the scCO2 and the brine can dramatically increase the dissolution rates, shortening the lifetime of the scCO2 waste pool. We present results of 2D and 3D similitude-correct, laboratory-scale experiments using an analog fluid system. The experiments and flow visualization reveal the onset of the convective instability, the dynamics of the fluid flows during the convective processes, and the long-term mass transfer rates.

  10. Methanogenesis-induced pH–Eh shifts drives aqueous metal(loid) mobility in sulfide mineral systems under CO2 enriched conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.

    2016-01-15

    Accounting for microbially-mediated CO2 transformation is pivotal to assessing geochemical implications for elevated CO2 in subsurface environments. A series of batch-reactor experiments were conducted to decipher links between autotrophic methanogenesis, CO2 dynamics and aqueous Fe, As and Pb concentrations in the presence of sulfide minerals. Microbially-mediated solubility-trapping followed by pseudo-first order reduction of HCO3- to CH4 (k’ = 0.28-0.59 d-1) accounted for 95% of the CO2 loss from methanogenic experiments. Bicarbonate-to-methane reduction was pivotal in the mitigation of CO2-induced acidity (~1 pH unit) and enhancement of reducing conditions (Eh change from -0.215 to -0.332V ). Methanogenesis-associated shifts in pH-Eh valuesmore » showed no significant effect on aqueous Pb but favored, 1) increased aqueous As as a result of microbially-mediated dissolution of arsenopyrite and 2) decreased aqueous Fe due to mineral-trapping of CO2-mobilized Fe as Fe-carbonate. Its order of occurrence (and magnitude), relative to solubility- and mineral-trapping, highlighted the potential for autotrophic methanogenesis to modulate both carbon sequestration and contaminant mobility in CO2-impacted subsurface environments.« less

  11. The interacting effects of nutrient enrichment and ocean acidification on the growth and physiology of the macroalgae Ulva sp.

    NASA Astrophysics Data System (ADS)

    Reidenbach, L. B.; Hurd, C. L.; Kubler, J.; Fernandez, P. A.; Leal, P. P.; Noisette, F.; Revill, A. T.; McGraw, C. M.

    2016-02-01

    Ocean acidification, caused by the increased absorption of carbon dioxide in the ocean, changes the carbon chemistry in the seawater, decreases pH, and alters the chemical speciation of some nitrogenous compounds, such as ammonium. The green macroalgae Ulva spp. are intertidal species that occur worldwide. Ocean acidification may alter the growth response of Ulva sp. to increased nutrients by altering the photosynthetic and nutrient physiology of the algae as well as the bioavailability of nutrients. To determine if there is an interactive effect between ocean acidification and nutrient enrichment Ulva sp. were grown in the lab in a cross of three pCO2 levels under ambient and enriched ammonium concentrations. We predicted that the growth rates of Ulva sp. in ammonium enriched treatments would be enhanced by increased pCO2 relative to those in ambient ammonium concentrations. While growth rate, relative electron transport rates, and chlorophyll content were enhanced by enriched ammonium, there was no interactive effect of high pCO2 and ammonium enrichment. Ammonium uptake rates and ammonium pools were not affected by the pH and ammonium interaction, but nitrate reductase activity increased in the high pCO2, high ammonium treatments. Increased pCO2 has been found to increase Ulva sp. growth rates under some conditions, but this was not the case in this set of experiments. To make realistic predictions of Ulva sp. abundances into the future, based on better understanding of their physiology, ocean acidification experiments should include additional environmental variables such as light intensity and macronutrient supplies that may simultaneously be affected by climate change.

  12. A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (NDP-072)

    DOE Data Explorer

    Curtis, Peter S [The Ohio State Univ., Columbus, OH (United States); Cushman, Robert M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brenkert, Antoinette L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1999-01-01

    To perform a statistically rigorous meta-analysis of research results on the response by woody vegetation to increased atmospheric CO2 levels, a multiparameter database of responses was compiled. Eighty-four independent CO2-enrichment studies, covering 65 species and 35 response parameters, met the necessary criteria for inclusion in the database: reporting mean response, sample size, and variance of the response (either as standard deviation or standard error). Data were retrieved from the published literature and unpublished reports. This numeric data package contains a 29-field data set of CO2-exposure experiment responses by woody plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO2-exposure experiments and specific comments relevant to the data in the data set, and this documentation file (which includes SAS and Fortran codes to read the ASCII data file; SAS is a registered trademark of the SAS Institute, Inc., Cary, North Carolina 27511).

  13. Updating soil CO2 emission experiments to assess climate change effects and extracellular soil respiration

    NASA Astrophysics Data System (ADS)

    Vidal Vazquez, Eva; Paz Ferreiro, Jorge

    2014-05-01

    Experimental work is an essential component in training future soil scientists. Soil CO2 emission is a key issue because of the potential impacts of this process on the greenhouse effect. The amount of organic carbon stored in soils worldwide is about 1600 gigatons (Gt) compared to 750 Gt in the atmosphere mostly in the form of CO2. Thus, if soil respiration increased slightly so that just 10% of the soil carbon pool was converted to CO2, atmospheric CO2 concentrations in the atmosphere could increase by one-fifth. General circulation model predictions indicate atmosphere warming between 2 and 5°C (IPCC 2007) and precipitation changes ranging from about -15 to +30%. Traditionally, release of CO2 was thought to occur only in an intracellular environment; however, recently CO2 emissions have been in irradiated soil, in the absence of microorganisms (Maire et al., 2013). Moreover, soil plays a role in the stabilization of respiration enzymes promoting CO2 release after microorganism death. Here, we propose to improve CO2 emission experiments commonly used in soil biology to investigate: 1) effects of climatic factors on soil CO2 emissions, and 2) rates of extracellular respiration in soils and how these rates are affected by environmental factors. Experiment designed to assess the effect of climate change can be conducted either in field conditions under different ecosystems (forest, grassland, cropland) or in a greenhouse using simple soil chambers. The interactions of climate change in CO2 emissions are investigated using climate-manipulation experiment that can be adapted to field or greenhouse conditions (e.g. Mc Daniel et al., 2013). The experimental design includes a control plot (without soil temperature and rain manipulation) a warming treatment as well as wetting and/or drying treatments. Plots are warmed to the target temperature by procedures such as infrared heaters (field) or radiant cable (greenhouse). To analyze extracellular respiration, rates of CO2 emissions from sterilized soils and their unsterilized counterparts are compared. Moreover, different pH treatments are compared to analyze how soil pH affects extracellular CO2 release. Students benefit from experimental learning. Practical courses, being either in the field or indoors are of vital importance to bring soil processes to life and to evaluate implications for environment and climate change. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom, 996 pp. Maire, V., G. Alvarez, J. Colombet, A. Comby, R. Despinasse, E. Dubreucq, M. Joly, A.-C. Lehours, V. Perrier, T. Shahzad, and S. Fontaine. 2013. An unknown oxidative metabolism substantially contributes to soil CO2 emissions. Biogeochemistry, 10, 1155-1167, 2013

  14. Investigation of flame structure and burning intensity of partially premixed methane enrichment of syngas using OH-PLIF and kinetic simulation

    NASA Astrophysics Data System (ADS)

    Pu, Ge; Huang, Beibei; Zhang, Xun; Du, Jiantai; Zhu, Tuanhui; Chen, Bei

    2018-05-01

    Various experiments were conducted to study the combustion characteristics of partially premixed methane enrichment of syngas by using the OH-PLIF technique. Experiments were conducted on a co-flow burner, and the methane concentration (XCH4 = CH4/(H2+CO+CH4)) was varied from 0 to 20%, the overall equivalence ratio was varied from 0.4 to 1.2 and the inner equivalence ratio was varied from 1.5 to 3.5. Kinetic simulation was conducted by using OPPDIF module of CHEMKIN-Pro software. Results show that an increase in XCH4 and ϕoverall weakens the OH signal intensity. Adding methane into the fuel greatly increases the height of the inner flame front, and the increase of methane concentration has a negative effect on flame propagation speed. Meanwhile, simulation results remain consistent with the experiments. The main OH radical production reaction changes from R46: H+HO2 = 2OH to R38: H+O2 = O+OH when methane concentration contained in the fuel mixture increases. Sensitivity analysis also indicates that reaction which plays a dominant effect on temperature changes with the increase of methane concentration.

  15. Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Nishimatsu, T.; Yamamoto, T.; Orita, N.

    2001-10-01

    We review our new valence control method of a co-doping for the fabrication of low-resistivity p-type GaN, p-type AlN and n-type diamond. The co-doping method is proposed based upon ab initio electronic structure calculation in order to solve the uni-polarity and the compensation problems in the wide band-gap semiconductors. In the co-doping method, we dope both the acceptors and donors at the same time by forming the meta-stable acceptor-donor-acceptor complexes for the p-type or donor-acceptor-donor complexes for the n-type under thermal non-equilibrium crystal growth conditions. We propose the following co-doping method to fabricate the low-resistivity wide band-gap semiconductors; p-type GaN: [Si + 2 Mg (or Be)], [H + 2 Mg (or Be)], [O + 2 Mg (or Be)], p-type AlN: [O + 2 C] and n-type diamond: [B + 2 N], [H + S], [H + 2 P]. We compare our prediction of the co-doping method with the recent successful experiments to fabricate the low-resistivity p-type GaN, p-type AlN and n-type diamond. We show that the co-doping method is the efficient and universal doping method by which to avoid carrier compensation with an increase of the solubility of the dopant, to increase the activation rate by decreasing the ionization energy of acceptors and donors, and to increase the mobility of the carrier.

  16. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    NASA Astrophysics Data System (ADS)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive categories for both aquifer systems. DIC concentration is strongly sensitive to increased pCO2 for both aquifers; however, CO2 outgassing during sampling complicates direct field measurement of DIC. Interpretation of data from in-situ push-pull aquifer tests is ongoing and will be used to augment results summarized here. We are currently designing groundwater monitoring plans for two additional industrial-scale sites where we will further test the sensitivity and utility of our sampling approach.

  17. Response of detritus food web and litter quality to elevated CO2 and crop cultivars and their feedback to soil functionality

    NASA Astrophysics Data System (ADS)

    Hu, Zhengkun; Chen, Xiaoyun; Zhu, Chunwu; Bonkowski, Michael; Hu, Shuijin; Li, Huixin; Hu, Feng; Liu, Manqiang

    2017-04-01

    Elevated atmospheric CO2 concentrations (eCO2) often increase plant growth and alter the belowground detritus soil food web. Interactions with agriculture management may further modify soil process and the associated ecosystem functionality. Little attention, however, has been directed toward assessing the responses of soil food web and their feedback to soil functionality, particularly in wetland agroecosystems. We report results from a long-term free air CO2 enrichment (FACE) experiment in a rice paddy field that examined the responses of detritus food webs to eCO2 (200 ppm higher than ambient CO2 (aCO2)) of two rice cultivars with distinctly weak and strong responses to eCO2. Soil detritus food web components, including soil microbes and microfauna, soil environment as well as resources availability variables, were determined at the rice ripening stage. To obtain the information of soil functionality, indicated by litter decomposition and enzyme activities, we adopted a reciprocal transplant approach that fully manipulate the factors of litter straw and food web components for the incubation of 120 days. Results about the field investigation showed that eCO2 lead to a higher C/N ratio of litter and soil compared to aCO2, especially for the strong responsive cultivar. eCO2-induced enhanced carbon input stimulated the fungal decomposition pathway by increasing fungal biomass, fungi: bacteria ratio and fungivorous nematode. Results from the manipulative incubation experiment showed eCO2-induced lower quality of straw decreased cumulative C mineralization, but changes in detritus food web induced by eCO2 and strongly responsive cultivar lead to an increased CO2 respiration coincidently within each straw type, mainly due to the adaption to the high C/N ratio environment which increased their functional breadth. Based on SEMs and curves of carbon mineralization rate, soil communities showed significant effects on C release at the early stage through mediating enzyme activities involved in carbon and nutrient cycling. Our results indicated that resource quality played a pivotal role in mediating soil functionality as it primarily determined the rate and degree of decomposition, but soil community composition could modify how resource quality affected this soil process. eCO2 and crop cultivar migration significantly altered straw quality and soil community composition, and thus affected soil functioning. Our findings highlight that alterations of soil functional guilds under future climate and appropriate agricultural strategy change the carbon and nutrient cycling of ecosystem. Key-words: Global change; Nitrogen input; Crop cultivar; Rhizosphere food webs; Root microbiome; Microbial community; Soil fauna

  18. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.

    2012-04-01

    Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated further by analyses of rock and mineral clasts from core. A surprising result of this study is the extent to which CO2 has dissolved in brines to drive fluid-rock reactions during the short duration of this experiment. However, simple one-dimensional flow modelling with lateral diffusion of CO2 into brines demonstrates that the natural heterogeneities in permeability in the reservoir on the scale of ~ 1 m are sufficient to cause extensive fingering of the CO2 along the highest permeability horizons. Because flow of brines is fastest in the relatively high permeability layers adjacent to the CO2-bearing layers, production of this more CO2-rich water dominates the output from production wells.

  19. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  20. Adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110).

    PubMed

    Smith, R Scott; Li, Zhenjun; Chen, Long; Dohnálek, Zdenek; Kay, Bruce D

    2014-07-17

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (Ob), Ti5c, and defect sites in order of increasing peak temperature. Analysis of the saturated surface spectrum for both species reveals that the corresponding adsorption energies on all sites are greater for H2O than for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupy the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K.

  1. Can increasing CO2 cool Antarctica?

    NASA Astrophysics Data System (ADS)

    Schmithuesen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter

    2014-05-01

    CO2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. Our investigations show, that for the high elevated areas of Antarctica the greenhouse effect (GHE) of CO2 is commonly around zero or even negative. This is based on the quantification of GHE as the difference between long-wave surface emission and top of atmosphere emission. We demonstrate this behaviour with the help of three models: a simple two-layer model, line-by-line calculations, and an ECMWF experiment. Additionally, in this region an increase in CO2 concentration leads to an instantaneous increased long-wave energy loss to space, which is a cooling effect on the earth-atmosphere system. However, short-wave warming by the weak absorption of solar radiation by CO2 are not taken into account here. The reason for this counter-intuitive behaviour is the fact that in the interior of Antarctica the surface is often colder than the stratosphere above. Radiation from the surface in the atmospheric window emitted to space is then relatively lower compared to radiation in the main CO2 band around 15 microns, which originates mostly from the stratosphere. Increasing CO2 concentration leads to increasing emission from the atmosphere to space, while blocking additional portions of surface emission. If the surface is colder than the stratosphere, this leads to additional long-wave energy loss to space for increasing CO2. Our findings for central Antarctica are in strong contrast to the generally known effect that increasing CO2 has on the long-wave emission to space, and hence on the Antarctic climate.

  2. Atmospheric carbon dioxide and chlorofluoromethanes - Combined effects on stratospheric ozone, temperature, and surface temperature

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1981-01-01

    The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.

  3. Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

    Treesearch

    Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang

    2005-01-01

    We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...

  4. Effects of CO(2) enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii.

    PubMed

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-10-01

    Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.

  5. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

    PubMed Central

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-01-01

    Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed. PMID:23145346

  6. Strengthened African summer monsoon in the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Zhang, Zhongshi; Jiang, Dabang; Yan, Qing; Zhou, Xin; Cheng, Zhigang

    2016-09-01

    Using model results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) and four experiments with CAM4, the intensified African summer monsoon (ASM) in the mid-Piacenzian and corresponding mechanisms are analyzed. The results from PlioMIP show that the ASM intensified and summer precipitation increased in North Africa during the mid-Piacenzian, which can be explained by the increased net energy in the atmospheric column above North Africa. Further experiments with CAM4 indicated that the combined changes in the mid-Piacenzian of atmospheric CO2 concentration and SST, as well as the vegetation change, could have substantially increased the net energy in the atmospheric column over North Africa and further intensified the ASM. The experiments also demonstrated that topography change had a weak effect. Overall, the combined changes of atmospheric CO2 concentration and SST were the most important factor that brought about the intensified ASM in the mid-Piacenzian.

  7. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.

  8. Effects of free-air CO2 and temperature enrichment on soybean growth and development

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Bernacchi, C. J.

    2012-12-01

    According to the growing degree days approach, the progression of plant developmental stages requires certain accumulation of heat; therefore greenhouse gas-induced warming of the atmosphere could contribute to more rapid plant development. However, the influence of rising carbon dioxide concentration ([CO2]) on development of crops is uncertain, accelerating and other times delaying certain developmental stages. In soybean, the increase of [CO2] is shown to delay reproductive development, which is attributed to a higher investment of resources into extra nodes. The combined effects of elevated temperature and [CO2] can have significant changes in the progression through development that can influence on total grain production, carbon uptake, and susceptibility to early end-of-season frosts. We designed the Temperature by Free Air CO2 Enrichment (T-FACE) experiment to test over two growing seasons (2009 and 2011) and under field conditions the impact of increased temperature and/or [CO2] on soybean. The heated T-FACE subplots were situated in the larger FACE plots at 385 or 585 ppm of [CO2] and subjected to either ambient or heated (+~3.5°C) temperatures. The experiment is full factorial with ambient temperature and [CO2] (control), elevated temperature (eT), elevated [CO2] (eC) and combined (eT+eC) treatments. We hypothesized that soybean grown (1) under elevated [CO2] will produce more nodes than control, (2) under high temperature will produce nodes faster than control and (3) under both elevated temperature and [CO2] will produce more nodes in less time than control. For reproductive development, we hypothesized that (1) reproductive development will initiate simultaneously regardless of increased [CO2] or temperature because soybean reproduction is triggered by day length, (2) elevated temperature will accelerate the progression through key reproductive stages and (3) the delay in soybean reproductive development by elevated [CO2] will be ameliorated by the raise in temperature. Soybean developmental stages were recorded on six plants per subplot three times per week from emergence to senescence. In 2009, no temperature effect was detected on the vegetative development, but in 2011 temperature accelerates node formation. Elevated [CO2] was not significant on vegetative development, however plants under this effect produced more nodes than control. Reproductive development was delayed by elevated [CO2]. High temperature accelerated reproductive stages only in 2009, ameliorating the effect of elevated [CO2] in eT+eC. In 2011 elevated temperature delayed reproductive stages, a response that could be related with stress imposed by the weather conditions of that season. In the Midwest, the soybean cultivars generally mature before the first frost of the year avoiding seed damage. The delayed in soybean maturation by the increasing of [CO2] could potentially reduce yield; however the increase of temperature could diminish this risk by mitigating this delay. Alternatively, the more rapid progression through the reproductive stages could decrease the translocation of resources to pods, thereby negatively impacting yields. Using soybean as a model for leguminous C3 species suggested implications could arise for yield in crop plants and reproductive fitness in native vegetation.

  9. Interactive effect of elevated CO2 and temperature on coral physiology

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.

    2011-12-01

    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  10. The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilmes, S.; Fasullo, John; Lamarque, J.-F.

    2013-10-14

    Abstract: The hydrologic impact of enhancing Earth’s albedo due to solar radiation management (SRM) is investigated using simulations from 12 models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). An artificial experiment is investigated, where global mean temperature is preserved at pre-industrial conditions, while atmospheric carbon dioxide concentrations are quadrupled. The associated reduction of downwelling surface solar radiation in a high CO2 environment leads to a reduction of global evaporation of 10% and 4% and precipitation of 6.1% and 6.3% over land and ocean, respectively. An initial reduction of latent heat flux at the surface is largely driven by reducedmore » evapotranspiration over land with instantly increasing CO2 concentrations in both experiments. A warming surface associated with the transient adjustment in the 4xCO2 experiment further generates an increase of global precipitation, with considerable regional changes, such as a significant precipitation reduction of 7% for the North American summer monsoon. Reduced global precipitation persists in the geoengineered experiment where temperatures are stabilized, with considerable regional rainfall deficits. Precipitation reductions that are consistent in sign across models are identified in the geoengineered experiment over monsoonal land regions of East Asia (6%), North America (7%), South America (6%) and South Africa (5%). In contrast to the 4xCO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50%, it is reduced by up to 20% in the geoengineering scenario . The reduction in heavy precipitation is more pronounced over land than over the ocean, and accompanies a stronger reduction in evaporation over land. For northern mid-latitudes, maximum precipitation reduction over land ranges from 1 to 16% for individual models. For 45-65°N, the frequency of median to high intensity precipitation in summer is strongly reduced. These changes in precipitation in both total amount and frequency of extremes, point to a considerable weakening of the hydrological cycle in a geoengineered world.« less

  11. Atmospheric dynamics of combined crops of wheat, cowpea, pinto beans in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Dempster, W.; Nelson, M.; Silverstone, S.; Allen, J.; Alling, A.; van Thillo, M.

    A mixed crop consisting of cowpeas pinto beans and Apogee ultra-dwarf wheat was grown in Laboratory Biosphere a 40 m 3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5 37 m 2 of soil Similar to earlier reported experiments the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO 2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial fell rapidly as plant growth increased up to 29 days after planting and then was maintained mostly in the range of about 200 -- 3000 ppm with a few excursions by CO 2 injections to feed plant growth Numerous analyses of rate of change of CO 2 concentration at many different concentrations and at many different days after planting reveals a strong dependence of fixation rates on CO 2 concentration In the middle period of growth days 31 -- 61 fixation rates doubled for CO 2 at 450 ppm compared to 270 ppm doubled again at 1000 ppm and increased a further 50 at 2040 ppm High productivity from these crops and the increase of fixation rates with elevated CO 2 concentration supports the concept that enhanced CO2 can be a useful strategy for remote life support systems

  12. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO2 enrichment.

    PubMed

    Ikawa, Hiroki; Chen, Charles P; Sikma, Martin; Yoshimoto, Mayumi; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Ono, Keisuke; Maruyama, Atsushi; Watanabe, Tsutomu; Kuwagata, Tsuneo; Hasegawa, Toshihiro

    2018-03-01

    Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO 2 concentration ([CO 2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO 2 ] (A-CO 2 and E-CO 2 , respectively) via leaf ecophysiological parameters derived from a free-air CO 2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO 2 and E-CO 2 , and E-CO 2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO 2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO 2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use. © 2017 John Wiley & Sons Ltd.

  13. Do you really represent my task? Sequential adaptation effects to unexpected events support referential coding for the joint Simon effect.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2016-07-01

    Recent findings suggest that a Simon effect (SE) can be induced in Individual go/nogo tasks when responding next to an event-producing object salient enough to provide a reference for the spatial coding of one's own action. However, there is skepticism against referential coding for the joint Simon effect (JSE) by proponents of task co-representation. In the present study, we tested assumptions of task co-representation and referential coding by introducing unexpected double response events in a joint go/nogo and a joint independent go/nogo task. In Experiment 1b, we tested if task representations are functionally similar in joint and standard Simon tasks. In Experiment 2, we tested sequential updating of task co-representation after unexpected single response events in the joint independent go/nogo task. Results showed increased JSEs following unexpected events in the joint go/nogo and joint independent go/nogo task (Experiment 1a). While the former finding is in line with the assumptions made by both accounts (task co-representation and referential coding), the latter finding supports referential coding. In contrast to Experiment 1a, we found a decreased SE after unexpected events in the standard Simon task (Experiment 1b), providing evidence against the functional equivalence assumption between joint and two-choice Simon tasks of the task co-representation account. Finally, we found an increased JSE also following unexpected single response events (Experiment 2), ruling out that the findings of the joint independent go/nogo task in Experiment 1a were due to a re-conceptualization of the task situation. In conclusion, our findings support referential coding also for the joint Simon effect.

  14. Carbon dioxide dynamics of combined crops of wheat, cowpea, pinto beans in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Nelson, M.; Silverstone, S.; Allen, J. P.

    2009-04-01

    A mixed crop consisting of cowpeas, pinto beans and Apogee ultra-dwarf wheat was grown in the Laboratory Biosphere, a 40 m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Similar to earlier reported experiments, the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO 2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial. Carbon dioxide concentrations then fell rapidly as plant growth increased up to 29 days after planting and subsequently was maintained mostly in the range of about 200-3000 ppm (with a few excursions) by CO 2 injections to feed plant growth. Numerous analyses of rate of change of CO 2 concentration at many different concentrations and at many different days after planting reveal a strong dependence of fixation rates on CO 2 concentration. In the middle period of growth (days 31-61), fixation rates doubled for CO 2 at 450 ppm compared to 270 ppm, doubled again at 1000 ppm and increased a further 50% at 2000 ppm. High productivity from these crops and the increase of fixation rates with elevated CO 2 concentration supports the concept that enhanced CO 2 can be a useful strategy for remote life support systems. The data suggests avenues of investigation to understand the response of plant communities to increasing CO 2 concentrations in the Earth's atmosphere. Carbon balance accounting and evapotranspiration rates are included.

  15. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment.

    PubMed

    Sommer, Ulrich; Paul, Carolin; Moustaka-Gouni, Maria

    2015-01-01

    While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15 °C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.

  16. Warming and Carbon Dioxide Enrichment Alter Plant Production and Ecosystem gas Exchange in a Semi-Arid Grassland Through Direct Responses to Global Change Factors and Indirect Effects on Water Relations

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Pendall, E.; Williams, D. G.; Bachman, S.; Dijkstra, F. A.; Lecain, D. R.; Follett, R.

    2007-12-01

    The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring, 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie. Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Grasslands Research Station, just west of Cheyenne, WY, USA. Twenty plots were assigned to a two-level factorial combination of two CO2 concentrations (present ambient, 380 ppmV; and elevated, 600 ppmV), and two levels of temperature (present ambient; and elevated temperature, 1.5/3.0 C warmer day/night), with five replications for each treatment. Five of the ten remaining plots were subjected to either frequent, small water additions throughout the growing season, and the other five to a deep watering once or twice during the growing season. The watering treatments were imposed to simulate hypothesized water savings in the CO2-enriched plots, and to contrast the influence of variable water dynamics on ecosystem processes. Carbon dioxide enrichment of the ten CO2- enriched plots is accomplished with Free Air CO2 Enrichment (FACE) technology and occurs during daylight hours of the mid-April - October growing season. Warming is done year-round with circularly-arranged ceramic heater arrays positioned above the ring perimeters, and with temperature feed-backs to control day/night canopy surface temperatures. Carbon dioxide enrichment began in Spring, 2006, and warming was added in Spring, 2007. Results from the first year of CO2 enrichment (2006) confirmed earlier reports that CO2 increases productivity in semi-arid grasslands (21% increase in peak seasonal above ground biomass for plants grown under elevated CO2 compared to non-enriched controls), and that the response was related to CO2- induced water savings. Growth at elevated CO2 reduced leaf carbon isotope discrimination and N concentrations in plants compared to results obtained in control plots, but the magnitude of changes were highly species specific. Ecosystem-level gas exchange measurements indicated that interactions between watering and CO2 enrichment increased C cycling over a range of soil moisture conditions, although watering had a greater relative impact on C fluxes than CO2 enrichment. Results from the combined warming and CO2 enrichment experiment in 2007 indicate soil fluxes of CO2 increased with elevated CO2 and warming, but decreased with warming later in the year compared to un-heated controls. Soil CH4 uptake was enhanced by elevated CO2 but reduced by warming, particularly later in the year. Soil fluxes of N2O were unaffected by treatment. These preliminary results indicate potentially strong feedbacks between carbon cycling and warming are mediated by ecosystem processes in this semiarid rangeland.

  17. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE PAGES

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    2017-05-02

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  18. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  19. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  20. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  1. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  2. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    PubMed

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  3. Oxidation of alloys for energy applications in supercritical CO 2 and H 2O

    DOE PAGES

    Holcomb, Gordon R.; Carney, Casey; Doğan, Ömer N.

    2016-03-19

    To facilitate development of supercritical CO 2 (sCO 2) power plants, a comparison of the oxidation behavior of austenitic stainless steels and Ni-base alloys in sH 2O and sCO 2 were made. Experiments were conducted at 730 °C/207 bar (sCO 2) and 726 °C/208 bar (sH 2O). Ni-base alloys in sCO 2 did not exhibit much change with pressure. Ni-base alloys in sH 2O had an increase in corrosion rate and the log of the parabolic rate constant was proportional to pressure. Lastly, fine-grain austenitic stainless steels in sCO 2 and sH 2O were both less protective with pressure asmore » the dense protective chromia scale was replaced with faster growing Fe-oxide rich scales.« less

  4. Flowering responses of insect-pollinated plants to elevated CO{sub 2} levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, J.H.; Koch, G.W.; Chiariello, N.R.

    1995-06-01

    Elevated atmospheric CO{sub 2} concentrations have been predicted or shown to substantially influence plants, communities and ecosystems in a variety of ways. Here, we examined the effects of elevated CO{sub 2} levels on the timing and magnitude of flowering for two insect-pollinated annual plant species in a serpentine grassland. We focused on Lasthenia californica and Linanthus parviflorus and addressed three questions: (1) Do elevated CO{sub 2} levels influence flowering phenologies and is this species specific? (2) Do elevated CO{sub 2} levels affect flower production and is this due to altered numbers of individuals, flowers per plant, or both? and (3)more » Are effects on flowering due to elevated CO{sub 2} levels per se or changes in environmental conditions associated with methods used to manipulate CO{sub 2} levels? To address these questions, we used the ecosystem experiment at Stanford University`s Jasper Ridge Biological Preserve (San Mateo Co., CA). This system consists of 20 open-topped chambers - half receiving ambient CO{sub 2} (360 ppm) and half receiving elevated CO{sub 2} (720 ppm) - and 10 untreated plots serving as chamber controls. Results from the 1994 season demonstrated that there were species-specific responses to elevated CO{sub 2} levels and the field chambers. For Lasthenia californica, elevated CO{sub 2} per se did not affect relative abundance, inflorescence production, or phenology, but chambers did significantly increase inflorescence production and extend the duration of flowering. For Linanthus parviflorus, elevated CO{sub 2} levels significantly increased relative abundance and flower production, and extended the flowering period slightly, while the chambers significantly decreased flower production early in the season and increased it later in the season.« less

  5. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.

    PubMed

    Tutolo, Benjamin M; Luhmann, Andrew J; Kong, Xiang-Zhao; Saar, Martin O; Seyfried, William E

    2014-02-18

    Injection of cool CO2 into geothermally warm carbonate reservoirs for storage or geothermal energy production may lower near-well temperature and lead to mass transfer along flow paths leading away from the well. To investigate this process, a dolomite core was subjected to a 650 h, high pressure, CO2 saturated, flow-through experiment. Permeability increased from 10(-15.9) to 10(-15.2) m(2) over the initial 216 h at 21 °C, decreased to 10(-16.2) m(2) over 289 h at 50 °C, largely due to thermally driven CO2 exsolution, and reached a final value of 10(-16.4) m(2) after 145 h at 100 °C due to continued exsolution and the onset of dolomite precipitation. Theoretical calculations show that CO2 exsolution results in a maximum pore space CO2 saturation of 0.5, and steady state relative permeabilities of CO2 and water on the order of 0.0065 and 0.1, respectively. Post-experiment imagery reveals matrix dissolution at low temperatures, and subsequent filling-in of flow passages at elevated temperature. Geochemical calculations indicate that reservoir fluids subjected to a thermal gradient may exsolve and precipitate up to 200 cm(3) CO2 and 1.5 cm(3) dolomite per kg of water, respectively, resulting in substantial porosity and permeability redistribution.

  6. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    PubMed

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  8. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  9. An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50 ° C: Implications for subsurface storage of CO2

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-05-01

    A novel high pressure column flow reactor (HPCFR) was used to investigate the evolution of fluid chemistry along a 2.3 meter flow path during 37-104 days of pure water- and CO2-charged water- (0.3 M CO2(aq)) basaltic glass interaction experiments at 22 and 50 ° C. The scale of the HPCFR, the ability to sample a reactive fluid at discrete spatial intervals under pressure and the possibility to measure the dissolved inorganic carbon and pH in situ all render the HPCFR unique in comparison with other reactors constructed for studies of CO2-charged water-rock interaction. During the pure water-basaltic glass interaction experiment, the pH of the injected water evolved rapidly from 6.7 to 9-9.5 and most of the dissolved iron was consumed by secondary mineral formation, similar to natural basaltic groundwater systems. In contrast to natural systems, however, the dissolved aluminium concentration remained relatively high along the entire flow path. The reactive fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility of metals increased significantly in the reactive fluid and the concentration of some metals, including Mn, Fe, Cr, Al, and As exceeded the WHO (World Health Organisation) allowable drinking water limits. Iron was mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Basaltic glass dissolution in the CO2-charged water did not overcome the pH buffer capacity of the fluid. The pH rose only from an initial pH of 3.4 to 4.5 along the first 18.5 cm of the column, then remained constant during the remaining 2.1 meters of the flow path. Increasing the temperature of the CO2-charged fluid from 22 to 50 ° C increased the relative amount of dissolved divalent iron along the flow path. After a significant initial increase along the first metre of the column, the dissolved aluminium concentration decreased consistent with its incorporation into secondary minerals. The dissolved chromium concentration evolution mimicked that of Al at 50 ° C, suggesting substitution of trivalent Cr for Al in secondary phases. According to PHREEQC calculations, the CO2-charged fluid was always undersaturated with respect to carbonate minerals within the column, but supersaturated with respect to clays and Fe hydroxides at 22 ° C and with respect to clays and Al hydroxides at 50 ° C. Substantial differences were found between modelled and measured dissolved element concentrations in the fluids during the experiments. These differences underscore the need to improve computational models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface.

  10. Increased visceral tissue perfusion with heated, humidified carbon dioxide insufflation during open abdominal surgery in a rodent model.

    PubMed

    Robson, Jonathan P; Kokhanenko, Pavlo; Marshall, Jean K; Phillips, Anthony R; van der Linden, Jan

    2018-01-01

    Tissue perfusion during surgery is important in reducing surgical site infections and promoting healing. This study aimed to determine if insufflation of the open abdomen with heated, humidified (HH) carbon dioxide (CO2) increased visceral tissue perfusion and core body temperature during open abdominal surgery in a rodent model. Using two different rodent models of open abdominal surgery, visceral perfusion and core temperature were measured. Visceral perfusion was investigated using a repeated measures crossover experiment with rodents receiving the same sequence of two alternating treatments: exposure to ambient air (no insufflation) and insufflation with HH CO2. Core body temperature was measured using an independent experimental design with three treatment groups: ambient air, HH CO2 and cold, dry (CD) CO2. Visceral perfusion was measured by laser speckle contrast analysis (LASCA) and core body temperature was measured with a rectal thermometer. Insufflation with HH CO2 into a rodent open abdominal cavity significantly increased visceral tissue perfusion (2.4 perfusion units (PU)/min (95% CI 1.23-3.58); p<0.0001) compared with ambient air, which significantly reduced visceral blood flow (-5.20 PU/min (95% CI -6.83- -3.58); p<0.0001). Insufflation of HH CO2 into the open abdominal cavity significantly increased core body temperature (+1.15 ± 0.14°C) compared with open cavities exposed to ambient air (-0.65 ± 0.52°C; p = 0.037), or cavities insufflated with CD CO2 (-0.73 ± 0.33°C; p = 0.006). Abdominal visceral temperatures also increased with HH CO2 insufflation compared with ambient air or CD CO2, as shown by infrared thermography. This study reports for the first time the use of LASCA to measure visceral perfusion in open abdominal surgery and shows that insufflation of open abdominal cavities with HH CO2 significantly increases visceral tissue perfusion and core body temperature.

  11. Interactions between elevated atmospheric CO2 and defoliation on North American rangeland plant species at low and high N availability

    USDA-ARS?s Scientific Manuscript database

    Semi-arid rangelands are expected to be highly sensitive to global change, but few studies have explicitly investigated interactions between increased atmospheric CO2 and plant defoliation (such as occurs with animal grazing). This experiment subjected intact plant-soil cylinders from the Wyoming pr...

  12. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    PubMed

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  13. Ventilatory control of heart rate during inhalation of 5% CO2 and types of panic attacks.

    PubMed

    Ley, R

    1991-09-01

    Differences in the magnitude of increases in heart rate during prolonged inhalation of 5% CO2 range from a mean of 25 b/min for a group of eight panic-disorder patients who panicked (Woods, Charney, Goodman, & Heninger, 1988. Archives of General Psychiatry, 45, 43-52) to zero b/min for 16 patients, eight of whom panicked (Craske & Barlow, 1990. Journal of Abnormal Psychology, 99, 302-307). What accounts for this disparity? The present paper describes how heart rate can be increased by means of voluntary overbreathing during prolonged inhalation of 5% CO2 in air. This suggests that differences in the degree of overbreathing may explain differences in the magnitude of increases in heart rate during inhalation of 5% CO2. An explanation is also offered for the curious finding that some patients experience "panic attacks" with zero increase in heart rate. Evidence suggests that this is likely to happen in cognitively based panic attacks, in contrast to hyperventilatory attacks or anticipatory attacks.

  14. Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

    PubMed Central

    Arnold, Thomas; Mealey, Christopher; Leahey, Hannah; Miller, A. Whitman; Hall-Spencer, Jason M.; Milazzo, Marco; Maers, Kelly

    2012-01-01

    Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be “winners” in a high CO2 world. PMID:22558120

  15. Comparison of the effects of symmetric and asymmetric temperature elevation and CO2 enrichment on yield and evapotranspiration of winter wheat (Triticum aestivum L.)

    PubMed Central

    Qiao, Yunzhou; Liu, Huiling; Kellomäki, Seppo; Peltola, Heli; Liu, Yueyan; Dong, Baodi; Shi, Changhai; Zhang, Huizhen; Zhang, Chao; Gong, Jinnan; Si, Fuyan; Li, Dongxiao; Zheng, Xin; Liu, Mengyu

    2014-01-01

    Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration. PMID:24963392

  16. Comparison of the effects of symmetric and asymmetric temperature elevation and CO2 enrichment on yield and evapotranspiration of winter wheat (Triticum aestivum L.).

    PubMed

    Qiao, Yunzhou; Liu, Huiling; Kellomäki, Seppo; Peltola, Heli; Liu, Yueyan; Dong, Baodi; Shi, Changhai; Zhang, Huizhen; Zhang, Chao; Gong, Jinnan; Si, Fuyan; Li, Dongxiao; Zheng, Xin; Liu, Mengyu

    2014-05-01

    Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration.

  17. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study

    NASA Astrophysics Data System (ADS)

    Fletcher, Benjamin J.; Beerling, David J.; Brentnall, Stuart J.; Royer, Dana L.

    2005-09-01

    Biological and geochemical CO2 proxies provide critical constraints on understanding the role of atmospheric CO2 in driving climate change during Earth history. As no single existing CO2 proxy is without its limitations, there is a clear need for new approaches to reconstructing past CO2 concentrations. Here we develop a new pre-Quaternary CO2 proxy based on the stable carbon isotope composition (δ13C) of astomatous land plants. In a series of CO2-controlled laboratory experiments, we show that the carbon isotope discrimination (Δ13C) of a range of bryophyte (liverwort and moss) species increases with atmospheric CO2 across the range 375 to 6000 ppm. Separate experiments establish that variations in growth temperature, water content and substrate type have minor impacts on the Δ13C of liverworts but not mosses, indicating the greater potential of liverworts to faithfully record past variations in CO2. A mechanistic model for calculating past CO2 concentrations from bryophyte Δ13C (White et al., 1994) is extended and calibrated using our experimental results. The potential for fossil liverworts to record past CO2 changes is investigated by analyzing the δ13C of specimens collected from Alexander Island, Antarctica dating to the "greenhouse" world of the mid-Cretaceous. Our analysis and isotopic model yield mid-Cretaceous CO2 concentrations of 1000-1400 ppm, in general agreement with independent proxy data and long-term carbon cycle models. The exceptionally long evolutionary history of bryophytes offers the possibility of reconstructing CO2 concentrations back to the mid-Ordovician, pre-dating all currently used quantitative CO2 proxies.

  18. Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol.

    PubMed

    Steinhardt, Rachel; Hiew, Stanley C; Mohapatra, Hemakesh; Nguyen, Du; Oh, Zachary; Truong, Richard; Esser-Kahn, Aaron

    2017-12-27

    Designing new liquids for CO 2 absorption is a challenge in CO 2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO 2 absorption isotherms. Upon introduction, CO 2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO 2 . The precipitation of this second viscous phase drives CO 2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO 2 uptake across the same pressure range. In our system, CO 2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1 H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO 2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO 2 separation process.

  19. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  20. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    PubMed Central

    Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-01-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm−1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration. PMID:28893986

  1. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    NASA Astrophysics Data System (ADS)

    Keeling, Ralph F.; Graven, Heather D.; Welp, Lisa R.; Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-09-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

  2. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis.

    PubMed

    Keeling, Ralph F; Graven, Heather D; Welp, Lisa R; Resplandy, Laure; Bi, Jian; Piper, Stephen C; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A J

    2017-09-26

    A decrease in the 13 C/ 12 C ratio of atmospheric CO 2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13 C-Suess effect, is driven primarily by the input of fossil fuel-derived CO 2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO 2 from fossil fuel, land, and oceans can explain the observed 13 C-Suess effect unless an increase has occurred in the 13 C/ 12 C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO 2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C 3 plants at times of altered atmospheric CO 2 , but increasing discrimination has not previously been included in studies of long-term atmospheric 13 C/ 12 C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm -1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO 2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO 2 concentration.

  3. A Biopsychological Model of Anti-drug PSA Processing: Developing Effective Persuasive Messages.

    PubMed

    Hohman, Zachary P; Keene, Justin Robert; Harris, Breanna N; Niedbala, Elizabeth M; Berke, Collin K

    2017-11-01

    For the current study, we developed and tested a biopsychological model to combine research on psychological tension, the Limited Capacity Model of Motivated Mediated Message Processing, and the endocrine system to predict and understand how people process anti-drug PSAs. We predicted that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, will trigger evaluative tension about the target behavior in persuasive messages and result in a biological response (increase in cortisol, alpha amylase, and heart rate). In experiment 1, we assessed the impact of co-presentation of pleasant and unpleasant information in persuasive messages on evaluative tension (conceptualized as attitude ambivalence), in experiment 2, we explored the impact of co-presentation on endocrine system responses (salivary cortisol and alpha amylase), and in experiment 3, we assessed the impact of co-presentation on heart rate. Across all experiments, we demonstrated that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, in persuasive communications leads to increases in attitude ambivalence, salivary cortisol, salivary alpha amylase, and heart rate. Taken together, the results support the initial paths of our biopsychological model of persuasive message processing and indicate that including both pleasant and unpleasant information in a message impacts the viewer. We predict that increases in evaluative tension and biological responses will aid in memory and cognitive processing of the message. However, future research is needed to test that hypothesis.

  4. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  5. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    NASA Astrophysics Data System (ADS)

    Suffrian, K.; Simonelli, P.; Nejstgaard, J. C.; Putzeys, S.; Carotenuto, Y.; Antia, A. N.

    2008-01-01

    Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Phytoplankton and microzooplankton composition were determined by light microscopy. Despite a range up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. Thus, during the first 9 days of the experiment the algae community standing stock (SS), measured as chlorophyll a (Chl a), showed the highest instantaneous grow rates (0.02-0.99 d-1) and increased from ca 2-3 to 6-12 μg l-1, in all mesocosms. Afterwards the phytoplankton SS decreased in all mesocosms until the end of the experiment. The microzooplankton SS, that was mainly dinoflagellates and ciliates varied between 23 and 130 μg C l-1, peaking on day 13-15, apparently responding to the phytoplankton development. Instantaneous Chl a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (14-43% of the SS d-1) only in the pre-bloom phase when they were in low numbers and in the post-bloom phase when they were already limited by low nutrients and/or virus lysis. The cyanobacteria populations appeared more effected by microzooplankton grazing, generally removing 20-65% of the SS d-1.

  6. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B

    NASA Astrophysics Data System (ADS)

    Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; BöHm, Florian; Thomsen, JöRn; Garbe-SchöNberg, Dieter; Eisenhauer, Anton

    2012-01-01

    Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 μatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3-]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 μatm). Boron isotopes (δ11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3-] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean δ11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

  7. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    PubMed

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  8. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Bruno, John F.; Westfield, Isaac T.

    2014-01-01

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea surface temperature to increase by 1–4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate—suggesting that ocean warming poses a more immediate threat than acidification for this important coral species. PMID:25377455

  9. pCO2 effects on species composition and growth of an ...

    EPA Pesticide Factsheets

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5–13 °C), light and nutrient concentrations under three levels of controlled and constant CO2 concentrations, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The s

  10. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    PubMed

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P < 0.01) lower water activity (a(w)) levels were found in samples packaged under MA1, in contrast to samples packaged under MA2 where water activity values showed considerable fluctuation. Variations in pH values in the two types of MA showed similar trends. Sample pH gradually decreased until day 9 of storage. On day 11, muscle tissue pH increased markedly and then began to decrease again. The overall decrease in pH values was more profound in samples packaged under MA1. TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P < 0.01) higher levels of both parameters were found in muscle tissues packaged under MA1. FFA concentrations in silver carp samples in MA1 were significantly lower (P < 0.01) throughout the experiment. The PV increased significantly in both muscle samples tested. Greater fluctuations in this parameter's values throughout the experiment were observed in samples packaged under MA2. Faster rates of oxidation (P < 0.01) were found in samples packaged under MA1 starting on day 9. Maximum TBA values in MA1 and MA2 were observed on days 14 and 18 of the experiment, respectively. From the course of proteolytic and oxidative changes point of view, the more appropriate combination of gases for silver carp storage seems to be the mixture of 70% N2 and 30% CO2 (MA2), which allows for muscle storage of up to 9 days. We recommend TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes.

  11. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.

    PubMed

    Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C

    2017-12-01

    Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.

  12. Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Daley, T. M.; Myer, L. R.

    2002-12-01

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.

  13. Reforestation in a high-CO2 world -- Higher mitigation potential than expected, lower adaptation potential than hoped for

    NASA Astrophysics Data System (ADS)

    Sonntag, Sebastian; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke

    2016-06-01

    We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in temperature extremes are also large in densely populated areas.

  14. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2 stabilizes by 2060 in RCP4.5. So in light of the Paris agreement, it is more important to investigate climate change impacts on carbon stocks than to expect a continuation of increasing sink due to CO2 fertilization, which will have only a small role or disappear in RCP2.6 during this century.

  15. The effects of CO2 on phytoplankton community structure in the Amazon River Plume

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Goes, J. I.; Gomes, H. R.; McKee, K. T.

    2013-12-01

    The Amazon River Plume results from an enormous discharge of freshwater and organic matter into the Atlantic Ocean. It is a unique environment with a natural pCO2 gradient in the surface waters of the plume that range from 130-950 μatm. The response of coastal marine phytoplankton to increased anthropogenic CO2 emission is still unknown, hence the Amazon River Plume gradient can serve as a natural laboratory to examine the potential influence of atmospheric CO2 increases and ocean acidification on phytoplankton community composition. A two pronged study was undertaken: the first in which shipboard samples from a 2010 cruise to the Amazon River Plume were analyzed to examine the distribution of 3 major phytoplankton groups (diatoms, diatom-diazotroph associations [DDAs], and the diazotroph Trichodesmium spp.) with respect to the natural pCO2 gradient; the second in which the growth response of Thalassiosira weisflogii, a representative diatom species, was examined under experimentally manipulated CO2 conditions. Cruise data analysis showed that diatoms were found with higher cell counts around 150 μatm; DDAs seemed to dominate waters within the narrow range of 350-400 μatm CO2; and the diazotroph Trichodesmium spp. grew in a wide range of pCO2 conditions, but with higher cell counts at upwards of 500 μatm. Phytoplankton group distributions along the CO2 gradient may be due to differences in their carbon-concentrating mechanism (CCMs) efficiencies. The CO2 manipulation apparatus was assembled such that the cells were grown under three different CO2 environments. Differential growth of T. weisflogii was observed at 150, 400, and 800 ppm CO2 treatment. T. weisflogii grew at all three CO2 concentrations, reflecting diatoms' physiological flexibility and efficient CCMs. Absorption spectra analysis of pigments and Fast Repetition Rate Fluorometer analysis indicate potential changes in photosynthetic machinery with different CO2 treatments. Future CO2 manipulation experiments on representative DDA and diazotroph species will be undertaken to compare the growth responses of the 3 major phytoplankton groups to changes in CO2. Additionally, analysis on fatty acid compositions with different CO2 treatments will be done to assess potential changes in nutritive value for higher trophic levels. Underway pCO2 measurements with overlaid cell counts from the 2010 cruise data CO2 manipulation experiment data- growth curve (in vivo chlorophyll a fluorescence) for the 3 CO2 treatments

  16. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    NASA Astrophysics Data System (ADS)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  17. First in-situ monitoring of CO2 delivery to the mantle followed by compression melting, using synchrotron generated X-ray diffraction.

    NASA Astrophysics Data System (ADS)

    Hammouda, Tahar; Chantel, Julien; Manthilake, Geeth; Guignard, Jérémy; Crichton, Wilson; Gaillard, Fabrice

    2014-05-01

    Melting of peridotite + CO2 upon compression has been directly monitored in situ, for the first time. We have combined high pressure experiments in the multianvil apparatus with synchrotron-generated X-ray diffraction, in order to monitor sample decarbonation upon heating, followed by melting upon compression. Experiments were performed in the model system CaO-MgO-SiO2+CO2, using dolomite and silicates contained in graphite capsules as starting material. Save Al, starting composition was aimed at reproducing peridotitic system. The sample was first compressed at room temperature, then heated. Decarbonation was observed at 2.2 GPa and 1100°C. After further heating to 1300°C, pressure was increased. Melting was observed at 2.7 GPa, while temperature was kept at 1300°C. All transformations were followed using X-ray diffraction. Starting with silicate + carbonate mixtures, we were thus able to keep CO2 fluid in the experimental sample at high P and T, up to the solidus. Concerning carbon recycling at subduction zones, it is known that CO2 is a non-wetting fluid in silicate aggregates. Therefore, any CO2 resulting from carbonate breakdown likely remains trapped at grain corners either in the subducted lithosphere or in the mantle wedge before eventually being trapped in mantle minerals as fluid inclusions, due to dynamic recrystallization. In this way, CO2 released from the slab may be spread laterally due to mantle convection. Entrainment to further depths by deep subduction or in convection cells induces CO2 introduction to depth wherein the solidus can be crossed, due to pressure increase. The solidus corresponds to the so-called carbonate ledge, beyond which carbonatitic melts are produced. Therefore, compression melting of CO2-bearing lithologies is a way to produce carbonatitic melts at depths corresponding to about 80 km. This mechanism is a viable explanation for the observed geophysical anomalies, such as those revealed by electrical conductivity measurements.

  18. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd

    2017-10-01

    Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.

  19. Continuous distending pressure effects on variables contributing to oxygenation in healthy and ARDS model pigs during HFOV

    NASA Astrophysics Data System (ADS)

    Laviola, Marianna; Hajny, Ondrej; Roubik, Karel

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is an alternative mode of mechanical ventilation. HFOV has been shown to provide adequate ventilation and oxygenation in acute respiratory distress syndrome (ARDS) patients and may represent an effective lung-protective ventilation in patients where conventional ventilation is failing. The aim of this study is to evaluate effects of continuous distending pressure (CDP) on variables that contribute to the oxygenation in healthy and ARDS lung model pigs. Methods. In order to simulate a lung disease, lung injury was induced by lavage with normal saline with detergent in three pigs. HFOV ventilation was applied before and after the lung lavage. CDP was stepwise increased by 2 cmH2O, until the maximum CDP (before the lung lavage 32 cmH2O and after the lung lavage 42 cmH2O) and then it was stepwise decreased by 2 cmH2O to the initial value. In this paper we analyzed the following parameters acquired during our experiments: partial pressure of oxygen in arterial blood (PaO2), cardiac output (CO) and mixed venous blood oxygen saturation (SvO2). In order to find how both PaO2 and CO affected SvO2 during the increase of CDP before and after lavage, a nonlinear regression fitting of the response in SvO2 on the predictors (PaO2 and CO) was implemented. Results. Before the lavage, with increasing of CDP, PaO2 remained constant, CO strongly decreased and SvO2 slightly decreased. After the lavage, with increasing of CDP, PaO2 strongly increased, CO decreased and SvO2 increased. So, development of SvO2 followed the PaO2 and CO trends. Changes in PaO2 and CO occur at decisive CDP step and it was much higher after the lung lavage compared to the healthy lungs. The implemented nonlinear model gives a good goodness of fitting in all three pigs. The values of PaO2 and CO estimated coefficients changed at the same decisive step of CDP identified by the trends. Also the algorithm identified a CDP step much higher after the lung lavage. Conclusions. The novelty of this study consists of the implementing of a model that allows to predict how PaO2 and CO affect SvO2. It is possible to identify a certain level of CDP (higher in ARDS model pigs) at which the contribution of PaO2 and CO to SvO2 course changes their weights. Above this value, PaO2 plays a major role in SvO2 developments. This is in concordance with the clinical experience that HFOV is suitable for patient with more severe lung diseases when much higher CDP levels are required to assure an adequate oxygenation.

  20. Surface radiation fluxes in transient climate simulations

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  1. Subsolidus and melting phase relations in the system CaCO3-MgCO3-FeCO3 at 35 kbar: from experiments to predictions based on a thermodynamic model

    NASA Astrophysics Data System (ADS)

    Franzolin, E.; Schmidt, M. W.; Poli, S.

    2009-12-01

    At convergent margins volatile components, most notably CO2 and H2O, stored in oceanic sediments and MORB are recycled into the mantle. Mafic protoliths become enriched in CO2 and H2O, stored in carbonates and hydrous phases, by hydrothermal alteration. As carbonates are more refractory than hydrous phases, CO2 is more likely to survive in the oceanic lithosphere beyond sub-arc depths [1,2]. Despite the main role of carbonates on cycling crustal and atmospheric CO2 into the mantle, experimental data within the system CaCO3-MgCO3-FeCO3 are scarce. To bridge this gap, piston-cylinder experiments have been performed at 35 kbar, 900-1100 °C to determine subsolidus relations, and up to 1300 °C to constrain melting relations. Pure synthetic calcite, natural magnesite and synthetic siderite have been mixed in different proportions in double Pt-C capsules, to avoid major siderite oxidation. Subsolidus experiments reveal the presence of two miscibility gaps at 900 °C: the solvus dolomite-calcite, which closes at XMgCO3 ~ 0.7, and the solvus dolomite-magnesite, which ranges to the Fe-side of the ternary. Increasing the temperature, the two miscibility gaps became narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 at 1100 °C, and between CaCO3-FeCO3 at 1000 °C, are observed. The system is characterized by strong compositional asymmetry, thermodynamically described with a van Laar macroscopic formalism [3], and by R-3<=>R-3c phase transitions due to cation disordering, treated by redefining the compositional space with an independent set of end-members that describe both composition and states of ordering. The result is a solid solution model able to reproduce both the phase relations experimentally observed at 35 kbar and those experimentally determined and naturally observed at lower pressure [4-5]. Our model can be reliable extended to pressures of the breakdown of dolomite, e.g. 5-6 GPa, 600-1000 °C. Melting experiments carried out at 1250 °C along the join CaCO3-MgCO3, yield an eutectic at a slightly lower temperature at XCa ~ 0.7; the eutectic temperature decreases with the Fe content in the bulk. The 2-phase field calcite (XCa~0.75) + liquid, broadens with the increase of XFe in the system. Along the join CaMg(CO3)2-CaFe(CO3)2, melting takes place at XFe ~ 0.2, producing Ca enriched melt + Mg enriched dolomite. The new subsolidus and melting data and the ternary thermodynamic solid solution model, have been combined to predict the fate of FeO and CO2 rich systems (i.e. BIF associated with Fe-shale, high-Fe altered basalts and Fe-enriched carbonated metapelites), recycled back into the mantle during the history of the Earth. [1] Kerrick&Connolly, EPSL, 2001, 189, 19-29. [2] Poli et al., EPSL, 2009, 278, 350-360. [3] Holland&Powell, Contr. Min. Pet., 2003, 145, 492-501. [4] Goldsmith et al., Journ. of Geol., 1962, 70, 659-688. [5] Rosenberg, Am. Min., 1967, 52, 787-796.

  2. The Effect of Hydrous Supercritical Carbon Dioxide on the Mohr Coulomb Failure Envelope in Boise Sandstone

    NASA Astrophysics Data System (ADS)

    Choens, R. C., II; Dewers, T. A.; Ilgen, A.; Espinoza, N.; Aman, M.

    2016-12-01

    Experimental rock deformation was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and failure strength in an analog for Tertiary sandstone saline formation reservoirs. Storing large volumes of carbon dioxide in depleted petroleum reservoirs and deep saline aquifers over geologic time is an important tool in mitigating effects of climate change. Carbon dioxide is injected as a supercritical phase, where it forms a buoyant plume. At brine-plume interfaces, scCO2 dissolves over time into the brine, lowering pH and perturbing the local chemical environment. Previous work has shown that the resulting geochemical changes at mineral-fluid interfaces can alter rock mechanical properties, generally causing a decrease in strength. Additionally, water from the native brine can dissolve into the scCO2 plume where it is present as humidity. This study investigates the effect of hydrous scCO2 and CO2-saturated brine on shear failure of Boise sandstone. Samples are held in a hydrostatic pressure vessel at 2250 PSI confining pressure (PC) and 70 C, and scCO2 at specific humidity is circulated through the core for 24 hours at 2000 PSI and 70 C. Experiments are conducted at relative humidity levels of 0, 14, 28, 42, 56, 70, 84, 98, and 100% relative humidity. After the scCO2 core flood is finished, triaxial compression experiments are conducted on the samples at room temperature and an axial strain rate of 10-5 sec-1. Experiments are conducted at 500, 1000, and 1500 PSI PC. The results demonstrate that water present as humidity in scCO2 can reduce failure strength and lower slopes of the Mohr-Coulomb failure envelope. These effects increase with increasing humidity, as dry scCO2 does not affect rock strength, and may be influenced by capillary condensation of water films from humid scCO2. The reductions in failure strength seen in this study could be important in predicting reservoir response to injection, reservoir caprock integrity, and borehole stability of injection wells. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2016-7552A

  3. Detection of smoldering combustion of coal with an odor meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J.C.

    1995-05-01

    A commercially available odor meter was evaluated as a detector of smoldering coal combustion, and compared with incipient carbon monoxide (CO) and hydrogen sulfide (H{sub 2}S) detection and a commercially available ionization-type smoke detector. Ten smoldering coal combustion experiments were conducted. For eight of the experiments, Pittsburgh seam coal with an average particle diameter of approximately 5 cm was heated by embedded electrical strip heaters. For two of the experiments mine size Pittsburgh seam coal was heated. Heating rates of 0.5, 0.8, and 1.1. kw were selected to provide experimental conditions characteristic of very slow and moderately fast heating formore » coal sample mass between 3 and 10 kg. It was found that the odor meter and smoke detector alarm had a good correlation, with the odor meter alarm occurring prior to the smoke alarm in four of the ten experiments. The odor meter gave an increase in its output signal above ambient equivalent to detecting 1 ppm of H{sub 2}S (ten times the odor threshold of H{sub 2}S) as an alarm value. This observed odor meter response occurred prior to the electrochemical detection of H{sub 2}S for five of the six experiments for which it was evaluated. In all six experiments for which the smoke optical density was evaluated, it was less than 0.023 m{sup -1} prior to the odor meter reaching alarm. In each of the eight experiments with 5 cm diameter coal particles the CO exceeded 5 ppm at odor meter alarm, while for the two experiments with mine size coal the CO was less than 3 ppm at odor meter alarm. The odor meter, as tested, is not a significant improvement over smoke and CO detectors. Because the odor meter responds to a variety of chemical compounds, with suitable modification and increased sensitivity it may be useful for detection of mine fires and thereby enhance mine safety.« less

  4. Impact of elevated carbon dioxide on soil heat storage and heat flux under unheated low-tunnels conditions.

    PubMed

    Al-Kayssi, A W; Mustafa, S H

    2016-11-01

    Suboptimal regimes of air and soil temperature usually occur under unheated low-tunnels during winter crop cycles. CO2 is one of the most important gases linked to climate change and posing challenge to the current agricultural productivity. Field experiment was conducted in unheated low-tunnels (10.0 m long, 1.5 m wide and 1.0 m high) during winter and spring periods to evaluate the increasing CO2 concentration (352, 709, 1063, 1407, and 1761 ppm) on net radiation budget, soil-air thermal regime and pepper plants growth development and yield. CO2 was injected into each hollow space of the tunnel double-layer transparent polyethylene covers. Recorded integral net longwave radiation increased from 524.81 to 1111.84 Wm(-2) on January when CO2 concentration increased from 352 to 1761 ppm. A similar trend was recorded on February. Moreover, minimum soil surface and air temperatures were markedly increased from -1.3 and -6.8 °C to 3.4 and 0.6 °C, when CO2 concentration increased from 352 to 1761 ppm. Additionally, soil heat flux as well as soil heat storage increased with increasing CO2 concentrations accordingly. Increasing the tunnel minimum air and soil temperatures with the CO2 concentration treatments 1063, 1407 and 1761 ppm reflected in a significant pepper yield (3.19, 5.06 and 6.13 kg m(-2)) due to the modification of the surrounding plants microenvironment and prevented pepper plants from freezing and the accelerated the plant growth. On the contrary, the drop of minimum air and soil temperatures to freezing levels with the CO2 concentration treatments 352 and 709 ppm resulted in the deterioration of pepper plants development during the early growth stages on January. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil

    PubMed Central

    Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions. PMID:29394272

  6. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil.

    PubMed

    Oo, Aung Zaw; Sudo, Shigeto; Akiyama, Hiroko; Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions.

  7. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-01

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of the basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3-) ratio. The changed NH4+/NO3- ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.

  8. The viking biological investigation: preliminary results.

    PubMed

    Klein, H P; Horowitz, N H; Levin, G V; Oyama, V I; Lederberg, J; Rich, A; Hubbard, J S; Hobby, G L; Straat, P A; Berdahl, B J; Carle, G C; Brown, F S; Johnson, R D

    1976-10-01

    Three different types of biological experiments on samples of martian surface material ("soil") were conducted inside the Viking lander. In the carbon assimilation or pyrolytic release experiment, (14)CO(2) and (14)CO were exposed to soil in the presence of light. A small amount of gas was found to be converted into organic material. Heat treatment of a duplicate sample prevented such conversion. In the gas exchange experiment, soil was first humidified (exposed to water vapor) for 6 sols and then wet with a complex aqueous solution of metabolites. The gas above the soil was monitored by gas chromatography. A substantial amount of O(2) was detected in the first chromatogram taken 2.8 hours after humidification. Subsequent analyses revealed that significant increases in CO(2) and only small changes in N(2) had also occurred. In the labeled release experiment, soil was moistened with a solution containing several (14)C-labeled organic compounds. A substantial evolution of radioactive gas was registered but did not occur with a duplicate heat-treated sample. Alternative chemical and biological interpretations are possible for these preliminary data. The experiments are still in process, and these results so far do not allow a decision regarding the existence of life on the plonet Mars.

  9. Response of Spring Diatoms to CO2 Availability in the Western North Pacific as Determined by Next-Generation Sequencing.

    PubMed

    Endo, Hisashi; Sugie, Koji; Yoshimura, Takeshi; Suzuki, Koji

    2016-01-01

    Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 μatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 μatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350 μatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.

  10. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.

    PubMed

    Gonzàlez-Meler, Miquel A; Blanc-Betes, Elena; Flower, Charles E; Ward, Joy K; Gomez-Casanovas, Nuria

    2009-12-01

    The concentration of atmospheric CO2 has increased from below 200 microl l(-1) during last glacial maximum in the late Pleistocene to near 280 microl l(-1) at the beginning of the Holocene and has continuously increased since the onset of the industrial revolution. Most responses of plants to increasing atmospheric CO2 levels result in increases in photosynthesis, water use efficiency and biomass. Less known is the role that respiration may play during adaptive responses of plants to changes in atmospheric CO2. Although plant respiration does not increase proportionally with CO2-enhanced photosynthesis or growth rates, a reduction in respiratory costs in plants grown at subambient CO2 can aid in maintaining a positive plant C-balance (i.e. enhancing the photosynthesis-to-respiration ratio). The understanding of plant respiration is further complicated by the presence of the alternative pathway that consumes photosynthate without producing chemical energy [adenosine triphosphate (ATP)] as effectively as respiration through the normal cytochrome pathway. Here, we present the respiratory responses of Arabidopsis thaliana plants selected at Pleistocene (200 microl l(-1)), current Holocene (370 microl l(-1)), and elevated (700 microl l(-1)) concentrations of CO2 and grown at current CO2 levels. We found that respiration rates were lower in Pleistocene-adapted plants when compared with Holocene ones, and that a substantial reduction in respiration was because of reduced activity of the alternative pathway. In a survey of the literature, we found that changes in respiration across plant growth forms and CO2 levels can be explained in part by differences in the respiratory energy demand for maintenance of biomass. This trend was substantiated in the Arabidopsis experiment in which Pleistocene-adapted plants exhibited decreases in respiration without concurrent reductions in tissue N content. Interestingly, N-based respiration rates of plants adapted to elevated CO2 also decreased. As a result, ATP yields per unit of N increased in Pleistocene-adapted plants compared with current CO2 adapted ones. Our results suggest that mitochondrial energy coupling and alternative pathway-mediated responses of respiration to changes in atmospheric CO2 may enhance survival of plants at low CO2 levels to help overcome a low carbon balance. Therefore, increases in the basal activity of the alternative pathway are not necessarily associated to metabolic plant stress in all cases.

  11. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2015-12-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. As a result of ocean acidification, marine organisms expend extra energy on modifying behaviors. The current rate of ocean acidification will deplete the marine food chain that much of the world relies on as their major food supply. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crabs Clibanarius digueti. We hypothesized that an increase in carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the niche occupancy of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into a treatment tank and measured as dissolved CO2 by using a sodium hydroxide titration method. Additionally, water conditions were characterized for UV- light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We assessed whether increased CO2 affected hermit crab shell change rate. We found that shell changes only happened among C. digueti placed under increased CO2. The information from this analysis will allow us to assess whether ocean acidification affects basic behavior in hermit crabs, which could later affect population dynamics. Bringing together all of this information will allow us to measure the effects of climate change on the behavior of C.Digueti.

  12. Microbial monitoring during CO2 storage in deep subsurface saline aquifers in Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Wuerdemann, H.; Wandrey, M.; Fischer, S.; Zemke, K.; Let, D.; Zettlitzer, M.; Morozova, D.

    2010-12-01

    Investigations on subsurface saline aquifers have shown an active biosphere composed of diverse groups of microorganisms in the subsurface. Since microorganisms represent very effective geochemical catalysts, they may influence the process of CO2 storage significantly. In the frames of the EU Project CO2SINK a field laboratory to study CO2 storage into saline aquifer was operated. Our studies aim at monitoring of biological and biogeochemical processes and their impact on the technical effectiveness of CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause changes to the structure and chemical composition of the rock formations, which may influence the reservoir permeability locally. In addition, precipitation and corrosion may be induced around the well affecting the casing and the casing cement. Therefore, analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. In order to investigate processes in the deep biosphere caused by the injection of supercritical CO2, genetic fingerprinting (PCR SSCP Single-Strand-Conformation Polymorphism) and FISH (Fluorescence in situ Hybridisation) were used for identification and quantification of microorganisms. Although saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced conditions, high pressure and salinity, a high number of diverse groups of microorganisms were detected with downhole sampling in the injection and observation wells at a depth of about 650m depth. Of great importance was the identification of the sulphate reducing bacteria, which are known to be involved in corrosion processes. Microbial monitoring during CO2 injection has shown that both quantity and diversity of microbial communities were strongly influenced by the CO2 injection. In addition, the indigenous microbial communities revealed a high adaptability to the changed environments after CO2 injection. In order to investigate processes in the rock substrate, long term CO2 exposure experiments on freshly drilled, pristine Ketzin reservoir core samples were accomplished for 24 months using sterile synthetic brine under in situ pressure and temperature conditions. The composition of the microbial community dominated by chemoorganotrophic bacteria and hydrogen oxidizing bacteria changed slightly under CO2 exposure. In addition, changes in porosities were observed with time. During the experiments porosity first increased due to mineral dissolution but then tend to decrease due to mineral precipitation. These mineralogical changes are consistent with changes in fluid composition during the course of the experiments that indicate notably increased K+, Ca2+, Mg2+, and SO4 2- concentrations. K+, Ca2+, Mg2+ concentrations exceeded the reservoir brine composition significantly and can be attributed to the CO2 exposure.

  13. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum.

    PubMed

    Sordo, Laura; Santos, Rui; Reis, Joao; Shulika, Alona; Silva, Joao

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO 2 . However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and p CO 2 . Here we describe a system in which the target p CO 2 is controlled via direct analysis of p CO 2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures p CO 2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO 2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of p CO 2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum . We found that after 11 months of high CO 2 exposure, photosynthesis increased with CO 2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO 2 , such as temperature, irradiance and nutrients.

  14. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    PubMed Central

    Santos, Rui; Reis, Joao; Shulika, Alona

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients. PMID:27703853

  15. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  16. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Ning; Zhao, Fang; Collatz, George

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observedmore » increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.« less

  17. Interactive effects of CO2 enrichment and temperature on the growth of dioecious Hydrilla verticillata

    USGS Publications Warehouse

    Chen, De-Xing; Coughenour, M. B.; Eberts, Debra; Thullen, Joan S.

    1994-01-01

    Experiments of plant growth responses to different CO2 concentrations and temperatures were conducted in growth chambers to explore the interactive effects of atmospheric CO2 enrichment and temperature on the growth and dry matter allocation of dioecious Hydrilla [Hydrilla verticillata (L.f.) Royle]. Hydrilla plants were exposed to two atmospheric CO2 concentrations (350 and 700 ppm) and three temperatures (15, 25 and 32°C) under a 12-hr photoperiod for about 2 months. The plant growth analysis showed that elevated CO2 appeared to enhance the growth of Hydrilla, and that the percentage of the enhancement is strongly temperature-dependent. Maximum biomass production was achieved at 700 ppm CO2 and 32°C. At 15°C, the total dry matter production was increased about 27% by doubling CO2, due to a 26% enhancement of leaf biomass, a 34% enhancement of stem biomass and 16% enhancement of root biomass. At 25°C, the dry matter production was increased about 46% by doubling CO2, due to a 29% enhancement of leaf biomass, a 27% enhancement of stem biomass and 40% enhancement of root biomass. At 32°C, however, the percentage of the enhancement of total dry matter production by doubling CO2 was only about 7%. The dry matter allocation among different plant parts was influenced by temperature but not by elevated CO2 concentration.

  18. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  19. Transient Changes in Shallow Groundwater Chemistry During the MSU-ZERT CO2 Injection Experiment

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Apps, J. A.; Spycher, N.; Birkholzer, J. T.; Kharaka, Y. K.; Thordsen, J. J.; Kakouros, E.; Trautz, R. C.

    2009-12-01

    The Montana State University Zero Emission Research and Technology (MSU-ZERT) field experiment at Bozeman, Montana, is designed to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the potential leakage of CO2 from deep storage reservoirs. However, the experiment also affords an excellent opportunity to investigate the transient changes in groundwater chemical composition in response to increasing CO2 partial pressures. Between July 9 and August 7, 2008, 300 kg/day of food-grade CO2 was injected into shallow groundwater through a horizontal perforated pipe about 2-2.3 m below the ground surface. Changes in groundwater quality were investigated through comprehensive chemical analyses of 80 water samples taken before, during and following CO2 injection from 10 shallow observation wells located 1-6 m from the injection pipe, and from two distant monitoring wells. Field and laboratory analyses suggest rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of both major and trace element species. A principal component analysis and independent thermodynamic interpretation of the water quality analyses were conducted. Results were interpreted in conjunction with a mineralogical characterization of the shallow sediments and a review of historical records of the chemical composition of rainfall at neighboring monitoring sites. The interpretation permitted tentative identification of a complex array of adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction and infiltration processes that were operative during the test. Geochemical modeling was conducted using TOUGHREACT to test whether the observed water quality changes were consistent with the hypothesized processes, and very good agreement was obtained with respect to the behavior of both major and trace elements.

  20. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    PubMed Central

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2014-01-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  1. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    USGS Publications Warehouse

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  2. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    PubMed

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  4. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  5. Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments

    Treesearch

    Donald R. Zak; William E. Holmes; Adrien C. Finzi; Richard J. Norby; William H. Schlesinger

    2003-01-01

    The extent to which greater net primary productivity (NPP) will be sustained as the atmospheric CO2 concentration increases will depend, in part, on the long-term supply of N for plant growth. Over a two-year period, we used common field and laboratory methods to quantify microbial N, gross N mineralization, microbial N immobilization, and...

  6. North African savanna fires and atmospheric carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacobellis, S.F.; Frouni, Razafimpaniolo, H.

    1994-04-20

    The effect of north African savanna fires on atmospheric CO{sub 2} is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO{sub 2} concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO{sub 2} sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO{sub 2} concentrations in South America. The effect is more pronounced during the period from January through March,more » when biomass burning in South America is almost nonexistent. During this period, atmospheric CO{sub 2} concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO{sub 2} concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO{sub 2} concentration increase at 970 mbar. 20 refs., 15 figs., 1 tab.« less

  7. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  8. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Hoppe, C. J. M.; Langer, G.; Rokitta, S. D.; Wolf-Gladrow, D. A.; Rost, B.

    2012-07-01

    The growing field of ocean acidification research is concerned with the investigation of organism responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small-scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30% lower (i.e. ~300 μatm at a target pCO2 of 1000 μatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.

  9. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies

    NASA Astrophysics Data System (ADS)

    Hoppe, C. J. M.; Langer, G.; Rokitta, S. D.; Wolf-Gladrow, D. A.; Rost, B.

    2012-02-01

    The growing field of ocean acidification research is concerned with the investigation of organisms' responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30 % lower (i.e. ~300 μatm at a target pCO2 of 1000 μatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.

  10. Genomic Regulation of the Response of an Agroecosystem to Elements of Global Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLucia, Evan, H.

    This document outlines some of the major accomplishments from this project: (1) New tools for analyzing and visualizing microarray data from soybean gene expression experiments; (2) Physiological, biochemical, and gene array evidence that acclimation of carbon metabolism to elevated CO{sub 2} is governed in significant part by changes in gene expression associated with respiratory metabolism; (3) Increased carbon assimilation in soybeans grown at elevated CO{sub 2} altered pools of carbohydrates and transcripts that control growth and expansion of young leaves; (4) Growth at elevated CO{sub 2} increases the abundance of transcripts controlling cell wall polysaccharide synthesis but not transcripts controllingmore » lignin synthesis; (5) The total antioxidant capacity of soybeans varies among cultivars and in response to atmospheric change; (6) Accelerated leaf senescence at elevated O{sub 3} coincides with reduced abundance of transcripts controlling protein synthesis; (7) Growth under elevated CO{sub 2} increases the susceptibility of soybean to insect herbivores by increasing insect lifespan and fecundity through altered leaf chemistry and by defeating molecular induction of plant defenses; (8) Exposure to elevated CO{sub 2} and O{sub 3} alters flavonoid metabolism in soybean; (9) Exposure to elevated CO{sub 2} or O{sub 3} conferred resistance to soybean mosaic virus by cross inducing defense- and stress-related signaling pathways; and (10) Exposure to elevated CO{sub 2} accelerates decomposition by changing chemical and biotic properties of the soil.« less

  11. Ocean acidification alters fish populations indirectly through habitat modification

    NASA Astrophysics Data System (ADS)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  12. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  13. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

    PubMed Central

    Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.

    2018-01-01

    Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389

  14. Gene expression responses of paper birch to elevated O3 and CO2 during leaf maturation and senescence

    NASA Astrophysics Data System (ADS)

    Kontunen-Soppela, S.; Parviainen, J.; Ruhanen, H.; Brosché, M.; Keinanen, M.; Thakur, R. C.; Kolehmainen, M.; Kangasjarvi, J.; Oksanen, E.; Karnosky, D. F.; Vapaavuori, E.

    2009-12-01

    Forest trees are exposed to increasing concentrations of O3 and CO2 simultaneously. The rise of concentration in these gases causes changes in the gene expression of trees, which can be small in acclimated trees, but yet pivotal for the metabolism of the trees. We have studied the response of paper birch (Betula papyrifera) leaf gene expression to elevated O3 and CO2 concentrations during leaf maturation and senescence. The hypotheses were:(1) Elevated O3 induces oxidative stress in leaves. During long O3-exposure repair mechanisms are activated. Because chemical defense requires energy and carbon uptake is reduced, leaf senescence is activated earlier. Alternatively, the senescence-associated processes, remobilization and storage of carbohydrates and nutrients, may not be completed. (2) In the combination of elevated CO2+O3, the O3-caused damages are not seen or they are smaller, due to closure of the stomata under elevated CO2 and decreased O3 uptake by the leaves. On the other hand, elevated CO2 may provide energy and increase defense chemicals, enabling leaves to repair the O3-caused damages. Gene expression responses of paper birch leaves to elevated O3 and CO2 were studied with microarray analyses. Samples were collected from the long-term O3 and CO2 fumigation experiment Aspen FACE in Rhinelander, WI, USA (http://aspenface.mtu.edu/). The site contains 12 FACE rings receiving CO2, O3, CO2+O3, and ambient air (controls). Birches have been exposed to elevated CO2 (550ppm) and O3 (1.5X ambient) since 1998. Leaf samples were collected in July, August and September 2004. The cDNA-microarrays used for hybridizations consisted of Populus euphratica ESTs representing ca 6500 different genes. In order to detect similar gene expression patterns within samplings and treatments, the microarray data was analyzed with multivariate methods; clustering with Self-Organizing Map, finding optimal cluster grouping by K-means clustering and visualizing the results with Sammon's mapping. Most of the alterations in the gene expression in comparison to ambient rings were caused by O3, alone and in combination with elevated CO2. O3 reduced photosynthesis and carbon assimilation and induced defense to oxidative stress resulting in earlier leaf senescence. Transport and proteolysis gene expressions were activated, indicating that at least some remobilization of nutrients for storage was completed. The combined CO2+O3 treatment resembled the O3 treatment, indicating that elevated CO2 is not able to totally alleviate the harmful effects of elevated O3. Some specific gene expression changes in the combined O3+CO2 treatment showed that experiments with O3 or CO2-exposure alone are not sufficient to predict plant responses to these gases together, and that field experiments with multiple variables are essential in order to understand responses to future environmental conditions.

  15. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Chen, Long

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupymore » the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.« less

  16. Inerting of magnesium dust cloud with Ar, N2 and CO2.

    PubMed

    Li, G; Yuan, C M; Fu, Y; Zhong, Y P; Chen, B Z

    2009-10-15

    Experiments were conducted on the inerting of magnesium dust with N(2), CO(2), and Ar. Comparing the maximum explosion pressure, maximum rate of pressure rise, and limiting oxygen concentration with different inertants, it was determined that Ar is not the best inert gas under all conditions as commonly believed. N(2) was more effective than Ar as an inertant. CO(2) provided more inerting effect than either Ar and N(2) in low magnesium dust concentrations, although explosibility was increased at higher dust concentrations. Both N(2) and CO(2) as inerting agents showed higher LOC values than Ar. These results indicated that N(2) is a more economical inerting gas than Ar for the tested coarse magnesium dust.

  17. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (NDP-073)

    DOE Data Explorer

    Jones, Michael H [The Ohio State Univ., Columbus, OH (United States); Curtis, Peter S [The Ohio State Univ., Columbus, OH (United States); Cushman, Robert M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brenkert, Antoinette L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1999-01-01

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO2 levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO2-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP- 072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO2- exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO2-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS and Fortran codes to read the ASCII data file; SAS is a registered trademark of the SAS Institute, Inc., Cary, North Carolina 27511).

  18. Southern Ocean carbon-wind stress feedback

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  19. CO2 exsolution - challenges and opportunities in subsurface flow management

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally

    2014-05-01

    In geological carbon sequestration, a large amount of injected CO2 will dissolve in brine over time. Exsolution occurs when pore pressures decline and CO2 solubility in brine decreases, resulting in the formation of a separate CO2 phase. This scenario occurs in storage reservoirs by upward migration of carbonated brine, through faults, leaking boreholes or even seals, driven by a reverse pressure gradient from CO2 injection or ground water extraction. In this way, dissolved CO2 could migrate out of storage reservoirs and form a gas phase at shallower depths. This paper summarizes the results of a 4-year study regarding the implications of exsolution on storage security, including core-flood experiments, micromodel studies, and numerical simulation. Micromodel studies have shown that, different from an injected CO2 phase, where the gas remains interconnected, exsolved CO2 nucleates in various locations of a porous medium, forms disconnected bubbles and propagates by a repeated process of bubble expansion and snap-off [Zuo et al., 2013]. A good correlation between bubble size distribution and pore size distribution is observed, indicating that geometry of the pore space plays an important role in controlling the mobility of brine and exsolved CO2. Core-scale experiments demonstrate that as the exsolved gas saturation increases, the water relative permeability drops significantly and is disproportionately reduced compared to drainage relative permeability [Zuo et al., 2012]. The CO2 relative permeability remains very low, 10-5~10-3, even when the exsolved CO2 saturation increases to over 40%. Furthermore, during imbibition with CO2 saturated brines, CO2 remains trapped even under relatively high capillary numbers (uv/σ~10-6) [Zuo et al., submitted]. The water relative permeability at the imbibition endpoint is 1/3~1/2 of that with carbonated water displacing injected CO2. Based on the experimental evidence, CO2 exsolution does not appear to create significant risks for storage security. Falta et al. [2013] show that if carbonated brine migrates upwards and exsolution occurs, brine migration would be greatly reduced and limited by the presence of exsolved CO2 and the consequent low relatively permeability to brine. Similarly, if an exsolved CO2 phase were to evolve in seals, for example, after CO2 injection stops, the effect would be to reduce the permeability to brine and the CO2 would have very low mobility. This flow blocking effect is also studied with water/oil/CO2 [Zuo et al., 2013]. Experiments show that exsolved CO2 performs as a secondary residual phase in porous media that effectively blocks established water flow paths and deviates water to residual oil zones, thereby increasing recovery. Overall, our studies suggest that CO2 exsolution provides an opportunity for mobility control in subsurface processes. However, the lack of simulation capability that accounts for differences between gas injection and gas exsolution creates challenges for modeling and hence, designing studies to exploit the mobility reduction capabilities of CO2 exsolution. Using traditional drainage multiphase flow parameterization in simulations involving exsolution will lead to large errors in transport rates. Development of process dependent parameterizations of multiphase flow properties will be a key next step and will help to unlock the benefits from gas exsolution. ACKNOWLEDGEMENT This work is funded by the Global Climate and Energy Project (GCEP) at Stanford University. This work was also supported by U.S. EPA, Science To Achieve Results (STAR) Program, Grant #: 834383, 2010-2012. REFERENCES Falta, R., L. Zuo and S.M. Benson (2013). Migration of exsolved CO2 following depressurization of saturated brines. Journal of Greenhouse Gas Science and Technology, 3(6), 503-515. Zuo, L., S.C.M. Krevor, R.W. Falta, and S.M. Benson (2012). An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization. Transp. Porous Media, 91(2), 459-478. Zuo, L., C. Zhang, R.W. Falta, and S.M. Benson (2013). Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Res., 53, 188-197. Zuo, L., and S.M. Benson (2013). Exsolution enhanced oil recovery with concurrent CO2 sequestration. Energy Procedia, 37, 6957-6963. Zuo, L., and S.M. Benson. Different Effects of Imbibed and Exsolved Residually Trapped CO2 in Sandstone. Submitted to Geophysical Research Letters.

  20. AmazonFACE: Assessing the Effects of Increasing Atmospheric CO2 on the Resilience of the Amazon Forest through Integrative Model-Experiment Research

    NASA Astrophysics Data System (ADS)

    Lapola, D. M.

    2015-12-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.

  1. CO2 rebreathing: a possible contributory factor to some cases of sudden infant death?

    PubMed

    Skadberg, B T; Oterhals, A; Finborud, K; Markestad, T

    1995-09-01

    Physical and geometrical conditions influencing carbon dioxide (CO2) accumulation near the face of a sleeping infant positioned deep in a cot or pram (open cot shaft) or underneath bedding (closed cot shaft) were investigated. By means of mathematical and data-based simulation, and an experimental rebreathing model, both hypothetical (dry, exhaled air +20 degrees C) and more physiological conditions (heated, humidified exhaled air, room temperature +20 degrees C; with and without pooling of cold air within the shaft) were tested. With exhaled air at +20 degrees C, the CO2 concentration increased to about 10% within 5 min. The increase was faster the smaller the volume, and the smaller the opening of the cot shaft. When expiratory air was heated, the CO2 concentration increased with the same speed as when the shaft was closed, but to only 0.1-0.3% when the shaft was open. Pooling of cold air in the shaft increased CO2 accumulation 70-200 times the concentration in air (to <5.5%) when the shaft was open. Turbulence of the air outside the open shaft reduced the increase in CO2 concentration. The experiments imply that CO2 may accumulate around an infant's head when placed deep in a cot or pram with the bedding and walls creating a narrow, vertical, shaft-like tunnel to the surrounding air. Although the CO2 concentration may theoretically attain dangerous levels in such circumstances, a rapid equilibrium between the air within and outside the cot usually occurs due to convection of the expiratory air and turbulence from drafts, the infant's body movements and breathing. Such factors will largely eliminated any significant rebreathing with the exception of the extreme situation when expired air is contained within a closed space.

  2. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest.

    PubMed

    Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B

    2018-02-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.

  3. Replenishment of fish populations is threatened by ocean acidification

    PubMed Central

    Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.

    2010-01-01

    There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968

  4. Ocean acidification: the other CO2 problem.

    PubMed

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  5. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  6. Crew Health and Performance Improvements with Reduced Carbon Dioxide Levels and the Resource Impact to Accomplish Those Reductions

    NASA Technical Reports Server (NTRS)

    James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.

    2011-01-01

    Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO2 removal means increased resource use, with increased logistical capability to maintain necessary resources on board ISS. We must strike a balance between sufficiently low CO2 levels to maintain crew health and CO2 levels which are operationally feasible for the ISS program

  7. Carbonate Mineralization of Volcanic Province Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested inmore » single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the precipitates suggest changes in fluid chemistry unique to the dissolution behavior of each basalt sample reacted with CO2-saturated water. The Karoo basalt from South Africa appeared the least reactive, with very limited mineralization occurring during the testing with CO2-saturated water. The relative reactivity of different basalt samples were unexpectedly different in the experiments conducted using aqueous dissolved CO2-H2S mixtures versus those reacted with aqueous dissolved CO2 mixtures. For example, the Karoo basalt was highly reactive in the presence of aqueous dissolved CO2-H2S, as evident by small nodules of carbonate coating the basalt grains after 181 days of testing. However the most reactive basalt in CO2-H2O, Newark Basin, formed limited amounts of carbonate precipitates in the presence of aqueous dissolved CO2-H2S mixture. Basalt reactivity in CO2-H2O mixtures appears to be controlled by the composition of the glassy mesostasis, which is the most reactive component in the basalt rock. With the addition of H2S to the CO2-H2O system, basalt reactivity appears to be controlled by precipitation of coatings of insoluble Fe sulfides.« less

  8. Atmospheric CO2 concentration impacts on maize yield performance under dry conditions: do crop model simulate it right ?

    NASA Astrophysics Data System (ADS)

    Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan

    2017-04-01

    In most regions of the world, maize yields are at risk of be reduced due to rising temperatures and reduced water availability. Rising temperature tends to reduce the length of the growth cycle and the amount of intercepted solar energy. Water deficits reduce the leaf area expansion, photosynthesis and sometimes, with an even more pronounced impact, severely reduce the efficiency of kernel set. In maize, the major consequence of atmospheric CO2 concentration ([CO2]) is the stomatal closure-induced reduction of leaf transpiration rate, which tends to mitigate those negative impacts. Indeed FACE studies report significant positive responses to CO2 of maize yields (and other C4 crops) under dry conditions only. Given the projections by climatologists (typically doubling of [CO2] by the end of this century) projected impacts must take that climate variable into account. However, several studies show a large incertitude in estimating the impact of increasing [CO2] on maize remains using the main crop models. The aim of this work was to compare the simulations of different models using input data from a FACE experiment conducted in Braunschweig during 2 years under limiting and non-limiting water conditions. Twenty modelling groups using different maize models were given the same instructions and input data. Following calibration of cultivar parameters under non-limiting water conditions and under ambient [CO2] treatments of both years, simulations were undertaken for the other treatments: High [ CO2 ] (550 ppm) 2007 and 2008 in both irrigation regimes, and DRY AMBIENT 2007 and 2008. Only under severe water deficits did models simulate an increase in yield for CO2 enrichment, which was associated with higher harvest index and, for those models which simulated it, higher grain number. However, the CO2 enhancement under water deficit simulated by the 20 models was 20 % at most and 10 % on average only, i.e. twice less than observed in that experiment. As in the experiment, the simulated impact of [CO2 ] on water use was negligible, with a general displacement of the water deficit toward later phases of the crop along with longer green leaf area duration at reduced transpiration rate. In general models which used explicit response functions of stomatal conductance to [CO2] performed significantly better than those which did not. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase. We shall discuss the various ways of simulating the response of stomatal conductance to [CO2] and the response of kernel set to water deficits.

  9. Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures

    DTIC Science & Technology

    2013-01-01

    showed an increase in the reference Reynolds number Re* (see Equation 6 on page 8) at the point of transition as reservoir enthalpy hres in- creased...Germain and Adam also observed that flows of CO2 transitioned at higher values of Re* than flows of air for the same hres and Pres. Johnson et al. 5...symbol indicates that the flow was laminar to the last measurable ther- mocouple location, which is recorded. Experiment wCO2 hres Pres T ∗ xtr Retr

  10. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  11. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  12. Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea

    NASA Astrophysics Data System (ADS)

    Schade, Hanna; Mevenkamp, Lisa; Guilini, Katja; Meyer, Stefanie; Gorb, Stanislav N.; Abele, Doris; Vanreusel, Ann; Melzner, Frank

    2016-08-01

    Carbon capture and storage is promoted as a mitigation method counteracting the increase of atmospheric CO2 levels. However, at this stage, environmental consequences of potential CO2 leakage from sub-seabed storage sites are still largely unknown. In a 3-month-long mesocosm experiment, this study assessed the impact of elevated pCO2 levels (1,500 to 24,400 μatm) on Cerastoderma edule dominated benthic communities from the Baltic Sea. Mortality of C. edule was significantly increased in the highest treatment (24,400 μatm) and exceeded 50%. Furthermore, mortality of small size classes (0-1 cm) was significantly increased in treatment levels ≥6,600 μatm. First signs of external shell dissolution became visible at ≥1,500 μatm, holes were observed at >6,600 μatm. C. edule body condition decreased significantly at all treatment levels (1,500-24,400 μatm). Dominant meiofauna taxa remained unaffected in abundance. Densities of calcifying meiofauna taxa (i.e. Gastropoda and Ostracoda) decreased in high CO2 treatments (>6,600 μatm), while the non - calcifying Gastrotricha significantly increased in abundance at 24,400 μatm. In addition, microbial community composition was altered at the highest pCO2 level. We conclude that strong CO2 leakage can alter benthic infauna community composition at multiple trophic levels, likely due to high mortality of the dominant macrofauna species C. edule.

  13. Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea.

    PubMed

    Schade, Hanna; Mevenkamp, Lisa; Guilini, Katja; Meyer, Stefanie; Gorb, Stanislav N; Abele, Doris; Vanreusel, Ann; Melzner, Frank

    2016-08-19

    Carbon capture and storage is promoted as a mitigation method counteracting the increase of atmospheric CO2 levels. However, at this stage, environmental consequences of potential CO2 leakage from sub-seabed storage sites are still largely unknown. In a 3-month-long mesocosm experiment, this study assessed the impact of elevated pCO2 levels (1,500 to 24,400 μatm) on Cerastoderma edule dominated benthic communities from the Baltic Sea. Mortality of C. edule was significantly increased in the highest treatment (24,400 μatm) and exceeded 50%. Furthermore, mortality of small size classes (0-1 cm) was significantly increased in treatment levels ≥6,600 μatm. First signs of external shell dissolution became visible at ≥1,500 μatm, holes were observed at >6,600 μatm. C. edule body condition decreased significantly at all treatment levels (1,500-24,400 μatm). Dominant meiofauna taxa remained unaffected in abundance. Densities of calcifying meiofauna taxa (i.e. Gastropoda and Ostracoda) decreased in high CO2 treatments (>6,600 μatm), while the non - calcifying Gastrotricha significantly increased in abundance at 24,400 μatm. In addition, microbial community composition was altered at the highest pCO2 level. We conclude that strong CO2 leakage can alter benthic infauna community composition at multiple trophic levels, likely due to high mortality of the dominant macrofauna species C. edule.

  14. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).

  15. Fabrication of Polyimide Membrane Incorporated with Functional Graphene Oxide for CO2 Separation: The Effects of GO Surface Modification on Membrane Performance.

    PubMed

    Wang, Ting; Cheng, Cheng; Wu, Li-Guang; Shen, Jiang-Nan; Van der Bruggen, Bart; Chen, Qian; Chen, Di; Dong, Chun-Ying

    2017-06-06

    Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO 2 and N 2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO 2 played a major role in the increase in the separation performance of the hybrid membranes for CO 2 , although the diffusion coefficients for CO 2 also increased. Both the higher condensability and the strong affinity between CO 2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.

  16. Vanadium oxide-carbon nanotube composite electrodes for energy storage by supercritical fluid deposition: experiment design and device performance

    NASA Astrophysics Data System (ADS)

    Do, Quyet H.; Fielitz, Thomas R.; Zeng, Changchun; Arda Vanli, O.; Zhang, Chuck; Zheng, Jim P.

    2013-08-01

    Vanadium pentoxide (V2O5) deposited on porous multiwalled carbon nanotube (MWCNT) buckypaper using supercritical fluid CO2(scCO2) deposition shows excellent performance for electrochemical capacitors. However, the low weight loading of V2O5 is one of the main problems. In this paper, design of experiments and response surface methods were employed to explore strategies for improving the active material loading by increasing the organo-vanadium precursor adsorption. A second-order response surface model was fitted to the designed experiments to predict the loading of the vanadium precursors onto carbon nanotube buckypaper as a function of time, temperature and pressure of CO2, buckypaper functionalization, precursor type, initial precursor mass and stir speed. Operation conditions were identified by employing a model that led to a precursor loading of 19.33%, an increase of 72.28% over the initial screening design. CNTs-V2O5 composite electrodes fabricated from deposited samples using the optimized conditions demonstrated outstanding electrochemical performance (947.1 F g-1 of V2O5 at a high scan rate 100 mV s-1). The model also predicted operation conditions under which light precursor aggregation took place. The V2O5 from aggregated precursor still possessed considerable specific capacitance (311 F g-1 of V2O5 at a scan rate 100 mV s-1), and the significantly higher V2O5 loading (˜81%) contributed to an increase in overall electrode capacitance.

  17. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO[2]. A multi-model structural analysis

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.

    2013-12-01

    Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was simply a function of forest structure, or structure and NPP. Self-thinning assumptions altered equilibrium C sequestration and were extremely important for the immediate transient response and near-term prediction of C sequestration.

  18. CO2 injection into fractured peridotites: a reactive percolation experiment

    NASA Astrophysics Data System (ADS)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.

    2017-12-01

    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with the highest values of the [CO2]. After one day, effluent fluid concentrations decrease and become constant. By analysing both the permeability and the outlet fluid concentration one can investigate the coupling processes controlling the transport and the reaction mechanisms that in turn act at maintaining the circulation in the fractures.

  19. The Na 0.60CoO 2 phase, a potential conductive additive for the positive electrode of Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Tronel, Frédéric; Guerlou-Demourgues, Liliane; Basterreix, Maïté; Delmas, Claude

    The Na 0.60CoO 2 phase, obtained by a classical solid-state reaction, is tested as a conductive additive in the nickel oxide electrode. Though the process was not optimised in terms of additive repartition, the experiments show a good efficiency of the Na 0.60CoO 2 phase even at low cobalt content, compared to usual additives like CoO. Moreover, it increases the stability of the electrode at low potential. The added Na 0.60CoO 2 phase is shown to transform, during the first cycles, into a γ-type cobalt oxyhydroxide phase that is more stable at low potential than the usual additives.

  20. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment.

    PubMed

    Gai, Yanzhe; Wang, Wucong; Xiao, Ding; Zhao, Yaping

    2018-03-01

    Ultrasound coupled with supercritical CO 2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm 3 to 8.074cm 3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO 2 . But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO 2 technique for producing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    PubMed

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity.

    PubMed

    Richier, Sophie; Achterberg, Eric P; Humphreys, Matthew P; Poulton, Alex J; Suggett, David J; Tyrrell, Toby; Moore, C Mark

    2018-05-25

    Accumulation of anthropogenic CO 2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO 2 accumulation are emerging, however the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO 2 uptake is a decrease in the carbonate system buffer capacity, which characterises the system's chemical resilience to changes in CO 2 , generating the potential for enhanced variability in pCO 2 and the concentration of carbonate [CO 3 2- ], bicarbonate [HCO 3 - ] and protons [H + ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO 2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO 2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO 2 in both the modern and future ocean. Specifically, cell-size related acclimation and adaptation to regional environmental variability, as characterised by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The Frio Brine Pilot Experiment Managing CO2 Sequestration in a Brine Formation

    NASA Astrophysics Data System (ADS)

    Sakurai, S.

    2005-12-01

    Funded by the U.S. Department of Energy National Energy Technology Laboratory, the Frio Brine Pilot Experiment was begun in 2002. The increase in greenhouse gas emissions, such as carbon dioxide (CO2), is thought to be a major cause of climate change. Sequestration of CO2 in saline aquifers below and separate from fresh water is considered a promising method of reducing CO2 emissions. The objectives of the experiment are to (1) demonstrate CO2 can be injected into a brine formation safely; (2) measure subsurface distribution of injected CO2; (3) test the validity of conceptual, hydrologic, and geochemical models, and (4) develop experience necessary for larger scale CO2 injection experiments. The Bureau of Economic Geology (BEG) is the leading institution on the project and is collaborating with many national laboratories and private institutes. BEG reviewed many saline formations in the US to identify candidates for CO2 storage. The Frio Formation was selected as a target that could serve a large part of the Gulf Coast and site was selected for a brine storage pilot experiment in the South Liberty field, Dayton, Texas. Most wells were drilled in the 1950's, and the fluvial sandstone of the upper Frio Formation in the Oligocene is our target, at a depth of 5,000 ft. An existing well was used as the observation well. A new injection well was drilled 100 ft away, and 30 ft downdip from the observation well. Conventional cores were cut, and analysis indicated 32 to 35 percent porosity and 2,500 md permeability. Detailed core description was valuable as better characterization resulted in design improvements. A bed bisecting the interval originally thought to be a significant barrier to flow is a sandy siltstone having a permeability of about 100 md. As a result, the upper part of the sandstone was perforated. Because of changes in porosity, permeability, and the perforation zone, input for the simulation model was updated and the model was rerun to estimate timing of CO2 breakthrough and saturation changes. A pulsed neutron tool was selected as the primary wireline log for monitoring saturation changes, because of high formation water salinity, along with high porosity. Baseline logs were recorded as preinjection values. We started injection of CO2 on October 4, 2004, and injected 1,600 tons of CO2 for 10 days. Breakthrough of CO2 to the observation well was observed on the third day by geochemical measurement of recovered fluids, including gas analysis and decreased pH value. Multiple capture logs were run to monitor saturation changes. The first log run after CO2 breakthrough on the fourth day showed a significant decrease in sigma was recorded within the upper part of the porous section (6 ft) correlative with the injection interval. Postinjection logs were compared with baseline logs to determine CO2 distribution as CO2 migrated away from the injection point. The dipole acoustic tool was used to estimate saturation changes to improve geophysical data interpretation using VSP and crosswell tomography. Compared with the baseline log, wireline sonic log made 3 months later showed a weak and slower arrival of compressional wave over the perforated interval. Results from crosswell tomography data also showed changes in compressional velocity. Successful measurement of plume evolution documents an effective method to monitor CO2 in reservoirs and document migration.

  4. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    PubMed

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  5. Cerebral vascular reactivity on return from the International Space Station

    NASA Astrophysics Data System (ADS)

    Zuj, Kathryn; Greaves, Danielle; Shoemaker, Kevin; Blaber, Andrew; Hughson, Richard L.

    Returning from spaceflight, astronauts experience a high incidence of orthostatic intolerance and syncope. Longer duration space flight may result in greater adaptations to microgravity which could increase the post-flight incidence of syncope. CCISS (Cardiovascular and Cerebovascular Control on return from the International Space Station) is an ongoing project designed to help determine adaptations that occur during spaceflight which may contribute to orthostatic intolerance. One component of this project involves looking at cerebral vascular responses before and after long duration spaceflight. As a known vasodilator, carbon dioxide (CO2) has been frequently used to assess changes in cerebral vascular reactivity. In this experiment, end tidal PCO2 was manipulated through changes in respired air. Two breaths of a 10% CO2 gas mixture were administered at 1-min intervals resulting in an increase in end tidal PCO2 . Throughout the testing, cerebral blood flow velocity (CBFV) was determined using transcranial Doppler ultrasound. The cerebral resistance index (RI) was calculated from the Doppler wave form using the equation; RI=(CBFVsystolic-CBFVdiastolic)/CBFVsystolic. Changes in this index have been shown to reflect changes in cerebral vascular resistance. Peak responses to the CO2 stimulus were determined and compared to baseline measures taken at the beginning of the testing. Cerebral blood flow velocity increased and RI decreased with the two breaths of CO2. Preliminary data show a 36.0% increase in CBFV and a 9.0% decrease in RI pre-flight. Post flight, the response to CO2 appears to change showing a potentially blunted decrease in resistance (6.8%) and a smaller increase in CBFV (22.8%). Long term spaceflight may result in cerebrovascular changes which could decrease the vasodilatory capacity of cerebral resistance vessels. Further investigations in the CCISS project will reveal the interactive role of CO2 and arterial blood pressure on maintenance of brain blood flow that is critical for crew health and safety on return from long-duration missions to ISS or future flights to the moon and Mars. Supported by Canadian Space Agency.

  6. Lessons from forest FACE experiments provide guidance for Amazon-FACE science plan (Invited)

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Lapola, D. M.

    2013-12-01

    Free-air CO2 enrichment (FACE) experiments have provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems, and they provide a strong foundation for next-generation experiments in unexplored biomes. Specific lessons from FACE experiments include: (1) Carbon cycle responses are time-dependent because component processes have different rate constants: for example, net primary productivity is increased by elevated CO2, but the response may diminish with time as N cycling feedbacks become important. (2) Carbon partitioning patterns determine the fate of the extra C taken up by CO2-enriched plants, but partitioning responses remain an important challenge for ecosystem models. (3) The influence of N cycling on plant and ecosystem C cycling continues to be a critical uncertainty, and new experiments, especially in the tropics, must also consider P cycling. (4) Plant community structure can influence the ecosystem response to elevated CO2, but dynamic vegetation effects have not been adequately addressed. These experiences from FACE experiments in temperate forests are now guiding the development of a science plan for a FACE experiment in Amazonia. Models and small-scale experimental results agree that elevated CO2 will affect the metabolism of tropical ecosystems, but the qualitative and quantitative expression of the effects are largely unknown, representing a major source of uncertainty that limits our capacity to assess the vulnerability of the Amazon forest to climate change. Recognizing the high importance of the forests of the Amazon basin on global carbon, water, and energy cycles, biodiversity conservation, and the provision of essential services in Latin America, a consortium of Brazilian researchers and international collaborators have developed a science plan for Amazon-FACE. While the challenges presented both by infrastructure needs (roads, electricity, and provision of CO2) and biology (the size and diversity of the forest) are substantial, preliminary evaluation and past experience from temperate forest FACE experiments have supported the feasibility of an experiment comprising replicated 30-m diameter FACE plots in primary forest. The proposed site is the ZF2 research area 60 km north of Manaus and administered by Brazil's National Institute for Amazonia Research (INPA). The vegetation is representative of a dominant fraction of the forests occurring in the Amazon basin: old-growth closed-canopy terra firme (non-flooded) forest with trees 30-35 m in height on well drained clay soils. The major science questions guiding the experiment are closely informed by results of past FACE experiment and involve carbon metabolism, water use, nutrient cycling, interactions with environmental stressors, and the relationship between plant functional traits and community composition. FACE experiments can define ecological processes and mechanisms of responses for predictive models of ecosystem response, and models of CO2 response can define critical uncertainties and testable hypotheses for experiments; hence, the Amazon FACE experiment will feature a close integration of modeling and experimental approaches.

  7. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    NASA Astrophysics Data System (ADS)

    Suffrian, K.; Simonelli, P.; Nejstgaard, J. C.; Putzeys, S.; Carotenuto, Y.; Antia, A. N.

    2008-08-01

    Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3 9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37 0.99 d-1) and increased from ca. 2 3 to 6 12 μg l-1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l-1 (corresponding to 1.9 and 10.8 μmol C l-1), peaking on day 13 15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12 43% of the standing stock d-1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20 65% of the standing stock per day.

  8. Survival and settling of larval Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Lischka, Silke; Boxhammer, Tim; Schulz, Kai G.; Norkko, Joanna

    2016-06-01

    Anthropogenic carbon dioxide (CO2) emissions are causing severe changes in the global inorganic carbon balance of the oceans. Associated ocean acidification is expected to pose a major threat to marine ecosystems worldwide, and it is also expected to be amplified in the Baltic Sea where the system is already exposed to relatively large natural seasonal and diel pH fluctuations. We studied the responses of larvae of the benthic key species Macoma balthica to a range of future CO2 scenarios using six ˜ 55 m3 mesocosms encompassing the entire pelagic community. The mesocosms were deployed in the northern Baltic Sea in June 2012. We focused on the survival, growth and subsequent settlement process of Macoma balthica when exposed to different levels of future CO2. The size and time to settlement of M. balthica increased along the CO2 gradient, suggesting a developmental delay. With ongoing climate change, both the frequency and extent of regularly occurring high CO2 conditions are likely to increase, and a permanent pH decrease will likely occur. The strong impact of increasing CO2 levels on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations, and a failure in their recruitment would ultimately lead to negative effects on the population.

  9. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions

    PubMed Central

    Nagelkerken, Ivan; Connell, Sean D.

    2015-01-01

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  10. Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment

    USGS Publications Warehouse

    Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.

    2011-01-01

    Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.

  11. How light competition between plants affects their response to climate change.

    PubMed

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants

    NASA Astrophysics Data System (ADS)

    Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale

    2010-05-01

    Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the Si, Ca, and Mg release rates from basaltic glass with increasing concentration of dead bacteria at pH 4 and 6, but no effect at pH 8 and 10. The Al dissolution rate is lowered by up to one order of magnitude at all four pH values by the presence of dead bacteria. Comparison of SEM photos of the basaltic glass before and after experiments show no visible change of the glass surface. These results suggest that the presence of dead Pseudomonas reactants in the basaltic formations of Iceland will likely affect negligible the dissolution of basaltic glass during CO2 sequestration. The main effect of bacterial presence seems to be 1) the increase of the concentration of DOC that can complex metals and thus facilitate cation release from the solid phase and/or 2) adsorption of released metals at the surface of the biomass thus decreasing the overall element export rate.

  13. Magnesite Solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions: implications for carbon transport in the mantle

    NASA Astrophysics Data System (ADS)

    Fineman, D.; Manning, C. E.

    2017-12-01

    Magnesite (MgCO3) is an important carbon reservoir in the upper mantle. It can be a product of interaction with mantle fluids, but its solubility has not been determined at high P and T. We measured magnesite solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions. The NaCl mole fraction (XNaCl) ranged from 0 to 0.4. XCO2 = 0.05 was fixed by addition of hydrous oxalic acid and low fH2 generated by hematite or Mn oxide sealed in inner Pt capsules, added along with a crimped Pt capsule containing pure natural magnesite crystals to a larger Pt capsule containing H2O-CO2± NaCl fluid. Solubility was determined after quenching by the weight loss of the capsule containing magnesite. Magnesite solubility in pure water is 0.02 molal, nearly the same as calcite, 0.025 molal. Solubility rises to 0.37 molal with addition of NaCl to XNaCl =0.3. This value is 1/3 that of calcite at the same XNaCl. Graphite precipitated in experiments at XNaCl > 0.3 and resulted in inconsistent solubility measurements. There are two probable causes: (1) reduction of H2O activity and increase in CO2 activity via NaCl addition, or (2) exhaustion of the fO2 buffer. The experiments demonstrate that transport of Mg+2 and carbonate are substantially increased by saline solutions in the mantle.

  14. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    NASA Astrophysics Data System (ADS)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate predictions of boreal atmosphere-biosphere interactions, indicating that tree responses to precipitation and temperature are more important than responses to elevated [CO2] in determining the future forest water-use and hydrology of Scandinavian boreal ecosystems.

  15. An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxides-bearing formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Susana; Liu, Q.; Bacon, Diana H.

    2014-08-26

    Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changesmore » and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.« less

  16. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure albite during the experiments. Additionally, XRD data suggest anhydrite dissolution in the course of CO2 exposure. The chemical evolution of the brine displays increasing Ca2+ concentrations (Wandrey et al., 2010) in line with the preferred dissolution of the anorthite component of plagioclase. SEM photomicrographs show corrosion textures on mineral surfaces of, e.g., plagioclase. The petrophysical properties of the sandstone samples also suggest slight changes. NMR and MP data indicate a slightly increased porosity and a shifting to larger pore sizes. The physico-chemical measurements imply (i) Ca2+ dissolution from the rock by the fluid, and (ii) slightly increasing porosity, but decreasing permeability. However, additional evaluation is still needed to interconnect the changes suggested to occur during CO2 exposure and to better understand CO2-brine-rock interactions. Supplementary core samples have been removed from the pressure vessels after 21 and 24 months and will soon be analyzed. Further core fragments will remain in storage in the autoclaves for longer-term experiments. References BLASCHKE, A.-W., SCHöNER, R., GAUPP, R. AND FöRSTER, A. (2008): Sandstone petrography and pore system of the Upper Triassic Stuttgart Formation from a CO2 pilot storage site (Ketzin, Germany), Geo 2008 - Resources and Risks in the Earth System, International Conference and 106th Annual Meeting of the Deutsche Gesellschaft für Geowissenschaften e.V. (DGG) and 98th Annual Meeting of the Geologische Vereinigung e.V. (GV) (Aachen 2008), 301. FöRSTER, A, NORDEN, B., ZINCK-JORGENSEN, K., FRYKMAN, P., KUHLENKAMP, J., SPANGENBERG, E., ERZINGER, J., ZIMMER, M., KOPP, J., BORM, G., JUHLIN, C., COSMA, C.-G., HURTER, S. (2006): Baseline Characterization of the CO2SINK Geological Storage Site at Ketzin, Germany, Environmental Geoscience, 13, 3, 145-161. WANDREY, M., FISCHER, S., ZEMKE, K., LIEBSCHER, A., SCHERF, A.-K., VIETH, A., ZETTLITZER, M. and WüRDEMANN, H. (2010), Monitoring petrophysical, mineralogical, geochemical and microbiological effects of CO2 exposure - Results of long-term experiments under in situ condition, submitted to the 10th International Conference on Greenhouse Gas Control Technologies (GHGT 10), Amsterdam.

  17. Experimental insights into the geochemistry and mineralogy of a granite-hosted geothermal system injected with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lo Re, C.; Kaszuba, J. P.; Moore, J.; McPherson, B. J.

    2011-12-01

    Supercritical CO2 may be a viable working fluid in enhanced geothermal systems (EGS) due to its large expansivity, low viscosity, and reduced reactivity with rock as compared to water. Hydrothermal experiments are underway to evaluate the geochemical impact of using supercritical CO2 as a working fluid in granite-hosted geothermal systems. Synthetic aqueous fluid and a model granite are reacted at 250 °C and 250 bars in a rocking autoclave and Au-Ti reaction cell for a minimum of 28 days (water:rock ratio of approximately 20:1). Subsequent injection of supercritical CO2 increases pressure, which decays over time as the CO2 dissolves into the aqueous fluid. Initial experiments decreased to a steady state pressure of 450 bars approximately 14 hours after injection of supercritical CO2. Post-injection reaction is allowed to continue for at least an additional 28 days. Excess CO2 is injected to produce a separate supercritical fluid phase (between 1.7 and 3.1 molal), ensuring aqueous CO2 saturation for the duration of each experiment. The granite was created using mineral separates and consists of ground (75 wt%, <45 microns) and chipped (25 wt%, 0.5-1.0 cm), sub-equal portions of quartz, perthitic potassium feldspar (~ 25 wt% albite and 75 wt% potassium feldspar), oligoclase, and a minor (4 wt%) component of Fe-rich biotite. The synthetic saline water (I = 0.12 m) contains molal quantities of Na, Cl, and HCO3 and millimolal quantities of K, SiO2, SO4, Ca, Al, and Mg, in order of decreasing molality. Aqueous fluids are sampled approximately 10 times over the course of each experiment and analyzed for total dissolved carbon and sulfide by coulometric titration, anions by ion chromatography, and major, minor, and trace cations by ICP-OES and -MS. Bench pH measurements are paired with aqueous analyses to calculate in-situ pH. Solid reactants are evaluated by SEM-EDS, XRD, and/or bulk chemical analysis before and after each experiment. Analytical data are reviewed alongside geochemical models to evaluate fluid-rock interactions and the capacity of theoretical models to predict the observed outcome. Data derived from this study will inform our understanding of how a real world geothermal system may respond geochemically and mineralogically given 'spontaneous' injection of CO2, whether by an anthropogenic or natural source. Companion modeling work is also underway, which will use these experiments to calibrate EGS models for field application.

  18. Mineral-microbial interaction in long term experiments with sandstones and reservoir fluids exposed to CO2

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Morozova, Daria; Pellizzari, Linda; Würdemann, Hilke

    2013-04-01

    Microorganisms represent very effective geochemical catalysts, and may influence the process of the CO2 storage significantly. The goal of this study is to characterize the interactions between minerals and microorganisms during their exposure to the CO2 in a long term experiment in high pressure vessels to better understand the influence of biological processes on the composition of the reservoir sandstones and the long term stability of CO2 storage. The natural gas reservoir, proposed for the CO2 storage is characterized by high salinity (up to 420 g/l) and temperatures around 130°C, at depth of approximately 3.5 km. Microbial community of the reservoir fluid samples was dominated by different H2-oxidising, thiosulfate-oxidising and biocorrosive thermophilic bacteria as well as microorganisms similar to representatives from other deep environments, which have not previously been cultivated. The cells were attached to particles and were difficult to detect because of low cell numbers (Morozova et al., 2011). For the long term experiments, the autoclaved rock core samples from the core deposit were grinded, milled to the size of 0.5 mm and incubated with fresh reservoir fluids as inoculum for indigenous microorganisms in a N2/CH4/H2-atmosphere in high pressure vessels at a temperature of 80°C and pressure of 40 bars. Incubation was performed under lower temperature than in situ in order to favor the growth of the dormant microorganisms. After three months of incubation samples were exposed to high CO2 concentrations by insufflating it into the vessels. The sampling of rock and fluid material was executed 10 and 21 months after start of the experiment. Mineralogical analyses performed using XRD and SEM - EDS showed that main mineral components are quartz, feldspars, dolomite, anhydrite and calcite. Chemical fluid analyses using ICP-MS and ICP-OES showed that after CO2 exposure increasing Si4+ content in the fluid was noted after first sampling (ca. 25 relative %), whereas after the second sampling it decreased (to 31 relative %) in comparison to the reservoir fluid sample. This may suggest dissolution of silicate minerals at first, and secondary precipitation at second stage of experiment. In addition, immobilization of heavy metals dispersed within silicate minerals was also detected. An increase of Ca (3.2 up to 13% relative), SO4 (up to 14 relative %) and Fetot (47 and 24% relative) were also detected after first and second sampling respectively and may suggest dissolution of cements and iron rich minerals. The concentration of organic acids increased relatively by 12.5 % and 25% after first and second sampling respectively might be an indication for metabolic activity of microorganism or an effect of mobilisation due to CO2 exposure. The presence of newly formed mineral phases was detected using SEM-EDS. Quartz, albite and illite precipitation is a common process in all studied samples. However only illite is considered to be of bacterial origin, nevertheless its crystallization can also occur as a consequence of inorganic diagenetic processes. Further analyses of the microbial community composition, quantity and activity will bring a more insight into the CO2 exposure processes. Daria Morozova, Dagmar Kock, Martin Krüger, and Hilke Würdemann. Biogeochemical and microbial characterization of reservoir fluids from a gas field (Altmark). Geotechnologien 2011

  19. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Treesearch

    S. Vicca; M. Bahn; M. Estiarte; E. E. van Loon; R. Vargas; G. Alberti; P. Ambus; M. A. Arain; C. Beier; L. P. Bentley; W. Borken; N. Buchmann; S. L. Collins; G. de Dato; J. S. Dukes; C. Escolar; P. Fay; G. Guidolotti; P. J. Hanson; A. Kahmen; G. Kröel-Dulay; T. Ladreiter-Knauss; K. S. Larsen; E. Lellei-Kovacs; E. Lebrija-Trejos; F. T. Maestre; S. Marhan; M. Marshall; P. Meir; Y. Miao; J. Muhr; P. A. Niklaus; R. Ogaya; J. Peñuelas; C. Poll; L. E. Rustad; K. Savage; A. Schindlbacher; I. K. Schmidt; A. R. Smith; E. D. Sotta; V. Suseela; A. Tietema; N. van Gestel; O. van Straaten; S. Wan; U. Weber; I. A. Janssens

    2014-01-01

    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends an extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the...

  20. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions

    NASA Astrophysics Data System (ADS)

    Bahr, Keisha D.; Jokiel, Paul L.; Rodgers, Ku'ulei S.

    2016-06-01

    Coral reef ecosystems are presently undergoing decline due to anthropogenic climate change. The chief detrimental factors are increased temperature and increased pCO2. The purpose of this study was to evaluate the effect of these two stressors operating independently and in unison on the biological response of common Hawaiian reef corals. Manipulative experiments were performed using five species ( Porites compressa, Pocillopora damicornis, Fungia scutaria, Montipora capitata, and Leptastrea purpurea) in a continuous-flow mesocosm system under natural sunlight conditions. Corals were grown together as a community under treatments of high temperature (2 °C above normal maximum summer temperature), high pCO2 (twice present-day conditions), and with both factors acting in unison. Control corals were grown under present-day pCO2 and at normal summer temperatures. Leptastrea purpurea proved to be an extremely hardy coral. No change in calcification or mortality occurred under treatments of high temperature, high pCO2, or combined high temperature-high pCO2. The remaining four species showed reduced calcification in the high-temperature treatment. Two species ( L. purpurea and M. capitata) showed no response to increased pCO2. Also, high pCO2 ameliorated the negative effect of high temperature on the calcification rates of P. damicornis. Mortality was driven primarily by high temperature, with a negative synergistic effect in P. compressa only in the high-pCO2-high-temperature treatment. Results support the observation that biological response to temperature and pCO2 elevation is highly species-specific, so generalizations based on response of a single species might not apply to a diverse and complex coral reef community.

  1. Is 2 Degrees Achievable? The Cold Turkey Experiment

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.

    2017-12-01

    The 2015 Paris Agreement calls for collective international action to hold the increase in global average temperature to well below 2˚C above preindustrial levels and to pursue efforts to limit the increase to 1.5°C. How much would carbon dioxide emissions have to be reduced to achieve these objectives, or can these objectives even be achieved at all? These questions are examined using a global energy balance model to carry out a "cold turkey" experiment in which emissions from fossil fuel combustion are abruptly halted; this is a limiting case for any practically achievable gradual reduction in emissions. The model study halts emissions not just of CO2 but also of atmospheric aerosols and precursor gases. These aerosols are thought to be offsetting a substantial but highly uncertain fraction of the radiative forcing of anthropogenic CO2 by scattering solar radiation and by increasing cloud reflectivity. In contrast to CO2, which would persist in the atmosphere for decades to centuries, aerosols would be removed almost immediately after cessation of emissions. Consequently, at least in the early decades following abrupt cessation of emissions, net forcing and global temperature would likely increase, not decrease. The magnitude of the temperature increase that would ensue depends on Earth's climate sensitivity and current aerosol forcing. These quantities are quite uncertain but are strongly correlated through observational constraints. Within present uncertainty it cannot be stated with confidence whether the 2˚C target could be achieved even if emissions were abruptly halted. Future global CO2 emissions consistent with achieving the 2˚C target range from as much as 100 years at current emission rates if Earth's climate sensitivity is at the low end of the range estimated by the IPCC 2013 Assessment Report, to zero, the committed temperature increase already exceeding the 2˚C limit, if sensitivity is at the high end of the IPCC range. Figure. Global mean forcing and temperature response, for AR5 range of aerosol forcing and climate sensitivity, following abrupt cessation of emissions of CO2 and aerosols and precursor gases from fossil fuel combustion. Solid curves denote time-dependent forcing and response; dashed curves, response for CO2 maintained at its present value; dotted lines, instantaneous response.

  2. Dominant plant taxa predict plant productivity responses to CO 2 enrichment across precipitation and soil gradients

    DOE PAGES

    Fay, Philip A.; Newingham, Beth A.; Polley, H. Wayne; ...

    2015-03-30

    The Earth’s atmosphere will continue to be enriched with carbon dioxide (CO 2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO 2 enrichment in experiments in a mesicmore » grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO 2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85% of the increases in total community biomass under CO 2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland,where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO 2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO 2 enrichment. In conclusion, future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO 2 enrichment.« less

  3. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum

  4. The effect of young biochar on soil respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffery L.; Collins, Harold P.; Bailey, Vanessa L.

    2010-12-01

    The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of lomg-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2more » flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short term mineralization increasing soil C with biochar may indeed be a long term C storage mechanism.« less

  5. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    PubMed Central

    2010-01-01

    Background Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2). Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials. However, traps baited with yeast-produced CO2 caught similar numbers of Anopheles arabiensis as traps baited with industrial CO2. Addition of human odour increased trap catches. Conclusions Yeast-produced CO2 can effectively replace industrial CO2 for sampling of An. gambiae s.s.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas. PMID:20973963

  6. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C protection up to a certain clay/organic matter ratio. This strategy could be used to enhance the stability of organic amendments and increase soil carbon sequestration.

  7. Limits to the Positive Effect of Ocean Acidification on Macroalgal Primary Production, Interactions with Light and Temperature

    NASA Astrophysics Data System (ADS)

    Kubler, J.; Dudgeon, S. R.; Nisumaa, A. M.

    2016-02-01

    About one third of macroalgal species lack any carbon concentrating mechanism (CCM), which prevents carbon limitation under air equilibrium in other seaweed species. It is predicted that those species lacking CCM's will benefit from ongoing ocean acidification in terms of primary productivity and growth. The absolute sizes and pattern of those benefits are not known. Here, we compare the results of a model based on composite data from the literature, with a growth experiment using Plocamium cartilagineum, a broadly distributed rhodophyte species lacking a carbon concentrating mechanism and hypothesized to be carbon limited under current conditions. We grew P. cartilagineum, at 15 and 20°C in seawater aerated with a total of 53 different pCO2s (from 344 to 1053µatm), in 8 multiweek trials over 12 months. We measured growth and photosynthetic rates. A linear mixed model analysis was used to partition the effect sizes of drivers of variation in the experiment. The growth rates and maximum photosynthetic rates responded nonlinearly to OA, increasing with elevated pCO2 from recent atmospheric level to up 450µatm and decreasing at higher pCO2. Light harvesting efficiency was unaffected by pCO2 and inversely related to temperature. We were able to compare the results of the growth experiment directly to the model based on the additive effects of temperature and pCO2 on photosynthetic rates, finding concordance of the pattern of response. The size of the effect of pCO2 on growth rate in the experiment was greater than the effect predicted by the model for net primary productivity. These results predict that the benefit of OA for macroalgal growth may disappear as ocean acidification continues through this century.

  8. Evaluation of CO2, N2 and He as Fire Suppression Agents in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Hicks, Michael; Pettegrew, Richard

    2004-01-01

    The U.S. modules of the International Space Station use gaseous CO2 as the fire extinguishing agent. This was selected as a result of extensive experience with CO2 as a fire suppressant in terrestrial applications, trade studies on various suppressants, and experiments. The selection of fire suppressants and suppression strategies for NASA s Lunar and Martian exploration missions will be based on the same studies and normal-gravity data unless reduced gravity fire suppression data is obtained. In this study, the suppressant agent concentrations required to extinguish a flame in low velocity convective flows within the 20-sec of low gravity on the KC-135 aircraft were investigated. Suppressant gas mixtures of CO2, N2, and He with the balance being oxygen/nitrogen mixtures with either 21% or 25% O2 were used to suppress flames on a 19-mm diameter PMMA cylinder in reduced gravity. For each of the suppressant mixtures, limiting concentrations were established that would extinguish the flame at any velocity. Similarly, concentrations were established that would not extinguish the flame. The limiting concentrations were generally consistent with previous studies but did suggest that geometry had an effect on the limiting conditions. Between the extinction and non-extinction limits, the suppression characteristics depended on the extinguishing agent, flow velocity, and O2 concentration. The limiting velocity data from the CO2, He, and N2 suppressants were well correlated using an effective mixture enthalpy per mole of O2, indicating that all act via O2 displacement and cooling mechanisms. In reduced gravity, the agent concentration required to suppress the flames increased as the velocity increased, up to approximately 10 cm/s (the maximum velocity evaluated in this experiment). The effective enthalpy required to extinguish flames at velocities of 10 cm/s is approximately the same as the concentrations in normal gravity. A computational study is underway to further evaluate these findings.

  9. The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Dong, Wenjie; Ji, Dong; Dai, Tanlong; Yang, Shili; Wei, Ting

    2018-04-01

    The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon-climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P - E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.

  10. Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.

    PubMed

    Ma, Y; Barbano, D M

    2003-12-01

    Raw skim milk, with or without added CO2, was heated, held, and cooled in a small pilot-scale tubular heat exchanger (372 ml/min). The experiment was replicated twice, and, for each replication, milk was first carbonated at 0 to 1 degree C to contain 0 (control), 600, 1200, 1800, and 2400 ppm added CO2 using a continuous carbonation unit. After storage at 0 to 1 degree C, portions of milk at each CO2 concentration were heated to 40, 56, 72, and 80 degrees C, held at the desired temperature for 30 s (except 80 degrees C, holding 20 s) and cooled to 0 to 1 degree C. At each temperature, five pressures were applied: 69, 138, 207, 276, and 345 kPa. Pressure was controlled with a needle valve at the heat exchanger exit. Both the pressure gauge and pH probe were inline at the end of the holding section. Milk pH during heating depended on CO2 concentration, temperature, and pressure. During heating of milk without added CO2, pH decreased linearly as a function of increasing temperature but was independent of pressure. In general, the pH of milk with added CO2 decreased with increasing CO2 concentration and pressure. For milk with added CO2, at a fixed CO2 concentration, the effect of pressure on pH decrease was greater at a higher temperature. At a fixed temperature, the effect of pressure on pH decrease was greater for milk with a higher CO2 concentration. Thermal death of bacteria during pasteurization of milk without added CO2 is probably due not only to temperature but also to the decrease in pH that occurs during the process. Increasing milk CO2 concentration and pressure decreases the milk pH even further during heating and may further enhance the microbial killing power of pasteurization.

  11. The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion

    NASA Astrophysics Data System (ADS)

    Austin, John; Butchart, Neal

    1994-01-01

    Satellite data are presented showing the timing of sudden warmings in the lower stratosphere during the winters 1979-1992. A three-dimensional dynamical-radiative-photochemical model is used to establish how Arctic ozone depletion will respond to a doubling of CO2 according to the timing of the warmings. In a series of idealized experiments the timing of the warmings is varied by specifying different geopotential wave amplitudes at the 316-mbar model lower boundary. Results from a "transient climate change experiment" show that the chosen wave amplitudes are appropriate for both the current and the doubled CO2 atmosphere. For doubled CO2 the experiments show that any significant risk of an Arctic ozone hole will be confined to those years with only a late stratospheric warming. In all other years the results suggest that springtime total ozone over the Arctic is more likely to increase by a small amount due to a combination of slower homogeneous chemistry and changes in transport. The predictions obtained from the idealized studies are then tested by prescribing at the model lower boundary the observed geopotential wave amplitudes from two specific years with late winter warmings. Doubling CO2 amounts produced no significant increase in ozone depletion with the 1989 wave amplitudes, but with 1990 wave amplitudes, an Arctic ozone hole occurred with minimum column of 187 Dobson Units. This contrasting response is attributed to the large midwinter pulse in the 1989 wave amplitudes compared to the less dramatic and shorter timescale fluctuations in the 1990 wave amplitudes. It is concluded that under doubled CO2 conditions an Arctic ozone hole is likely to occur in years with late stratospheric warmings following winters in which there were no significant pulses in the upper tropospheric planetary wave amplitudes.

  12. Next nearest neighbors sites and the reactivity of the CO NO surface reaction

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquín.; Valencia, Eliana

    1998-04-01

    Using Monte Carlo experiments of the reduction of NO by CO, a study is made of the effect on reactivity due to the formation of N 2O and to the increased coordination of the sites considering the next nearest neighbors sites (nnn) in a square lattice of superficial sites.

  13. Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bermúdez, Rafael; Winder, Monika; Stuhr, Annegret; Almén, Anna-Karin; Engström-Öst, Jonna; Riebesell, Ulf

    2016-12-01

    Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations ( ˜ 347 µatm fCO2) up to values projected for the year 2100 ( ˜ 1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant of high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.

  14. Ozone and carbon dioxide effects on spider mites in white clover and peanut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heagle, A.S.; Brandenburg, R.L.; Burns, J.C.

    1994-11-01

    Effects of O{sub 3} and/or elevated CO{sub 2} on two-spotted spider mites (Tetranychus urticae Koch) grown on an O{sub 3}-sensitive and an O{sub 3}-resistant clone of white clover (Trifolium repens L.) were measured in greenhouse and field experiments. Peanut (Arachis hypogeae L.) {open_quote}NC-9{close_quote} was used in one greenhouse study with O{sub 3}. In field studies, O{sub 3} treatments were charcoal filtered air (CF), nonfiltered air (NF), and two NF treatments with O{sub 3} added for 12 h d{sup {minus}1} at proportions of {approx} 1.25 and 1.50 times the ambient O{sub 3} concentration. In greenhouse studies, constant amounts of O{sub 3}more » were added to CF for 6 h d{sup {minus}1} to achieve mean concentrations ranging from 5 to 100 nL L{sup {minus}1}. For the greenhouse O{sub 3} x CO{sub 2} experiment, CO{sub 2} concentrations were ambient and approximately twice-ambient for 24 h d{sup {minus}1}. Plants were exposed to O{sub 3} and/or CO{sub 2} for {approx} 7 d before infestation with mites; daily exposures continued for 14 to 28 d to allow reproduction for at least two generations. Leaves were sampled to count eggs, larvae, nymphs, and adults. Ozone caused more chlorosis and necrosis on the O{sub 3}-sensitive clover clone (NC-S) than on the O{sub 3}-resistant clone (NC-R). Carbon dioxide enrichment increased shoot growth of both clones by {approx}33%. Statistical analyses indicated significant O{sub 3} effects in some experiments and nonsignificant O{sub 3} effects in others. A trend toward increased mite populations with increased O{sub 3} occurred, however, on NC-S in all trials. No consistent trends occurred with NC-R. With peanut, a significant linear increase in mite population occurred with increased O{sub 3}. Carbon dioxide enrichment increased the rate of population increase on both clover clones, but more so on NC-R. 47 refs., 2 figs., 7 tabs.« less

  15. Homogeneous Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by Ni(cyclam)

    NASA Astrophysics Data System (ADS)

    Froehlich, Jesse Dan

    The homogeneous electrochemical reduction of CO2 by the molecular catalyst [Ni(cyclam)]2+ was studied by electrochemistry and infrared spectroelectrochemistry. This catalyst has been previously shown to have increased CO2 reduction activity when adsorbed on a mercury electrode. The homogeneous reactivity, without a mercury electrode, was often ignored in the literature. Ni(cyclam) was found to efficiently and selectively produce CO at moderate overpotentials in both aqueous and mixed organic solvent systems in a homogenous fashion at an inert glassy carbon electrode. Methylated analogs of Ni(cyclam) were also studied and observed to have more positive reduction potentials and attenuated CO2 reduction activity. The electrochemical kinetics were probed by varying CO2 substrate and proton concentrations. Products of CO2 reduction are observed in infrared spectra obtained from spectroelectrochemical experiments. The two major species observed were a Ni(I) carbonyl, [Ni(cyclam)(CO)]+, and a Ni(II) coordinated bicarbonate, [Ni(cyclam)(CO2OH)] +. The rate-limiting step during electrocatalysis was determined to be CO loss from the deactivated species, [Ni(cyclam)(CO)]+, to produce the active catalyst, [Ni(cyclam)]+. Another macrocyclic complex, [Ni(TMC)]+, was deployed as a CO scavenger in order to inhibit the deactivation of [Ni(cyclam)] + by CO. Addition of the CO scavenger was shown to dramatically increase the catalytic current observed for CO2 reduction by [Ni(cyclam)] +. Evidence for the [Ni(TMC)]+ acting as a CO scavenger includes the observation of [Ni(TMC)(CO)]+ by IR. Density functional theory calculations, probing the optimized geometry of the [Ni(cyclam)(CO)] + species, are also presented. These findings have implications on the increased activity for CO2 reduction when [Ni(cyclam)] + is adsorbed on a mercury electrode. The [Ni(cyclam)(CO)] + structure has significant distortion of the Ni center out of the plane of the cyclam nitrogens. This distortion strengthens the Ni-CO interaction by increasing back-bonding interactions. This leads to the hypothesis that the mercury surface, through Hg-Ni interactions, prevents the distorted geometry seen in solution leading to a more planar geometry. This helps to destabilize the carbonyl adduct which inhibits the extent of CO poisoning of the catalyst when adsorbed on a mercury electrode. Alternative approaches to prevent CO poisoning without using such a toxic substance as mercury are critical to improving this unique catalytic system.

  16. High Resolution Measurement of Rhizosphere Priming Effects and Temporal Variability of CO2 Fluxes under Zea Mays

    NASA Astrophysics Data System (ADS)

    Splettstößer, T.; Pausch, J.

    2016-12-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.

  17. Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil.

    PubMed

    Oliveira, J V; Alves, M M; Costa, J C

    2015-01-01

    A design of experiments was adopted to assess the optimal conditions for methane production from the macroalgae Sargassum sp. co-digested with glycerol (Gly) and waste frying oil (WFO). Three variables were tested: % total solids of algae (%TSSargassumsp.), co-substrate concentration (gGly/WFOL(-1)), and co-substrate type (Gly or WFO). The biochemical methane potential (BMP) of Sargassum sp. was 181±1L CH4kg(-1) COD. The co-digestion with Gly and WFO increased the BMP by 56% and 46%, respectively. The methane production rate (k), showed similar behaviour as the BMP, increasing 38% and 19% with Gly and WFO, respectively. The higher BMP (283±18L CH4kg(-1) COD) and k (65.9±2.1L CH4kg(-1) CODd(-1)) was obtained in the assay with 0.5% TS and 3.0gGlyL(-1). Co-digestion with glycerol or WFO is a promising process to enhance the BMP from the macroalgae Sargassum sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Electron-stimulated reactions in layered CO/H2O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven

    Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO trapped within approximately 50 ML of the vacuum interface in the amorphous solid water (ASW) films, both oxidation and reduction reactions are observed. However for CO buried more deeply in the film, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in region from ~10 – 40 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried COmore » layers, the CO reduction reactions quickly increase with temperature above ~60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol that accounts for the observations.« less

  19. Real Time Control of CO2 Enrichment Experiments on the Sea Floor Enabled by the MARS Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Brewer, P. G.; Mbari Foce Team

    2010-12-01

    We report on progress on FOCE (Free Ocean CO2 Enrichment) techniques designed to accomplish realistic (that is not contained within land-based aquaria) experiments on the response of deep-sea animals and biogeochemical cycles to ocean acidification. Such experiments have long been carried out on ecosystems on land, and the outcome has differed significantly from CO2 enrichment in enclosed greenhouse systems, thereby undoing much of the hope for an increase in the large-scale biosphere draw down of atmospheric CO2. It is a far bigger step if deep-sea animals and systems are removed from their cold, dark, high pressure and low oxygen native habitat. The equivalent problem in the ocean is far more difficult because of (1) the very different physical forcing; (2) the complex reaction rates between CO2 and water require delay times between addition and entry to the experimental space; (3) the lack of supporting infrastructure and of adequate sensors; and (4) the need for sophisticated and robust control techniques in both hardware and software. We have overcome almost all of these challenges, and related working systems have already been successfully deployed on the Great Barrier Reef coralline flats with Australian colleagues. We have used the MBARI MARS (Monterey Accelerated Research System) cabled observatory to carry out deep-ocean (880m depth) experiments. The basic experimental unit is a 1m x 1m x 50cm chamber with side arms of ~ 3m length to provide the required chemical delay times for the reaction between admixed CO2 enriched sea water and emergence of the flow into the main chamber. Controllable thrusters, operated by user commands, help maintain a steady flow of seawater through the experiment. The site is slightly below the depth of the O2 minimum where small changes in either O2 from ocean warming, or CO2 from ocean acidification can lead to the formation of dead zones. Shallow (near shore) experiments are now also in the late planning stages. We have developed extremely low noise pH sensors that show for the first time the scale and frequency of the tidally driven background pH fluctuations in the ocean. This helps establish the limits in background pH that deep-sea animals are adapted to. We have developed software to control this complex system in real time and to make control possible over the web. A graphical user interface allows operator observation of flow and background conditions, and full choice of experimental settings. CO2 enrichment is provided by ROV delivery of ~50-100 L of liquid CO2 which is contained by its buoyancy within a box set immediately above the side arm opening. The dissolution rate of liquid CO2 through the hydrate skin is ~0.5 μmol/cm2/sec thereby providing a working fluid in the reservoir which is drawn upon as needed. Experiments of 2-3 weeks duration are possible from a single filling. Figure 1. pH changes created in FOCE by a series of CO2 enriched sea water additions under varying flow conditions.

  20. A general circulation model study of the effects of faster rotation rate, enhanced CO2 concentration, and reduced solar forcing: Implications for the faint young sun paradox

    NASA Technical Reports Server (NTRS)

    Jenkins, Gregory S.

    1993-01-01

    Solar energy at the top of the atmosphere (solar constant), rotation rate, and carbon dioxide (CO2) may have varied significantly over Earth's history, especially during the earliest times. The sensitivity of a general circulation model to faster rotation, enhanced CO2 concentration, and reduced solar constant is presented. The control simulation of this study has a solar constant reduced by 10% the present amount, zero land fraction using a swamp ocean surface, CO2 concentrations of 330 ppmv, present-day rotation rate, and is integrated under mean diurnal and seasonal solar forcing. Four sensitivity test are performed under zero land fraction and reduced solar constant conditions by varying the earth's rotation rate atmospheric CO2 concentration and solar constant. The global mean sea surface temperatures (SSTs) compared to the control simulation: were 6.6 K to 12 K higher than the control's global mean temperature of 264.7 K. Sea ice is confined to higher latitudes in each experiment compared to the control, with ice-free areas equatorward of the subtropics. The warm SSTs are associated with a 20% reduction in clouds for the rotation rate experiments and higher CO2 concentrations in the other experiments. These results are in contrast to previous studies that have used energy balance and radiative convective models. Previous studies required a much larger atmospheric CO2 increase to prevent an ice-covered Earth. The results of the study, suggest that because of its possible feedback with clouds, the general circulation of the atmosphere should be taken into account in understanding the climate of early Earth. While higher CO2 concentrations are likely in view of the results, very large atmospheric CO2 concentrations may not be necessary to counterbalance the lower solar constant that existed early in Earth's history.

  1. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    NASA Astrophysics Data System (ADS)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.

  2. Long-term CO2 rise has increased photosynthetic efficiency and water use efficiency but did not stimulate diameter growth of tropical trees

    NASA Astrophysics Data System (ADS)

    Groenendijk, P.; Zuidema, P.; Sleen, P. V. D.; Vlam, M.; Ehlers, I.; Schleucher, J.

    2014-12-01

    Tropical forests are a crucial component of the global carbon cycle, and their responses to atmospheric changes may shift carbon cycling and climate systems. Dynamic Global Vegetation Models (DGVMs) are the major tools to simulate tropical forest responses to climate change. One of the main determinants of these simulated responses is the effect of CO2 on tropical tree physiology and growth, the 'CO2 fertilization effect'. The paucity of CO2 enrichment experiments in the tropics importantly limits insights into the CO2 fertilization effect as well as the validation of DGVMs. However, use can be made of the 40% rise in atmospheric CO2 concentration since the onset of the Industrial Revolution. The effects of the historical CO2 rise on tree physiology and growth can be obtained from stable isotopes, isotopomers and tree diameter increments obtained in tree-ring studies. We studied the physiological and growth responses of 12 tree species in Bolivia, Cameroon and Thailand to 150 years of CO2 enrichment. Analyses of 13C of wood cellulose revealed strong, long-term increases in leaf intercellular CO2 concentrations for all study species and a marked improvement of intrinsic water use efficiency (iWUE). For a subset of one species per site, we studied the Deuterium isotopomers (isomers with isotopic atoms) of glucose in wood to obtain a direct estimate of the photorespiration-to-photosynthesis ratio. We found that this ratio consistently and strongly decreased over the past century, thus increasing the effeciency and rate of photosynthesis. In spite of these strong physiological responses to increased CO2levels, we did not find evidence for increased tree diameter growth for any of the sites, or for sites combined. Possible reasons for the lack of a growth stimulation include increased (leaf) temperature, insufficient availability of nutrients or a shift in biomass investment in trees. Our results suggest that the strong CO2 fertilization of tropical tree growth often assumed in DGVMs does not hold and that these models may overestimate future biomass production in tropical forests. Empirical information on responses of tropical trees to historical CO2rise as presented here can be used to validate and possibly adapt (components of) DGVMs and improve the projections of tropical forest structure under climate change.

  3. Enhanced convective dissolution of CO2 in reactive systems

    NASA Astrophysics Data System (ADS)

    de Wit, Anne; Thomas, Carelle; Loodts, Vanessa; Knaepen, Bernard; Rongy, Laurence

    2017-11-01

    To decrease the atmospheric concentration of CO2, sequestration techniques whereby this greenhouse gas is injected in saline aquifers present in soils are considered. Upon contact with the aquifer, the CO2 can dissolve in it and subsequently be mineralized via reactions with minerals like carbonates for instance. We investigate both experimentally and theoretically the influence of such reactions on the convective dissolution of CO2. Experiments analyze convective patterns developing when gaseous CO2 is put in contact with aqueous solutions of reactants in a confined vertical Hele-Shaw geometry. We show that the reactions can enhance convection and modify the nonlinear dynamics of density fingering. Numerical simulations further show that reactions can increase the flux of dissolving CO2, inducing a more efficient sequestration. Emphasis will be put on the control of the convective pattern properties by varying the very nature of the chemicals. Implications on the choice of optimal sequestration sites will be discussed.

  4. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  5. CO2 Solubility in Rhyolitic Melts as a Function of P, T, and fO2 - Implications for Carbon Flux in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2013-12-01

    Understanding the balance between subduction inputs vs. arc output of carbon is critical for constraining the global carbon cycle. However, the agent of carbon transfer from slab to sub-arc mantle is not constrained [1]. Partial melt of ocean-floor sediments is thought to be a key agent of mass transfer in subduction zones, accounting for the trace element characteristics of arc magmas [2]. Yet the carbon carrying capacity of rhyolitic partial melts of sediments remains unknown at sub-arc depths. In our previous work [3], we constrained CO2 solubility of natural rhyolite from 1.5-3.0 GPa, 1300 °C and logfO2 at FMQ×1.0. However, the effects of T and fO2 on CO2 solubility remain unconstrained. In particular, for sediments with organic carbon, graphite stability is expected and the fO2 of C-dissolution can be lower, which may affect the solubility. Thus it is critical to constrain the CO2 solubility of sediment partial melts under graphite-saturated conditions. We determined CO2 solubility of a model rhyolite composition, similar to partial melt composition of natural metapelite [4], at graphite saturation, using Pt/Gr capsules and a piston cylinder device. Experiments were conducted at 1.5-3.0 GPa and 1100-1400 °C. FTIR was employed to measure the concentrations of CO2 and H2O in doubly polished experimental glasses. Raman and SIMS were used to determine the presence of reduced carbon species and total carbon, respectively. FTIR spectra reveal that CO2 is dissolved as both molecular CO2 (CO2mol.) and carbonates (CO32-). For graphite-saturated, hydrous melts with measured H2O ~2.0 wt.%, CO2tot. (CO2mol.+CO32-) values increase with increasing P from ~0.6 to 1.2 wt.% from 1.5 to 3.0 GPa at 1300 °C. These values are lower than more oxidized melts with the same water content, which were 0.85 to 1.99 wt.% CO2 as P increased. At 3 GPa, graphite-saturated experiments from 1100 to 1300 °C yield CO2tot. value of 1.18-1.20 wt.%, suggesting minor effect of temperature in bulk CO2 solubility. To meet the minimum requirement of 3000 ppm CO2 in primary arc magma [5,6], the required sediment melt contribution is 0.18-0.28 wt.% CO2, which is distinctly lower than the solubility limit of graphite-saturated melt. However, 1.7 wt.% CO2 in primary arc basalts [5] exceeds the solubility limit of reduced, hydrous melts, which is in contrast to more oxidized, hydrous melts which can contribute up to 2 wt.% CO2. We determine that ~1.7-15% of sediment melt would be required to meet 3000 ppm CO2 in the primary arc basalt depending on the depth of melting (1.5-3.0 GPa) and the degree of mantle wedge melting (15-30%). This contribution is higher than that previously calculated for the more oxidized melts, but still may not be an unreasonable slab flux. [1] Dasgupta (2013) RiMG, 75, 183-229; [2] Plank and Langmuir (1993) Nature, 362, 739-743. [3] Duncan and Dasgupta. (in review) GCA; [4] Tsuno and Dasgupta (2011) CMP, 161, 743-763; [5] Blundy et al. (2010) EPSL, 290, 289-301; [6] Wallace (2005) JVGR, 140, 217-240.

  6. Carbon dioxide and climate: a second assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less

  7. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    NASA Astrophysics Data System (ADS)

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-03-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3-). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  8. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.

    PubMed

    Ow, Y X; Vogel, N; Collier, C J; Holtum, J A M; Flores, F; Uthicke, S

    2016-03-15

    Seagrasses are often considered "winners" of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3(-)). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  9. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    PubMed Central

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-01-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3−). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions. PMID:26976685

  10. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  11. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5

    NASA Astrophysics Data System (ADS)

    Giorgetta, Marco A.; Jungclaus, Johann; Reick, Christian H.; Legutke, Stephanie; Bader, Jürgen; Böttinger, Michael; Brovkin, Victor; Crueger, Traute; Esch, Monika; Fieg, Kerstin; Glushak, Ksenia; Gayler, Veronika; Haak, Helmuth; Hollweg, Heinz-Dieter; Ilyina, Tatiana; Kinne, Stefan; Kornblueh, Luis; Matei, Daniela; Mauritsen, Thorsten; Mikolajewicz, Uwe; Mueller, Wolfgang; Notz, Dirk; Pithan, Felix; Raddatz, Thomas; Rast, Sebastian; Redler, Rene; Roeckner, Erich; Schmidt, Hauke; Schnur, Reiner; Segschneider, Joachim; Six, Katharina D.; Stockhause, Martina; Timmreck, Claudia; Wegner, Jörg; Widmann, Heinrich; Wieners, Karl-H.; Claussen, Martin; Marotzke, Jochem; Stevens, Bjorn

    2013-07-01

    The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080-2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K-1 if the CO2 concentration is constant, or as small as 1.6% K-1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.

  12. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration.

    PubMed

    Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon

    2014-05-15

    Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Unimolecular dissociation of protonated trans-1,4-diphenyl-2-butene-1,4-dione in the gas phase: rearrangement versus simple cleavage.

    PubMed

    Wu, Lianming; Liu, David Q; Vogt, Frederick G

    2006-01-01

    Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways. Copyright (c) 2006 John Wiley & Sons, Ltd.

  14. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.

  15. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  16. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    PubMed Central

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  17. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    PubMed

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p < 0.05). Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA) hydrolytic enzyme activity was inhibited by the increasing CO 2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h) ( p < 0.05). However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p < 0.01). Moreover, the abundances of genera Methylophilus , Methylobacillus , and Methylovorus increased, while GP4 , GP6 and GP7 decreased. Canonical correlation analysis results suggested that there was a correlation between the abundance variation of Proteobacteria , Acidobacteria , and the increasing nitrate nitrogen, urease and polyphenol oxidase enzyme activities, as well as the decreasing FDA hydrolytic enzyme activity, Olsen-phosphorus and total phosphorus contents. These results might be useful for evaluating the risk of potential CO 2 leakages on soil ecosystems.

  18. Long-term effects of elevated atmospheric CO{sub 2} on below-ground biomass and transformations to soil organic matter in grassland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jastrow, J.D.; Miller, R.M.; Owensby, C.E.

    2000-01-01

    We determined the effects of elevated [CO{sub 2}] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO{sub 2} enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO{sub 2}] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO{sub 2}] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%)more » but had no effect on root litter (mostly fine root fragments and sloughed cortex material >500 {mu}m). Soil C and N stocks also increased under elevated [CO{sub 2}], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 {mu}m). The mostly root-like, light POM (density {<=}1.8 Mg m{sup -3}) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m{sup -3}) accumulated under elevated [CO{sub 2}]. Overall, rhizome and root C:N ratios were not greatly affected by CO{sub 2} enrichment. However, elevated [CO{sub 2}] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO{sub 2} enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses.« less

  19. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities.

    PubMed

    Brown, Norah E M; Milazzo, Marco; Rastrick, Samuel P S; Hall-Spencer, Jason M; Therriault, Thomas W; Harley, Christopher D G

    2018-01-01

    Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO 2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO 2 change and, if high pCO 2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO 2 stress, or are worsened by departures from prior high pCO 2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO 2 gradient to assess the importance of the timing and duration of high pCO 2 exposure (i.e., discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by 8 weeks) but then caught up over the next 4 weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO 2 and changes in species interactions. High pCO 2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pretransplant) negative effects of pCO 2 on recruitment of these worms were still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important implications for ecosystem function and food web dynamics. © 2017 John Wiley & Sons Ltd.

  20. An Experimental Study of Effects in Soils by Potential CO2 Seepage

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Caramanna, G.; Nathanail, P.; Steven, M.; Maroto-Valer, M.

    2011-12-01

    Potential CO2 seepage during a CCS project will not only reduce its performing efficiency, but can also impact the local environment. Though scientists announce with confidence that CCS is a safe technology to store CO2 deep underground, it is essential to study the effects of CO2 seepage, to avoid any possible influences on soils. As a simplified environment, laboratory experiments can easily be controlled and vital to be studied to be compared with more complex natural analogues and modelling works. Recent research focuses on the effects on ecosystems of CO2 leakage. However, the impacts of long-term, low level exposure for both surface and subsurface ecosystems, as well as soil geochemistry changes are currently not clear. Moreover, previous work has focussed on pure CO2 leakage only and its impacts on the ecosystem. However, in a more realistic scenario the gas coming from a capture process may contain impurities, such as SO2, which are more dangerous than pure CO2 and could cause more severe consequences. Therefore, it is critical to assess the potential additional risks caused by CO2 leakage with impurities. Accordingly, both a batch and a continuous flow reactor were designed and used to study potential impacts caused by the CO2 seepage, focusing on soil geochemistry changes, due to different concentrations of CO2/SO2 mixtures. Stage 1- Batch experiments. In this stage, a soil sample was collected from the field and exposed to a controlled CO2/SO2 gas mixtures (100% CO2 and CO2:SO2=99:1). The water soluble fractions were measured before and after incubation. With 100% CO2 incubation it was found that: 1) the pH in the soil sample did not change significantly; 2) for soils with different moisture levels, greater moisture in the soil results in higher CO2 uptake during incubation; and 3) for sandy soils, small changes in CaCl2-exchangeable metal concentration, were observed after CO2 incubation. However, the increased concentration of toxic elements is still below plant tolerance limits. With a gas mixture of 99% CO2 and 1% SO2, it was found that: 1) pH changed significantly from 5.54 to ~3.00; 2) consistent but minor changes were found in some of the nutrients; and 3) high concentrations of the toxic element, Al, were found, at approximately ~200 mg/l compared to an initial value of <0.1 mg/l. Stage 2- A continuous flow reactor. At this stage, a continuous vertical flow reactor was designed and used to assess the impact in soil caused by different mixtures of CO2/SO2. With limestone sand and 100% CO2, it was found that: 1) pH dropped quickly at the first hour and stabilised around 6.10 until CO2 injecting was stopped; 2) limestone had strong buffering capacity but only after stopping CO2 injection; 3) a change was found for soil permeability and porosity during the gas injecting process; 4) with saturated soil, a dome was always formed at the top of the soil column at the end of each experiment. More experiments are planned in the near future.

  1. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation factors. Laboratory experiments with original reservoir fluids from CO2 storage reservoirs in Canada using supercritical fluid extraction reactors are being conducted at temperatures of up to 200 °C and CO2 pressures of up to 20 MPa. Preliminary results show that equilibration times for δ18O in high saline waters increase by an order of magnitude compared to fresh water, with exact times depending on CO2 partial pressure, stirring and the contact area between the phases. References Becker, V. et al., 2011. Predicting δ13CDIC dynamics in CCS: A scheme based on a review of inorganic carbon chemistry under elevated pressures and temperatures. International Journal of Greenhouse Gas Control, 5, pp.1250-1258. Johnson, G. et al., 2011. Using oxygen isotope ratios to quantitatively assess trapping mechanisms during CO2 injection into geological reservoirs: The Pembina case study. Chemical Geology, 283(3-4), pp.185-193.

  2. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.

    PubMed

    Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna

    2017-03-01

    Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H 2 O, CO 2 , and SO 2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of methods to determine methane emissions from dairy cows in farm conditions.

    PubMed

    Huhtanen, P; Cabezas-Garcia, E H; Utsumi, S; Zimmerman, S

    2015-05-01

    Nutritional and animal-selection strategies to mitigate enteric methane (CH4) depend on accurate, cost-effective methods to determine emissions from a large number of animals. The objective of the present study was to compare 2 spot-sampling methods to determine CH4 emissions from dairy cows, using gas quantification equipment installed in concentrate feeders or automatic milking stalls. In the first method (sniffer method), CH4 and carbon dioxide (CO2) concentrations were measured in close proximity to the muzzle of the animal, and average CH4 concentrations or CH4/CO2 ratio was calculated. In the second method (flux method), measurement of CH4 and CO2 concentration was combined with an active airflow inside the feed troughs for capture of emitted gas and measurements of CH4 and CO2 fluxes. A muzzle sensor was used allowing data to be filtered when the muzzle was not near the sampling inlet. In a laboratory study, a model cow head was built that emitted CO2 at a constant rate. It was found that CO2 concentrations using the sniffer method decreased up to 39% when the distance of the muzzle from the sampling inlet increased to 30cm, but no muzzle-position effects were observed for the flux method. The methods were compared in 2 on-farm studies conducted using 32 (experiment 1) or 59 (experiment 2) cows in a switch-back design of 5 (experiment 1) or 4 (experiment 2) periods for replicated comparisons between methods. Between-cow coefficient of variation (CV) in CH4 was smaller for the flux than the sniffer method (experiment 1, CV=11.0 vs. 17.5%, and experiment 2, 17.6 vs. 28.0%). Repeatability of the measurements from both methods were high (0.72-0.88), but the relationship between the sniffer and flux methods was weak (R(2)=0.09 in both experiments). With the flux method CH4 was found to be correlated to dry matter intake or body weight, but this was not the case with the sniffer method. The CH4/CO2 ratio was more highly correlated between the flux and sniffer methods (R(2)=0.30), and CV was similar (6.4-8.8%). In experiment 2, cow muzzle position was highly repeatable (0.82) and influenced sniffer and flux method results when not filtered for muzzle position. It was concluded that the flux method provides more reliable estimates of CH4 emissions than the sniffer method. The sniffer method appears to be affected by variable air-mixing conditions created by geometry of feed trough, muzzle movement, and muzzle position. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    PubMed Central

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters. PMID:25119996

  5. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Hirschmann, Marc M.; Dellas, Nikki

    2005-05-01

    To explore the effect of bulk composition on the solidus of carbonated eclogite, we determined near-solidus phase relations at 3 GPa for four different nominally anhydrous, carbonated eclogites. Starting materials (SLEC1, SLEC2, SLEC3, and SLEC4) were prepared by adding variable proportions and compositions of carbonate to a natural eclogite xenolith (66039B) from Salt Lake crater, Hawaii. Near-solidus partial melts for all bulk compositions are Fe Na calcio-dolomitic and coexist with garnet + clinopyroxene + ilmenite ± calcio-dolomitic solid solution. The solidus for SLEC1 (Ca#=100 × molar Ca/(Ca + Mg + FeT)=32, 1.63 wt% Na2O, and 5 wt% CO2) is bracketed between 1,050°C and 1,075°C (Dasgupta et al. in Earth Planet Sci Lett 227:73 85, 2004), whereas initial melting for SLEC3 (Ca# 41, 1.4 wt% Na2O, and 4.4 wt% CO2) is between 1,175°C and 1,200°C. The solidus for SLEC2 (Ca# 33, 1.75 wt% Na2O, and 15 wt% CO2) is estimated to be near 1,100°C and the solidus for SLEC3 (Ca# 37, 1.47 wt% Na2O, and 2.2 wt% CO2) is between 1,100°C and 1,125°C. Solidus temperatures increase with increasing Ca# of the bulk, owing to the strong influence of the calcite magnesite binary solidus-minimum on the solidus of carbonate bearing eclogite. Bulk compositions that produce near-solidus crystalline carbonate closer in composition to the minimum along the CaCO3-MgCO3 join have lower solidus temperatures. Variations in total CO2 have significant effect on the solidus if CO2 is added as CaCO3, but not if CO2 is added as a complex mixture that maintains the cationic ratios of the bulk-rock. Thus, as partial melting experiments necessarily have more CO2 than that likely to be found in natural carbonated eclogites, care must be taken to assure that the compositional shifts associated with excess CO2 do not unduly influence melting behavior. Near-solidus dolomite and calcite solid solutions have higher Ca/(Ca + Mg) than bulk eclogite compositions, owing to Ca Mg exchange equilibrium between carbonates and silicates. Carbonates in natural mantle eclogite, which have low bulk CO2 concentration, will have Ca/Mg buffered by reactions with silicates. Consequently, experiments with high bulk CO2 may not mimic natural carbonated eclogite phase equilibria unless care is taken to ensure that CO2 enrichment does not result in inappropriate equilibrium carbonate compositions. Compositions of eclogite-derived carbonate melt span the range of natural carbonatites from oceanic and continental settings. Ca#s of carbonatitic partial melts of eclogite vary significantly and overlap those of partial melts of carbonated lherzolite, however, for a constant Ca-content, Mg# of carbonatites derived from eclogitic sources are likely to be lower than the Mg# of those generated from peridotite.

  6. Microbial Priming and Protected Carbon Responses to Elevated CO2 at Local to Global Scales: a New Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.

    2013-12-01

    The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.

  7. Effects of CO2 and iron availability on rbcL gene expression in Bering Sea diatoms

    NASA Astrophysics Data System (ADS)

    Endo, H.; Sugie, K.; Yoshimura, T.; Suzuki, K.

    2014-12-01

    Iron (Fe) can limit phytoplankton productivity in approximately 40% of the global ocean, including high-nutrient, low-chlorophyll (HNLC) waters. However, there is little information available on the impact of CO2-induced seawater acidification on natural phytoplankton assemblages in HNLC regions. We therefore conducted an on-deck experiment manipulating CO2 and Fe using Fe-deficient Bering Sea waters during the summer of 2009. The concentrations of CO2 in the incubation bottles were set at 380 and 600 ppm in the non-Fe-added (control) bottles and 180, 380, 600, and 1000 ppm in the Fe-added bottles. The phytoplankton assemblages were primarily composed of diatoms followed by haptophytes in all incubation bottles as estimated by pigment signatures throughout the 7 day incubation period. At the end of incubation, the relative contributions of diatoms to chlorophyll a biomass decreased significantly with increased CO2 levels in the controls, whereas minimal changes were found in the Fe-added treatments. These results indicate that, under Fe-deficient conditions, the growth of diatoms was negatively affected by the increase in CO2 availability. To confirm this, we estimated the expression and phylogeny of rbcL (which encodes the large subunit of RubisCO) mRNA in diatoms by quantitative reverse transcription PCR and clone library techniques, respectively. Interestingly, regardless of Fe availability, the expression and diversity of rbcL cDNA decreased in the high CO2 treatments (600 and 1000 ppm). The present study suggests that the projected future increase in seawater pCO2 could reduce the RubisCO activity of diatoms, resulting in a decrease in primary productivity and a shift in the food web structure of the Bering Sea.

  8. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

    DOE PAGES

    Warren, Jeffrey M.; Jensen, Anna M.; Medlyn, Belinda E.; ...

    2014-11-17

    Elevated atmospheric CO 2 (eCO 2) often increases photosynthetic CO 2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO 2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO 2. A was re-assessed a decade later to determine if initial enhancement of eCO 2 was sustained through time. Measurements were conducted at prevailing CO 2 and temperature on detached, re-hydratedmore » branches using a portable gas exchange system. Photosynthetic CO 2 response curves (A versus the CO 2 concentration in the intercellular air space (C i); or A-C i curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (A sat), maximum electron transport rate (J max), maximum Rubisco activity (V cmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (A sat) for eCO 2 treatments was 15.4 ± 0.8 μmol m -2 s -1, 22% higher than aCO 2 treatments (P<0.01). By 2009, A sat declined to <50% of 1999 values, and there was no longer a significant effect of eCO 2 (A sat = 6.9 or 5.7 ± 0.7 μmol m -2 s -1 for eCO 2 or aCO 2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO 2 foliage was 17% less than in aCO 2 foliage. Photosynthetic N use efficiency (A sat:N) was greater in eCO 2 in 1999 resulting in greater A sat despite similar N content, but the enhanced efficiency in eCO 2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between J max or V cmax with declining N, or in the ratio of J max:V cmax through time. Results suggest that initial enhancement of photosynthesis to elevated CO 2 will not be sustained through time if nitrogen becomes limited.« less

  9. The effect of carbon dioxide flow rate on the euthanasia of laboratory mice.

    PubMed

    Moody, C M; Chua, B; Weary, D M

    2014-10-01

    Laboratory rodents are commonly euthanized by exposure to gradually increasing concentrations of carbon dioxide (CO2). Current recommended flow rates range between 10 and 30% chamber vol/min and result in insensibility before exposure to painful concentrations (<40%). However, this method causes dyspnea, indicated by deep, rapid breathing. In humans dyspnea is associated with a negative affective experience. Sensations of dyspnea may explain why rodents find CO2 concentrations >3% aversive. This study aimed to assess the effect of CO2 flow rates on time between the onset of dyspnea and various measures of insensibility (recumbency, loss of the righting reflex and loss of the pedal withdrawal reflex) to identify flow rates that minimize the potential experience of dyspnea. The results of this study indicate that a flow rate of 50% chamber vol/min, while holding the CO2 cage concentration just below 40%, minimizes the interval between the onset of labored breathing and recumbency. Using a 50% flow rate this interval averaged (± SE) 30.3 ± 2.9 s versus 49.7 ± 2.9 s at 20% chamber vol/min (F3,22 = 7.83, P = 0.0013). Similarly, the interval between the onset of labored breathing and loss of the righting reflex averaged 38.2 ± 2.4 s at a flow rate of 50% versus 59.2 ± 2.4 s at 20% chamber vol/min of CO2 (F3,22 = 13.62, P < 0.0001). We conclude that higher flow rates reduce the duration of dyspnea, but even at the highest flow rate mice experience more than 30 s between the onset of dyspnea and the most conservative estimate of insensibility. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem.

    PubMed

    Guo, Jia; Zhang, Mingqian; Wang, Xiaowen; Zhang, Weijian

    2015-03-01

    Elevated CO2 can stimulate wetland carbon (C) and nitrogen (N) exports through gaseous and dissolved pathways, however, the consequent influences on the C and N pools are still not fully known. Therefore, we set up a free-air CO2 enrichment experiment in a paddy field in Eastern China. After five year fumigation, we studied C and N in the plant-water-soil system. The results showed: (1) elevated CO2 stimulated rice aboveground biomass and N accumulations by 19.1% and 12.5%, respectively. (2) Elevated CO2 significantly increased paddy soil TOC and TN contents by 12.5% and 15.5%, respectively in the 0-15 cm layer, and 22.7% and 26.0% in the 15-30 cm soil layer. (3) Averaged across the rice growing period, elevated CO2 greatly increased TOC and TN contents in the surface water by 7.6% and 11.4%, respectively. (4) The TOC/TN ratio and natural δ15N value in the surface soil showed a decreasing trend under elevated CO2. The above results indicate that elevated CO2 can benefit C and N accumulation in paddy fields. Given the similarity between the paddies and natural wetlands, our results also suggest a great potential for long-term C and N accumulation in natural wetlands under future climate patterns. Copyright © 2015. Published by Elsevier B.V.

  11. Evolution of the chemistry of Fe bearing waters during CO2 degassing

    USGS Publications Warehouse

    Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.

    2012-01-01

    The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.

  12. The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Weiliang; Zhou, Xiuji; Isaksen, I. S. A.; Sundet, J. K.; He, Jinhai

    2003-11-01

    A 3-D chemical transport model (OSLO CTM2) is used to investigate the influences of the increasing anthropogenic emission in India. The model is capable of reproducing the observational results of the INDOEX experiment and the measurements in summer over India well. The model results show that when NO x and CO emissions in India are doubled, ozone concentration increases, and global average OH decreases a little. Under the effects of the Indian summer monsoon, NO x and CO in India are efficiently transported into the middle and upper troposphere by the upward current and the convective activities so that the NO x , CO, and ozone in the middle and upper troposphere significantly increase with the increasing NO x and CO emissions. These increases extensively influence a part of Asia, Africa, and Europe, and persist from June to September.

  13. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluating Productivity Predictions Under Elevated CO2 Conditions: Multi-Model Benchmarking Across FACE Experiments

    NASA Astrophysics Data System (ADS)

    Cowdery, E.; Dietze, M.

    2016-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty.The Predictive Ecosystem Analyzer (PEcAn) is an informatics toolbox that wraps around an ecosystem model and can be used to help identify which factors drive uncertainty. We tested a suite of models (LPJ-GUESS, MAESPA, GDAY, CLM5, DALEC, ED2), which represent a range from low to high structural complexity, across a range of Free-Air CO2 Enrichment (FACE) experiments: the Kennedy Space Center Open Top Chamber Experiment, the Rhinelander FACE experiment, the Duke Forest FACE experiment and the Oak Ridge Experiment on CO2 Enrichment. These tests were implemented in a novel benchmarking workflow that is automated, repeatable, and generalized to incorporate different sites and ecological models. Observational data from the FACE experiments represent a first test of this flexible, extensible approach aimed at providing repeatable tests of model process representation.To identify and evaluate the assumptions causing inter-model differences we used PEcAn to perform model sensitivity and uncertainty analysis, not only to assess the components of NPP, but also to examine system processes such nutrient uptake and and water use. Combining the observed patterns of uncertainty between multiple models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Renu; Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, NE 68588; Kharel, Parashu

    Disordered CoFeCrAl and CoFeCrSi{sub 0.5}Al{sub 0.5} alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi{sub 0.5}Al{sub 0.5} is predicted to increasemore » from 2.01 μ{sub B} to 2.50 μ{sub B} per formula unit, in good agreement with experiment.« less

  16. Organic Matter and Water Addition Enhance Soil Respiration in an Arid Region

    PubMed Central

    Lai, Liming; Wang, Jianjian; Tian, Yuan; Zhao, Xuechun; Jiang, Lianhe; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun

    2013-01-01

    Climate change is generally predicted to increase net primary production, which could lead to additional C input to soil. In arid central Asia, precipitation has increased and is predicted to increase further. To assess the combined effects of these changes on soil CO2 efflux in arid land, a two factorial manipulation experiment in the shrubland of an arid region in northwest China was conducted. The experiment used a nested design with fresh organic matter and water as the two controlled parameters. It was found that both fresh organic matter and water enhanced soil respiration, and there was a synergistic effect of these two treatments on soil respiration increase. Water addition not only enhanced soil C emission, but also regulated soil C sequestration by fresh organic matter addition. The results indicated that the soil CO2 flux of the shrubland is likely to increase with climate change, and precipitation played a dominant role in regulating soil C balance in the shrubland of an arid region. PMID:24204907

  17. CO2 Solubility in Natural Rhyolitic Melts at High Pressures - Implications for Carbon Flux in Subduction Zones by Sediment Partial Melts

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2011-12-01

    Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.

  18. Coupling of N2O and CO2 fluxes from agriculture in Michigan

    NASA Astrophysics Data System (ADS)

    Cui, M.; Tang, J.; Hastings, M. G.; Gelfand, I.; Tao, L.; Sun, K.

    2012-12-01

    CO2 has been known to cause global warming, and N2O is the largest contributor to the greenhouse gas burden of cropping systems in the United States due to application of fertilizer. In our study, fluxes of N2O and CO2 were measured at two maize fields and one reference grassland from Kellogg Biological Station in Southwest Michigan. Here we compared two measuring systems, traditional GC method and LGR/Li-Cor system. Our initial results show that the two measuring systems are consistent (N2O slope=0.96, R2=0.96; and CO2 slope= 1.03, R2=0.86 measuring from the same chamber). Measurements done in pairs of chambers suggest great spatial variations, despite that the chambers were only 0.5 meter apart. The two systems are still comparable by averaging 8 pairs of chambers distributed within one site. Increase of CO2 fluxes were observed the second day after fertilization, but no significant change of N2O fluxes was shown. After artificial rainfall, boosting N2O fluxes and further increase in CO2 fluxes were demonstrated. Our result indicates that precipitation is necessary before a prominent N2O peak. In our LGR/Li-Cor system, CO was also measured from chambers. Interesting CO fluxes were shown in our experiment. Soil, which is usually considered as a CO sink, emits CO in some chambers during our measurement, which is probably related to the nationwide forest fires and lack of precipitation during the period.

  19. Soil Carbon and Nitrogen Dynamics in Deciduous Forest Exposed to Twelve Years of Atmospheric CO2 Enrichment

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; O'Brien, S. L.; Moran, K. K.; Boutton, T. W.

    2012-12-01

    The impact of atmospheric CO2 enrichment on soil organic matter (SOM) dynamics and stocks will depend on the interplay between plant responses, the soil's capability to protect and stabilize SOM against decomposition, and nutrient availability. Information on C and N allocation to functionally meaningful SOM pools and their dynamics can improve our understanding of soil responses and facilitate predictions of the potential for long-term stabilization. At the sweetgum free-air CO2 enrichment (FACE) experiment in Oak Ridge, Tennessee, we used (1) repeated sampling over time, (2) the 13C tracer provided by the fossil fuel source of fumigation CO2, and (3) physical fractionation to determine the fate and dynamics of FACE-derived detritus inputs to SOM. Samples collected in years 0, 3, 5, 8, 10, and 12 of the experiment were fractionated to separate particulate organic matter (POM) and silt- and clay-associated organic matter protected by occlusion in stable microaggregates from their more readily dispersible counterparts. In this aggrading system, significant linear increases in bulk soil C and N occurred in the surface 5 cm of both ambient and elevated CO2 treatments during the 12 years of the experiment, but accrual rates doubled in response to CO2 enrichment - with no treatment effect on C:N ratio. "New" FACE-derived C accounted for the 12-year increase in bulk soil C and also replaced a fifth of the "old" pretreatment C. The difference in SOM accrual between elevated- and ambient-CO2 treatments occurred mostly in fine POM and silt-sized fractions. Initially, occlusion within microaggregates facilitated much of this accrual. But in years 8 and 10, transfer of microaggregate-occluded C and N to non-aggregated pools occurred in response to prolonged drought. In year 12, after the drought ended, the quantities of silt-associated SOM occluded in microaggregates recovered to pre-drought levels. However, microaggregate-occluded POM continued to decline. The sensitivity of physical protection mechanisms to climate has implications for the potential long-term stability of accrued SOM in this system and those with similar soil characteristics. Beyond the CO2 treatment responses, the isotopic tracer and observed dynamic changes contribute to understanding of SOM cycling and stabilization processes and provide data useful for model parameterization and validation.

  20. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-04-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  1. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    USGS Publications Warehouse

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-01-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  2. Does elevated CO 2 alter silica uptake in trees?

    DOE PAGES

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; ...

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO 2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO 2 fertilization, longterm free-air CO 2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO 2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblollymore » pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO 2 enrichment, N enrichment, and N and CO 2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO 2, N fertilization, or combined elevated CO 2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO 2 concentrations. Due largely to increased primary production, elevated CO 2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less

  3. The hysteresis response of soil CO 2 concentration and soil respiration to soil temperature

    DOE PAGES

    Zhang, Quan; Katul, Gabriel G.; Oren, Ram; ...

    2015-07-20

    Diurnal hysteresis between soil temperature (T s) and both CO 2 concentration ([CO 2]) and soil respiration rate (R s) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. Here, to address these issues, a CO 2 gas transport model is developed by combining a layer-wise mass conservation equation for subsurface gas phase CO 2, Fickian diffusion for gas transfer, and a CO 2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numericalmore » experiments were employed to disentangle the causes of the hysteretic [CO 2]-T s and CO 2 flux T s (i.e., F-T s) relations. Model results show that gas transport alone can introduce both [CO 2]-T s and F-T s hystereses and also confirm prior findings that heat flow in soils lead to [CO 2] and F being out of phase with T s, thereby providing another reason for the occurrence of both hystereses. The area (A hys) of the [CO 2]-T s hysteresis near the surface increases, while the A hys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO 2]-T s and R s-T s patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Lastly, tracing the pattern and direction of the hysteretic [CO 2]-T s and R s-T s relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect time lags between rhizospheric respiration and photosynthesis.« less

  4. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  5. Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble

    NASA Astrophysics Data System (ADS)

    Russotto, Rick D.; Ackerman, Thomas P.

    2018-02-01

    The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.

  6. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  7. The soil-water balance simulations of a grassland in response to CO2, rainfall, and biodiversity manipulations at BioCON

    NASA Astrophysics Data System (ADS)

    Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.

    2013-12-01

    The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged from 9.8 x 10-4 to 6.7 x 10-3 cm/s. Soil cores were collected and analyzed for soil hydraulic properties (texture, unsaturated hydraulic conductivity and moisture retention). From the grain size analyzes of soil samples collected every 10 cm until 1m depth, the soil is homogenous and on average 87% sand, 11% silt and 2% clay. We will be presenting results from the simulations and statistical comparisons to observations of soil moisture at four depths in each plot.

  8. The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.

    2016-12-01

    Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal fracture enabled more mixing of the two solutions within the fracture than the vertical fracture. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231

  9. Modeling forest C and N allocation responses to free-air CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke

    2015-04-01

    Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed models to more reliably capture responses of ecosystem C and N allocation to free-air CO2 enrichment because they were able to simulate the priming effect. Insights were therefore gained into between-site differences observed in forest FACE experiments, and the underlying physiological and biogeochemical mechanisms determining ecosystem C and N allocation responses to elevated CO2. References 1. De Kauwe, M. G., et al. (2014), Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytologist, 203, 883-899. 2. Walker, A. P., et al. (2014), Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration, Journal of Geophysical Research: Biogeosciences, 119, 937-964. 3. Zaehle, S., et al. (2014), Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytologist, 202 (3), 803-822.

  10. Monitoring Shallow Subsurface CO2 Migration using Electrical Imaging Technique, Pilot Site in Brazil

    NASA Astrophysics Data System (ADS)

    Oliva, A.; Chang, H. K.; Moreira, A.

    2013-12-01

    Carbon Capture and Geological Sequestration (CCGS or CCS) is one of the main technological strategies targeting Greenhouse Gases (GHG) emissions reduction, with special emphasis on carbon dioxide (CO2) coming from industrial sources. CCGS integrates the so called Carbon Management Strategies, as indicated by the Intergovernmental Panel on Climate Change (IPCC), and is the basis of main technical route likely to enable substantial emission reduction in a safe, quick and cost-effective way. Currently one of the main challenges in the area of CO2 storage research is to grant the development, testing and validation of accurate and efficient measuring, monitoring and verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. The implementation of the first CO2 MMV field lab in Brazil, located in Florianópolis, Santa Catarina state, offered an excellent opportunity for running controlled release experiments in a real open air environment. The purpose of this work is to present the results of a time lapse monitoring experiment of CO2 migration in both saturated and unsaturated sand-rich sediments, using electrical imaging technique. The experiment covered an area of approximately 6300 m2 and CO2 was continuously injected at depth of 8 m, during 12 days, at an average rate of 90 g/ day, totalizing 1080 g of injected CO2. 2D and 3D electrical images using Wenner array were acquired daily during 13 consecutive days. Comparison of post injection electrical imaging results with pre injection images shows change in resistivity values consistent with migration pathways of CO2. A pronounced increase in resistivity values (up to ~ 500 ohm.m) with respect to the pre-injection values occurs in the vicinity of the injection well. Background values of 530 ohm.m have changed to 1118 ohm.m, right after injection. Changes in resistivity values progressively diminish outward of the well, following groundwater flow path.

  11. Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke

    2017-04-01

    Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.

  12. The Role of CO2 on Silica Undersaturated Melt Structure: Implication for Melt Physical Properties

    NASA Astrophysics Data System (ADS)

    Scaillet, B.; Morizet, Y.; Paris, M.; Gaillard, F.

    2012-12-01

    Silica undersaturated melts such as nephelinite and melilitite are very peculiar magmatic materials. Their occurrence on the Earth surface is often associated with carbonatites melts. These low-silica melts can dissolve a large quantity of CO2 issued from mantle fluid metasomatism. However, the melt structure, the way CO2 dissolves into these melts and the effect of different alkalis element are poorly constrained. We present preliminary experimental results on the melt structure of synthetic nephelinite (NBO/T = 1.25) and Ca-melilitite (NBO/T = 2.50) synthesized in the NKCMAS system and equilibrated at high-pressure (200-300 MPa), high-temperature (1250°C) with an excess C-O-H fluid phase. The nephelinite glasses were synthesized with varying K2O / K2O+Na2O (0-10 mol.% K2O) ratio so as to investigate the differential effect of those two cations. All experiments were conducted under oxidizing conditions (ΔNNO+5) resulting in binary fluid phase composition with CO2 and H2O species. The silicate melt structure, CO2 solubility and speciation were investigated using Micro-Raman and Solid State NMR spectroscopies for 13C, 1H, 29Si, 27Al and 23Na nuclei. The replacement of Na by K does not change the nephelinite melt structure for volatile-free sample suggesting that the basicity of these glasses is not dramatically affected by the presence of mixed alkali. Within 5 mol.% K2O, the CO2 solubility (measured in relative to Raman signature of the melt structure) is only slightly affected with an increasing CO2 solubility with increasing K2O content. As a function of pressure, we observe an increase in CO2 solubility consistent with previous studies. The 13C NMR investigation of the CO2 speciation show three different carbonates environments for CO2 in nephelinite melts attributed to non-network carbonates: 1) 170 ppm shift assigned to NBO-carb. Na or K; 2) 169 ppm assigned to NBO-carb. Ca; and 3) 165 ppm assigned to isolated Na+..CO32- carbonates. As K2O is increased into the nephelinite melt, the isolated Na+..CO32- disappears. In Ca-rich melilitite, only the component at 169 ppm is present. Preliminary results on the melt structure changes suggest that for both melts the CO2 dissolution induces a significant increase in the polymerization of the melt with increasing CO2 content. For Ca-melilitite, the polymerization increases by about 10% with a change in the measured NBO/T from 2.26 to 2.05 in volatile-free and CO2-bearing glasses, respectively. For nephelinite, the polymerization is more important (>20%) with a change in the measured NBO/T from 1.77 to 1.36 in volatile-free and CO2-bearing glasses, respectively. Those changes are unexplained considering that the identified carbonates units are non-network carbonates. However, if confirmed this result has a major impact on melt viscosity as the melt polymerization is often associated with increasing melt viscosity.

  13. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites

    NASA Astrophysics Data System (ADS)

    Lacinska, Alicja M.; Styles, Michael T.; Bateman, Keith; Hall, Matthew; Brown, Paul D.

    2017-06-01

    In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of eight-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long) were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70°C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated) exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,Fe)CO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈ 0.7 g of CO2 was captured by reacting ≈ 23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈ 30 kg CO2 per tonne of host rock, equivalent to ≈ 3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite, that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be an effective in an engineered system of CCSM. Wet scCO2 proved to be chemically aggressive than CO2-saturated brine and its ingress along fractures and grain boundaries resulted in greater host rock dissolution and subsequent carbonate precipitation.

  14. Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees.

    PubMed

    Erda, F G; Bloemen, J; Steppe, K

    2014-01-01

    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pH(x) > 6.5). © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: A meta-analysis

    DOE PAGES

    Liang, Junyi; Qi, Xuan; Souza, Lara; ...

    2016-05-10

    Here, the nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO 2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO 2 experimental data available in the literature. The results showed that CO 2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partiallymore » supporting one of the basic assumptions in the PNL hypothesis that elevated CO 2 results in more N sequestered in organic pools. However, CO 2 enrichment significantly increased the N influx via biological N fixation and the loss via N 2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO 2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO 2 conditions in spite of the increases in plant N sequestration and N 2O emission. Moreover, our syntheses indicate that CO 2 enrichment increases soil ammonium (NH 4 +) to nitrate (NO 3 –) ratio. The changed NH 4 +/NO 3 – ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less

  16. The effect of carbon dioxide on the shelf life of ready-to-eat shredded chicken breast stored under refrigeration.

    PubMed

    Rodriguez, M B R; Junior, C A Conte; Carneiro, C S; Franco, R M; Mano, S B

    2014-01-01

    The objective of the present study was to determine the shelf life of ready-to-eat cooked chicken breast fillets (shredded) stored in atmospheres that were modified with different concentrations of CO2 and to establish a relationship between the concentration of this gas and bacterial growth. The samples were divided into 7 groups with different packaging conditions: aerobiosis, vacuum, and 10, 30, 50, 70, and 90% CO2 (with the remaining volume filled with N2). All of the samples were stored at 4 ± 2°C for 28 d. During this period, pH tests and counts of aerobic heterotrophic mesophyll bacteria (AHMB), aerobic heterotrophic psychotropic bacteria (AHPB), Enterobacteriaceae, and lactic acid bacteria (LAB) were performed, and the gas compositions of the packaging atmospheres were verified. The pH of the aerobic packages increased during storage. However, the other treatments resulted in the opposite trend, with the CO2 concentration decreasing over the first 24 h and then remaining constant until the end of experiment. A gradual increase in the AHMB, AHPB, Enterobacteriaceae, and LAB counts was observed during storage; this increase was faster in the meat that was packed under aerobiosis conditions than in the other treatments. The treatments with a CO2 concentration above 10% exhibited lower Enterobacteriaceae growth, whereas LAB growth was discrete in all of the treatments, independent of the CO2 concentration. The shelf life of the samples packed with 90% CO2 was 28 d. Based on the AHMB and AHPB counts, the shelf life was 3 times longer than for the samples packed under aerobiosis conditions (9 d). The increased package CO2 concentration caused a reduction in the growth rate of the examined bacteria (r = 0.99), and treatment with 90% CO2 appears promising as a method with which to increase the product's shelf life.

  17. Experimental Insights into Multiphase (H2O-CO2) Fluid-Rock Interactions in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Lo Re, C.; Martin, J.; McPherson, B. J.; Moore, J. N.

    2012-12-01

    Integrated hydrothermal experiments and geochemical modeling elucidate fluid-rock interactions and reaction pathways in both natural and anthropogenic systems, including enhanced geothermal systems (EGS) in which CO2 is introduced as a working fluid. Experiments are conducted in rocker bombs and flexible Au-Ti reaction cells. Individual experiments require one to three months to complete; intensive in-situ fluid/gas sampling gauges reaction progress. Investigation of granitic reservoirs and associated vein minerals are broadly based on the Roosevelt Hot Springs thermal area, Utah, USA. The granite consists of subequal amounts of quartz, perthitic K-feldspar (~25% wt% albite and 75% wt% K-feldspar), and oligoclase (An23), and 4 wt% Fe-rich biotite. Vein minerals include epidote and chlorite (clinochlore). Experiments are conducted at 250°C and 25 to 45 MPa. Each experiment uses mineral powders (75 wt% of rock mass, ground to <45 um) to increase reactivity and also mineral pieces (0.1-0.7 cm in size) to promote petrologic evaluation of mineral reactions. The water (I ≈ 0.1 molal) initially contains millimolal quantities of SiO2, Al, Ca, Mg, K, SO4, and HCO3 and is designed to be saturated with all of the minerals present at the start of each experiment. Excess CO2 is injected to saturate the water and maintain an immiscible supercritical fluid phase. The entire evolutionary path of the natural system is not replicated at laboratory scales. Instead, experiments define a segment of the reaction path and, in combination with geochemical modeling, provide clear trajectories towards equilibrium. Reaction of granite+water yields illite+zeolite; smectite subsequently precipitates in response to CO2 injection. Reaction of granite+epidote+water yields illite+zeolite+smectite; zeolite does not precipitate after CO2 is injected. Water in all experiments become saturated with chalcedony. Carbonate minerals do not precipitate but are predicted as final equilbrium products. Enhanced Geothermal Systems are expected to follow similar reaction pathways and produce metastable minerals during initial development.

  18. Evaporite Caprock Integrity. An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO 2 exposure

    DOE PAGES

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; ...

    2012-07-25

    Characterization and geochemical data are presented from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO 2-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO 2-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well asmore » porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO 2-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO 2-enhanced oil recovery operations.« less

  19. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    PubMed

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  20. A case study on changes of petrophysical properties of Werkendam well-cores due to interaction with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Nover, Georg; Hbib, Nasser; Mansfeld, Arne

    2017-04-01

    Changes of porosity, permeability, electrical conductivity and E-modul were studied on sandstones from the Werkendam drillings WED2 (CO2-free) and WED3 (CO2-rich) (The Netherlands). WED2 and WED3 are separated by a fault. Porosities of the untreated samples range from <0.3% up to 16.5%, permeabilities from<0.01 mD up to >160 mD. Significant differences of samples from the WED2 and WED3 well were not detected. The petrophysical properties of the whole set of samples was measured prior to any experiment, then in total 8 samples from WED2 and WED3 were selected for the following experiments with supercritical CO2 (scCO2). These were performed at pressures of 10-12 MPa and temperatures ranging from 100 up to 120°C. The pores were partially saturated with brine (0.1 M NaCl). In a first step the autoclave experiments lasted about 45 days and were then extended in a second series up to 120 days total reaction time. An increase in porosity, permeability and electrical conductivity was measured after each experimental series with scCO2. Two of the samples failed along fractures due to dissolution and thereby caused loss of stability. The frequency dependent complex conductivity was measured in the frequency range 10-3 Hz up to 45 kHz thus having access to fluid/solid interactions at the inner surface of the pores. In a final sequence the uniaxial compressive strength and E-modul were measured on untreated and processed samples. Thus we could get an estimate on weakening of the mechanical stability caused by scCO2-treatment.

Top