Sample records for co2 laser operating

  1. Ambient-temperature co-oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Schryer, David R.; Brown, Kenneth G.; Kielin, Erik J.

    1991-01-01

    Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions.

  2. [Efficacy of CO2 laser in the treatment of precancerous laryngeal lesions under phonomicrosurgery and its relative factors].

    PubMed

    Gu, Qingjia; Feng, Yong; Yu, Xiaoxu; Fan, Jian'gang; Li, Debing; He, Gang

    2014-08-01

    To investigate the efficacy of CO2 laser treatment for patients with precancerous laryngeal lesions under phonomicrosurgery and to explore the points for attention in operation. They were all treated with phonomicrosurgery techniques as mucosal epitheliumablation or mucosal stripping by using CO2 laser. Eight patients with laryngeal papilloma were excised by CO2 laser. All patients were treated with CO2 laser surgery successfully. During follow-up of 6 to 39 months, all patients survived. Local recurrence or canceration were detected in 3 cases, of which 2 cases with laryngeal papilloma underwent CO2 laser treatment in one year post-operatively, while the other case with severe dysplasia underwent laryngeal vertical partial laryngectomy and post-operative radiotherapy one and half year postoperatively due to canceration. No local recurrence occurred until the last follow up. No severe complications such as dyspnea and hemorrhage occured. CO2 laser surgery is an effective and minimally invasive treatment for precancerous laryngeal lesions. Through selecting the appropriate patient and paying attention to the operation during surgery, the adhesion of vocal cord can be reduced or even be avoided after CO2 laser surgery.

  3. Isotope Exchange in Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.

  4. Catalytic Oxidation of CO for Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Schryer, D. R.; Hess, R. V.; Sidney, B. D.; Wood, G. M., Jr.; Paulin, P. A.; Upchurch, B. T.; Brown, K. G.

    1987-01-01

    Stoichiometric mixture converted completely. High-energy pulsed CO2 lasers have potential for measuring many different features of atmosphere of Earth and particularly useful on airborne or space platforms. For this application, laser must be operated in closed cycle to conserve gas, especially if rare nonradioactive isotopes of carbon and oxygen used. However, laser discharge decomposes fraction of CO2 to CO and O2, causing rapid loss in power leading to erratic behavior. To maintain operation, CO and O2 must be recombined to form CO2.

  5. LaRC-developed catalysts for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Kielin, Erik J.; Miller, Irvin M.

    1990-01-01

    Pulsed CO2 lasers have many remote sensing applications from space, airborne, and ground platforms. The NASA Laser Atmospheric Wind Sounder (LAWS) system will be designed to measure wind velocities from polar earth orbit for a period of up to three years. Accordingly, this and other applications require a closed-cycle pulsed CO2 laser which necessitates the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The required catalyst must not only operate at low temperatures but also must operate efficiently for long time periods. The research effort at NASA LaRC has centered around development and testing of CO oxidation catalysts for closed-cycle, pulsed, common and rare-isotope CO2 lasers. Researchers examined available commercial catalysts both in a laser and under simulated closed-cycle laser conditions with efforts aimed toward a thorough understanding of the fundamental catalytic reaction. These data were used to design and synthesize new catalyst compositions to better meet the catalyst requirements for closed-cycle pulsed CO2 lasers. Syntheses and test results for catalysts developed at Langley Research Center which have significantly better long-term decay characteristics than previously available catalysts and at the same time operate quite well under lower temperature conditions are discussed.

  6. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.

  7. Circumcision using CO2 laser: report of 860 cases

    NASA Astrophysics Data System (ADS)

    Chen, Wen B.; Chen, Zi-Fu; Zhan, Tian-qi; Gao, Xiang-Xun; Huang, Chao

    1993-03-01

    Eight-hundred-sixty cases of circumcision using CO2 laser are reported. The age of patients ranged from 9 - 65 years, with a mean age of 23.8 years. The technique was simple and can be quickly accomplished by a single operator. After local anesthesia the glans penis was protected by a protector. Then, circumcision was performed with a CO2 laser -- HeNe laser combined machine. There was an HeNe laser aiming system in this machine thus the surgeon had a three-dimensional visible indicator of the incision. The focusing CO2 laser beam was used for cutting the prepuce during the operation. There was almost no operative bleeding. All the patients needed no antibiotic postoperatively. Complications were minimal and satisfactory results were achieved.

  8. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    NASA Astrophysics Data System (ADS)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  9. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery.

    PubMed

    Karaman, Murat; Gün, Taylan; Temelkuran, Burak; Aynacı, Engin; Kaya, Cem; Tekin, Ahmet Mahmut

    2017-05-01

    To compare intra-operative and post-operative effectiveness of fiber delivered CO 2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO 2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO 2 laser. The use of CO 2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea-hypopnea index scores showed better efficacy of CO 2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO 2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.

  10. The choice: Welding with CO2 or Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leong, Keng H.

    The recent commercial availability of multi-kilowatt Nd:YAG lasers has opened new avenues for rapid laser processing as well as intensified the competition (cost effectiveness) between CO2 and Nd:YAG laser systems. Vendors offering Nd:YAG laser systems may claim lower operating costs (than CO2) and fiberoptic beam delivery flexibility while CO2 systems vendors may emphasize lower capital cost and well established processing requirements and experience. The capital and operating costs of a laser system are impacted by demand and supply economics and technological advances. Frequently the total cost of a workcell using a laser for processing has to be considered rather than the laser system alone. Consequently it is not very practical to approach the selection of a laser system based on its capital cost and estimated operating cost only. This presentation describes a more pragmatic approach to aid the user in the selection of the optimal multi-kilowatt laser system for a particular processing requirement with emphasis on welding. CO2 laser systems are well established on the factory floor. Consequently, emphasis is given to the comparative application of Nd:YAG lasers, process requirements and performance. Requirements for the laser welding of different metals are examined in the context of hardware (laser system and beam delivery) selection and examples of welding speeds that can be achieved using CO2 and Nd:YAG lasers are examined.

  11. Routine use of the CO2 laser technique for resection of cerebral tumours.

    PubMed

    Deruty, R; Pelissou-Guyotat, I; Mottolese, C; Amat, D

    1993-01-01

    The CO2 laser technique has been routinely used from 1988 through 1992 for the resection of 93 cerebral tumours (meningiomas 58%, gliomas 15%, neurinomas 9%, miscellaneous 18%). The CO2 laser technique was found the more effective 1) in tumours of hard consistency, 2) in large or giant tumours, 3) in tumours with scarce vascularization. Meningiomas were the indication of choice (54 cases that is 58% of all tumours treated with CO2 laser, and 64% of all meningiomas operated on during the same period). Among the meningiomas treated with the CO2 laser, 54% were located on the skull base. The CO2 laser beam provides good haemostasis of small vessels during the vaporization process. When attached to the operative microscope, the other advantages of the CO2 laser technique are: the absence of a handle-piece, the absence of manual manipulation of the tumour, the coaxiality of the laser beam with the visual beam. The disadvantages are: the rigidity of the coupled microscope-Laser arm, the smoke produced by the vaporization of hard tumours, the noise of the device.

  12. Outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer.

    PubMed

    Shuang, Yu; Li, Chao; Zhou, Xuan; Huang, Yongwang; Zhang, Lun

    2016-01-01

    In the present study, the voice and functional outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer were evaluated. One hundred sixty eight patients with early glottic cancer from October 2007 to June 2015 were included. Ninety-seven patients underwent RFA and seventy-one patients underwent CO2 laser. The operation time and score of visual analog scale (VAS) for pain on the second day after surgery were recorded. The electronic laryngoscopy was performed at one week, one month and three months of postoperation. The operation time in RFA was shorter than that in CO2 laser (8.52±1.43min vs. 11.76±1.67min, P<0.05). There was no statistical difference in VAS scores between two operation methods (2.86±0.52 vs. 2.89±0.68, P>0.05). One month after operation, the mucosal recovery in RFA group was better than that in CO2 laser group (P<0.05). The alterations of acoustic parameters Jitter, Shimmer and HNR at three time points after operation showed statistical significances in both RFA and CO2 laser groups (P<0.05). The significant differences in acoustic parameters between two groups were also observed (P<0.05). There were no differences in three-year survival rate, local recurrence rate, recurrence rate with anterior commissure involvement and postoperative adhesion rate with anterior commissure between the patients with RFA and CO2 laser (P>0.05). No patient underwent tracheotomy and had symptoms of bucking, dyspnea, severe pain, hemoptysis and other serious complications. Both RFA and CO2 laser are safe and effective for the treatment of early glottic cancer. RFA has the advantage of quick voice recovery, low mucosa injury and short operation time, which is worthy for wide clinical application. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  14. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Price, H. T.; Shaw, S. R.

    1987-04-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  15. High repetition rate sealed CO2 TEA lasers using heterogeneous catalysts

    NASA Technical Reports Server (NTRS)

    Price, H. T.; Shaw, S. R.

    1987-01-01

    The significant operational advantages offered by CO2 lasers, operating in the 10.6 micron region of the spectrum, over current solid state lasers, emitting in the near IR region, have prompted increased interest in the development of compact, reliable, rugged CO2 laser sources. Perhaps the most critical aspect associated with achieving a laser compatible with military use is the development of lasers which require no gas replenishment. Sealed, single shot, CO2 TEA lasers have been available for a number of years. Stark et al were first to demonstrate reliable sealed operation in single shot CO2 TEA lasers in 1975 using gas catalysis. GEC Avionics reported the compact, environmentally qualified, MKIII CO2 TEA laser with a pulse life of greater than 10 to the 6th power pulses in 1980. A sealed laser lifetime of greater than 10 to the 6th power pulses is acceptable for single shot cases, such as direct detection rangefinders for tank laser sights. However, in many other applications, such as tracking of fast moving targets, it is essential that a repetition rate of typically 30Hz to 100Hz is employed. In such cases, a pulse lifetime of 10 to the 6th power pulses is no longer sufficient and a minimum pulse lifetime 10 to the 7th power pulses is essential to ensure a useful service life. In 1983 Stark el al described a sealed, 100Hz CO2 TEA laser, with a life of greater than 2.6 x 10 to the 6th power, which employed heterogeneous catalysis. Following this pioneering work, GEC Avionics has been engaged in the development of sealed high repetition rate lasers with a pulse lifetime of 20 million pulses.

  16. A compact, rugged, high repetition rate CO2 laser incorporating catalyst

    NASA Technical Reports Server (NTRS)

    Schwarzenberger, P. M.; Matzangou, X.

    1990-01-01

    The principal design features and operating characteristics of a high repetition rate CO2 laser are outlined. The laser is a compact, rugged unit, completely sealed and incorporating an unheated solid catalyst. Stable operation has been successfully demonstrated over a temperature range of -35 C to 65 C.

  17. Room-temperature operation of a Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Welford, D.; Moulton, P. F.

    1988-01-01

    A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.

  18. Carbon dioxide laser fiber for the excision of oral leukoplakia.

    PubMed

    Chee, Michael; Sasaki, Clarence

    2013-09-01

    We compared the efficacies of cold knife excision and carbon dioxide (CO2) laser fiber excision of oral cavity leukoplakia. Between August 2009 and June 2011,45 patients who underwent excision of oral cavity leukoplakia were assessed for operative time, use of bipolar cautery, blood loss, and number of intraoperative margins needed. Patients were assigned randomly to either a cold knife group (23 procedures) or a CO2 laser fiber group (24 procedures) at the time of the procedure. The times of excision were similar in the CO2 laser fiber group (1.64 min/cm2) and the cold knife group (1.70 min/cm2). There were large differences between the CO2 laser fiber group and the cold knife group in the categories of bipolar cautery uses per square centimeter (0.34 uses versus 3.32 uses) and blood loss (0.19 g/cm2 versus 2.55 g/cm2). The average number of margins needed to clear a specimen by frozen section was 1.21 for the CO2 laser fiber group and 1.83 for the cold knife group. The CO2 laser fiber did not show an advantage in operative time. The CO2 laser fiber did show better outcomes in the areas of blood loss, bipolar cautery use, and intraoperative margins needed.

  19. Complication and recurrence rate in laser CO2 versus traditional surgery in the treatment of Bartholin's gland cyst.

    PubMed

    Frega, Antonio; Schimberni, Mauro; Ralli, Eleonora; Verrone, Antonella; Manzara, Federica; Schimberni, Matteo; Nobili, Flavia; Caserta, Donatella

    2016-08-01

    The treatment of Bartholin's gland cysts by traditional surgery is characterized by some disadvantages and complications such as hemorrhage, postoperative dyspareunia, infections, necessity for a general anesthesia. Contrarily, CO2 laser surgery might be less invasive and more effective as it solves many problems of traditional surgery. The aim of our study is to describe CO2 laser technique evaluating its feasibility, complication rate and results vs traditional surgery. Among patients treated for Bartholin's gland cyst, we enrolled 62 patients comparing traditional surgical excision vs CO2 laser surgery of whom 27 patients underwent traditional surgery, whereas 35 patients underwent CO2 laser surgery. Mean operative time, complication rate, recurrence rate and short- and long-term outcomes were assessed. The procedures required a mean operative time of 9 ± 5.3 min for CO2 laser surgery and 42.2 ± 13.8 for traditional surgery. Two patients (5.7 %) needed an hemostatic suture for intraoperative bleeding in the laser CO2 laser technique against 14.8 % for traditional surgery. Carbon dioxide allows a complete healing in a mean time of 22 days without scarring, hematomas or wound infections and a return to daily living in a mean time of 2 days. Instead, patients undergone traditional surgery required a mean time of 14 days to return to daily life with a healing mean time completed in 28 days. The minimum rate of intra- and post-operative complications, the ability to perform it under local anesthesia in an outpatient setting make CO2 laser surgery more cost-effective than traditional surgery.

  20. The carbon dioxide laser surgical unit as an instrument for surgery of brain tumours--its advantages and disadvantages.

    PubMed

    Takizawa, T

    1984-01-01

    The author started in 1969 his studies on developing the practical models of the carbon dioxide laser surgical units and produced Medilaser-S, Model MEL-42 and MEL-444. By the end of 1982 the author had operated on 143 cases of brain tumour with the laser. Most of those cases were brain tumours which were difficult or impossible to remove by conventional means. The major points of this paper are as follows: The principle of the laser, the mechanism of the CO2 laser, the biomedical features of the CO2 laser, the advantages and disadvantages of the CO2 laser, indications and contraindications for the use of the CO2 laser, development of the CO2 laser surgical units, surgical procedures and techniques of brain tumour laser surgery, adjuvant methods of laser surgery and comparison between the CO2 laser and the Nd-YAG laser.

  1. Tunable single-longitudinal-mode operation of an injection-locked TEA CO2 laser. [ozone absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Megie, G.; Menzies, R. T.

    1979-01-01

    The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.

  2. 'Design of CO-O2 recombination catalysts for closed-cycle CO2 lasers'

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1989-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. This paper will discuss the performance criteria and constraints involved in the design of monolith catalyst configurations for use in a closed-cycle laser and will present a design study performed with a computerized design program that had been written. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables will be discussed.

  3. Polarization characteristic of a room-temperature Co:MgF2 laser.

    PubMed

    Zhang, Zengming M; Cui, Yiben B; Li, Fuli L; Zhang, Guobin B; Pu, Qirong R; Xu, Gaojie J

    2002-02-20

    A study of the polarization characteristic of a Co:MgF2 laser with a 1320-nm YAG pumping laser at room temperature is reported. The thresholds, output energies, and efficiencies of the laser are given at the various polarization states. The more intensive emission is in the pi-polarization pump laser and sigma-polarization laser operation. Performances of the Co:MgF2 lasers are similar for the polarized and unpolarized laser pumping along the optical axis of the crystal.

  4. A computer program for the design of optimum catalytic monoliths for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1990-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. The performance criteria and constraints involved in the design of catalyst configurations for use in a closed-cycle laser are discussed, and several design studies performed with a computerized design program that was written are presented. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables are discussed.

  5. Monitoring of catalyst performance in CO2 lasers using frequency modulation spectroscopy with diode lasers

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.

  6. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  7. The stability of the active medium of RF-exited CO2 lasers with gold as catalyst

    NASA Astrophysics Data System (ADS)

    Cherezov, V. M.; Novgorodov, M. Z.; Ochkin, V. N.; Samorodov, V. G.; Shishkanov, E. F.; Stepanov, V. A.; Witteman, W. J.

    Using mass-spectrometric investigations the gas composition of the active medium of sealed-off cw RF-excited CO2 waveguide lasers have been studied. It has been found that a low degree of CO2 dissociation and a laser power improvement can be achieved by means of a gold catalyst in the laser discharge volume. The conditions for long operational lifetimes of these lasers are described.

  8. Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Welford, David; Moulton, Peter F.

    1989-01-01

    Rate-equation calculations are used to model accurately the near-threshold behavior of a Co:MgF2 laser operating at room temperature. The results demonstrate the limitations of the conventional threshold analysis in cases of practical interest. This conclusion is applicable to pulsed solid-state lasers in general. The calculations, together with experimental data, are used to determine emission cross sections for the Co:MgF2 laser.

  9. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  10. Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru; Endo, Akira

    2012-11-15

    In this Letter, we investigate, for the first time to our knowledge, the spectral properties of a quantum-cascade laser (QCL) from a point of view of a new application as a laser seeder for a nanosecond-pulse high-repetition frequency CO(2) laser operating at 10.6 μm wavelength. The motivation for this work is a renewed interest in such a pulse format and wavelength driven by a development of extreme UV (EUV) laser-produced-plasma (LPP) sources. These sources use pulsed multikilowatt CO(2) lasers to drive the EUV-emitting plasmas. Basic spectral performance characteristics of a custom-made QCL chip are measured, such as tuning range and chirp rate. The QCL is shown to have all essential qualities of a robust seed source for a high-repetition nanosecond-pulsed CO(2) laser required by EUV LPP sources.

  11. Optical radiation hazards of laser welding processes. Part II: CO2 laser.

    PubMed

    Rockwell, R J; Moss, C E

    1989-08-01

    There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems.

  12. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  13. Investigation of small transverse electric CO/sub 2/ waveguide lasers for fuzing applications. Contractor report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochuli, U.; McGuire, D.

    1982-10-01

    The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.

  14. Flexible Carbon Dioxide Laser Fiber Versus Ultrasonic Scalpel in Robot-Assisted Laparoscopic Myomectomy.

    PubMed

    Choussein, Souzana; Srouji, Serene S; Farland, Leslie V; Gargiulo, Antonio R

    2015-01-01

    To compare the effectiveness and safety of a flexible carbon dioxide (CO2) laser fiber to the ultrasonic scalpel when employed through a robotic surgical system. Retrospective cohort study. Level II-2 evidence. Reproductive surgery practice at an academic hospital. Two hundred thirty-six women who had undergone robot-assisted laparoscopic myomectomy with either CO2 laser (n = 85) or the ultrasonic scalpel (n = 151). Robot-assisted laparoscopic myomectomy employing either a flexible CO2 laser fiber or a robotic ultrasonic scalpel as the primary energy tool. Perioperative outcomes (estimated blood loss, operative time, length of hospital stay) of patients undergoing robot-assisted myomectomy with a flexible laser fiber or ultrasonic scalpel. Estimated blood loss and operative time were comparable (p = .95 and p = .55, respectively) between the 2 groups after adjusting for all confounders, whereas length of hospital stay remained significantly different (p = .004). Odds ratio for complications was 0.35 (95% confidence interval 0.08-1.56; p = .17), which denotes no difference in the risk for complications between the 2 groups. Robot-assisted laparoscopic myomectomy with a flexible CO2 laser fiber is safe and has comparable operative outcomes to the ultrasonic scalpel. The small size and flexibility of this device allows robotic surgeons to employ safe focal energy without sacrificing operative ergonomics. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  15. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  16. Numerical solution of Boltzmann tranport equation for TEA CO 2 laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khare, Jai; Nath, A. K.

    2007-02-01

    Selective laser isotope separation by TEA CO 2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO 2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO 2 to predict laser pulse characteristics and laser gas lifetime, respectively. Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO 2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O 2 being produced due to dissociation of CO 2 in the pulse discharge. The theoretically calculated O 2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO 2 laser system, for stable discharge the O 2 concentration should be below 0.2%.

  17. Research on industrial 10kW CO2 laser achieves major breakthrough

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.

  18. 10-year experience of CO2-laser application in ambulance gynecology

    NASA Astrophysics Data System (ADS)

    Stachanov, Michael L.; Masychev, Victor I.; Velsher, Leonid Z.; Kirkin, Vladimir V.; Zhashkov, Roman V.; Kocharian, Emilia A.

    2000-10-01

    CO2-laser surgical systems have come to stay in everyday practice of modern physicians and are successfully used in colposcopic and laparoscopic surgery. Results, obtained in ambulance gynecology are especially impressing. CO2- laser provides high medical- and cost-effective treatment. Presented work describes many-years experience of CO2- laser application. 439 patients with various vulvaric and cervix diseases were operated within this period. Laser beam parameters were selected according to requirements ((tau) =4 J/cm2) treatment without carbonization. Analyses of the results showed that the laser successfully destructs uterine cervix erosion, endocervicosis, dysplasia, leukoplakia, eritoplakia of uterine cervix, various benignant pathologies and focus degenerative process in ambulate conditions.

  19. ARTICLES: Stabilization of the composition of the gaseous medium in a pulse-periodic CO2 laser by hopcalite

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Drokov, G. F.; Kuz'menko, V. A.; Mezhevov, V. S.; Pigul'skaya, V. V.

    1986-05-01

    The results of experiments on using hopcalite to stabilize the gas mixture composition in pulse-periodic and single-pulse CO2 lasers are reported. A study was made of the reasons for a fall in the activity of the catalyst with time under typical CO2 laser conditions and a catalyst regeneration regime was selected. The use of hopcalite ensured prolonged operation of a high-power pulse-periodic CO2 laser without replenishment of the gas mixture in a closed loop. Certain characteristic features concerning the use of hopcalite are described.

  20. Reactivation of a tin oxide-containing catalyst

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Paulin, Patricia A. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Upchurch, Billy T. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  1. A blackbody-pumped CO2-N2 transfer laser

    NASA Astrophysics Data System (ADS)

    Deyoung, R. J.; Higdon, N. S.

    1984-08-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  2. A blackbody-pumped CO2-N2 transfer laser

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Higdon, N. S.

    1984-01-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  3. Simulation of planetary entry radiative heating with a CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Howe, J. T.

    1975-01-01

    Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.

  4. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector/TIA effort has improved the existing detector subsystem by: increasing its bandwidth to 5.4 MHz, exceeding the original goal of 5 MHz; reducing the overall mass from 18 lbs to <10 lbs; and increasing the duration of autonomous, service-free operation periods from 4 hrs to >24 hrs. The new detector subsystem will permit higher laser modulation rates, which provides greater flexibility for implementing thin-cloud discrimination algorithms as well as improving range resolution and error reduction, and will enable long-range flights on the Global Hawk. The cloud/aerosol discrimination work features development of new algorithms by Langley and Exelis for the avoidance of bias errors in the retrieval of column CO2 induced by the presence of thin clouds.

  5. High power CO2 coherent ladar haven't quit the stage of military affairs

    NASA Astrophysics Data System (ADS)

    Zhang, Heyong

    2015-05-01

    The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.

  6. Thoracoscopic CO laser coagulation shrinkage of blebs in treatment of spontaneous pneumothorax

    NASA Astrophysics Data System (ADS)

    Sensaki, Koji; Arai, Tsunenori; Kikuchi, Keiichi; Takagi, Keigo; Tanaka, Susumu; Kikuchi, Makoto

    1992-06-01

    Spontaneous pneumothorax is a common disease in young people. Operative intervention has been done in most of the recurrent cases. Recently thoracoscopic treatment has been tested as a less invasive treatment modarity. We adopted carbon monoxide (CO) laser for thoracoscopic treatment of recurrent spontaneous pneumothorax. CO laser (wavelength; 5.4 micrometers ) could be delivered by chalcogenide glass (As - S) covered with a teflon sheath and ZnSe fiber tip. The sterilized flexible bronchoscope was inserted through the thoracoscopic outer sheath under local anesthesia. Shrinkage of blebs was obtained by non-contact method of CO laser irradiation. Laser power at the tip was 2.5 - 5 W and irradiation duration was 0.5 s each. Excellent shrinkage of bleb and bulla could be obtained by CO laser without perforation complication. Advantages of CO laser as a thoracoscopic treatment were: (1) capability of fiber delivery (flexible thoracoscopy was easy to operate and clear to visualize the blebs which were frequently found at the apical portion of the lung, and (2) shallow extinction length (good shrinkage of blebs, low risk of perforation, and thin layer of carbonization). In conclusion, our new technique of thoracoscopic CO laser irradiation was found to be a safe and effective treatment of spontaneous pneumothorax.

  7. Smart spectroscopy sensors: II. Narrow-band laser systems

    NASA Astrophysics Data System (ADS)

    Matharoo, Inderdeep; Peshko, Igor

    2013-03-01

    This paper describes the principles of operation of a miniature multifunctional optical sensory system based on laser technology and spectroscopic principles of analysis. The operation of the system as a remote oxygen sensor has been demonstrated. The multi-component alarm sensor has been designed to recognise gases and to measure gas concentration (O2, CO2, CO, CH4, N2O, C2H2, HI, OH radicals and H2O vapour, including semi-heavy water), temperature, pressure, humidity, and background radiation from the environment. Besides gas sensing, the same diode lasers are used for range-finding and to provide sensor self-calibration. The complete system operates as an inhomogeneous sensory network: the laser sensors are capable of using information received from environmental sensors for improving accuracy and reliability of gas concentration measurement. The sources of measurement errors associated with hardware and algorithms of operation and data processing have been analysed in detail.

  8. Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser.

    PubMed

    Upschulte, B L; Sonnenfroh, D M; Allen, M G

    1999-03-20

    A new laser technology that achieves nearly 100-nm quasi-continuous tuning with only injection-current control in a four-section grating-coupler sampled-reflector laser was used to detect CO and CO(2) simultaneously in room-temperature gas mixtures. The same grating-coupler sampled-reflector laser was used to perform in situ measurements of CO, H(2)O, and OH in the exhaust gases of a CH(4)-air flame. This laser is being evaluated for inclusion in a multispecies combustion-emissions exhaust-analysis sensor, and its operational characteristics as they have an impact on gas sensing are described. Preliminary results suggest that this single laser can be used to replace multilaser sensor configurations for some combustion-emissions monitoring applications.

  9. Development of longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  10. Catalyst for Carbon Monoxide Oxidation

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the catalyst composition in an amount of about 5 to 25 (especially 7) percent by weight, SnO2 is present in an amount of about 30 to 40 (especially 40) percent by weight, and silica gel is present in an amount of 45 to 55 (especially 50) percent by weight. The composition of this catalyst was suggested by preliminary experiments in which a Pt/SnO2 catalyst was needed for bound water to enhance its activity. These experimental results suggested that if the water were bound to the surface, this water would enhance and prolong catalyst activity for long time periods. Because the catalyst is to be exposed to a laser gas mixture, and because a CO2 laser can tolerate only a very small amount of moisture, a hygroscopic support for the catalyst would provide the needed H2O into the gas. Silica gel is considered to be superior because of its property to chemisorb water on its surface over a wide range of moisture content.

  11. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  12. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  13. Performance of 100-W HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-08-01

    At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.

  14. Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows.

    PubMed

    Peng, Wen Yu; Goldenstein, Christopher S; Mitchell Spearrin, R; Jeffries, Jay B; Hanson, Ronald K

    2016-11-20

    The development and demonstration of a four-color single-ended mid-infrared tunable laser-absorption sensor for simultaneous measurements of H2O, CO2, CO, and temperature in combustion flows is described. This sensor operates by transmitting laser light through a single optical port and measuring the backscattered radiation from within the combustion device. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization (scanned-WMS-2f/1f) was used to account for variable signal collection and nonabsorption losses in the harsh environment. Two tunable diode lasers operating near 2551 and 2482 nm were utilized to measure H2O concentration and temperature, while an interband cascade laser near 4176 nm and a quantum cascade laser near 4865 nm were used for measuring CO2 and CO, respectively. The lasers were modulated at either 90 or 112 kHz and scanned across the peaks of their respective absorption features at 1 kHz, leading to a measurement rate of 2 kHz. A hybrid demultiplexing strategy involving both spectral filtering and frequency-domain demodulation was used to decouple the backscattered radiation into its constituent signals. Demonstration measurements were made in the exhaust of a laboratory-scale laminar methane-air flat-flame burner at atmospheric pressure and equivalence ratios ranging from 0.7 to 1.2. A stainless steel reflective plate was placed 0.78 cm away from the sensor head within the combustion exhaust, leading to a total absorption path length of 1.56 cm. Detection limits of 1.4% H2O, 0.6% CO2, and 0.4% CO by mole were reported. To the best of the authors' knowledge, this work represents the first demonstration of a mid-infrared laser-absorption sensor using a single-ended architecture in combustion flows.

  15. 367 cases of CO2 laser therapy on facial acne

    NASA Astrophysics Data System (ADS)

    Gao, Yunqing; Liu, Songhao; Zhang, You; Liu, T. C.

    1996-09-01

    Since 1989, we have cured 367 persons of facial acne of different course by using direct irradiation of high-power CO2 laser combing with operative therapy of low-power CO2 laser. The cure rate is 100 percent. In this paper, we stated the therapeutic approach. It was shown that this therapeutic approach is simple and effective, and its recurrence rate is zero. There are no cicatrices after healing. It is easy to accept it, and is worthy of extension.

  16. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  17. Laser Doppler Measurement of Atmopsheric Wind Velocity

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Abshire, N. L.; Derr, V. E.

    1973-01-01

    Our presentation consists of two parts: (1) a summary review of laser Doppler principles and applications, and (2) operational design and preliminary laboratory tests of a CO2 laser system for NOAA applications.

  18. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities, January 1976 to December 1977

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1979-01-01

    A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.

  19. Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization

    NASA Astrophysics Data System (ADS)

    Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.

    1999-01-01

    The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.

  20. Comparison of Free-Beam- and Fiber-Type CO2 Laser Delivery Systems in Stapes Surgery.

    PubMed

    Chang, Mun Young; Choi, Hyun Seok; Lee, Sang-Youp; Koo, Ja-Won

    2017-07-01

    A free-beam-type CO 2 laser, which use a micromanipulator mounted on a microscope as the delivery system, has the merit of not being affected by hand tremor at the time of shooting. However, this delivery system has several disadvantages, including a restricted operation range and a risk of incorrect focusing. A fiber-type CO 2 laser uses a hand-held delivery system and has the opposite merits and demerits. We compared the results of stapes surgery with free-beam and fiber type delivery systems. The study enrolled 36 patients who underwent stapedotomy with free-beam- (n=26) or fiber- (n=10) type CO 2 lasers. The air-bone (AB) gap closure, bone conduction (BC) change, and operating time were evaluated. The AB gap closure was calculated by subtracting the preoperative BC thresholds from the postoperative air conduction thresholds. The BC change was calculated by subtracting the postoperative BC thresholds from the preoperative BC thresholds. The mean operating time was significantly ( p =0.035) shorter in the fiber-type group (72.5±8.2 min) than in the free-beam-type group (80.5±11.4 min). The mean AB gap closure did not differ significantly ( p =0.297) between the free-beamand fiber-type groups (5.8±10.1 and 1.4±6.8 dB, respectively). The mean BC change did not differ significantly ( p =0.873) between the free-beam- and fiber-type groups (2.4±6.9 and 2.8±5.3 dB, respectively). The hearing outcomes did not differ significantly between the two groups. Operating times were significantly shorter using the fiber-type CO 2 laser, while hearing outcomes did not differ significantly between the two groups.

  1. [Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures].

    PubMed

    Roux, F X; Leriche, B; Cioloca, C; Devaux, B; Turak, B; Nohra, G

    1992-01-01

    The authors present their experience concerning the use of Combolaser (Lasermatic, Finland), in neurosurgery. This laser-unit combines two wavelengths (CO2 and 1.06 Nd-YAG) which are emitted simultaneously and coaxially. During the last 12 months, 40 patients harbouring an intracranial tumor were operated upon with such a combolaser unit: 8 infra-tentorial, 32 supra-tentorial, 17 were meningiomas. The mean output power used during the procedures was 3-5 w for both CO2 and Nd-YAG beams. The authors discuss the advantages and inconveniences of such a laser; and they compare it with the other laser-units they have been using for the last 10 years: CO2-Laser, 1.06 Nd-YAG and 1.32 Nd-YAG laser. The main inconvenience of this unit is linked to the utilization of the articulated arm which conducts the CO2 laser beam. This drawback should be avoided or limited by the use of a fiber microguide, which will conduct both CO2 and Nd-YAG beams simultaneously. The principal contribution of a combined-laser unit is the quality of the haemostasis associated to a very good vaporization and cutting effect. When both wavelengths are synchronized, the combined laser beams penetrate into the nervous parenchyma more deeply than the only CO2 laser beam would with the same parameters. The vaporization effect is identical to that obtained with the isolated CO2 laser; the quality of haemostasis is limited to the effects of the Nd-YAG laser. Another advantage must be emphasized: the possibility of utilizing separately the CO2 laser and the 1.06 Nd-YAG.

  2. Pretreatment of Platinum/Tin Oxide-Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  3. Comparative study of upper lip frenectomy with the CO2 laser versus the Er, Cr: YSGG laser

    PubMed Central

    Pié-Sánchez, Jordi; España-Tost, Antonio J.; Arnabat-Domínguez, Josep

    2012-01-01

    Objectives: To compare upper lip frenulum reinsertion, bleeding, surgical time and surgical wound healing in frenectomies performed with the CO2 laser versus the Er, Cr:YSGG laser. Study design: A prospective study was carried out on 50 randomized pediatric patients who underwent rhomboidal resection of the upper lip frenulum with either the CO2 laser or the Er,Cr:YSGG laser. Twenty-five patients were assigned to each laser system. All patients were examined at 7, 14, 21 days and 4 months after the operation in order to assess the surgical wound healing. Results: Insertion of the frenulum, which was preoperatively located between the upper central incisors, migrated to the mucogingival junction as a result of using both laser systems in all patients. Only two patients required a single dose of 650 mg of paracetamol, one of either study group. CO2 laser registered improved intraoperative bleeding control results and shorter surgical times. On the other hand, the Er,Cr:YSGG laser achieved faster healing. Conclusions: Upper lip laser frenectomy is a simple technique that results in minimum or no postoperative swelling or pain, and which involves upper lip frenulum reinsertion at the mucogingival junction. The CO2 laser offers a bloodless field and shorter surgical times compared with the Er,Cr:YSGG laser. On the other hand, the Er,Cr:YSGG laser achieved faster wound healing. Key words:Frenectomy, upper lip frenulum, CO2 laser, Er,Cr:YSGG laser, laser. PMID:22143683

  4. A comparative evaluation: Oral leukoplakia surgical management using diode laser, CO2 laser, and cryosurgery.

    PubMed

    Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G

    2017-06-01

    The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.

  5. An overview of DREV's activities on pulsed CO2 laser transmitters: Frequency stability and lifetime aspects

    NASA Technical Reports Server (NTRS)

    Cruickshank, James; Pace, Paul; Mathieu, Pierre

    1987-01-01

    After introducing the desired features in a transmitter for laser radar applications, the output characteristics of several configurations of frequency-stable TEA-CO2 lasers are reviewed. Based on work carried out at the Defence Research Establishment Valcartier (DREV), output pulses are examined from short cavity lasers, CW-TEA hybrid lasers, and amplifiers for low power pulses. It is concluded that the technique of injecting a low-power laser beam into a TEA laser resonator with Gaussian reflectivity mirrors should be investigated because it appears well adapted to producing high energy, single mode, low chirp pulses. Finally, a brief report on tests carried out on catalysts composed of stannic oxide and noble metals demonstrates the potential of these catalysts, operating at close to room temperature, to provide complete closed-cycle laser operation.

  6. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier transform spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.

    1989-01-01

    The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.

  7. Platinum/Tin Oxide/Silica Gel Catalyst Oxidizes CO

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Davis, Patricia P.; Schryer, David R.; Miller, Irvin M.; Brown, David; Van Norman, John D.; Brown, Kenneth G.

    1991-01-01

    Heterogeneous catalyst of platinum, tin oxide, and silica gel combines small concentrations of laser dissociation products, CO and O2, to form CO22 during long times at ambient temperature. Developed as means to prevent accumulation of these products in sealed CO2 lasers. Effective at ambient operating temperatures and installs directly in laser envelope. Formulated to have very high surface area and to chemisorb controlled quantities of moisture: chemisorbed water contained within and upon its structure, makes it highly active and very longlived so only small quantity needed for long times.

  8. Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.

    2011-01-01

    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.

  9. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  10. A Preliminary Report on the CO2 Laser for Lumbar Fusion: Safety, Efficacy and Technical Considerations.

    PubMed

    Villavicencio, Alan T; Burneikiene, Sigita; Babuska, Jason M; Nelson, Ewell L; Mason, Alexander; Rajpal, Sharad

    2015-04-01

    The purpose of this study was to evaluate potential technical advantages of the CO2 laser technology in mini-open transforaminal lumbar interbody fusion (TLIF) surgeries and report our preliminary clinical data on the safety and clinical outcomes. There is currently no literature discussing the recently redeveloped CO2 laser technology application for lumbar fusion. Safety and clinical outcomes were compared between two groups: 24 patients that underwent CO2 laser-assisted one-level TLIF surgeries and 30 patients that underwent standard one-level TLIF surgeries without the laser. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. At a mean follow-up of 17.4 months, significantly reduced lower back pain scores (P=0.013) were reported in the laser-assisted patient group compared to a standard fusion patient group. Lower extremity radicular pain intensity scores were similar in both groups. Laser-assisted TLIF surgeries showed a tendency (P = 0.07) of shorter operative times that was not statistically significant. Based on this preliminary clinical report, the safety of the CO2 laser device for lumbar fusion surgeries was assessed. There were no neural thermal injuries or other intraoperative laser-related complications encountered in this cohort of patients. Further investigation of CO2 laser-assisted lumbar fusion procedures is warranted in order to evaluate its effect on clinical outcomes.

  11. Research on catalysts for long-life closed-cycle CO2 laser oaperation

    NASA Technical Reports Server (NTRS)

    Sidney, Barry D.; Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin-oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-Langley on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) the effects of various catalyst pretreatment techniques on catalyst efficiency; (2) development of a technique, verified in a 30-hour test, to prevent isotopic scrambling when C(O-18) and (O-18)2 are reacted in the presence of a common-isotope Pt/Sn(O-16)2 catalyst; and (3) development of a mathematical model of a laser discharge prior to catalyst introduction.

  12. [Experimental study of brain lesions after combined coaxial exposure to high-peaked pulse wave form CO2 and Nd: YAG lasers on the brain].

    PubMed

    Tsuyumu, M; Verasques, G; Yamazaki, S; Kuroiwa, T; Suzuki, R; Takei, H; Suzuki, K; Inaba, Y

    1985-04-01

    The CO2 laser is useful for cutting and vaporization but not for coagulation and hemostasis. On the contrary, YAG laser is effective for coagulation and hemostasis but not for cutting. The purpose of this study is to examine the effect of the exposure of combined, coaxial CO2 and YAG laser on the animal brain to supplement the advantages and draw-backs of each other. To compare these results, each of non-combined pulse wave form CO2 and YAG lasers was employed separately. The lasers in this study were pulse wave form CO2 and YAG lasers, employed separately or simultaneously using 130 YZ of Nihon Infrared Industries Company. Japanese white rabbits were anesthetized with pentobarbital. Fronto-parietal burr holes were made, the dura was removed and then Evans blue solution was injected intravenously. The lasers were employed to the cerebral cortex without great vessels using a micromanipulator attached to the operative microscope with a distance of 30 cm. The spot size was 700 mu for CO2 laser and 1200 mu for YAG laser. The first experiment was to see the effect of nine combinations of simultaneous coaxial CO2 of 2, 4 and 8 watts and YAG lasers of 10, 20 and 40 watts, 1 sec on the brain. In the second experiment, also combining two lasers, the exposure time of YAG laser was elongated from 1 or 2 seconds into 2 or 4 seconds and the arrangement of powers was the same as that of the first experiment. The lesions were thus made in 18 different conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Potential technology transfers of research on low-temperature carbon monoxide-oxygen recombination catalysts

    NASA Technical Reports Server (NTRS)

    Poziomek, Edward J.

    1990-01-01

    Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.

  14. The use of laser CO2 in salivary gland diseases

    NASA Astrophysics Data System (ADS)

    Ciolfi, C.; Rocchetti, F.; Fioravanti, M.; Tenore, G.; Palaia, G.; Romeo, U.

    2016-03-01

    Salivary gland diseases can include reactive lesions, obstructive lesions, and benign tumors. All these clinical entities are slow growing. Salivary glands reactive lesions, such as mucoceles, can result from extravasation of saliva into the surrounding soft tissue or from retention of saliva within the duct. Sialolithiasis, one of the most common obstructive lesions, is generally due to calculi, which are attributed to retention of saliva. Monomorphic adenoma is a salivary gland benign tumor, which is exclusively resulted from proliferation of epithelial cells, with no alterations interesting the connective tissue. The elective therapy of these lesions is surgical excision because sometimes they can be accompained by difficulties during chewing and phonation and can interfere with prosthesis's stability. The aim of the study is to evaluate the efficacy of CO2 laser in the treatment of patients with salivary gland diseases. Three different cases - a mucocele, a scialolithiasis and a monomorphic adenoma - were treated with CO2 laser excision (CW and 4W), under local anesthesia. Two different techniques were used: circumferential incision for the adenoma, and mucosa preservation technique for mucocele and sialolithiasis. In each case final haemostasis was obtained by thermocoagulation, but suture was applied to guarantee good healing by sewing up the flaps. The patients were checked after twenty days and the healing was good. The carbon dioxide laser (CO2 laser) was one of the earliest gas laser to be developed, and is still the highest-power continuous wave laser that is currently available. In dentistry the CO2 laser produces a beam of infrared light with the principal wavelength bands centering around 9.4 and 10.6 micrometers. Laser excision can be very useful in oral surgery. In the cases presented CO2 laser offered, differently from traditional surgery, simplified surgical technique, shorter duration of operation, minimal postoperative pain, minimal scarring, bloodless field and the possibility to realize minimally invasive surgery. These advantages made the operation tolerable for the patients, that became more compliant. Optimum functional results can be expected.

  15. Initial experiments with a laser driven Stirling engine

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1976-01-01

    Operation of a Beale free piston Stirling engine with a 40-W CO2 laser is described. Advantages of such a system include: closed-cycle operation, long life, inexpensive construction, and size scalability to 100 MW.

  16. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    NASA Astrophysics Data System (ADS)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (P<0.05). These results indicate that the surface modification due to CO2 laser treatment increases permeability of radicular dentin.

  17. Laser myringotomy with the CO2 Otoscan laser

    NASA Astrophysics Data System (ADS)

    Sedlmaier, Benedikt W.; Jivanjee, Antonio; Schoenfeld, Uwe; Jovanovic, Sergije

    2000-06-01

    Tympanic ventilation is the treatment of choice for otitis media with effusion (OME). CO2 laser myringotomy has already proven its value and is finding increasing clinical application. The ventilation time in the middle ear is essentially determined by the size of the laser perforation. Perforations exceeding 2 mm in diameter enable tympanic ventilation for about three weeks and thus compete with the ventilation tube in the treatment of OME. IN a prospective study, laser myringotomy is performed in 84 children with OME with the new CO2 laser otoscope Otoscan. The closure time was 17 days in average for a preformation diameter of 2 mm. In the further clinical course, the ear-drums healed without atrophic scar formation. In an observation period of six month the recurrency rate of effusion was approximately 10 percent. Laser myringotomy seems to be an useful method in the operative therapy of secretory otitis media.

  18. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    PubMed

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  19. Sealed-off CO2 laser with In-Au alloy sealing

    NASA Astrophysics Data System (ADS)

    Iehisa, N.; Fukaya, K.; Karube, N.

    1986-02-01

    The In-Au alloy sealing was found to satisfy all the requirements imposed on the sealed-off CO2 lasers. The sealing between different materials such as quartz, SUS 303, Si, and ZnSe was shown to withstand the thermal shock test, and gave the He leak rate lower than 1×10-9 atm cc/s both before and after the tests. It was also proved that the transmittance characteristics of dielectric coated output couplers did not change after the sealing. The sealed-off CO2 lasers with La1-xSrxCoO3 perovskite oxide cathodes sealed with this technique produced the operational life of 3000 h at the laser power level of 50 W/m.

  20. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these flights will be presented in this paper.

  1. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  2. Novel CO2 laser robotic controller outperforms experienced laser operators in tasks of accuracy and performance repeatability.

    PubMed

    Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A

    2011-08-01

    To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. Reactivation of a Tin-Oxide-Containing Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment described above, the initial steady-state conversion percentage was 70 percent. After four days, this conversion percentage decreased to 67 percent. No decrease in activity is acceptable because the catalyst must maintain its activity for long periods of time. After being subjected to the reactivation process of the present invention, the conversion percentage rose to 77 percent. Such a reactivation not only returned the catalyst to its initial steady state but resulted in a 10-percent improvement over the initial steady state value.

  4. A new multipurpose CO2 laser therapy instrument.

    PubMed

    Peng, X

    1995-02-01

    A new multipurpose CO2 laser therapy instrument has been developed. It is a highly efficient medical instrument. By use of high laser power density to coagulate, evaporate, and cut body tissue on the nidus, the operation can be controlled and has obvious curative effects. Unlike other kinds of CO2 laser therapy instruments, this device has an advanced switching power supply (SPS) and red guiding light system. With an overcurrent protective device, an overvoltage protective device, and a high-voltage shield device, it provides efficiency, stability, reliability, and low loss. The plastic casing does not leak electricity and the film switches are designed for clinical practice convenience. Additionally, the laser power is numerically displayed and can be set prior to the procedure. The distinct visible guiding light of the laser output makes the operation more convenient and accurate. Because of this unique design and properties, it is a leading model in China. The instrument can be widely used for surgery, gynecology, dermatology, and otolaryngology. The radiation therapy of low laser power density has the effect of being antiinflamatory, analgesic, and antipruritic, and promotes cure of the epithelium. Moreover, it is effective to treat all sorts of sprains, scapulohumeral periarthritis, arthritis, sciatica, and surface ulcers.

  5. Endoscopic removal of PMMA in hip revision surgery with a CO2 laser

    NASA Astrophysics Data System (ADS)

    Sazy, John; Kollmer, Charles; Uppal, Gurvinder S.; Lane, Gregory J.; Sherk, Henry H.

    1991-05-01

    Purpose: to compare CO2 laser to mechanical means of PMMA removal in total hip arthroplasty revision surgery. Materials and methods: Forty-five patients requiring hip revision surgery were studied and compared to historical controls. Cement was removed from the femoral canal utilizing a 30 centimeter laparoscope. A CO2 laser waveguide was passed through the laparoscope into the femoral canal and a TV camera was placed over the eye piece to permit visualization of the depths of the femoral canal on a video monitor. The leg was placed in a horizontal position which avoided the pooling of blood or saline in the depths of the femur. Under direct vision the distal plug could be vaporized with a 40 centimeter CO2 laser waveguide. Power settings of 20 to 25 watts and a superpulsed mode were used. A 2 mm suction tube was welded to the outside of the laparoscope permitting aspiration of the products of vaporization. Results: Of 45 hip revisions there were no shaft perforation, fractures or undue loss of bone stock. There was no statistically different stay in hospital time, blood loss or operative time between the CO2 revision group compared to the non-laser revision group, in which cement was removed by mechanical methods. Conclusions: Mechanical methods used in removing bone cement using high speed burrs, reamers, gouges, and osteotomies is technically difficult and fraught with complications including shaft fracture, perforations, and unnecessary loss of bone stock. The authors' experience using the CO2 laser in hip revision surgery has permitted the removal of bone cement. Use of a modified laparoscope has allowed for precise, complete removal of bone cement deep within the femoral shaft without complication or additional operative time. The authors now advocate the use of a CO2 laser with modified laparoscope in hip revision surgery in which bone cement is to be removed from within the femoral shaft.

  6. New Principles In Operating Gastro-Intestinal Tract With CO2 Laser

    NASA Astrophysics Data System (ADS)

    Skobelkin, O. K.; Litwin, G. D.; Smoljaninov, M. V.; Brehov, E. I.; Rjabov, V. I.; Kirpitchev, A. G.

    1988-06-01

    Laser devicea are becoming morn popular in surgery. They are mainly used for controling hemorrages through an endoscope, for radicalevaporating benign and small malignant tumors in esophagus, stomach, colon, and for palliative destruction of inoperable tumors to recanalize the lumen. According, to literature operations on abdominal parenchymal organs with laser are rather seldom. And the operations with laser on hollow organs of digestive tract are being mainly performed in the USSR, and they being rather effective.

  7. Stabilization of the composition of the gas medium of a repetitively pulsed CO2 laser by means of hopcalite

    NASA Astrophysics Data System (ADS)

    Baranov, V. Iu.; Drokov, G. F.; Kuzmenko, V. A.; Mezhevov, V. S.; Pigulskaia, V. V.

    1986-05-01

    Results of experiments in which hopcalite was used to stabilize the composition of the gas medium of repetitively pulsed and monopulse CO2 lasers are reported. In particular, the mechanisms of the decrease in the catalyst activity with time under conditions for catalyst regeneration are determined. It is shown that the use of hopcalite has made it possible to achieve long-term operation of a high-power repetitively pulsed CO2 laser without changing the gas mixture in a closed circuit. Some details related to the use of hopcalite are discussed.

  8. Functional and Physical Outcomes following Use of a Flexible CO2 Laser Fiber and Bipolar Electrocautery in Close Proximity to the Rat Sciatic Nerve with Correlation to an In Vitro Thermal Profile Model

    PubMed Central

    Robinson, A. M.; Fishman, A. J.; Bendok, B. R.; Richter, C.-P.

    2015-01-01

    This study compared functional and physical collateral damage to a nerve when operating a Codman MALIS Bipolar Electrosurgical System CMC-III or a CO2 laser coupled to a laser, with correlation to an in vitro model of heating profiles created by the devices in thermochromic ink agarose. Functional damage of the rat sciatic nerve after operating the MALIS or CO2 laser at various power settings and proximities to the nerve was measured by electrically evoked nerve action potentials, and histology of the nerve was used to assess physical damage. Thermochromic ink dissolved in agarose was used to model the spatial and temporal profile of the collateral heating zone of the electrosurgical system and the laser ablation cone. We found that this laser can be operated at 2 W directly above the nerve with minimal damage, while power settings of 5 W and 10 W resulted in acute functional and physical nerve damage, correlating with the maximal heating cone in the thermochromic ink model. MALIS settings up to 40 (11 W) did not result in major functional or physical nerve damage until the nerve was between the forceps tips, correlating with the hottest zone, localized discretely between the tips. PMID:25699266

  9. Improving the outcome of fractional CO2 laser resurfacing using a probiotic skin cream: Preliminary clinical evaluation.

    PubMed

    Zoccali, Giovanni; Cinque, Benedetta; La Torre, Cristina; Lombardi, Francesca; Palumbo, Paola; Romano, Lucia; Mattei, Antonella; Orsini, Gino; Cifone, Maria Grazia; Giuliani, Maurizio

    2016-11-01

    As known, fractional CO 2 resurfacing treatments are more effective than non-ablative ones against aging signs, but post-operative redness and swelling prolong the overall downtime requiring up to steroid administration in order to reduce these local systems. In the last years, an increasing interest has been focused on the possible use of probiotics for treating inflammatory and allergic conditions suggesting that they can exert profound beneficial effects on skin homeostasis. In this work, the Authors report their experience on fractional CO 2 laser resurfacing and provide the results of a new post-operative topical treatment with an experimental cream containing probiotic-derived active principles potentially able to modulate the inflammatory reaction associated to laser-treatment. The cream containing DermaACB (CERABEST™) was administered post-operatively to 42 consecutive patients who were treated with fractional CO 2 laser. All patients adopted the cream twice a day for 2 weeks. Grades were given according to outcome scale. The efficacy of the cream containing DermaACB was evaluated comparing the rate of post-operative signs vanishing with a control group of 20 patients topically treated with an antibiotic cream and a hyaluronic acid based cream. Results registered with the experimental treatment were good in 22 patients, moderate in 17, and poor in 3 cases. Patients using the study cream took an average time of 14.3 days for erythema resolution and 9.3 days for swelling vanishing. The post-operative administration of the cream containing DermaACB induces a quicker reduction of post-operative erythema and swelling when compared to a standard treatment.

  10. Strong-field physics with mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    2002-04-01

    Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 μm wavelength CO2 laser reaches a 100 times higher ponderomotive potential than the 1 μm wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO2 lasers are in operation. Further more, proposals for the 100 TW, 100 fs CO2 lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO2 lasers, sub-petawatt projects, and prospective applications in strong-field science. .

  11. STRONG FIELD PHYSICS WITH MID INFRARED LASERS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.

    2001-08-27

    Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 {micro}m wavelength CO{sub 2} laser reaches a 100 times higher ponderomotive potential than the 1 {micro}m wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO{sub 2} lasers aremore » in operation. Further more, proposals for the 100 TW, 100 fs CO{sub 2} lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO{sub 2} lasers, sub-petawatt projects, and prospective applications in strong-field science.« less

  12. Corneal cut closure using temperature-controlled CO2 laser soldering system.

    PubMed

    Tal, Kfir; Strassmann, Eyal; Loya, Nino; Ravid, Avi; Kariv, Noam; Weinberger, Dov; Katzir, Abraham; Gaton, Dan D

    2015-05-01

    We aimed to evaluate the effectiveness of temperature-controlled laser soldering for repair of large perforated corneas in a porcine model. Eight Yorkshire pigs aged 6 months underwent 6-mm-deep 180° crescent-shaped trephination of the central corneas. Right corneal injuries were repaired by placement of 47 % bovine albumin along the cut followed by CO2 laser soldering (power density 16 W/cm(2)) to a target temperature of 65(°). Left corneal injuries were repaired with 10/0 nylon sutures. The groups were compared for operative time, leakage, and histopathological findings. Mean tissue temperature was 63 ± 4 °C. Mean operative time was 31.57 ± 2.8 min in laser-soldered eyes and 41.38 ± 2.3 min in controls (p < 0.0001, unpaired Student's t test). Compared to controls, the soldered corneas had less neovascularization, complete re-epithelization, and mild stromal inflammation. There was no leakage in either group. Combined CO2 laser and radiometer is effective for the in vivo repair of corneal cuts. These results have important implications for modern corneal surgery. Further studies are needed in the clinical setting.

  13. Experimental study of CO/sub 2/-laser-induced histological effects on human fallopian tube: determination of CO/sub 2/ laser parameters to be used in microsurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foulot, H.; Lefebvre, G.; Jagueux, M.

    This experiment investigates CO/sub 2/-laser-induced histological effects on fallopian tubes obtained during hysterectomies in women. Tubal transversal sections were performed at isthmic and ampullar sites. Forty strips were available for histological study of the cut section area. The role of different parameters such as radiation power and beam fractionation (continuous versus pulsed) on tissue lesions was assessed. In tubal microsurgery, the CO/sub 2/ laser can be used as a scalpel with the predominant advantage of minimal tissular alterations. As a result of this study, our recommended parameters are the following: radiation power, 7-10 W; beam focalization zone, 0.2 mm; energymore » density, 20,000-35,000 W/cm2; continuous operation; moving speed, 1 cm/s.« less

  14. Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF2 and Nd,Y:CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Pang, Siyuan; Ma, Fengkai; Yu, Hao; Qian, Xiaobo; Jiang, Dapeng; Wu, Yongjing; Zhang, Feng; Liu, Jie; Xu, Jiayue; Su, Liangbi

    2018-05-01

    Spectroscopic properties of Nd:CaF2 crystals are investigated. The photoluminescence intensity in the near infrared region is drastically enhanced by co-doping Gd3+ ions and Y3+ in Nd:CaF2 crystals. Preliminary laser experiments are carried out with 0.3%Nd,5%Gd:CaF2 and 0.3%Nd,5%Y:CaF2 crystals under laser diode pumping; true continuous wave laser operation is achieved with slope efficiencies of 42% and 39%, respectively, and the maximum output power reaches 1.188 W.

  15. Selected applications of Er:YAG and CO2 lasers for treatment of benign neoplasms and tumorous lesions in the mouth.

    PubMed

    Błochowiak, Katarzyna; Andrysiak, Piotr; Sidorowicz, Krzysztof; Witmanowski, Henryk; Hędzelek, Wiesław; Sokalski, Jerzy

    2015-10-01

    Benign neoplasms and hyperplastic tumorous lesions are common oral pathologies. These lesions require to be surgically removed by conventional surgery, laser, or electrosurgery. Surgical treatment aims at complete removal of pathological lesions and ensuring proper healing of the tissues to minimize the risk of lesion recurrence. To present possible applications of Er:YAG and CO2 lasers in removal of benign neoplasms and tumorous lesions developing on oral mucosa as well as to specify indications and limitations of these two methods. Temperature-induced injuries due to laser light application, possibility of post-operative histopathological evaluation of the removed tissue, efficacy of the cut and coagulation, healing process and completeness of laser surgeries give rise to our special concern. The main asset of the CO2 laser comparing to Er:YAG laser is an effective coagulation while thermal injury to the tissues is its limitation, especially with multiple passage of the beam and too high power applied. Er:YAG laser application does not exclude histopathological examination of the removed lesion tissue which is its advantage over CO2 laser. Still, insufficient coagulation is a limitation ofits use in the case of richly vascularized lesions.

  16. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  17. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  18. [Therapy of adult-onset laryngeal papilloma: integrallty submucosal dissection of the tumor by CO2 laser].

    PubMed

    Lei, W B; Liu, Q H; Chai, L P; Zhu, X L; Wang, Z F; Li, Q M; Tang, H C; Jiang, A Y; Wen, Y H; Wen, W P

    2016-10-07

    Objective: To evaluate the feasibility and efficacy of the integrallty submucosal resection of adult-onset laryngeal papilloma by CO 2 laser. Methods: A group of 64 cases (36 males and 28 females, multipe lesions 54 cases and single lesion 10 cases, aged 18-75 years, mean age 43.13 years) with adult-onset laryngeal papilloma encountered in the first affliated hospital of Sun Yatsen university from 2009 to 2015 was retrospectively analyzed. All cases were treated with integrallty submucosal dissection of the tumor by CO 2 laser, and observed the changes of tumor integral scope, inter-operative, operative processes, postoperative voice quality, postoperative scarring, and the tracheotomy conditions, which were analysed and evaluated. Results: A total of 64 patients were followed up from 1 year to 5 years. Preoperative tumor integral scope of these patients averaged of 7.00. A total of 62 cases kept 0 score of the tumor integral scope for at least one year, which lead to a clinical cure rate of 96.9%. The inter-operative averaged of 25.7 months. The total operative processes of these patients were 87 times (mean time 1.36). Four cases resulted in postoperative scarring. However these was a good result in postoperative voice quality with a mean score 4.25. As to the changes of tumor integral scope, all cases got a declining score (mean score 6.72), which resulted in a remission rate of 100%. Conclusion: The integrallty submucosal dissection of adult-onset 1aryngeal papilloma by CO 2 laser was an effective way to reduce the tumor integral scope; lengthen their inter-operative; decrease the operative processes, avoid the occurrence of tracheotomy; and improve the postoperative voice quality. Most of the patients could even be cured ultimately.

  19. In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications.

    PubMed

    Vieira, K A; Steiner-Oliveira, C; Soares, L E S; Rodrigues, L K A; Nobre-dos-Santos, M

    2015-02-01

    This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm(2). The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.

  20. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  1. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study.

    PubMed

    Salvatore, Stefano; Leone Roberti Maggiore, Umberto; Athanasiou, Stavros; Origoni, Massimo; Candiani, Massimo; Calligaro, Alberto; Zerbinati, Nicola

    2015-08-01

    Microablative fractional CO2 laser has been proven to determine tissue remodeling with neoformation of collagen and elastic fibers on atrophic skin. The aim of our study is to evaluate the effects of microablative fractional CO2 laser on postmenopausal women with vulvovaginal atrophy using an ex vivo model. This is a prospective ex vivo cohort trial. Consecutive postmenopausal women with vulvovaginal atrophy managed with pelvic organ prolapse surgical operation were enrolled. After fascial plication, the redundant vaginal edge on one side was treated with CO2 laser (SmartXide2; DEKA Laser, Florence, Italy). Five different CO2 laser setup protocols were tested. The contralateral part of the vaginal wall was always used as control. Excessive vagina was trimmed and sent for histological evaluation to compare treated and nontreated tissues. Microscopic and ultrastructural aspects of the collagenic and elastic components of the matrix were studied, and a specific image analysis with computerized morphometry was performed. We also considered the fine cytological aspects of connective tissue proper cells, particularly fibroblasts. During the study period, five women were enrolled, and 10 vaginal specimens were finally retrieved. Four different settings of CO2 laser were compared. Protocols were tested twice each to confirm histological findings. Treatment protocols were compared according to histological findings, particularly in maximal depth and connective changes achieved. All procedures were uneventful for participants. This study shows that microablative fractional CO2 laser can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue.

  2. Range Resolved CO2 Atmospheric Backscattering Measurements Using Fiber Lasers and RZPN Code Modulation

    NASA Technical Reports Server (NTRS)

    Burris, John

    2011-01-01

    We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.

  3. A 490 W transversely excited atmospheric CO2 spark gap laser with added H2

    NASA Astrophysics Data System (ADS)

    Zand, M.; Koushki, A. M.; Neshati, R.; Kia, B.; Khorasani, K.

    2018-02-01

    In this paper we present a new design for a high pulse repetition rate transversely excited atmospheric CO2 laser with ultraviolet pre-ionization. A new method of fast thyristor capacitor charging and discharging by a spark gap is used. The effect of H2 gas addition on the output and stability of a transversely excited atmospheric laser operating with a basic mixture of CO2, N2 and He is investigated. The output power was increased by adding H2 to the gas mixture ratio of CO2:N2:He:H2  =  1:1:8:0.5 at total pressure of 850 mbar. An average power of 490 W at 110 Hz with 4.5 J per pulse was obtained. The laser efficiency was 11.2% and oxygen gas was used in the spark gap for electron capture to reduce the recovery time and increase the repetition rate.

  4. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    NASA Astrophysics Data System (ADS)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  5. [Successful use of C02 laser in septic surgery].

    PubMed

    Tóth, T; Benedek, G

    1990-12-02

    The authors have performed 29 septic operations with a TLS61 CO2 surgical laser with 60 Watt output power. They have gained good experiences with the laser excision of the vascularized, bleeding, inflammated, penetrated by bacteries and infected wounds.

  6. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; hide

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to >24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.

  7. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  8. Laser-Based Monitoring of CH4, CO2, NH3, and H2S in Animal Farming—System Characterization and Initial Demonstration

    PubMed Central

    Jaworski, Piotr; Nikodem, Michał

    2018-01-01

    In this paper, we present a system for sequential detection of multiple gases using laser-based wavelength modulation spectroscopy (WMS) method combined with a Herriot-type multi-pass cell. Concentration of hydrogen sulfide (H2S), methane (CH4), carbon dioxide (CO2), and ammonia (NH3) are retrieved using three distributed feedback laser diodes operating at 1574.5 nm (H2S and CO2), 1651 nm (CH4), and 1531 nm (NH3). Careful adjustment of system parameters allows for H2S sensing at single parts-per-million by volume (ppmv) level with strongly reduced interference from adjacent CO2 transitions even at atmospheric pressure. System characterization in laboratory conditions is presented and the results from initial tests in real-world application are demonstrated. PMID:29425175

  9. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  10. Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers.

    PubMed

    Louchev, Oleg A; Urata, Yoshiharu; Saito, Norihito; Wada, Satoshi

    2007-09-17

    A computational model for operation of co-doped Tm,Ho solid-state lasers is developed coupling (i) 8-level rate equations with (ii) TEM00 laser beam distribution, and (iii) complex heat dissipation model. Simulations done for Q-switched approximately 0.1 J giant pulse generation by Tm,Ho:YLF laser show that approximately 43% of the 785 nm light diode side-pumped energy is directly transformed into the heat inside the crystal, whereas approximately 45% is the spontaneously emitted radiation from (3)F(4), (5)I(7) , (3)H(4) and (3)H(5) levels. In water-cooled operation this radiation is absorbed inside the thermal boundary layer where the heat transfer is dominated by heat conduction. In high-power operation the resulting temperature increase is shown to lead to (i) significant decrease in giant pulse energy and (ii) thermal lensing.

  11. Quasi-cw 20-W tunable 1-sec pulse CO/sub 2/ laser for optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, L.E.; Barkley, H.J.

    1984-05-01

    A four-section CO/sub 2/ laser is described which can produce 20 W in fundamental mode during a 1-sec pulse with a frequency tuning range of +- 300 MHz. It operates at 200-Torr pressure using sonic axial flow to inhibit the discharge column from filamenting. The input power density is 598 W cm/sup -3/ corresponding to an efficiency of 2%.

  12. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    PubMed

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and p<.001, respectively), and for staphylococci, diphtheroids, and yeasts compared with the scalpel-inflicted wound on the same day (p=0.029, p<.001, and p=.030, respectively). Skin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  13. Laser CO2 tonsillotomy versus argon plasma coagulation (APC) tonsillotomy: A retrospective study with 10-year follow-up.

    PubMed

    Papaspyrou, Giorgos; Linxweiler, Maximilian; Knöbber, Dirk; Schick, Bernhard; Al Kadah, Basel

    2017-01-01

    Tonsillotomy is increasingly gaining acceptance as the treatment for tonsillar hyperplasia resulting in obstructive symptoms. The aim of this study was to compare the long-term results of CO 2 laser tonsillotomy with those of argon plasma coagulation (APC) tonsillotomy. The data of 64 children, aged 2-10 years (mean 4.7 years), treated in the Department of Otolaryngology, Head and Neck Surgery, in Homburg, Germany with APC (36 patients) or CO 2 laser (28 patients) for tonsillar hyperplasia between June 2004 and December 2004 were available for analysis. Forty-five (APC: 26 patients, CO 2 : 19 patients) of the 64 patients (70.3%) could be contacted and were available for follow-up in a telephone survey conducted 10 years after surgery. The mean operation time was 17 min (range 10-25 min) in the APC group and 23 min (range 13-32 min) in the CO 2 group (p = 0.0003). No case of intra- or postoperative bleeding was documented. One minor intraoperative complication in the form of a superficial lip burn was documented in the APC group. During the minimum 10 years of follow-up, 1 patient treated with APC underwent a surgical revision because of tonsillar regrowth, whereas in the group of patients treated with CO 2 , no surgical revision was needed. Regarding the parents' assessment of their children's symptoms, 89.4% of the parents of the CO 2 laser group and 84.6% of the parents of the APC group reported that the overall long-term operation results of their children to be "very satisfying." Regarding complications, the need for secondary tonsillectomy, and parents' satisfaction, no statistically significant differences were found. Both CO 2 laser tonsillotomy and APC tonsillotomy are safe procedures leading to very satisfying results with respect to intra- and postoperative complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  15. Performance of one hundred watt HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-03-01

    We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as: combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting, and mitigation with magnetic field, have been developed in Gigaphoton Inc. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. Based on these data we are developing first practical source for HVM - "GL200E". This data means 250W EUV power will be able to realize around 20kW level pulsed CO2 laser. We have reported engineering data from our recent test such around 43W average clean power, CE=2.0%, with 100kHz operation and other data 19). We have already finished preparation of higher average power CO2 laser more than 20kW at output power cooperate with Mitsubishi Electric Corporation 14). Recently we achieved 92W with 50kHz, 50% duty cycle operation 20). We have reported component technology progress of EUV light source system. We report promising experimental data and result of simulation of magnetic mitigation system in Proto #1 system. We demonstrated several data with Proto #2 system: (1) emission data of 140W in burst under 70kHz 50% duty cycle during 10 minutes. (2) emission data of 118W in burst under 60kHz 70% duty cycle during 10 minutes. (3) emission data of 42W in burst under 20kHz 50% duty cycle (10000pls/0.5ms OFF) during 3 hours (110Mpls). Also we report construction of Pilot #1 system. Final target is week level operation with 250W EUV power with CE=4%, more than 27kW CO2 laser power by the end of Q2 of 2015.

  16. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  17. Catalysts for long-life closed-cycle CO2 lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Sidney, Barry D.; Miller, Irvin M.; Hess, Robert V.; Wood, George M.; Batten, Carmen E.; Burney, Lewis G.; Hoyt, Ronald F.; Paulin, Patricia A.; Brown, Kenneth G.

    1987-01-01

    Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst.

  18. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  19. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  20. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  1. Multispecies absorption spectroscopy of detonation events at 100  kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system.

    PubMed

    Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R

    2016-08-10

    A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.

  2. Studies of long-life pulsed CO2 laser with Pt/SnO2 catalyst

    NASA Technical Reports Server (NTRS)

    Sidney, Barry D.

    1987-01-01

    Closed-cycle CO2 laser testing with and without a catalyst and with and without CO addition indicate that a catalyst is necessary for long-term operation. Initial results indicate that CO addition with a catalyst may prove optimal, but a precise gas mix has not yet been determined. A long-term run of 10 to the 6th power pulses using 1.3% added CO and a 2% Pt on SnO2 catalyst yields an efficiency of about 95% of open-cycle steady-state power. A simple mathematical analysis yields results which may be sufficient for determining optimum running conditions. Future plans call for testing various catalysts in the laser and longer tests, 10 to the 7th power pulses. A Gas Chromatograph will be installed to measure gas species concentration and the analysis will be slightly modified to include neglected but possibly important parameters.

  3. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  4. Selective ablation of carious lesions using an integrated near-IR imaging system and a novel 9.3-μm CO2 Laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Nathaniel M.; Fried, Daniel

    2018-02-01

    Previous studies have shown that reflectance imaging at wavelengths greater than 1200-nm can be used to image demineralization on tooth occlusal surfaces with high contrast and without the interference of stains. In addition, these near-IR imaging systems can be integrated with laser ablation systems for the selective removal of carious lesions. Higher wavelengths, such as 1950-nm, yield higher lesion contrast due to higher water absorption and lower scattering. In this study, a point-to-point scanning system employing diode and fiber lasers operating at 1450, 1860, 1880, and 1950-nm was used to acquire reflected light images of the tooth surface. Artificial lesions were imaged at these wavelengths to determine the highest lesion contrast. Near-IR images at 1880-nm were used to demarcate lesion areas for subsequent selective carious lesion removal using a new compact air-cooled CO2 laser prototype operating at 9.3-μm. The highest lesion contrast was at 1950-nm and the dual NIR/CO2 laser system selectively removed the simulated lesions with a mean loss of only 12-μm of sound enamel.

  5. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  6. New technologies in dentistry

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima A. A.; Brugnera, Aldo, Jr.; Pecora, Jesus D.

    1999-05-01

    The technology in dentistry has been developed significantly lately, increasing the technological level of new materials, methods and equipment have been developed. Undoubtedly the CO2 laser has contributed to this evolution particular to the treatment of the infected dentin. CO2 laser can sterilize and promote increase 6 to 8 times of dentin resistance, through the transformation the hydroxyapatite in calcium-phosphato-hydroxyapatite. We can reassure our patients about the use of pulsed CO2 laser due to better preservation of dental structure and its benefits permitting advanced esthetic treatments. The CEREC system, registers a tri-dimensional image of the preparation through a scan system, and sends it to the computer and the operator will edit the restorations so the equipment will finish porcelain restoration. The authors used a new laser 650 nm for caries detection and the other low lever laser (670 nm and 730 nm) considered an auxiliary method to prevent and treat the hypersensitivity in dentin.

  7. Intense pulsed light and laser treatment regimen improves scar evolution after cleft lip repair surgery.

    PubMed

    Peng, Lihong; Tang, Shijie; Li, Qin

    2018-06-19

    To observe the effects of intense pulsed light (IPL) and lattice CO 2 laser treatment on scar evolution following cleft lip repair. Fifty cleft lip repair patients were enrolled in this study. Twenty-five patients used conventional approach with scar cream massage combined with silica gel products after operation. While other 25 patients which received IPL and lattice CO 2 laser treatments. The treatments commenced 1 week after removal of stitches and observation of scar hyperplasia. Scar evolution was evaluated with the Vancouver scar scale (VSS) by postoperative photographs. Relative to the conventional approach, the laser treatments showed improved scar softening and flattening. These differences were reflected in the groups' significantly different VSS scores. Intense pulsed light combined with lattice CO 2 laser treatment can improve cleft lip surgery scar pliability and appearance, while alleviating children from having to endure the pain of scar massage. © 2018 Wiley Periodicals, Inc.

  8. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  9. Differential expression of myofibroblasts on CO2 laser wounds and scalpel wounds: an experimental model

    NASA Astrophysics Data System (ADS)

    Machado, R. M.; Oliveira, C. R. B.; Vitória, L. A.; Xavier, F. C. A.; Pinheiro, A. L. B.; Freitas, A. C.; Ramalho, L. M. P.

    2018-04-01

    Wound contraction of both traumatic and surgical origin may reduce or limit the function of the tissue. Myofibroblasts are cells involved on the process of wound contraction, which is smaller on CO2 Laser wounds. The aims of this study were to quantitative and statistically assess the presence of myofibroblasts on both conventional and CO2 Laser wounds. Thirty-two animals (rattus norvegicus) were divided into four groups and operated using either the CO2 Laser (groups A1 and A2) or conventional scalpel (groups B1 and B2). The animals were sacrificed eight days post-operatively (groups: A1 and B1) and 14th days after surgery (groups: A2 and B2). The spec imens we re routinely processed to wax and stained with a-Smooth Muscle Actin (aSMA) and analyzed under light microscopy (40X). Two standard areas around the wound of each slide were selected and used to count the number of myofribroblasts present using a calibrated eyepiece and a graticule. The number of myofibroblasts at day eight was significantly higher than at day 14th. Comparison of the two techniques at day eight showed significant differences between the two groups (Laser, p=0.007 and scalpel, p=0.001). The number of cells present on group B1 was significantly higher than group A1 (p=0.001). However at the 14th day there was no such difference (p=0,072). It is concluded that the small number of myofibroblasts at day eight after wounding with the CO2 Lasermay be the reason why contraction on this wound is smaller than the one observed in conventional surgery.

  10. Thirty-eight cases of Bartholin's cyst treated with laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhenguo

    1993-03-01

    Bartholin's cyst is a common disease of gynecology. It is cystic expansion of the gland tubes, which is caused by scar and infection. Forty years ago this disease was completely cut away by operation. In 1966, someone thought that cystostomy was a certain treatment method. Although there are many therapies used to treat this disease, e.g., incision drainage, excision, puncture, etc., they all have a better or worse side. In the past two years we used CO2 laser to treat patients in our hospital. Comparing outpatients with inpatients, the writer thinks that inpatients treated with laser (CO2) have less bleeding, less pain, faster recovery, and a higher success rate. This operation is done in the clinic and its both convenient and cheap. This method is one of the valuable methods which is worth spreading. From April 1989 to April 1991, 74 patients were treated with traditional operation and drug treatment. Another 38 patients were treated with the laser in the clinic. Clinical treatment results are contained here.

  11. CO2 laser nerve stimulator with flat-top irradiance profile for human pain research

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan Gerard

    Human pain research aims to further the understanding of how pain is processed by the body. Studies require a reproducible, quantifiable, scalable, pain specific and safe stimulus. Using laser light to raise the temperature of the skin to painful levels is a good method of satisfying these conditions. The CO[2] laser is an ideal source because its infrared radiation is readily absorbed in the upper layers of the skin, where the free nerve endings of pain-conveying fibres are located, causing localised heating and evoking pain. A pain stimulator based on a CO[2] laser has been developed. It is computer controlled with a graphical interface so that non specialists can easily operate the laser. Safety features have been incorporated to protect the operator and the subject. These include activation of a shutter to block the beam and shut-down of the laser, when, for example, potentially harmful laser parameters are selected or abnormal signals are sent to the laser. The CO[2] laser normally operates in TEM[00] mode, i.e. the irradiance of the beam decreases roughly exponentially from the centre. This is not ideal for thermal stimulation, since it will generate a temperature that also has a peak in the centre of the beam. This will result in non-uniform activation of nerve fibres. Lenses have been developed to redistribute the energy of the beam to produce a flattened super Gaussian irradiance profile for uniform heating of the skin. The shape of the lenses was determined by geometrical optics. They work by refracting the more intense central part of the beam towards the periphery. Solution of the heat transfer equation by a finite differences method, confirmed that the super Gaussian profile generated by the bean shaper produces a more uniform temperature distribution in skin. The model was also used to predict how varying skin parameters, such as thickness and water content, affects the temperature generated by irradiation with a CO[2] laser beam. The predicted skin temperatures matched the temperatures measured during thermal stimulation with the laser. The risk of damaging the tissue was also calculated from the modelled temperature distribution. Psychophysical techniques were used to characterise the laser stimulator compared to an existing laser stimulator. Differences in the temporal provides of the lasers resulted in different pain sensations for beams of the same energy. The conduction velocities of thermally stimulated fibres were estimated by recording the reaction time to laser irradiation. It was found that the super Gaussian beam evokes pain at a lower temperature than a TEM[00] beam. It is, therefore, a safer source for evoking pain in human pain studies.

  12. An Island Flap Technique for Laryngeal Intracordal Mucous Retention Cysts.

    PubMed

    Izadi, Farzad; Ghanbari, Hadi; Zahedi, Sahar; Pousti, Behzad; Maleki Delarestaghi, Mojtaba; Salehi, Abolfazl

    2015-09-01

    Mucous retention cysts are a subtype of intracordal vocal cysts that may occur spontaneously or may be associated with poor vocal hygiene, and which require optimal treatment. The objective of this study was to present a new laser-assisted microsurgery technique for treating intracordal mucous retention cysts and to describe the final outcomes. In this prospective study, we assessed the pre-operative and post-operative acoustic analysis, maximum phonation time (MPT), and voice handicap index (VHI) of four patients with a diagnosis of mucous retention cyst. The island flap technique was applied to all patients without any complications. In this procedure, we favored the super-pulse mode using a 2-W power CO2 laser to remove the medial wall of the cyst, before clearing away the lateral wall margins of the cyst using repeat-pulse mode and a 2-W power CO2 laser. Indeed, we maintained the underlying epithelium and lamina propria, including the island flap attached to the vocal ligament. There was a statistically significant improvement in the MPT (pre-op,11.05 s; post-op,15.85 s; P=0.002) and the VHI (pre-operative, 72/120; post-operative,27/120; P=0.001) in all patients. Moreover, jitter and shimmer were refined after surgery, but there was no statistically significant relationship between pre-operative and post-operative data (P=0.071) (P=0.622). In the follow-up period (median, 150 days), there was no report of recurrence or mucosal stiffness. The island flap procedure in association with CO2 laser microsurgery appears to be a safe and effective treatment option for intracordal mucous retention cysts, but needs further investigation to allow comparison with other methods.

  13. An Island Flap Technique for Laryngeal Intracordal Mucous Retention Cysts

    PubMed Central

    Izadi, Farzad; Ghanbari, Hadi; Zahedi, Sahar; Pousti, Behzad; Maleki Delarestaghi, Mojtaba; Salehi, Abolfazl

    2015-01-01

    Introduction: Mucous retention cysts are a subtype of intracordal vocal cysts that may occur spontaneously or may be associated with poor vocal hygiene, and which require optimal treatment. The objective of this study was to present a new laser-assisted microsurgery technique for treating intracordal mucous retention cysts and to describe the final outcomes. Materials and Methods: In this prospective study, we assessed the pre-operative and post-operative acoustic analysis, maximum phonation time (MPT), and voice handicap index (VHI) of four patients with a diagnosis of mucous retention cyst. The island flap technique was applied to all patients without any complications. In this procedure, we favored the super-pulse mode using a 2-W power CO2 laser to remove the medial wall of the cyst, before clearing away the lateral wall margins of the cyst using repeat-pulse mode and a 2-W power CO2 laser. Indeed, we maintained the underlying epithelium and lamina propria, including the island flap attached to the vocal ligament. Results: There was a statistically significant improvement in the MPT (pre-op,11.05 s; post-op,15.85 s; P=0.002) and the VHI (pre-operative, 72/120; post-operative,27/120; P=0.001) in all patients. Moreover, jitter and shimmer were refined after surgery, but there was no statistically significant relationship between pre-operative and post-operative data (P=0.071) (P=0.622). In the follow-up period (median, 150 days), there was no report of recurrence or mucosal stiffness. Conclusion: The island flap procedure in association with CO2 laser microsurgery appears to be a safe and effective treatment option for intracordal mucous retention cysts, but needs further investigation to allow comparison with other methods. PMID:26568936

  14. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  15. Passively Q-switched 1.6 µm Er:YAG laser with a γ-Ga2O3:Co-based glass-ceramics as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Gao, Chunqing; Ye, Qing; Wang, Shuo; Wang, Qing; Gao, Mingwei; Loiko, Pavel; Skoptsov, Nikolai; Dymshits, Olga; Zhilin, Alexander; Zapalova, Svetlana; Tsenter, Marina; Vitkin, Vladimir; Mateos, Xavier; Yumashev, Konstantin

    2018-04-01

    A resonantly pumped passively Q-switched Er:YAG laser operating at 1.617 and 1.645 µm is reported with γ-Ga2O3:Co2+-based glass-ceramics (GCs) as a saturable absorber. The maximum average output power achieved from this laser was 273 mW; the highest pulse energy was 5.9 µJ, corresponding to a pulse duration of 3.0 µs at a repetition frequency of 31 kHz. To the best of our knowledge, this is the first time to use the γ-Ga2O3:Co2+-based GC as a passive Q-switcher for Er:YAG lasers and this is also the first time to obtain 1.617 µm and 1.645 µm pulses with a GC-based saturable absorber.

  16. A Compact Reliable Laser Surgery Instrument

    NASA Astrophysics Data System (ADS)

    Zhuang, Dounan; Yu, Guiqiu; Chen, Taolue

    1989-09-01

    Now, more and more hospitals and doctors in the world are getting interested in laser medicine, more and more people are getting understanding on laser surgery operations and physical therapy. Following the cotinuous comprehensive investigation of laser medicine, the clinical applications of laser has been further expanded and per a lot of indications have been found. As is well known, CO2 laser is one of the most famous medical lasers. In recent years, we concentrate our at to it, a new minitype CO2 laser surgery instrument has been built after improving repeately, the improvement depends on the experiences of hundreds of doctors in hundreds of hospitals for curing ten thousands cases. Our new laser surgery instrument has been improved in five-main characters: 1) Expanding the range of adjustable power into 3-10 W; 2) Making the laser output flexible, dose from 0.1--105 W/cm2 for different cures; 3) Expanding its applications into about 50 indications of general surgery, dermatology, otolaryngology, and gynecology. Which have been proven effective or very effective.

  17. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  18. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  19. Comparison of carbon dioxide laser-assisted versus stapler-assisted endoscopic cricopharyngeal myotomy.

    PubMed

    Pollei, Taylor R; Hinni, Michael L; Hayden, Richard E; Lott, David G; Mors, Matthew B

    2013-09-01

    We directly compared endoscopic carbon dioxide (CO2) laser and stapler treatment methods for both cricopharyngeal hypertrophy (CPH) and Zenker's diverticulum (ZD). We performed a single-institution retrospective chart review of 153 patients who underwent either CO2 laser-assisted or stapler-assisted endoscopic cricopharyngeal myotomy (CPM). Isolated CPH was more likely to be treated with the CO2 laser than by stapler techniques. The ZD pouch size decreased significantly after surgery in both laser (p = 0.04) and stapler (p = 0.008) groups. The average duration of the procedure for CPM was longer for the laser than for the stapler (p = 0.01). Both techniques were successful when used in revision procedures. The overall complication rates were not statistically significantly different. Laser surgery trended toward a higher rate of major complications (2.4% versus 0%). Symptomatic recurrence was more likely after stapler surgery (p = 0.002). The rates of revision surgery were similar in the two groups (3.3% for laser and 4.3% for stapler). In the treatment of isolated CPH or ZD, stapler-assisted endoscopic surgery results in a shorter operative time, whereas laser-assisted CPM results in a decreased incidence of symptomatic recurrence.

  20. Development of a 2-micron Pulsed Direct Detection IPDA Lidar for CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Singh, U. N.

    2013-12-01

    NASA Langley is developing a 2-micron pulsed Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. The objective of this development is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable a first proof of principle demonstration of airborne direct detection CO2 measurements at 2-micron wavelength. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. The system is scheduled to fly on NASA UC12 or B200 research aircrafts before the end of 2013. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation.

  1. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    NASA Astrophysics Data System (ADS)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  2. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  3. CO2 laser laparoscopic surgery. Adhesiolysis, salpingostomy, laser uterine nerve ablation and tubal pregnancy.

    PubMed

    Donnez, J; Nisolle, M

    1989-09-01

    Used endoscopically, the CO2 laser offers some advantages over other operative techniques for endometriosis and adhesions but, in spite of the continuing development of new instrumentation there are still problems with the system. The technique needs specialized equipment requiring ongoing biomedical maintenance and specialized technical care in the operating room. Some problems such as the intraperitoneal accumulation of smoke, gas leakage, and difficulty with maintenance of proper beam alignment still occur. In spite of these problems the advantages are numerous: the system allows precise bloodless destruction of diseased tissue and eliminates the risks of cautery. In the hands of an experienced laparoscopist, it appears safe and effective in vaporization of endometriotic lesions, utero-sacral neurectomy, adhesiolysis and salpingostomy. The judicious use of these techniques, combined with carefully planned further investigations by well-trained and experienced laparoscopists and continuing improvements in the delivery systems, will soon reveal the true efficacy of the CO2 laser laparoscope. If studies continue to show pregnancy rates and pain relief to be equivalent to those patients treated by laparotomy, CO2 laser laparoscopy will become the preferred procedure for the management of pelvic endometriosis and its associated adhesions, distal tubal occlusion, pelvic pain and tubal pregnancy. With the exception of using the argon laser to treat endometriosis, the selective absorption characteristic of lasers has not been greatly utilized. While the CO2 laser is heavily absorbed by water and hence vaporizes most cells in a rather indiscriminate fashion, this is not true for other wavelengths, such as argon, Nd-YAG, KTP, krypton, xenon, copper and gold vapour lasers. The energy form of each of these lasers has different properties of penetration, absorption, reflection and heat dissipation. Many of these lasers have not yet been evaluated in human subjects. An exciting, although not new, area of possible laser application involves the use of photosensitizers and fluorescing agents (Dougherty et al, 1978). Some recent experimental studies (Schellhas and Schneider, 1986; Schneider et al, 1988) may lead to new therapeutic possibilities. The surgical laser is not, however, a panacea. Only controlled trials carried out carefully over the next few years will clearly define its potential. In the meantime it is incumbent upon all of us to investigate the clinical, gynaecological and surgical applications in a careful, methodical and scientific manner.

  4. Flexible omnidirectional carbon dioxide laser as an effective tool for resection of brainstem, supratentorial, and intramedullary cavernous malformations.

    PubMed

    Choudhri, Omar; Karamchandani, Jason; Gooderham, Peter; Steinberg, Gary K

    2014-03-01

    Lasers have a long history in neurosurgery, yet bulky designs and difficult ergonomics limit their use. With its ease of manipulation and multiple applications, the OmniGuide CO2 laser has reintroduced laser technology to the microsurgical resection of brain and spine lesions. This laser, delivered through a hollow-core fiber lined with a unidirectional mirror, minimizes energy loss and allows precise targeting. To analyze resections performed by the senior author from April 2009 to March 2013 of 58 cavernous malformations (CMs) in the brain and spine with the use of the OmniGuide CO2 laser, to reflect on lessons learned from laser use in eloquent areas, and to share data on comparisons of laser power calibration and histopathology. Data were collected from electronic medical records, radiology reports, operative room records, OmniGuide CO2 laser case logs, and pathology records. Of 58 CMs, approximately 50% were in the brainstem (30) and the rest were in supratentorial (26) and intramedullary spinal locations (2). Fifty-seven, ranging from 5 to 45 mm, were resected, with a subtotal resection in 1. Laser power ranged from 2 to 10 W. Pathology specimens showed minimal thermal damage compared with traditionally resected specimens with bipolar coagulation. The OmniGuide CO2 laser is safe and has excellent precision for the resection of supratentorial, brainstem, and spinal intramedullary CMs. No laser-associated complications occurred, and very low energy was used to dissect malformations from their surrounding hemosiderin-stained parenchymas. The authors recommend its use for deep-seated and critically located CMs, along with traditional tools.

  5. Review of the frequency stabilization of TEA CO2 laser oscillators

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1987-01-01

    Most applications of TEA CO2 lasers in heterodyne radar systems require that the transmitter has a high degree of frequency stability. This ensures good Doppler resolution and maximizes receiver sensitivity. However, the environment within the device is far from benign with fast acoustic and electrical transients being present. Consequently the phenomena which govern the frequency stability of pulsed lasers are quite different from those operative in their CW counterparts. This review concentrates on the mechanisms of chirping within the output pulse; pulse to pulse frequency drift may be eliminated by frequency measurement and correction on successive pulses. It emerges that good stability hinges on correct cavity design. The energy-dependent laser-induced frequency sweep falls dramatically as mode diameter is increased. Thus, it is necessary to construct resonators with good selectivity for single mode operation while having a large spot size.

  6. 2-micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U.; Petros, M.

    2012-12-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar is being developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. Our objective is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable an airborne capability to perform a first proof of principle demonstration of airborne direct detection CO2 measurements. The 2-micron transmitter provides 100mJ at 10Hz with double pulse format specifically designed for DIAL/IPDA instrument. The compact, rugged, highly reliable transceiver is based on unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. A 16-inch diameter telescope has been designed and being manufactured for the direct detection lidar. The detector is an InGaAs Positive-Intrinsic-Negative (PIN) photodiode manufactured by Hamamatsu Corporation. The performance of the detector is characterized at various operating temperatures and bias voltages for spectral response, NEP, response time, dynamic range, and linearity. A collinear lidar structure is designed to be integrated to NASA UC12 or B200 research aircrafts. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation. The first engineering flight is scheduled at the end of next year.

  7. Solid State Research

    DTIC Science & Technology

    1975-04-17

    1-3. CO2 laser raster scan sensitivity profile of HgCdTe quadrantal array with two of the four elements connected to 50-ohm load. Fig. 1-4...Response of HgCdTe quadrantal array to CO2 laser beam scanned across center with (a) two opposite photodiodes connected, and (b) all four photodiodes...RESEARCH 1 A. Planar HgCdTe Quadrantal Arrays for Gigahertz Heterodyne Operation at 10.6 (im 1 B. Electrical Properties of Silicon Ion-Implanted

  8. [Stapedotomie with the use of CO2 laser--"one shot" technique].

    PubMed

    Szyfter, Witold; Mielcarek-Kuchta, Daniela; Młodkowska, Anna; Miętkiewska-Leszniewska, Dorota; Obrębowska, Zofia; Łączkowska-Przybylska, Joanna

    2013-01-01

    CO2 laser is used in stapes surgery due to good water absorption and quite optimal ablation of a bony structure without the influence of inner ear parameters. the assessment of the influence of CO2 - "one shot" laser on hearing results in the patients group with otosclerosis. The study was carried out on a patients group after surgical treatment. The follow up time was at least 6 months. The hearing results were described according to the guidelines of the American Committee on Hearing and Equilibrium. The obtained results were statistically analysed with the use of the Wilcoxon sequence pair test. The CO2 - "one shot" laser has been used in Department of Otolaryngology in Poznań since July 2009. Using this system 101 operations were carried out to the end of December 2011. 54 patients were in the analysed group, there were 40 women and 14 men, the age range from 22 to 59. In the Wilcoxon sequence pair test there was a statistically significant correlation between the value of the hearing threshold in pre- and post-operative examinations at 0.5, 1, 2 and 3kHz for bone and air conduction. We found also a statistically significant correlation between the mean value of the air-bone gap before and after treatment. In the group after the surgery the cochlear reserved became closed or decreased (p<0.001). based of the hearing results we found great usefulness of CO2 - "one shot" laser in stapes surgery. Copyright © 2012 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  9. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.

  10. Reduction of post-surgical scarring with the use of ablative fractional CO2 lasers: A pilot study using a porcine model.

    PubMed

    Baca, Marissa E; Neaman, Keith C; Rapp, Derek A; Burton, Michael E; Mann, Robert J; Renucci, John D

    2017-01-01

    Wound healing inevitably leads to scarring, which leads to functional and cosmetic defects. It is the goal of this study to investigate the immediate use of ablative fractional CO 2 lasers to reduce post-operative scarring secondary to surgical wounds. In this prospective controlled study, 20 surgical incisions were created on each of three pigs. Fifteen of the incisions were treated with an ablative fractional CO 2 laser at one of three laser settings. The remaining five incisions served as a control. Punch biopsies were taken post-operatively over time. Digital photographs were taken of each incisional scar at each time period. Blinded evaluators used a previously verified scoring system to score photographs of the incisional scars taken at the 6 month time period. With regards to the comparison between the three individual laser treatment groups and the control, there were no statistically significant effects for treatment (P = 0.40), time (P = 0.48), or for the interaction of time and treatment (P = 0.57). With regards to the visual assessment tool, there were no statistically significant differences between treatments for Overall Appearance (P = 0.21) or for Total Score (P = 0.24). In the limited setting of this pilot study, treatment of surgical incisions with ablative fractional CO 2 lasers does not significantly lessen scar formation. In addition, photographic analysis was not able to demonstrate a significant difference. Future studies on this topic will need a larger sample size to better answer whether a statistically significant difference may exist. Lasers Surg. Med. 49:122-128, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Theoretical modeling of diode-laser-pumped 3-μm Er3+ crystal lasers

    NASA Astrophysics Data System (ADS)

    Tikerpae, Mark; Jackson, Stuart D.; King, Terence A.

    1997-05-01

    We present results from a theoretical model that has been developed to simulate the 3-micrometer laser transition in Er3+ doped Y3Al5O12 (YAG), Y2Sc2Ga3O12 (YSGG), LiYF4 (YLF) and BaY2F8 (BaYF) host crystals. The rate equations for the lowest seven energy levels of Er3+ were solved numerically and laser action was simulated under cw, gain-switched (pulse pumped) and Q-switched operation with optical pumping at wavelengths of 975 nm and 795 nm. The relative performance of each laser crystal was compared under identical pumping and cavity conditions to establish the optimum crystal host, doping concentration and pump wavelength for each mode of operation. Some unexpected saturation effects were investigated that could limit the maximum practical pump fluence used for high energy Q-switched systems. We investigate possible additional multi-ion energy transfer processes that may cause the decrease in efficiency that is observed experimentally at high Er3+ ion concentrations. In addition, lower laser level deactivation by co-doping with Pr3+ in BaYF was simulated and compared with singly doped Er:BaYF for a range of Er3+ and Pr3+ concentrations. It was found that co-doping was not as effective as the cooperative upconversion process present in singly doped Er3+ crystals for efficient laser operation.

  12. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was

  13. Development of terahertz laser diagnostics for electron density measurements.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  14. The Use of a Pseudo Noise Code for DIAL Lidar

    NASA Technical Reports Server (NTRS)

    Burris, John F.

    2010-01-01

    Retrievals of CO2 profiles within the planetary boundary layer (PBL) are required to understand CO2 transport over regional scales and for validating the future space borne CO2 remote sensing instrument, such as the CO2 Laser Sounder, for the ASCENDS mission, We report the use of a return-to-zero (RZ) pseudo noise (PN) code modulation technique for making range resolved measurements of CO2 within the PBL using commercial, off-the-shelf, components. Conventional, range resolved, measurements require laser pulse widths that are s#rorter than the desired spatial resolution and have pulse spacing such that returns from only a single pulse are observed by the receiver at one time (for the PBL pulse separations must be greater than approximately 2000m). This imposes a serious limitation when using available fiber lasers because of the resulting low duty cycle (less than 0.001) and consequent low average laser output power. RZ PN code modulation enables a fiber laser to operate at much higher duty cycles (approaching 0.1) thereby more effectively utilizing the amplifier's output. This results in an increase in received counts by approximately two orders of magnitude. The approach involves employing two, back to back, CW fiber amplifiers seeded at the appropriate on and offline CO2 wavelengths (approximately 1572 nm) using distributed feedback diode lasers modulated by a PN code at rates significantly above 1 megahertz. An assessment of the technique, discussions of measurement precision and error sources as well as preliminary data will be presented.

  15. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Dynamics of population of the A3∑u+ nitrogen metastable state in a self-sustained volume discharge of a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Baĭtsur, G. G.; Ermachenko, A. V.; Raspopov, N. A.; Sviridenkov, É. A.; Semenov, S. K.; Firsov, K. N.

    1989-02-01

    Intracavity laser spectroscopy was used to study the dynamics of population of the ν = 2-8 vibrational levels of the A3∑u+ state in order to establish the possible influence of multistage ionization on the evolution of instability in a self-sustained volume discharge in CO2 laser active mixtures. The populations of the nitrogen vibrational levels Nν were calculated taking into account the real output pulse profile of a dye laser. It was found that multistage ionization can only influence the duration of stable operation of a self-sustained volume discharge by increasing the rate of growth of the spark channel in the discharge gap. This is why the addition of readily ionized substances to the gas that reduce the electron energy and therefore lower Nν can substantially improve the stability of the volume discharge and increase the active volume and output energy of a CO2 laser.

  16. High-power CO(2) laser with a Gauss-core resonator for high-speed cutting of thin metal sheets.

    PubMed

    Takenaka, Y; Nishimae, J; Tanaka, M; Motoki, Y

    1997-01-01

    A novel resonator, the Gauss-core resonator, based on a stable resonator configuration designed to yield a highly focusing beam operating in a large-volume TEM(00) mode, is presented. A 6.2 kW linearly polarized output beam with an M(2) factor of 1.7 is obtained experimentally for a high-power cw CO(2) laser. The capability of the Gauss-core resonator to process laser materials is also studied. We can cut 1-mm-thick mild (soft) steel with a maximum cutting speed of 58 m/min at 5.6 kW and 0.2-mm-thick steel 145 m/min at 2.8 kW.

  17. Comparison of 1470nm diode laser vs. C02-laserlaser for tonsillotomy and a clinical feasability trial on the use of 1940nm in ENT

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Pongratz, Thomas; Havel, Miriam; Englert, Elsa; Kremser, Thomas; Betz, Christain S.; Leunig, Andreas

    2013-03-01

    Introduction: The need for reduction of post-tonsillectomy hemorrhage has led to promotion of tonsillotomy techniques for tonsil tissue reduction in obstructive tonsillar hypertrophy. A first study compares ablative tissue effects using 1470nm diode laser and CO2-laser for tonsillotomy in an intraindividual design. A number of different laser systems have been used for volume reduction of hyperplastic nasal turbinates. The aim of a 2nd clinical feasibility study was to show the coagulative and tissue reducing effects using a novel Tm: fiber laser system emitting at λ = 1940 nm Patients and methods: First 21 children aged 3 -13 years (mean age 6.3 years) underwent laser tonsillotomy for obstructive tonsillar hypertrophy in this double blind, prospective, randomized, clinical feasibility trial. In each case, tonsillotomy was performed using fibre guided 1470nm diode laser (contact mode, 15 W power) on the one side and CO2-laser (12 W power) on the other side. An independent physician documented clinical presentation and patients' symptoms preoperatively and on day 1, 3, 7, 14 and 21 postoperatively using standardized questionnaire including VAS (was ist das) for each side separately. The 2nd clinical feasibility trial included 11 patients suffering from hyperplastic inferior nasal turbinates, who were therapy-refractory to conservative medical treatment. The obstructive nasal cavity was treated using the 1940 nm Tm: fiber laser at < 5 W output power. The treatment was performed in non-contact mode under endoscopic control. Patients ' symptoms were documented both preoperatively and on days 1 - 3 and 28 postoperatively using a non-validated questionnaire. Additionally, an endoscopic examination was performed. Results: Mean duration of single tonsillotomy operative treatment was 2.7 min using 1470nm laser and 4.9 min using CO2 laser respectively. Intraoperative bleeding and the frequency of bipolar forceps use for intraoperative bleeding control was significantly less pronounced using the 1470nm diode laser system. There was no difference in postoperative pain scores between the CO2-laser treated and the 1470nm fibre guided diode laser treated side. No infections, hemorrhages or other complications occurred in the course of the three weeks postoperative period. In the turbinate study, none of the patients showed infections, and no hemorrhages or other complications occurred intraor postoperatively.The mean laser activation time was extremely short being 28.0 +/- 8.5 s. In conjunction with a low power setting (median, 3 W; mean +/- standard deviation, 3.3 +/- 1.1 W), a low energy of 90.2 +/- 37.8 J was applied. A significant reduction in nasal obstruction could be documented in all patients on day 28 postoperatively. Evaluation, as assessed preoperatively and 4 weeks postoperatively, showed significant subjective improvements. Conclusion: A fiber-guided 1470nm diode laser system offers an efficient and safe method for tonsillotomy as treatment of obstructive tonsillar hypertrophy. Compared to our standard practice with CO2- laser, 1470nm laser application provides comparable tissue ablation effects with less intraoperative bleeding and shorter operation time. The treatment of hyperplastic inferior turbinates using a 1940 nm Tm: fiber laser provides sufficient tissue reduction in a short operation time using low total energy. Patients described a significant improvement in nasal breathing postoperatively.

  18. Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shwartz, J; Kulkarny, V A; Ausherman, D A

    1980-01-01

    Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less

  19. Solution-derived SiO2 gate insulator formed by CO2 laser annealing for polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hishitani, Daisuke; Horita, Masahiro; Ishikawa, Yasuaki; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2017-05-01

    The formation of perhydropolysilazane (PHPS)-based SiO2 films by CO2 laser annealing is proposed. Irradiation with a CO2 laser with optimum fluence transformed a prebaked PHPS film into a SiO2 film with uniform composition in the thickness direction. Polycrystalline silicon thin-film transistors (poly-Si TFTs) with a SiO2 film as the gate insulator were fabricated. When the SiO2 film was formed by CO2 laser annealing (CO2LA) at the optimum fluence of 20 mJ/cm2, the film had fewer OH groups which was one-twentieth that of the furnace annealed PHPS film and one-hundredth that of the SiO2 film deposited by plasma-enhanced chemical vapor deposition (PECVD) using tetraethyl orthosilicate (TEOS). The resulting TFTs using PHPS showed a clear transistor operation with a field-effect mobility of 37.9 ± 1.2 cm2 V-1 s-1, a threshold voltage of 9.8 ± 0.2 V, and a subthreshold swing of 0.76 ± 0.02 V/decade. The characteristics of such TFTs were as good as those of a poly-Si TFT with a SiO2 gate insulator prepared by PECVD using TEOS.

  20. Copper Gas Diffusers For Purging Line-Focus Laser Welds

    NASA Technical Reports Server (NTRS)

    Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark

    1996-01-01

    Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.

  1. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  2. Multi-Mission Laser Altimeter Data Processing and Co-Registration of Image and Laser Data at DLR

    NASA Astrophysics Data System (ADS)

    Stark, A.; Matz, K.-D.; Roatsch, T.

    2018-04-01

    We designed a system for the processing and storage of large laser altimeter data sets for various past and operating laser altimeter instruments. Furthermore, we developed a technique to accurately co-register multi-mission laser and image data.

  3. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  4. Recent advances in CO2 laser catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, B. T.; Schryer, D. R.; Brown, K. G.; Kielin, E. J.; Hoflund, G. B.; Gardner, S. D.

    1991-01-01

    This paper discusses several recent advances in CO2 laser catalysts including comparisons of the activity of Au/MnO2 to Pt/SnO2 catalysts with possible explanations for observed differences. The catalysts are compared for the effect of test gas composition, pretreatment temperature, isotopic integrity, long term activity, and gold loading effects on the Au/MnO2 catalyst activity. Tests conducted to date include both long-term tests of up to six months continuous operation and short-term tests of one week or more that include isotopic integrity testing.

  5. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  6. Image-guided removal of interproximal lesions with a CO2 laser

    NASA Astrophysics Data System (ADS)

    Ngo, Albert; Chan, Kenneth H.; Le, Oanh; Simon, Jacob C.; Fried, Daniel

    2018-02-01

    Recent studies have shown that near-IR (NIR) imaging methods such as NIR reflectance can be used to image lesions on proximal surfaces, and optical coherence tomography (OCT) can be used to measure the depth of those lesions below the tooth surface. These imaging modalities can be used to acquire high contrast images of demineralized tooth surfaces, and 2-D and 3-D images can be extracted from this data. At NIR wavelengths longer than 1200-nm, there is no interference from stains and the contrast is only due to the increased light scattering of the demineralization. Previous studies have shown that image-guided laser ablation can be used to remove occlusal lesions, but its use for the removal of subsurface lesions on proximal surfaces has not been investigated. The objective of this study is to demonstrate that simultaneously scanned NIR and CO2 lasers can be used to selectively remove natural and artificial interproximal caries lesions with minimal damage to sound tooth structure. In this study, images of simulated and natural interproximal lesions on extracted teeth were imaged using a digital microscope, a scanned 1460-nm superluminescent laser diode with an InGaAs detector and a cross polarization OCT system operating at 1300-nm. The lesions were subsequently removed with a CO2 laser operating at 9.3-μm and the dental handpiece and the volume of sound tissue removed was compared.

  7. Gasdynamic lasers and photon machines.

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Hertzberg, A.

    1973-01-01

    The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.

  8. Theoretical gain optimization studies in 10. 6. mu. m CO/sub 2/--N/sub 2/ gasdynamic lasers. IV. Further results of parametric study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.P.J.; Reddy, N.M.

    1984-01-01

    Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO/sub 2/--N/sub 2/--H/sub 2/O and CO/sub 2/--N/sub 2/--He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function N/sub S/ for pure N/sub 2/ gas, as is done in previous publications, the N/sub S/ correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computedmore » using these correlations. The present results are compared with the previous results and the main differences are discussed.« less

  9. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    PubMed Central

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation. PMID:21806256

  10. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  11. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    PubMed

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  12. Novel Co:MgF2 lidar for aerosol profiler

    NASA Technical Reports Server (NTRS)

    Acharekar, M. A.

    1993-01-01

    Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

  13. Development summary of a sympathetic discharge CO2 laser for lidar use

    NASA Technical Reports Server (NTRS)

    Jaenisch, Holger M.; Johnson, R. Barry

    1991-01-01

    A commercial pulsed sympathetic discharge laser has been characterized and modified for use as a potential lidar. This report summarizes the initial findings and modifications made to the baseline system. The new laser performance is then checked with theory and operational results are presented. The laser has inherent mode instability and high chirp. Several solutions were tried and their results are presented.

  14. Solar-pumped lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  15. CO2 lasers and applications II; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 12-14, 1990

    NASA Technical Reports Server (NTRS)

    Opower, Hans (Editor)

    1990-01-01

    Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.

  16. The effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Vannorman, John D.; Brown, Kenneth G.; Schryer, Jacqueline

    1989-01-01

    CO oxidation catalysts with high activity at 25 to 100 C are important for long life, closed cycle operation of pulsed CO2 lasers. A reductive pretreatment with either CO or H2 was shown to significantly enhance the activity of a commercially available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment of no pretreatment. Pretreatment at temperatures of 175 C and above causes an initial dip in the observed CO2 yield before the steady state yield is attained. This dip was found to be caused by dehydration of the catalyst during pretreatment and is readily eliminated by humidifying the catalyst or the reaction gas mixture. It is hypothesized that the effect of humidification is to increase the concentration of OH groups on the catalyst surface which play a role in the reaction mechanism.

  17. Multi-species laser absorption sensors for in situ monitoring of syngas composition

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.

    2014-04-01

    Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.

  18. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  19. High efficiency pump combiner fabricated by CO2 laser splicing system

    NASA Astrophysics Data System (ADS)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  20. Microwave tunable laser source: A stable, precision tunable heterodyne local oscillator

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.

    1980-01-01

    The development and capabilities of a tunable laser source utilizing a wideband electro-optic modulator and a CO2 laser are described. The precision tunability and high stability of the device are demonstrated with examples of laboratory spectroscopy. Heterodyne measurements are also presented to demonstrate the performance of the laser source as a heterodyne local oscillator. With the use of five CO2 isotope lasers and the 8 to 18 GHz sideband offset tunability of the modulator, calculations indicate that 50 percent spectral coverage in the 9 to 12 micron region is achievable. The wavelength accuracy and stability of this laser source is limited by the CO2 laser and is more than adequate for the measurement of narrow Doppler-broadened line profiles. The room-temperature operating capability and the programmability of the microwave tunable laser source are attractive features for its in-the-field implementation. Although heterodyne measurements indicated some S/N degradation when using the device as a local oscillator, there does not appear to be any fundamental limitation to the heterodyne efficiency of this laser source. Through the use of a lower noise-figure traveling wave tube amplifier and optical matching of the output beam with the photomixer, a substantial increase in the heterodyne S/N is expected.

  1. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    NASA Astrophysics Data System (ADS)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  2. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  3. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  4. Application of CO II laser for removal of oral mucocele

    NASA Astrophysics Data System (ADS)

    Kato, J.; Moriya, K.; Hirai, Y.

    2006-02-01

    Mucocele is an oral soft tissue cyst caused by the disturbance of saliva flow. Mucocele is widely observed in child patients and recurrence is high. The objective of this study was to clarify the effect of CO II laser irradiation in the case of mucocele. A CO II laser was used on 45 subjects, aged between 0 to 15 years, having mucocele on lip, lingual, or buccal mucosa. Our procedure in using CO II laser was not to vaporize the mucocele but to remove the whole mucocele mass. The border of mucocele was firstly incised by laser following defocusly ablating the root or body of mucocele separating from sorrounding tissue. As a result, mucocele was easily and completely removed without breaking the wall of mucocele. None of the cases required suturing. The results were as follows. 1. The mucocele of lip or lingual mucosa with a rich blood supply, was efficiently removed, without bleeding, giving a clear operative field during the operation. 2. The surgery itself was simple and less time-consuming. 3. After two or three weeks the wound was completely healed without almost any discomfort in all patients 4. Wound contraction and scarring were decreased or eliminated. 5. The reoccurrence of mucocele was not seen, except only in one case of lingual mucocele. In conclusion the use of CO II laser proved to be a very safe and effective mode for the removal of mucocele, especially in small children.

  5. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  6. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    PubMed

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  7. Standard guidelines of care: CO2 laser for removal of benign skin lesions and resurfacing.

    PubMed

    Krupashankar, D S

    2008-01-01

    Resurfacing is a treatment to remove acne and chicken pox scars, and changes in the skin due to ageing. MACHINES: Both ablative and nonablative lasers are available for use. CO 2 laser is the gold standard in ablative lasers. Detailed knowledge of the machines is essential. INDICATIONS FOR CO 2 LASER: Therapeutic indications: Actinic and seborrheic keratosis, warts, moles, skin tags, epidermal and dermal nevi, vitiligo blister and punch grafting, rhinophyma, sebaceous hyperplasia, xanthelasma, syringomas, actinic cheilitis angiofibroma, scar treatment, keloid, skin cancer, neurofibroma and diffuse actinic keratoses. CO 2 laser is not recommended for the removal of tattoos. AESTHETIC INDICATIONS: Resurfacing for acne, chicken pox and surgical scars, periorbital and perioral wrinkles, photo ageing changes, facial resurfacing. PHYSICIANS' QUALIFICATIONS: Any qualified dermatologist (DVD or MD) may practice CO 2 laser. The dermatologist should possess postgraduate qualification in dermatology and should have had specific hands-on training in lasers either during postgraduation or later at a facility which routinely performs laser procedures under a competent dermatologist/plastic surgeon, who has experience and training in using lasers. For the use of CO 2 lasers for benign growths, a full day workshop is adequate. As parameters may vary in different machines, specific training with the available machine at either the manufacturer's facility or at another centre using the machine is recommended. CO 2 lasers can be used in the dermatologist's minor procedure room for the above indications. However, when used for full-face resurfacing, the hospital operation theatre or day care facility with immediate access to emergency medical care is essential. Smoke evacuator is mandatory. Detailed counseling with respect to the treatment, desired effects, possible postoperative complications, should be discussed with the patient. The patient should be provided brochures to study and also given adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. Consent forms should include information on the machine used; possible postoperative course expected and postoperative complications. Preoperative photography should be carried out in all cases of resurfacing. Choice of the machine and the parameters depends on the site, type of lesion, result needed, and the physician's experience. Localized lesions can be treated under eutectic mixture of local anesthesia (EMLA) cream anesthesia or local infiltration anesthesia. Full-face resurfacing can be performed under general anesthesia. Proper postoperative care is important to avoid complications.

  8. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    NASA Astrophysics Data System (ADS)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  9. Study, optimization, and design of a laser heat engine

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, were analyzed to determine which engine concepts best meet the requirements of high efficiency (50 percent or better) continuous operation in space. The best laser heat engine for a near-term experimental demonstration, selected on the basis of high overall operating efficiency, high power-to-weight characteristics, and availability of the required technology, is an Otto/Diesel cycle piston engine using a diamond window to admit CO2 laser radiation. The technology with the greatest promise of scaling to megawatt power levels in the long term is the energy exchanger/gas turbine combination.

  10. Optical spectroscopy of cobalt-doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Turner, Eric J.; Evans, Jonathan; Harris, Thomas

    2018-02-01

    Spectroscopic investigation of Co2+:CdTe was performed to evaluate it's potential as a lasing medium. The sample had a targeted doping concentration of 2% and measurements were performed from 10 - 120K. Cross-sections for Co:CdTe were calculated using Füchtbauer-Ladenburg and reciprocity methods. Calculations suggest the potential for efficient lasing at 3.7μm when pumped by a 3μm laser source on the 4A2 <-> 4T2 transition. The fluorescence lifetime was measured to quantify the temperature dependence of the non-radiative relaxation rate. This work aims to characterize Co:CdTe as a novel gain medium for compact, tunable mid-infrared lasers operating within the atmospheric transmission window.

  11. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    NASA Astrophysics Data System (ADS)

    Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.

    2007-05-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.

  12. Flexible CO2 laser waveguide: a comparison of tracheal resection dosimetry and histology with the rigid waveguide

    NASA Astrophysics Data System (ADS)

    Slack, Christopher L.; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Aretz, H. Thomas

    1993-07-01

    The CO2 laser has been limited in its application within the tracheobronchial tree by its lack of a fiber delivery system. Recently a new product has been marketed, Luxar's flexible CO2 laser waveguide or FlexiguideTM, a spin-off of the presently used rigid waveguide or MicroguideTM. The study was undertaken so as to delineate the properties and thus the usefulness of this new product which promised an increased ease of delivery of the CO2 laser wavelength. We compared the flexiguide with its rigid counterpart along two parameters. Specifically, we determined the total energy necessary to endoscopically resect bovine tracheal rings with each guide and then examined the histologic crater characteristics of each guide at a given energy setting. In so doing we endeavored to see if the experience of the surgeon with the microguide could be translated to the use of the flexiguide. We found the flexiguide to require a greater total energy than the microguide in the continuous wave (cw) and chopped pulse (cp) operational modes p < 0.01. There was, however, no demonstrated difference in required energy in the superpulse (sp) operational mode. Preliminary histologic evidence when measuring such indices as crater depth, crater width, and shoulder width thermal damage seem to suggest that the flexiguide is less efficient at tissue ablation than its rigid counterpart at the same given energy. It also appears to cause a greater degree of associated thermal injury.

  13. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  14. Catalyst for carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)

    1990-01-01

    A catalyst is disclosed for the combination of CO and O2 to form CO2, which includes a platinum group metal (e.g., platinum); a reducable metal oxide having multiple valence states (e.g., SnO2); and a compound which can bind water to its structure (e.g., silica gel). This catalyst is ideally suited for application to high-powered pulsed, CO2 lasers operating in a sealed or closed-cycle condition.

  15. Catalyst for carbon monoxide oxidation

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, David R. (Inventor); Davis, Patricia P. (Inventor); Schryer, David R. (Inventor); Brown, Kenneth G. (Inventor); Vannorman, John D. (Inventor)

    1991-01-01

    A catalyst for the combination of CO and O2 to form CO2 which includes a platinum group metal, e.g., platinum; a reducible metal oxide having mulitple valence states, e.g., SnO2; and a compound which can bind water to its structure, e.g., silica gel. This catalyst is ideally suited for application to high powered, pulsed, CO2 lasers operating in a sealed or closed cycle condition.

  16. Dentin hypersensitivity treatment by CO2 laser: the influence of the density of dentin tubules and laser-beam incidence

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.; Miron, Mariana I.; Mavrantoni, Androniki

    1997-12-01

    Dentin hypersensitivity is considered to be a consequence of the presence of open dentin tubules on the exposed dentin surface. Various methods and materials used in the treatment of this disease are directed to achieve a tubule's occlusion. The purpose of this study was to evaluate under scanning electron microscopy and clinical method the sealing effects of CO2 laser on dentin tubules of human teeth without any damages of the surrounding tissues. Samples of freshly extracted noncarious 3rd molars were used. The teeth were randomly divided in to two groups A and B. The samples of group A were exposed to laser beam in cervical area, directed parallel to their dentin tubules. The teeth of group B were sectioned through a hypothetical carious lesion and lased perpendicularly or obliquely of the dentin tubules. The CO2 laser, at 10.6 micrometers wavelength, was operated only in pulse mode and provided 6.25 - 350 mJ in a burst of 25 pulses each of 250 microsecond(s) time duration with a 2 ms time interval between successive pulses (repetition rate up to 500 mH). Melting of dentin surface and partial closure of exposed dentin tubules were found for all specimens at 6.25 to 31.25 mJ energy. Our results indicated that using CO2 laser in a parallel orientation of laser beam with dentin tubules, the dentin sensitivity can be reduced without any damages of pulp vitality.

  17. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  18. Mathematical modeling of laser based potato cutting and peeling.

    PubMed

    Ferraz, A Carlos O; Mittal, Gauri S; Bilanski, Walter K; Abdullah, Hussein A

    2007-01-01

    A mathematical model is developed and validated to predict the depth of cut in potato tuber slabs as a function of laser power and travel speed. The model considers laser processing parameters such as input power, spot size and exposure time as well as the properties of the material being cut such as specific heat, thermal conductivity, surface reflectance, etc. The model also considers the phase change of water in potato and the ignition temperature of the solid portion. The composition of the potato tuber is assumed to be of water and solid. The model also assumes that the ablation process is accomplished through ejection of liquid water, debris and water vapour, and combustion of solid. A CO(2) laser operating in c.w. mode was chosen for the experimental work because water absorbs laser energy highly at 10.6 microm, and CO(2) laser units with relatively high output power are available. Slabs of potato tuber were chosen to be laser processed since potato contains high moisture and large amounts of relatively homogeneous tissue. The results of the preliminary calculations and experiments concluded that the model is able to predict the depth of cut in potato tuber parenchyma when subjected to a CO(2) laser beam.

  19. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.

  20. Experimental studies on nonpenetrating filtration surgery using the CO2 laser.

    PubMed

    Assia, Ehud I; Rotenstreich, Yigal; Barequet, Irina S; Apple, David J; Rosner, Mordechai; Belkin, Michael

    2007-06-01

    This study evaluated the use of a CO2 laser for performing deep sclerectomy in nonpenetrating filtration surgery. Three experimental models were performed: enucleated sheep and cow eyes (n=18) to determine optimal irradiation parameters, live rabbit eyes (n=20) to test feasibility, and cadaver eyes (40 procedures in 20 eyes) to study effects in human eyes tissue. After a half-thickness scleral flap was created, deep sclerectomy was performed by CO2 laser applications on the scleral bed down to the trabeculo-Descemet's membrane. Fluid percolation was repeatedly achieved without penetration in sheep and cow eyes using scanned laser energy of 5-10 W at a pulse duration of 200 micros and a working distance of 35 cm. In live rabbits, deep sclerectomy was achieved without perforation in 19/20 eyes. Intraocular pressure was significantly decreased on the first postoperative day (10.3+/-5.1 mmHg lower, on average, than in the nonoperated fellow eye; P<0.001), and this persisted for 21 days. Operations on all cadaver eyes resulted in effective fluid percolation. Penetration of the scleral wall occurred in five cases only after repeated laser applications with high energy. Histologically, a thin sclerocorneal intact wall was demonstrated at the sclerectomy bed. Collateral tissue damage did not extend beyond 100 microm, and adjacent structures remained unharmed. CO2 laser-assisted deep sclerectomy is a feasible and apparently safe procedure.

  1. The e-beam sustained CO2 laser amplifier

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.

    1990-01-01

    The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.

  2. The principle of a three-staged operation in the surgery of acne scars.

    PubMed

    Whang, K K; Lee, M

    1999-01-01

    Acne scars cannot be effectively corrected by a single treatment modality because of their widely varied depth and width. We assessed the effectiveness of staged combinations of several surgical modalities in the treatment of acne scars. Focal chemical peeling, carbon dioxide (CO2) laser, scar excision, punch grafting, and dermabrasion were used. Initially, focal chemical peeling was performed on all patients and then CO2 laser, scar excision, and punch grafts were used for deep scars. Finally, dermabrasion was done for the remaining scars. Seventy-five percent of patients showed excellent or good results. The degree of improvement increased as the follow-up periods and number of focal chemical peeling procedures increased and as the 3-staged operation progressed. A 3-staged operation is effective in the treatment of patients with various types of acne scars.

  3. The edge detection method of the infrared imagery of the laser spot

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Zhang, Jinchun; Li, Zhongmin

    2016-01-01

    In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.

  4. Gas Lasers

    NASA Astrophysics Data System (ADS)

    Dixit, S. K.

    The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

  5. Laser heterodyne system for obtaining height profiles of minor species in the atmosphere

    NASA Technical Reports Server (NTRS)

    Jain, S. L.; Saha, A. K.

    1986-01-01

    An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented.

  6. The Effects of Laser Phase Noise on Laser Radar Performance

    DTIC Science & Technology

    1992-12-01

    Laboratory 5. Figure 3 shows Allan variance plots of the above ultrastable C02 laser which has an open Fabry - Perot cavity 5. The open and solid circles...the same measurement time -r) by more than 10 dB. Therefore, the root Allan variance for the Fabry - Perot cavity ultrastable C02 laser can be...variance so that the SSB phase noise for the Fabry - Perot cavity ultrastable CO 2 laser is about 20 dB (because of the squaring operation) below that of the

  7. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources

    NASA Astrophysics Data System (ADS)

    dell'Erba, M.; Galantucci, L. M.; Miglietta, S.

    This paper reports on the results of research which investigated the potential for the application of an excimer laser in the field of composite material drilling and cutting, by comparing this technology with that using CO2 sources. In particular, the scope of the work was to check whether the interaction between excimer lasers and composite materials, whose characteristic feature is the absence of thermal transfer, could yield better results than those obtainable with CO2 sources once heat transfer-induced difficulties had been eliminated. The materials selected for the experiments were multilayer composites having an epoxy resin matrix (65 percent in volume), with aramid fiber (Kevlar), carbon fiber and glass fiber as reinforcing materials, all of considerable interest for the aerospace industry. Optimal operational parameters were identified in relation to each source with a view to obtaining undersize holes or through cuts exhibiting severed areas of good quality. A comparison between the two types of processing carried out show that rims processed by excimer lasers are of better quality - particularly so with Kevlar - whereas the ablation rate is undoubtedly rather low compared with the CO2 technology.

  8. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  9. Resonantly enhanced four-wave mixing

    DOEpatents

    Begley, Richard F.; Kurnit, Norman A.

    1978-01-01

    A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.

  10. The BAPE 2 balloon-borne CO2

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.; Walker, H. E.; Peruso, C. J.; Johnson, E. H.; Klein, B. J.; Mcelroy, J. H.

    1972-01-01

    The systems and techniques which were utilized in the experiment to establish an air-to-ground CO2 laser heterodyne link are described along with the successes and problems encountered when the heterodyne receiver and laser transmitter package were removed from the controlled environment of the laboratory. Major topics discussed include: existing systems and the underlying principles involved in their operation; experimental techniques and optical alignment methods which were found to be useful; theoretical calculations of signal strengths expected under a variety of test conditions and in actual flight; and the experimental results including problems encountered and their possible solutions.

  11. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  12. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  13. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology.

    PubMed

    Omi, Tokuya; Numano, Kayoko

    2014-03-27

    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  14. Life test results for an ensemble of CO2 lasers

    NASA Technical Reports Server (NTRS)

    Peruso, C. J.; Degnan, J. J.; Hochuli, U. E.

    1978-01-01

    The effects of cathode material, cathode operating temperature, anode configuration, window materials, and hydrogen additives on laser lifetime are determined. Internally oxidized copper and silber-copper alloy cathodes were tested. The cathode operating temperature was raised in some tubes through the use of thermal insulation. Lasers incorporating thermally insulated silver copper oxide cathodes clearly yielded the longest lifetimes-typically in excess of 22,000 hours. The use of platinum sheet versus platinum pin anodes had no observable effect on laser lifetime. Similarly, the choice of germanium, cadmium telluride, or zinc selenide as the optical window material appears to have no impact on lifetime.

  15. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  16. Treatment of laryngeotracheal papillomatosis with the CO2 and Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sedlmaier, Benedikt W.; Jovanovic, Sergije

    2000-06-01

    Papillomas are the most common benign neoplasms of the larynx and trachea. There are two types with different biological behavior, both caused by the human papilloma virus: the form that usually manifest itself in adults as a solitary, rarely recurring lesion, whereas one form that manifests in children and adults. It involves multiple lesions with a tendency to spread and recur. There is still no alternative to repeated surgical removal of the papillomas. In a retrospective study the results of laser surgery are compared with the results of instrumental removal of papillomas. The larynges were treated with the CO2 laser applied via high-precision micromanipulators combined with different scanner systems. In cases where the disease has spread into the cervical trachea, the papilloma foci were exposed by special subglottoscopes prior to transglottic removal with the CO2 laser via the operating microscope. The Nd:YAG laser applied through a jet ventilation tracheoscope via optical fibers has proven useful for involvement of the intrathoracic trachea. The use of the laser has not reduce the recurrency rate but the rate of late complications such as anterior synechia. Furthermore in extensive disease laser therapy enables a controlled bloodless removal even in the thoracic trachea and bronchi.

  17. CO2 laser and plasma microjet process for improving laser optics

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  18. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and determines the atmospheric pressure by minimizing the error between the observations and model. We first demonstrated our airborne lidar during flights during summer 2010. We made several improvements and made measurements during the Ascends flights during July 2011. More information about the technique, lidar instrument, airborne measurements, and pressure estimates will be described in the presentation.

  19. Laser versus stapler: outcomes in endoscopic repair of Zenker diverticulum.

    PubMed

    Adam, Stewart I; Paskhover, Boris; Sasaki, Clarence T

    2012-09-01

    To analyze a single surgeon's experience with endoscopic CO(2) laser and stapler repair of Zenker diverticulum (ZD) by comparing dysphagia and regurgitation outcomes. Retrospective chart review of 148 patient charts. Medical records of all patients receiving endoscopic repair of ZD with either CO(2) laser (61 patients) or stapler (67 patients) were reviewed. Additional data included demographics (age and sex), size (cm), preoperative and postoperative symptoms, need for revision, and complications. Symptoms of dysphagia were graded based on a modified Functional Oral Intake Scale 1 to 4 scale (1 = normal intake; 4 = severely limited/G-tube dependent). Regurgitation was also graded on a 1 to 4 scale (1 = no regurgitation; 4 = aspiration events). We noted no difference in patient age or defect size (laser, 3.26 cm; stapler, 3.53 cm; P .135). Significant differences were noted in return trips to the operating room for failed procedures (laser, 0; stapler, 7; P = .009), length of stay (laser, 3.19 days; stapler, 1.29 days; P < .001), time to oral intake (laser, 3.01 days; stapler, 1.22 days; P < .001). Significant improvement occurred in laser and staple patient symptom scales following surgery (P < .001). Laser dysphagia and regurgitation scores showed greater improvement when compared to stapler scores (P < .001). Endoscopic CO(2) laser and staple methods are effective in treating ZD. The laser can have greater efficacy and result in lower recurrence rates. Both methods are analyzed and compared. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  1. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  2. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    NASA Astrophysics Data System (ADS)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  3. Effectiveness of CO2 laser with subcision in patients with acne scars.

    PubMed

    Anupama, Y G; Wahab, Afthab Jameela

    2016-11-01

    Post-acne facial scarring has always been a challenge to treat. It requires multiple therapeutic modalities as single modality is not hundred percent effective. Therefore, we have combined CO 2 laser resurfacing with subcision in patients with acne scars for better results. The aim is to study the effectiveness and side effects of CO 2 laser with subcision in patients with atrophic acne scars. Fifty patients were selected for the study. Baseline grading was done with Goodman and Baron grading system. Twenty-five patients were randomly selected for subcision followed by CO 2 laser and the remaining patients were selected for CO 2 laser alone. The treatment was done for four sessions at 4-week interval. Clinical photographs were obtained for evaluation. CO 2 laser with subcision showed excellent response in grade-2 and -3 acne scars. Statistically there is a significant difference between CO 2 laser following subcision and CO 2 laser alone at 5% level (p < 0.05). Both procedures were well tolerated with minimal side effects. The highly versatile CO 2 laser is useful for treating acne scars. Subcision prior to the CO 2 laser procedure showed better improvement when compared to CO 2 laser alone. Thus, in acne scars, multiple therapeutic modalities achieve better results.

  4. A Ground-Based 2-Micron DIAL System to Profile Tropospheric CO2 and Aerosol Distributions for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Davis, Kenneth; Miller, Charles; Singh, Upendra

    2006-01-01

    System will operate at a temperature insensitive CO2 line (2050.967 nm) with side-line tuning and off-set locking. Demonstrated an order of magnitude improvement in laser line locking needed for high precision measurements, side-line operation, and simultaneously double pulsing and line locking. Detector testing of phototransistor has demonstrated sensitivity to aerosol features over long distances in the atmosphere and resolve features approx. 100m. Optical systems that collect light onto small area detectors work well. Receiver optical designs are being optimized and data acquisition systems developed. CO2 line parameter characterization in progress In situ sensor calibration in progress for validation of DIAL CO2 system.

  5. Atraumatic laser treatment for laryngeal papillomatosis

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen; Pankratov, Michail M.; Wang, Zhi; Bottrill, Ian; Rebeiz, Elie E.; Shapshay, Stanley M.

    1994-09-01

    Ten to fifteen thousand new cases of recurrent respiratory papillomatosis (RRP) are diagnosed each year in the United States. RRP is caused by the human papillomavirus (HPV) and is characterized by recurrent, non-malignant, proliferative lesions of the larynx. Patients with RRP undergo numerous microsurgical procedures to remove laryngeal papilloma threatening airway patency and interfering with phonation. The standard surgical technique involves CO2 laser vaporization of laryngeal epithelium affected by the lesions, and requires general anesthesia. The pulsed dye laser operating at 585 nm has previously been demonstrated to be effective in clearing HPV lesions of the skin (verrucae). For treatment of RRP, the fiber- compatible pulsed dye laser radiation may be delivered under local anesthesia using a flexible intranasal laryngoscope. Potential advantages of the pulsed dye laser treatment over CO2 laser surgery include (1) reduced morbidity, especially a lower risk of laryngeal scarring; (2) lower cost; (3) reduced technical difficulty; and (4) reduced risk of viral dissemination or transmission. In vivo studies are underway to determine the effect of pulsed dye laser radiation on normal canine laryngeal tissue.

  6. Feasibility of office CO2 laser surgery in patients affected by benign pathologies and congenital malformations of female lower genital tract.

    PubMed

    Frega, A; Verrone, A; Schimberni, M; Manzara, F; Ralli, E; Catalano, A; Schimberni, M; Torcia, F; Cozza, G; Bianchi, P; Marziani, R; Lukic, A

    2015-01-01

    Traditional surgery presents some disadvantages, such as the necessity for general anesthesia, hemorrhage, recurrence of pathology, and the possible onset of dyspareunia due to an excessive scarring. CO2 laser surgery might resolve these problems and might be employed in a wider range of clinical indications than usual. We examined the results of CO2 laser surgery in patients affected by benign pathologies and congenital malformations of the female lower genital tract. In this observational study, we enrolled 49 women who underwent CO2 laser surgery for the following indications: Bartholin's gland cyst, imperforate hymen, vaginal septum, Nabothian cyst, and vaginal polyps. Feasibility, cost-effectiveness, complication rate, recurrence rate, short- and long-term outcomes were assessed. All procedures were carried out in a short operative time, without any intraoperative complications. Only 1 (2.0%) out of 49 patients required a hemostatic suture for bleeding. Postoperative period was uneventful in all patients, except 6 (12.2%) out of 49 patients who reported pain one day after surgery, successfully treated with paracetamol. Healing was rapid and excellent in all cases; no wound infection, scarring or stenosis were noticed. Preoperative symptoms reduced or disappeared in all cases. No recurrence was observed and no re-intervention was needed. CO2 laser surgery provides several advantages over traditional surgery, as its systematic use in treating pre-invasive, benign, and congenital pathologies of the female lower genital tract reduces patient discomfort, improves short- and long-term outcomes, and optimizes cost-effectiveness.

  7. Naval Research Reviews. Volume XXXIII. Number 2,

    DTIC Science & Technology

    1981-01-01

    and filler metal addition. ratio weld is a characteristic of a keyhole -produced The most distinctive feature of LB welding , weld . T /h III laser Ii...evolved from these radiation for precision operation, such as hole-drill- efforts include a 3kW CO. laser /workstation system ing, trimming, and welding ...asso- Laser Surface Modifications ciated with thick-section welding of naval structure and surface modification for improved corrosion and The high

  8. Highlights of Thirty-Year Experience of CO2 Laser Use at the Florence (Italy) Department of Dermatology

    PubMed Central

    Campolmi, Piero; Bonan, Paolo; Cannarozzo, Giovanni; Bassi, Andrea; Bruscino, Nicola; Arunachalam, Meena; Troiano, Michela; Lotti, Torello; Moretti, Silvia

    2012-01-01

    The CO2 laser has been used extensively in dermatological surgery over the past 30 years and is now recognised as the gold standard for soft tissue vaporization. Considering that the continuous wave CO2 laser delivery system and the newer “superpulsed” and scanned CO2 systems have progressively changed our practice and patient satisfaction, a long range documentation can be useful. Our experience has demonstrated that the use of CO2 laser involves a reduced healing time, an infrequent need for anaesthesia, reduced thermal damage, less bleeding, less inflammation, the possibility of intra-operative histologic and/or cytologic examination, and easy access to anatomically difficult areas. Immediate side effects have been pain, erythema, edema, typically see with older methods, using higher power. The percentage of after-treatment keloids and hypertrophic scars observed was very low (~1%) especially upon the usage of lower parameters. The recurrence of viral lesions (condylomas and warts) have been not more frequent than those due to other techniques. Tumor recurrence is minor compared with radiotherapy or surgery. This method is a valid alternative to surgery and/or diathermocoagulation for microsurgery of soft tissues. Our results are at times not consistent with those published in the literature, stressing the concept that multicentric studies that harmonization methodology and the patient selection are vital. PMID:22593693

  9. Performance of a CW double electric discharge for supersonic CO lasers

    NASA Technical Reports Server (NTRS)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  10. Improved repetition rate mixed isotope CO2 TEA laser

    NASA Astrophysics Data System (ADS)

    Cohn, D. B.

    2014-09-01

    A compact CO2 TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the 12C16O2 isotope. With mixed 12C16O2 plus 13C16O2 isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  11. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    NASA Astrophysics Data System (ADS)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  12. Maintenance of arytenoid abduction following carbon dioxide laser debridement of the articular cartilage and joint capsule of the cricoarytenoid joint combined with prosthetic laryngoplasty in horses: an in vivo and in vitro study.

    PubMed

    Hawkins, J F; Couetil, L; Miller, M A

    2014-02-01

    The objective was to evaluate CO2 laser debridement of the cricoarytenoid joint (CAJ) combined with prosthetic laryngoplasty to prevent post-operative loss of arytenoid abduction in seven horses. Horses were assigned to either laser debridement of the left CAJ and laryngoplasty (laser treated, n=5) or control laryngoplasty (sham, n=2), and were evaluated with endoscopic examinations and measurement of right to left angle quotients (RLQ) to assess maintenance of arytenoid abduction. The animals were euthanased at intervals after surgery and larynges were harvested for post-mortem testing, including determination of translaryngeal flow, pressure, impedance and RLQ. Measurements were obtained under increasing vacuum-generated negative pressure with laryngoplasty sutures intact and with the knot/crimp of the laryngoplasty sutures removed. Following post-mortem testing the cricoarytenoid joints were examined histologically. Post-operative endoscopic examinations revealed no significant differences between RLQ measurements calculated for day 1 following surgery to the termination date of the study for the seven horses. Post-mortem RLQ at airflows of 10 and 60 L/s was significantly higher in sham than in laser treated horses both before and after knot/crimp removal. Translaryngeal impedance at 10 and 60 L/s was not statistically different between groups. Histopathology revealed necrosis and loss of articular cartilage in the laser treated horses. The lymphoid cell infiltration subsided but joint capsule and periarticular fibrosis increased over the course of the study. Post-operative loss of arytenoid abduction after laryngoplasty can be minimized with CO2 laser debridement of the CAJ joint. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  14. CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya

    The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less

  15. Fiber-based laser MOPA transmitter packaging for space environment

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  16. Near-infrared image-guided laser ablation of dental decay

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fried, Daniel

    2009-09-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.

  17. Near-infrared image-guided laser ablation of dental decay

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:19895146

  18. Near-infrared image-guided laser ablation of dental decay.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO(2) laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO(2) laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  19. Recent advances in efficient long-life, eye-safe solid state and CO2 lasers for laser radar applications

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    1989-01-01

    The key problems in the development of eye-safe solid-state lasers are discussed, taking into account the energy transfer mechanisms between the complicated energy level manifolds of the Tm, Ho, Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. Optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature is addressed. The tailoring of energy transfer times to provide efficient energy extraction for short pulses used in DIAL and Doppler lidar is considered. Recent advances in Pt/SnO2 oxide catalysts and other noble metal/metal oxide combinations for CO2 lasers are discussed. Emphasis is given to the dramatic effects of small quantities of H2O vapor for increasing the activity and lifetime of Pt/SnO2 catalysts and to increased lifetime operation with rare isotope (C-12)(O-18)2 lasing mixtures.

  20. Fabrication and characterization of Tm3+-Ho3+ co-doped tellurite glass microsphere lasers operating at ∼2.1 μm

    NASA Astrophysics Data System (ADS)

    Yang, Zhengsheng; Wu, Yuehao; Yang, Kun; Xu, Peipeng; Zhang, Wei; Dai, Shixun; Xu, Tiefeng

    2017-10-01

    We used a Tm3+-Ho3+ co-doped tellurite glass as the laser medium to build active microsphere laser resonators. A droplet method is implemented and hundreds of high quality microspheres can be fabricated simultaneously. Typical Quality factors (Q-factors) of microspheres fabricated in this work reach 106. Silica fiber tapers are used as the coupling mechanism and a commercial 808 nm laser diode is used as the pump source. Laser lines at ∼2.1 μm can be observed in the emission spectrum of these active microsphere resonators. Pump thresholds for generating single mode laser lines in a 59.52 μm diameter microsphere is measured to be 0.887 mW and as the pump power is increased to 1.413 mW, multi-mode laser lines can be generated. We also demonstrate microsphere lasers fabricated in this work can be thermally tuned with a temperature sensitivity of 32 pm/°C, implying these microspheres can be used as highly compact temperature sensors in various mid-infrared applications.

  1. Outcomes of fractional CO2 laser application in aesthetic surgery: a retrospective review.

    PubMed

    Neaman, Keith C; Baca, Marissa E; Piazza, Rocco C; VanderWoude, Douglas L; Renucci, John D

    2010-01-01

    Despite the effectiveness of ablative CO(2) laser resurfacing for facial rejuvenation, its application has been limited owing to an undesirable side-effect profile, including prolonged hyperemia and potential pigmentary changes. However, newer fractional CO(2) laser technology has reduced the recovery time and led to decreases in postprocedural hypo- and hyperpigmentation. The authors investigate the application and outcomes of ablative fractional technology in a private cosmetic surgery practice. In this retrospective cohort study, the charts of patients who received fractional CO(2) laser resurfacing between March 2007 and May 2008 were reviewed. Data regarding patient demographics, pretreatment regimens, detailed operative data, and posttreatment findings were obtained. The length of hyperemia (less than five weeks, five to eight weeks, and more than eight weeks), complication rates, and revision rates were analyzed. A satisfaction survey was also sent to all patients. Throughout the 19-month study period, 97 patients received 101 treatments with an average follow-up of 4.5 months. Full-face laser resurfacing was performed in 81.1% of patients, with 64.3% receiving their treatment under local anesthesia without sedation. Length of hyperemia was less than five weeks in 93%, five to eight weeks in 5.9%, and more than eight weeks in 0.9% of patients. Hyperpigmentation (9.9%), milia (6.9%), acne breakout (5.9%), and transient ectropion (0.9%) were less common. Patient satisfaction surveys revealed that a majority of patients were satisfied with their results. New fractional CO(2) laser skin resurfacing is associated with shorter periods of hyperemia, resulting in shorter recovery time in comparison with older ablative technology. The side-effect profile is minor and infrequent. This new technology provides significant clinical improvement with high patient satisfaction.

  2. Precision Column CO2 Measurement from Space Using Broad Band LIDAR

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2009-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  3. Thermodynamic analysis of a possible CO{sub 2}-laser plant included in a heat engine cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, G.; Rubatto, G.

    1998-07-01

    In these last years, several plants have been realized in some industrialized countries to recover pressure exergy from various fluids. That has been done by means of suitable turbines in particular for blast-furnace top gas and natural gas. Various papers have examined the topic, considering pros and cons. High-power CO{sub 2}-lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future different kinds of metal surface treatments will probably become routine practice with laser units. The industries benefiting most from high power lasers will be: the automotive industry, shipbuilding, the offshoremore » industry, the aerospace industry, the nuclear and the chemical processing industries. Both degradation and cooling problems may be alleviated by allowing the gas to flow through the laser tube and by reducing its pressure outside this tube. Thus, a thermodynamic analysis on high-power CO{sub 2}-lasers with particular reference to a possible energy recovery is justified. In previous papers the critical examination of the concept of efficiency has led one of the present authors to the definition of an operational domain in which the process can be achieved. This domain is confined by regions of no entropy production (upper limit) and no useful effects (lower limit). On the basis of these concepts and of what has been done for pressure exergy recovery from other fluids, exergy investigations and an analysis of losses are performed for a cyclic process including a high performance CO2 laser. Thermodynamic analysis of flow processes in a CO{sub 2}-laser plant shows that the inclusion of a turbine in this plant allows us to recover the most part of the exergy necessary for the compressor; in addition, the water consumption for the refrigeration in the heat exchanger is reduced.« less

  4. Fabrication and spectroscopic properties of Co:MgAl2O4 transparent ceramics by the HIP post-treatment

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang

    2017-07-01

    Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).

  5. Influence of a pulsed CO2 laser operating at 9.4 μm on the surface morphology, reflectivity, and acid resistance of dental enamel below the threshold for melting

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Lee, Raymond; Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2017-02-01

    Below the threshold for laser ablation, the mineral phase of enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Studies suggest the possibility of achieving the conversion without visible surface alteration. In this study, changes in the surface morphology, reflectivity, and acid resistance were monitored with varying irradiation intensity. Bovine enamel specimens were irradiated using a CO2 laser operating at 9.4 μm with a Gaussian spatial beam profile-1.6 to 3.1 mm in diameter. After laser treatment, samples were subjected to demineralization to simulate the acidic intraoral conditions of dental decay. The resulting demineralization and erosion were assessed using polarization-sensitive optical coherence tomography, three-dimensional digital microscopy, and polarized light microscopy. Distinct changes in the surface morphology and the degree of inhibition were found within the laser-treated area in accordance with the laser intensity profile. Subtle visual changes were noted below the melting point for enamel that appear to correspond to thresholds for denaturation of the organic phase and thermal decomposition of the mineral phase. There was significant protection from laser irradiation in areas in which the reflectivity was not increased significantly, suggesting that aesthetically sensitive areas of the tooth can be treated for caries prevention.

  6. Pulpal Effects of Enamel Ablation With a Microsecond Pulsed λ=9.3-μm CO2 Laser

    PubMed Central

    Staninec, Michal; Darling, Cynthia L.; Goodis, Harold E.; Pierre, Daniel; Cox, Darren P.; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K.; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2011-01-01

    Background and Objectives In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with a pulse duration in the range of 10–20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Study Design/Materials and Methods Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 μm operating at 25 or 50 Hz using a incident fluence of 20 J/cm2 for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Results Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3±4°C without water cooling versus 1.7±6°C with water-cooling, n=25, P<0.05. None of the control or treatment groups showed any deleterious effects on pulpal tissues and none of the 29 test-subjects felt pain or discomfort after the procedure. Only two test-subjects felt discomfort from “cold sensitivity” during the procedure caused by the water-spray. Conclusion It appears that this CO2 laser can ablate enamel safely without harming the pulp under the rate of energy deposition employed in this study. Lasers Surg. PMID:19347946

  7. A single-frequency double-pulse Ho:YLF laser for CO2-lidar

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.

    2016-03-01

    A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.

  8. Measurements of NH 3 and CO 2 with Distributed-Feedback Diode Lasers Near 2.0 m in Bioreactor Vent Gases

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Claps, Ricardo; Englich, Florian V.; Tittel, Frank K.; Jeffries, Jay B.; Hanson, Ronald K.

    2001-08-01

    Measurements of NH3 and CO2 were made in bioreactor vent gases with distributed-feedback diode-laser sensors operating near 2 m. Calculated spectra of NH3 and CO2 were used to determine the optimum transitions for interrogating with an absorption sensor. For ammonia, a strong and isolated absorption transition at 5016.977 cm-1 was selected for trace gas monitoring. For CO2 , an isolated transition at 5007.787 cm-1 was selected to measure widely varying concentrations [500 parts per million (ppm) to 10% ,] with sufficient signal for low mole fractions and without being optically thick for high mole fractions. Using direct absorption and a 36-m total path-length multipass flow-through cell, we achieved a minimum detectivity of 0.25 ppm for NH3 and 40 ppm for CO2 . We report on the quasi-continuous field measurements of NH3 and CO2 concentration in bioreactor vent gases that were recorded at NASA Johnson Space Center with a portable and automated sensor system over a 45-h data collection window.

  9. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  10. Far infrared maser communications technology

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1975-01-01

    An optically pumped FIR laser was constructed and tested. Optimum operating conditions were determined with CH3OH as the lasing medium. The laser was found to operate equally well with flowing gas or in a sealed off configuration. The FIR cavity stability and pump laser stability were found to have significant problems. The absorption coefficient per unit pressure of 1-1 difluoroethylene at the P(22) and P(24) lines of the 10.4 micron CO2 band was measured. The FIR line pumped by P(22) occurs at approximately 890 microns, which may be in an atmospheric transmission window. It was found that significant Stark tuning of absorption lines of methanol and 1-1 difluoroethylene can be accomplished, even at the usual 100 to 300 mTorr operating pressures of FIR lasers. This means that the use of Stark tuning may enable more effective use of pump laser output.

  11. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  12. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Smithers, Martin E.; Murty, Rom

    1991-01-01

    The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.

  13. Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation.

    PubMed

    Maung, Linn H; Lee, Chulsung; Fried, Daniel

    2010-03-05

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO(2) laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO(2) laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO(2) laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating.

  14. Near-IR imaging of thermal changes in enamel during laser ablation

    NASA Astrophysics Data System (ADS)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  15. Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation

    PubMed Central

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2011-01-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10–20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating. PMID:21935291

  16. [Experimental liver and kidney surgery with CO2, CO, holmium, and neodym lasers. Cutting effect, hemostasis, histopathology, and healing (author's transl)].

    PubMed

    Karbe, E; Königsmann, G; Beck, R

    1980-01-01

    Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.

  17. A systematic review of comparative studies of CO2 and erbium:YAG lasers in resurfacing facial rhytides (wrinkles).

    PubMed

    Chen, Kee-Hsin; Tam, Ka-Wai; Chen, I-Fan; Huang, Shihping Kevin; Tzeng, Pei-Chuan; Wang, Hsian-Jenn; Chen, Chiehfeng Cliff

    2017-08-01

    Laser resurfacing is used to minimize wrinkles, solar scars and sequelae of acne. Purpose of the systematic review was to compare resurfacing outcomes of CO 2 laser and erbium: yttrium aluminium garnet (erb:YAG) laser therapies. Medline, Cochrane Library, EMBASE and Google Scholar databases were searched until 9 April 2015 using the following terms: laser, carbon dioxide/CO 2 , facial wrinkles, rhytides and erbium-doped yttrium aluminium garnet/erbium:YAG/Er:YAG. Two-armed controlled split faced studies that compared CO 2 laser and erbium:YAG laser in patients with mild-to-moderate facial wrinkles or rhytides were included. The pooled data in this study and findings of other studies support the greater efficacy with the CO 2 laser in improving facial wrinkles, but the erb:YAG laser was associated with a better complication profile compared with the CO 2 laser. Except one case of hypopigmentation, other complications (i.e., erythema, hyperpigmentation and crusting) and their rates were reported by studies examining both lasers. In general, the CO 2 laser appeared to be more efficacious then the erb:YAG laser in treating facial wrinkles. Both lasers treatments were well tolerated.

  18. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    NASA Astrophysics Data System (ADS)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  19. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  20. Electric Discharge and Afterglow Kinetics for Laser Mixtures with Carbon Monoxide, Oxygen and Iodine

    DTIC Science & Technology

    2006-01-01

    e -beam sustained discharge (EBSD) CO laser amplifier (LA) operating on fundamental band vibrational transitions V → V -1 from 5→4 up to 14→13 was...temperature. 10-13 32 34 36 38 40 42 44 46 48 50 52 10-12 10-11 K v , 0 v -2 ,1 (c m 3 /s ) V 2’ 2 Fig. e is much faster but the resonance peak...mixtures, laser cavity and excitation pulse, selected in the kinetic modelling. Gas density (Amagat) 0.2 Gas temperature (K) 100 E /N (10-16 V

  1. Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers

    NASA Technical Reports Server (NTRS)

    Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.

    1986-01-01

    It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.

  2. Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Richter, D.; Tittel, F. K.

    1999-01-01

    Tunable narrowband mid-infrared radiation from 3.25 to 4.4 micrometers is generated by a compact fiber-coupled, difference-frequency-based spectroscopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2cm) (corresponding to a power of approximately equal to 3 microW at 3.3 micrometers) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work.

  3. NASA Lidar system support and MOPA technology demonstration

    NASA Technical Reports Server (NTRS)

    Laughman, L. M.; Capuano, B.; Wayne, R. J.

    1986-01-01

    A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  4. CO 2 laser treatment system of tinea pedis

    NASA Astrophysics Data System (ADS)

    Ueda, Masahiro

    The CO 2 laser treatment system 'Melase 1000' has been developed for the treatment of Tinea pedis and the efficacy of the treatment using the system and its optimum irradiation condition are studied. The present system enables us to make the healing time of Tinea pedis treatment far shorter than conventional pharmaceuticals. This is in spite of using heat levels low enough for patients not to feel discomfort. Features offered by the system are a safe-and-easy operation and a stable laser power for a prolonged use. The efficacy of the present therapy is excellent; only two treatments a week for three weeks, i.e. six consecutive treatments, attained an improvement rate of 71.8% in the skin findings and a 'usefulness' of 66.2% determined from cases rated as 'useful' or 'better'. The optimum laser irradiation condition for a single treatment found in this experiment is a light fluence of about 3 J/cm 2 and four laser pulses with a time interval between pulses of 1 s for a typical horny layer thinner than 0.5 mm.

  5. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    NASA Astrophysics Data System (ADS)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  6. High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Nagasawa, C.; Shibata, Y.

    2009-12-01

    Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M2 ≥1.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder wavelength for each oscillation pulse. The on-line and off-line wavelengths were injected into the OPO cavity through its output mirror. The injection seeder could be automatically switched by applying the TTL trigger to an optical fiber switch. A typical power of 8mW was injected into the cavity. The OPO cavity length was controlled as follows. A slope voltage was applied to the piezoelectric element mounted on the cavity mirror. If the longitudinal mode of the cavity was closed at the wavelength of the injection seeder, the electrical signal monitored by the photodiode would be maximized. The CW laser beam was injected from the output coupler to control the oscillation wavelength. The maximum output energy of 12mJ at 400 Hz was observed at 35mJ of pumping laser energy. The slope efficiency was 43.7%. This output energy and this repetition rate were the highest achieved so far. No damage was observed even after 1 h of operation. Therefore higher-energy operations can be expected with this device if the beam quality of the pumping laser is improved. This work was financially supported by the System Development Program for Advanced Measurement and Analysis by the JST.

  7. Compact Laser-Based Sensors for Monitoring and Control of Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.; Jeffries, Jay B.

    2003-01-01

    Research is reported on the development of sensors for gas turbine combustor applications that measure real-time gas temperature using near-infrared water vapor absorption and concentration in the combustor exhaust of trace quantities of pollutant NO and CO using mid-infrared absorption. Gas temperature is extracted from the relative absorption strength of two near-infrared transitions of water vapor. From a survey of the water vapor absorption spectrum, two overtone transitions near 1800 nm were selected that can be rapidly scanned in wavelength by injection current tuning a single DFB diode laser. From the ratio of the absorbances on these selected transitions, a path-integrated gas temperature can be extracted in near-real time. Demonstration measurements with this new temperature sensor showed that combustor instabilities could be identified in the power spectrum of the temperature versus time record. These results suggest that this strategy is extremely promising for gas turbine combustor control applications. Measurements of the concentration of NO and CO in the combustor exhaust are demonstrated with mid-infrared transitions using thermo-electrically cooled, quantum cascade lasers operating near 5.26 and 4.62 microns respectively. Measurements of NO are performed in an insulated exhaust duct of a C2H4-air flame at temperatures of approximately 600 K. CO measurements are performed above a rich H2-air flame seeded with CO2 and cooled with excess N2 to 1150 K. Using a balanced ratiometric detection technique a sensitivity of 0.36 ppm-m was achieved for NO and 0.21 ppm-m for CO. Comparisons between measured and predicted water-vapor and CO2 interference are discussed. The mid-infrared laser quantum cascade laser technology is in its infancy; however, these measurements demonstrate the potential for pollutant monitoring in exhaust gases with mid-IR laser absorption.

  8. Ablative fractional lasers (CO(2) and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides.

    PubMed

    Karsai, Syrus; Czarnecka, Agnieszka; Jünger, Michael; Raulin, Christian

    2010-02-01

    Ablative fractional lasers were introduced for treating facial rhytides in an attempt to achieve results comparable to traditional ablative resurfacing but with fewer side effects. However, there is conflicting evidence on how well this goal has generally been achieved as well as on the comparative value of fractional CO(2) and Er:YAG lasers. The present study compares these modalities in a randomized controlled double-blind split-face study design. Twenty-eight patients were enrolled and completed the entire study. Patients were randomly assigned to receive a single treatment on each side of the peri-orbital region, one with a fractional CO(2) and one with a fractional Er:YAG laser. The evaluation included the profilometric measurement of wrinkle depth, the Fitzpatrick wrinkle score (both before and 3 months after treatment) as well as the assessment of side effects and patient satisfaction (1, 3, 6 days and 3 months after treatment). Both modalities showed a roughly equivalent effect. Wrinkle depth and Fitzpatrick score were reduced by approximately 20% and 10%, respectively, with no appreciable difference between lasers. Side effects and discomfort were slightly more pronounced after Er:YAG treatment in the first few days, but in the later course there were more complaints following CO(2) laser treatment. Patient satisfaction was fair and the majority of patients would have undergone the treatment again without a clear preference for either method. According to the present study, a single ablative fractional treatment session has an appreciable yet limited effect on peri-orbital rhytides. When fractional CO(2) and Er:YAG lasers are used in such a manner that there are comparable post-operative healing periods, comparable cosmetic improvement occurs. Multiple sessions may be required for full effect, which cancels out the proposed advantage of fractional methods, that is, fewer side effects and less down time.

  9. Value-based medicine analysis on loop electrosurgical excision procedure and CO2 laser vaporization for the treatment of cervical intraepithelial neoplasia 2.

    PubMed

    Sun, Lu-lu; Cao, Dong-yan; Yang, Jia-xin; Bian, Mei-lu; Wei, Li-hui; Shen, Keng

    2012-08-01

    The best treatment option for cervical intraepithelial neoplasia 2 (CIN2) is controversial and there is a lack of studies in value-based medicine. This multicenter comparative study was undertaken to evaluate the effectiveness, cost-effectives and quality of life (QOL) of loop electrosurgical excision procedure (LEEP) and CO(2) laser vaporization for the treatment of CIN2. A database of LEEP and laser vaporizations performed at three research centers was created. Patients with colposcopic-histopathologically confirmed CIN2 were randomly submitted to LEEP and laser vaporization. Cytology, human papilloma virus (HPV) DNA test and histology were performed, and a questionnaire on QOL was filled out during follow-up. Effectiveness, cost-effectives and QOL were analyzed. Three hundred and thirty-eight women with CIN2 were included in the study. Frequencies of remission, and persistent and recurrent CIN were 89.2%, 7.2%, and 3.6% for LEEP, and 86.7%, 12.6%, 0.70% for laser, respectively. There was no significant difference in remission and persistence of CIN. There was a significant difference in the number of operations, recovery time and costs. Women treated with two methods showed relatively identical QOL. Both LEEP and CO(2) laser vaporization are effective and reliable treatments for CIN2, whereas cervical tissue can be obtained for histology by LEEP. Preoperative evaluation and postoperative follow-up are important. Gynecologists should pay attention to QOL of patients with CIN. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  10. Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier

    NASA Technical Reports Server (NTRS)

    Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.

    1990-01-01

    The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.

  11. Prevention of CO2 laser-induced endotracheal tube fires with the laser-guard protective coating.

    PubMed

    Sosis, M B; Dillon, F

    1992-01-01

    To determine how well Laser-Guard protects polyvinyl chloride (PVC) endotracheal tubes from the carbon dioxide (CO2) laser. Bare and Laser-Guard-protected PVC endotracheal tubes were tested with 5 L/min of oxygen (O2) passing through them. Research laboratory of a university-affiliated metropolitan medical center. After moistening the Laser-Guard-protected endotracheal tubes, we subjected the tubes to CO2 laser radiation at 10 and 70 watts until combustion occurred or 60 seconds had elapsed. The bare PVC tube ignited and a "blowtorch" fire occurred after 3 seconds of CO2 laser use at 70 watts. The moistened Laser-Guard-protected PVC endotracheal tubes were not significantly damaged by 1 minute of laser use at 70 watts. Laser-Guard protects the shafts of combustible PVC endotracheal tubes from direct, high-power, continuous CO2 laser radiation.

  12. Hypertrophic Scarring of the Neck Following Ablative Fractional Carbon Dioxide Laser Resurfacing

    PubMed Central

    Avram, Mathew M.; Tope, Whitney D.; Yu, Thomas; Szachowicz, Edward; Nelson, J. Stuart

    2009-01-01

    Background Ablative fractional carbon dioxide (CO2) laser treatments have gained popularity due to their efficacy, shortened downtime, and decreased potential for scarring in comparison to traditional ablative CO2 resurfacing. To date, scarring with fractional CO2 lasers has not been reported. Objective Five patients treated with the same fractional CO2 laser technology for photodamage of the neck were referred to our practices 1–3 months after treatment. Each patient developed scarring. Of the five cases, two are discussed in detail. The first was treated under general anesthesia on the face and anterior neck at a pulse energy of 30 mJ (859 μm depth) with 25% coverage. Eleven days after treatment, three non-healing areas along the horizontal skin folds of the anterior neck were noted. At 2 weeks after CO2 ablative fractional resurfacing, these areas had become thickened. These raised areas were treated with a non-ablative fractionated 1,550 nm laser to modify the wound healing milieu. One week later, distinct firm pale papules in linear arrays with mild hypopigmentation had developed along involved neck skin folds. Skin biopsy was performed. For the second patient, the neck was treated at a pulse energy of 20 mJ (630 μm depth) with 30% coverage of the exposed skin, with a total treatment energy of 5.0 kJ. Minimal crusting was noted on the neck throughout the initial healing phase of 2 weeks. She then experienced tightness on her neck. Approximately 3 weeks after treatment, she developed multiple vertical and horizontal hypertrophic scars (HS). Results Histopathology for the first case confirmed the presence of a hypertrophic scar. The papules in this case completely resolved with mild residual hypopigmentation after treatment with topical corticosteroids. HS failed to resolve in the second case to date after 1 month. Conclusion As with traditional ablative CO2 laser resurfacing, HS is a potential complication of ablative fractional CO2 laser resurfacing, particularly on the neck. With early diagnosis and appropriate treatment HS of neck skin may be reversible. We urge caution when treating the neck with this device and close attention to wound care in the post-operative period. PMID:19291746

  13. CO2 laser surface treatment of failed dental implants for re-implantation: an animal study.

    PubMed

    Kasraei, Shahin; Torkzaban, Parviz; Shams, Bahar; Hosseinipanah, Seyed Mohammad; Farhadian, Maryam

    2016-07-01

    The aim of the present study was to evaluate the success rate of failed implants re-implanted after surface treatment with CO2 laser. Despite the widespread use of dental implants, there are many incidents of failures. It is believed that lasers can be applied to decontaminate the implant surface without damaging the implant. Ten dental implants that had failed for various reasons other than fracture or surface abrasion were subjected to CO2 laser surface treatment and randomly placed in the maxillae of dogs. Three failed implants were also placed as the negative controls after irrigation with saline solution without laser surface treatment. The stability of the implants was evaluated by the use of the Periotest values (PTVs) on the first day after surgery and at 1, 3, and 6 months post-operatively. The mean PTVs of treated implants increased at the first month interval, indicating a decrease in implant stability due to inflammation followed by healing of the tissue. At 3 and 6 months, the mean PTVs decreased compared to the 1-month interval (P < 0.05), indicating improved implant stability. The mean PTVs increased in the negative control group compared to baseline (P < 0.05). Independent t-test showed that the mean PTVs of treated implants were significantly lower than control group at 3 and 6 months after implant placement (P < 0.05). Based on the PTVs, re-implantation of failed implants in Jack Russell Terrier dogs after CO2 laser surface debridement is associated with a high success rate in terms of implant stability.

  14. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    PubMed Central

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  15. Single-frequency TEA CO2 laser with a bleaching spectral intracavity filter

    NASA Astrophysics Data System (ADS)

    Sorochenko, V. R.

    2017-02-01

    The regime of single-frequency operation is realised in a TEA CO2 laser with a spectral filter inside the cavity (a cell filled with SF6) on P(12)-P(24) lines of the 10P band. The minimal scatter of the peak powers of the laser pulses in a series of ‘shots’ and the maximal ratio of the output energies in the single-frequency and free running regimes (greater than 0.84) are obtained on the P(16) line at an optimal SF6 pressure in the cell. Experimental results qualitatively agree with the absorption spectrum of SF6 calculated from the SPECTRA information-analytical system. It is shown that the high ratio of energies in two regimes is achived due to gas bleaching in the cell.

  16. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold either by using water spray or by decreasing the repetition rate. We demonstrate that CO2 laser pulses with pulse lengths in the regime of 10 μs can provide precise enamel tissue removal without introducing any unwanted thermal damage.

  17. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    PubMed

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  18. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.

  19. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.

    PubMed

    Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel

    2017-12-01

    Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  1. Life testing of metal-ceramic CO2 lasers

    NASA Technical Reports Server (NTRS)

    Fahlen, T. S.; Radecki, D. J.; Reynolds, R. S.; Targ, R.

    1971-01-01

    The main purpose of this program was to determine the life characteristics of nine space-qualified, metal-ceramic CO2 lasers. Lifetimes ranged between about 400 hours to over 2000 hours (the limit of testing) with a high degree of consistency in like groups. In all cases the tubes which had failed could be restored to near their original power by doubling the cathode current for 30 minutes. Periodic rejuvenation allowed operation for the full 2000 hours on all tubes. The failure mechanism appears to involve formation of NiO and C on the nickel cathode emission surface with subsequent absorption of tube gases.

  2. Carcinoma of the larynx. Surgery: general aspects.

    PubMed

    Remacle, M; Lawson, G

    1992-01-01

    A necessary and adequate selection of operations capable of meeting all the indications involved by partial surgery, is required. We suggest such a selection inspired on that of 1983. Partial laryngectomies for glottic carcinoma: CO2-laser endoscopic cordectomy, fronto-lateral partial laryngectomy (LEROUX-ROBERT), hemiglottectomy (GUERRIER), anterior partial laryngectomy with epiglottoplasty (TUCKER), subtotal laryngectomy with cricohyoidoepiglottopexy (MAJER-PIQUET). Partial laryngectomies for supraglottic carcinoma: horizontal supraglottic laryngectomy (anterior approach), CO2-laser endoscopic epiglottectomy, lateral supraglottic pharyngo-laryngectomy (ALONSO), subtotal laryngectomy with cricohyoidopexy (LABAYLE). Total laryngectomy As from the early eighties onwards, the great progress in vocal rehabilitation following laryngectomy has certainly been the development of phonatory prosthesis.

  3. Silicon carbide novel optical sensor for combustion systems and nuclear reactors

    NASA Astrophysics Data System (ADS)

    Lim, Geunsik; Kar, Aravinda

    2014-09-01

    Crystalline silicon carbide is a wide bandgap semiconductor material with excellent optical properties, chemical inertness, radiation hardness and high mechanical strength at high temperatures. It is an excellent material platform for sensor applications in harsh environments such as combustion systems and nuclear reactors. A laser doping technique is used to fabricate SiC sensors for different combustion gases such as CO2, CO, NO and NO2. The sensor operates based on the principle of semiconductor optics, producing optical signal in contrast to conventional electrical sensors that produces electrical signal. The sensor response is measured with a low power He-Ne or diode laser.

  4. Pulpal effects of enamel ablation with a microsecond pulsed lambda = 9.3-microm CO2 laser.

    PubMed

    Staninec, Michal; Darling, Cynthia L; Goodis, Harold E; Pierre, Daniel; Cox, Darren P; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2009-04-01

    In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-microm wavelengths with a pulse duration in the range of 10-20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 microm operating at 25 or 50 Hz using a incident fluence of 20 J/cm(2) for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3+/-1.4 degrees C without water cooling versus 1.7+/-1.6 degrees C with water-cooling, n = 25, P<0.05. None of the control or treatment groups showed any deleterious effects on pulpal tissues and none of the 29 test-subjects felt pain or discomfort after the procedure. Only two test-subjects felt discomfort from "cold sensitivity" during the procedure caused by the water-spray. It appears that this CO2 laser can ablate enamel safely without harming the pulp under the rate of energy deposition employed in this study.

  5. The effect of CO2 laser treatment on skin tissue.

    PubMed

    Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma

    2015-09-01

    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.

  6. Synthesis, characterization and evaluation of CO-oxidation catalysts for high repetition rate CO2 TEA lasers

    NASA Technical Reports Server (NTRS)

    Moser, Thomas P.

    1990-01-01

    An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.

  7. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  8. Demonstration of a widely tunable digital supermode distributed Bragg reflector laser as a versatile source for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ciaffoni, L.; Hancock, G.; Hurst, P. L.; Kingston, M.; Langley, C. E.; Peverall, R.; Ritchie, G. A. D.; Whittaker, K. E.

    2013-02-01

    In this paper we report the characterization of a novel, widely tunable, diode laser source operating over the full telecom L-band (1563-1613 nm), namely the digital supermode distributed Bragg reflector (DS-DBR) laser, and its application to multi-wavelength gas sensing via absorption strategies. The spectroscopic performance of the laser has been assessed by investigating the ro-vibrational spectrum of CO2, and wavelength modulation spectroscopy was accomplished for proof-of-principle sensitive measurements in discrete spectral regions.

  9. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    PubMed

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine/epinephrine solution and an occlusion time of 15 minutes, a density of 15% was more effective than 5%. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    NASA Technical Reports Server (NTRS)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  11. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  12. Emerging solid-state laser technology by lidar/DIAL remote sensing

    NASA Technical Reports Server (NTRS)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  13. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  14. Atmospheric solar absorption measurements in the 9 to 11 mu m region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.

  15. Doppler lidar wind measurement on Eos

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Bilbro, J.; Beranek, R.; Mabry, J.

    1985-01-01

    A polar-orbiting platform segment of the Earth Observing System (EOS) could carry a CO2-laser based Doppler lidar for recording global wind profiles. Development goals would include the manufacture of a 10 J laser with a 2 yr operational life, space-rating the optics and associated software, and the definition of models for global aerosol distributions. Techniques will be needed for optimal scanning and generating computer simulations which will provide adequately accurate weather predictions.

  16. Fractional CO2 laser is an effective therapeutic modality for xanthelasma palpebrarum: a randomized clinical trial.

    PubMed

    Esmat, Samia M; Elramly, Amany Z; Abdel Halim, Dalia M; Gawdat, Heba I; Taha, Hanaa I

    2014-12-01

    Xanthelasma palpebrarum (XP) is a common cosmetic concern. Although there is a wide range of therapeutic modalities for XP, there is no general consensus on the optimal treatment for such condition. Compare the efficacy and safety of super pulsed (SP) and fractional CO2 lasers in the treatment of XP. This prospective randomized comparative clinical study included 20 adult patients with bilateral and symmetrical XP lesions. Xanthelasma palpebrarum lesions were randomly assigned to treatment by either single session of ablative SP CO2 laser or 3 to 5 sessions of ablative fractional CO2 laser with monthly intervals. All patients were assessed using digital photography and optical coherence tomography images. Xanthelasma palpebrarum lesions on both sides were successfully removed with significant improvement in size, color, and thickness. Although lesions treated by SP CO2 laser showed significantly better improvement regarding color and thickness of the lesions, downtime and patient satisfaction were significantly better for lesions treated with fractional CO2 laser. Scarring and recurrence were significantly higher in lesions treated by SP CO2 laser. Ablative fractional CO2 laser is an effective and safe therapeutic option for XP with significantly shorter downtime and higher patient satisfaction compared with SP CO2 laser.

  17. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  18. Tunable Diode Laser Absorption Spectroscopy Sensor for Calibration Free Humidity Measurements in Pure Methane and Low CO2 Natural Gas.

    PubMed

    Nwaboh, Javis Anyangwe; Pratzler, Sonja; Werhahn, Olav; Ebert, Volker

    2017-05-01

    We report a new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor for absolute measurements of H 2 O in methane, ethane, propane, and low CO 2 natural gas. The sensor is operated with a 2.7 µm DFB laser, equipped with a high pressure single pass gas cell, and used to measure H 2 O amount of substance fractions in the range of 0.31-25 000 µmol/mol. Operating total gas pressures are up to 5000 hPa. The sensor has been characterized, addressing the traceability of the spectrometric results to the SI and the evaluation of the combined uncertainty, following the guide to the expression of uncertainty in measurement (GUM). The relative reproducibility of H 2 O amount of substance fraction measurements at 87 µmol/mol is 0.26% (0.23 µmol/mol). The maximum precision of the sensor was determined using a H 2 O in methane mixture, and found to be 40 nmol/mol for a time resolution of 100 s. This corresponds to a normalized detection limit of 330 nmol mol -1 ·m Hz -1/2 . The relative combined uncertainty of H 2 O amount fraction measurements delivered by the sensor is 1.2%.

  19. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery

    NASA Astrophysics Data System (ADS)

    Lach, Elliot

    1994-09-01

    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  20. Wind velocity measurement accuracy with highly stable 12 mJ/pulse high repetition rate CO2 laser master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.; Johnson, Steven C.; Rothermel, Jeffry

    1987-01-01

    A coherent CO2 lidar operating in a master oscillator power amplifier configuration (MOPA) is described for both ground-based and airborne operation. Representative data taken from measurements against stationary targets in both the ground-based and airborne configurations are shown for the evaluation of the frequency stability of the system. Examples of data are also given which show the results of anomalous system operation. Overall results demonstrate that velocity measurements can be performed consistently to an accuracy of + or - 0.5 m/s and in some cases + or - 0.1 m/s.

  1. Industrial 30-kW CO2 laser with fast axial gas flow and rf excitation

    NASA Astrophysics Data System (ADS)

    Habich, Uwe; Loosen, Peter; Hertzler, Christoph; Wollermann-Windgasse, Reinhard

    1996-03-01

    A CO2 laser with fast axial gas flow was set up and operated with a maximum cw output power above 30 kW. The laser makes use of 8 rf-excited discharges which were optimized regarding to the gas-flow, to the discharge homogeneity and to the optical properties of the gain medium. Results of experimental investigation of these topics are described as well as performance characteristics of the laser system equipped with a stable and an unstable resonator, respectively. With an unstable resonator and an aerodynamic window for the extraction of the beam the laser system gives a beam quality which is close to the diffraction limit for this type of resonator. Disregarding the difficulties which are related to the definition and measurement of beam quality for unstable resonators, the beam quality could be described as M2 equals 3. Measured far field intensity profiles in the focal plane of a focusing optics are presented as well as the beam propagation behavior near focus. First results of applications in materials processing are discussed.

  2. Er,CR:YSGG lasers induce fewer dysplastic-like epithelial artefacts than CO2 lasers: an in vivo experimental study on oral mucosa.

    PubMed

    González-Mosquera, A; Seoane, J; García-Caballero, L; López-Jornet, P; García-Caballero, T; Varela-Centelles, P

    2012-09-01

    Our aim was to assess wounds made by lasers (CO(2) and Er,Cr:YSGG) for their epithelial architectural changes and width of damage. We allocated 60 Sprague-Dawley(®) rats into groups: glossectomy by CO(2) laser at 3 different wattages (n=10 in each); glossectomy by Er,Cr:YSGG laser at two different emissions (n=10 in each), and a control group (n=10). Histological examination assessed both prevalence and site of thermal artefacts for each group. Both lasers (CO(2) and Er,Cr:YSGG) caused the same type of cytological artefacts. The 3W Er,Cr:YSGG laser produced the fewest cytological artefacts/specimen, and was significantly different from the other experimental groups: 3W CO(2) laser (95% CI=0.8 to 1.0); the 6W CO(2) laser (95% CI=0.1 to 2.0) and the 10W CO(2) laser (95% CI=1.1 to 3.0). CO(2) lasers (3-10W) generate epithelial damage that can simulate dysplastic changes with cytological atypia that affects mainly the basal and suprabasal layers. Irradiation with Er,CR:YSGG laser (2-4W) produces significantly fewer cellular artefacts and less epithelial damage, which may be potentially useful for biopsy of oral mucosa. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Image-guided removal of occlusal caries lesions with a λ= 9.3-µm CO2 laser using near-IR transillumination

    PubMed Central

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-01-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-µm with a pulse duration of 10–15-µs and a pulse repetition rate of 100–300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited. PMID:25914498

  4. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination

    NASA Astrophysics Data System (ADS)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-02-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  5. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Relatedmore » work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.« less

  6. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO{sub 2} lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golyshev, A A; Malikov, A G; Orishich, A M

    Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  7. Comparison of Efficacy of Carbon Dioxide (CO2) Laser with Cutting Diathermy in Surgical Excision of Early Carcinoma Tongue.

    PubMed

    Rashid, Muhammad; Hashmi, Muhammad Ali; Maqbool, Shahzad; Dastigir, Majid

    2015-10-01

    To compare the efficacy of carbon dioxide (CO(2)) laser with cutting diathermy as a cutting device in surgical excision of early carcinoma tongue. Experimental study. Combined Military Hospital (CMH), Rawalpindi and CMH, Lahore, from July 2008 to July 2011. Twenty two biopsy proven cases of T(1) and early T(2) squamous cell carcinoma of tongue were divided in two equal groups of 11 each labeled as A and B. Tumor was excised by CO(2) laser in group A while cutting diathermy was done in group B. For both groups tumor excision time, per-operative blood loss, postoperative oral swelling and pain was recorded. Excision time of tumor was assessed in minutes and amount of blood loss in milliliters till complete hemostasis after removal of primary tumor. Postoperatively patients were assessed on 12 hourly basis for 48 hours for pain. Pain was analyzed on visual analogue score 1 - 10. Oral swelling was assessed once after 24 hours and labeled as mild, moderate and severe. Independent sample t-test was applied for analysis of excision time, postoperative pain and per-operative blood loss for both groups. Postoperative swelling was analyzed using Fisher's exact test. P-value of < 0.05 was considered significant. The mean age at diagnosis in group A was 49.36 ± 5.27 years, while in group B patients had mean age of 50.73 ± 8.13 years. In group A, 4/11 (36.3%) patients were having tumor stage T(1) while 7/11 (63.6%) had T(2) stage tumor. In group B, 5/11 (45.4%) were having T1 and 6/11 (54.5%) were having stage T(2) tumor. Excision time was significantly shorter for group B (p=0.003), but group A had less postoperative pain (p=0.001), less per-operative blood loss (p=0.001) and less postoperative oral swelling (p=0.021). Early carcinoma tongue is better removed by laser than electrocautery in terms of postoperative morbidity, per-operative blood loss, postoperative pain and oral swelling.

  8. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  9. [Animal experiment comparison of the therapeutic efficacy of tumor excision with a scalpel or with a CO2 laser in subcutaneously implanted Lewis lung cancer].

    PubMed

    Mahn, H R; Nowak, C; Audring, H; Liebetruth, J; Lindenau, K F

    1982-02-01

    An animal experimental study was carried out in order to compare the therapeutical value of two different surgical methods for excising the subcutaneous implanted Lewis lung carcinoma - tumor excision with scalpel or with carbon dioxide laser. The radicalism of operation methods, the survival time, and the tumor local recurrences were performed. The therapeutic effectivity of tumor excision with the carbon dioxide laser is more favourable than the scalpel method.

  10. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    NASA Astrophysics Data System (ADS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  11. Photolasertherapy for the treatment of infections in neurosurgery: experimental and clinical study

    NASA Astrophysics Data System (ADS)

    Lombard, Gian F.

    1996-12-01

    At the first time, the CO2 laser was utilised in infective neurosurgical pathology as a surgical cutting instrument to remove inflammatory pseudomembranes in chronic osteomyelitis, and as a vaporising instmment on the dura mater surface. Successively, the instrument, defocused and at a low power, was used for prolonged and diffuse photo coagulation ofthe surgical cavity, particularly, ofthe dural surface and ofthe osteomyelitic bone edges, with the aim to sterilise tissues. So, we saw a shortening of the average time of wound healing and a lack of recurrence of the septic pathology. Then, we have treated, with CO2 laser, intracranial infective pathology: i.e. primary abscesses, capsulated or not, circumscribed purulent encephalitis, secondary abscesses in surgical cavities (patients operated for intracranial hematomas and tumors). In these cases we have obtained a lack of septic recurrences and an improvement ofneurological post-operative course. Thank to these results, we have continued to use laser in infective pathology; for giving an experimental support to these results we have carried on researches in vivo (on the experimental animal) to see the interaction between the laser and inflammatory tissue, and in vitro (on bacterial culture: in solid and liquid media) to see the laser effect on the bacterial cell. The bacterial cell has been also sensibiized to the photo dynamic effect of the laser (Argon, He-Ne), with hematoporphyrin. The goal of these experiments is to understand the role of thermal, photochemical, and mechanic resonance laser effects in the interaction between laser radiation and bacterial cell.

  12. CO2 and diode laser for excisional biopsies of oral mucosal lesions. A pilot study evaluating clinical and histopathological parameters.

    PubMed

    Suter, Valérie G A; Altermatt, Hans Jörg; Sendi, Pedram; Mettraux, Gérald; Bornstein, Michael M

    2010-01-01

    The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.

  13. Molecular structural diagnosis: application of sealed-off nitrogen-laser to the check-up on cervical cancer (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Wu; Hu, Jie

    1998-11-01

    Meatal-hymenal deformity is a predisposing cause of the lower urological tract infection in females which is usually followed by sexual activity, menstruation or vaginitis. The urethral external orifice is usually narrowed owing to the deforming meatal-hymen. Morphologically, meatal-hymeneal deformity is classified into volcanic hymen and valvular hymen. Since May of 1985, 132 cases of meatal-hymenal deformity were treated with CO2 laser at a wavelength of 10.6 micrometers and at an output power of 20 w. A wedge shape incision was made above the urethral external orifice accompanied by regional hymen vaporization at the bottom or on both side. Periodic expansion of urethra and lavation with 1/2000 bromo-geramine solution followed. The value of the method is simple in operation, without complication, not necessary to be in charge and with a satisfying healing rate of 97 percent. In this study, we discuss the pathological changes causing the lower urological tract infection in females, the operating methods, theory and advantages of CO2 laser therapy.

  14. Production of dense plasmas in a hypocycloidal pinch apparatus

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1977-01-01

    A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  15. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  16. Conversion of blackbody radiation into laser energy

    NASA Technical Reports Server (NTRS)

    Mcinville, R. M.; Hassan, H. A.

    1982-01-01

    By employing detailed kinetic models, three concepts which utilize a blackbody cavity for the conversion of solar energy into laser energy using a CO2 lasant are analyzed and compared. In the first, the blackbody radiation is used to excite flowing CO2 directly. The second and third employ a mixing laser concept with CO and N2 being the donor gases. The CO is optically pumped while thermal heating excites the N2. Blackbody temperatures ranging from 1500 deg K - 2500 deg K are considered. Based on calculated laser power output per unit flow rate of CO2, it appears that the N2-CO2 mixing laser is the most attractive system.

  17. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser.

    PubMed

    Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V

    2014-05-01

    Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.

  18. Progress in Measurement of Carbon Dioxide Using a Broadband Lidar

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink" that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics We have been examining the possibility of making precise measurements of atmospheric carbon dioxide using broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  19. Clinical effects of CO2 laser on equine diseases

    NASA Astrophysics Data System (ADS)

    Lindholm, Arne; Svensson, Ulf; Collinder, Eje

    2002-10-01

    CO2 lasers has been used for five years at Malaren Equine Hospital, as an alternative treatment of some equine diseases. The application of CO2 laser has been studied for evaluation of its appropriateness for treatment of the equine diseases sarcoids, lameness in fetlock joints or pulmonary haemorrhage. During the last five years, above 100 equine sarcoids have been removed by laser surgery (CO2 laser) and so far resulting in significantly few recurrences compared with results from usual excision surgery. In one study, acute traumatic arthritis in fetlock joints was treated three times every second day with defocalised CO2 laser. The therapeutic effectiveness of CO2 laser in this study was better than that of the customary therapy with betamethasone plus hyaluronan. During one year, chronic pulmonary bleeders, namely exercise induced pulmonary haemorrhage, has been treated with defocalised CO2 laser. Six race horses have been treated once daily during five days. Until now, three of these horses have subsequently been successfully racing and no symptoms of pulmonary haemorrhage have been observed. These studies indicate that CO2 laser might be an appropriate therapy on sarcoids and traumatic arthritis, and probably also on exercise induced pulmonary haemorrhage. Other treatments for this pulmonary disease are few.

  20. Pulsed Heterodyne CO2 Laser/Scanner System. Volume 1. Assembly Report.

    DTIC Science & Technology

    1983-06-01

    rack #2 houses the switches and variacs controlling the DC power rectifier, which is in an oil tank under the optical bench. These two units are...or fire hazards (due to oil filled electrical equipments). This section, however, addresses only the four main hazards. Ozone The atmospheric pressure...ventilation of the exhaust of the 002 lasers is essencial to the safe operation of this system. High Voltage The system consists of 40 separate

  1. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  2. Bladder welding in rats using controlled temperature CO2 laser system.

    PubMed

    Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A

    1999-05-01

    Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into tissues.

  3. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    NASA Astrophysics Data System (ADS)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  4. A numerical simulation of machining glass by dual CO 2-laser beams

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Wang, Xinbing

    2008-03-01

    In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.

  5. Application of CO laser for laser balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akira; Sakurada, Masami; Mizuno, Kyoichi; Kurita, Akira; Nakamura, Haruo; Suda, Akira; Arai, Tsunenori; Kikuchi, Makoto

    1990-07-01

    CO laser may be efficient for thermal fusion of intima of arterial wall without adventitial tissue damage because of high tissue absorption. To investigate the efficacy of CO laser as a laser bam for laser balloon angioplasty (LBA). CO laser was irradiated to aortic tissue through 3Oim polyethylene membrane and tissue temperature was measured by a thermistor. At 2Owatt/cm2 200joules/cm2 continuous laser exposure (CE), tissue temperature was above 100°C within a depth of 1mm and rapidly decreased to 60 °C or below between 2 and 3mm in depth. Moreover, adventitial temperature could be decreased by changing duty ratio (exposure duration/interval) of intermittent laser exposure (IE) despite of the same laser energy. Light microscopy showed high degree of medial coagulation necrosis in CE, however thermal coagulation was observed only at the surface of intima of aortic tissue in IE at duty ratio 1 / 2. These findings suggested CO laser could coagulate intimal layer with less deep thermal damage compared to Nd- YAG laser and that IE was better for superficial welding than CE at the same energy. We concluded that CO laser might be more efficient as a laser beam for LBA than Nd-YAG laser.

  6. Histopathological and Postoperative Behavioral Comparison of Rodent Oral Tongue Resection: Fiber-Enabled CO2 Laser versus Electrocautery

    PubMed Central

    Shires, Courtney Brooke; Saputra, Jennifer Marie; King, Lauren; Thompson, Jerome W.; Heck, Detlef H.; Sebelik, Merry Ellen; Boughter, John Dudley

    2015-01-01

    Objective To compare operative time and hemostasis of fiber-enabled CO2 laser (FECL) energy to that of the electrocautery (EC) technique for oral tongue resection, to compare return to oral intake and preoperative weight after FECL and EC resection, and to compare histologic changes in adjacent tissue after FECL and EC resection. Study Design Prospective animal study. Setting Research laboratory. Subjects and Methods The CO2 laser fiber and the Bovie cautery were each used to resect the anterior tongue in 15 adult rats. Fixative perfusion and killing were performed on postoperative day 0 (n = 10), 3 (n = 10), or 7 (n = 10). Body weight, food intake, and water intake were recorded daily for 3- and 7-day survival rats. After preparation for histologic analysis, the tongue tissue was graded with a mucosal wound-healing scale (MWHS). Results A higher incidence of intraoperative bleeding and shorter operative times were noted in the EC group. No statistically significant difference in postoperative food or water intake between the EC and FECL groups was noted. The FECL group returned to baseline weight by postoperative day 6. MWHS scores were lower in the EC group by postoperative day 3 and lower in the FECL group by postoperative day 7. Conclusions Both EC and FECL are effective for resection of the tongue in rats. EC has the advantage of shorter operative time and lower MWHS scores by postoperative day 3; FECL has the advantages of less intraoperative bleeding, faster return to baseline body weight, and lower MWHS score by postoperative day 7. PMID:22535916

  7. Use of flexible hollow-core CO2 laser in microsurgical resection of CNS lesions: early surgical experience.

    PubMed

    Killory, Brendan D; Chang, Steve W; Wait, Scott D; Spetzler, Robert F

    2010-06-01

    The CO2 laser has a long history in both experimental and clinical neurosurgery. However, its use over the past decade has been limited by its cumbersome design and bulky set-up of the micromanipulator. These limitations are amplified when it is used with the operating microscope. These restrictions are addressed by the Omniguide fiber, which delivers the beam through flexible hollow-core photonic bandgap mirror fibers and allows the laser to be wielded like any other surgical instrument. The attending neurosurgeon prospectively assessed the usefulness of the laser in its first 45 consecutive uses at our institution based on a scale of 1 to 5. The series included 11 cavernous malformations, 14 meningiomas, 7 ependymomas, 3 metastases, 3 astrocytomas, and 7 miscellaneous lesions. The laser was set up 91 times and used in 45 cases. The Omniguide fiber failed 5 times. No adverse events involving patients or staff were associated with laser use. The mean utility score was 3.7 +/- 0.8 (range, 2-5). The laser was most helpful in debulking fibrous lesions too tough for ultrasonic aspiration and lesions adherent to delicate neurovascular structures. The laser was not helpful with highly vascular tumors. In our early experience, the Omniguide laser was very helpful in selected cases in resecting specific types of lesions without complications; we have added the device to our neurosurgical armamentarium.

  8. In situ study of the anticariogenic potential of fluoride varnish combined with CO2 laser on enamel.

    PubMed

    Souza-Gabriel, Aline Evangelista; Turssi, Cecília Pedroso; Colucci, Vivian; Tenuta, Lívia Maria Andaló; Serra, Mônica Campos; Corona, Silmara Aparecida Milori

    2015-06-01

    This in situ study evaluated the effect of fluoride varnish combined with CO2 laser in controlling enamel demineralization caused by cariogenic challenges. In a crossover study conducted in 2 phases of 14 days each, 14 volunteers (n = 14) wore palatal appliances with bovine enamel slabs treated with fluoride varnish + CO2 laser (FV + CO2), fluoride varnish (FV), nonfluoride placebo varnish (PV) and nonfluoride placebo varnish + CO2 laser (PV + CO2). Drops of sucrose solution were dripped onto enamel slabs allowing the accumulation of biofilm. At the first phase, half of the volunteers received 4 enamel slabs treated with FV while the remainders received slabs exposed to the PV with and without CO2 laser. In the second phase, the vonlunteers were reversed treatments. The slabs were evaluated for cross-sectional microhardness (CSMH) and the concentration of loosely bound fluoride (CaF2) and firmly bound fluoride (FAp). The concentration of fluoride in biofilm were also determined. Two-way ANOVA showed that the CSMH values were higher in laser-irradiated enamel, regardless of the fluoride varnish. Friedman test showed that FV group presented significantly larger amount of fluoride in biofilm (P < 0.05). In the enamel, the largest amount of fluoride was found in the groups FV + CO2, which was not different from FV (P > 0.05). The synergistic effect of fluoride varnish and CO2 laser on enamel demineralization was not observed, however, CO2 laser reduces enamel demineralization. CO2 laser might reduce the demineralization of subsurface enamel, although its association with a high concentrated fluoride therapy may not result in a positive synergistic interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  10. Thulium fibre laser nerve stimulation and its application in human pain research

    NASA Astrophysics Data System (ADS)

    Warnaby, Catherine E.

    Experimental pain induction, in combination with psychophysical and functional imaging techniques, allows the controlled study of the mechanisms, pathways and brain areas involved in the processing of noxious stimuli. Laser nerve stimulation provides an excellent stimulus that selectively activates the Adelta and C nociceptors with only low concurrent activity in the warmth system. Thulium fibre laser systems, operating near 2mum, offer several advantages over other pain stimulators including the CO[2] and Tm:YAG laser systems. These advantages include direct absorption at the location of the nociceptors, reduced likelihood of tissue damage, improved compatibility with fMRI, and wavelength tunability. The main aims of the thesis were to apply an initial thulium fibre laser system to pain activation studies in healthy subjects and confirm the potential advantages. A 1D finite difference photothermal model confirmed that thulium fibre laser radiation is absorbed throughout the expected location of the nociceptors and produces a lower surface temperature than CO[2] radiation. In order to produce a temperature rise of 9°C at 150mum, thulium radiation induces a surface temperature rise of 12°C compared to 21°C surface temperature rise using CO[2] radiation. The use of thulium fibre radiation greatly reduces the likelihood of tissue damage and first-degree burns when compared to CO[2] radiation. The spatial temperature gradient and the surface temperature rise were also found to be strongly dependent on the thulium fibre laser emission wavelength, which implies that wavelength tuning may be used to obtain the optimum stimulus wavelength in the 2mum region. The 5W initial fibre laser system was fully characterised before application to human pain studies and was shown to have excellent reproducibility of the stimulus parameters, with short-term and long-term deviations of the pulse energy of 5% and 8% of the mean respectively. The thulium fibre laser emits radiation over a 38nm wavelength range from 2.006-2.044mum. The initial system was used successfully to elicit painful sensations and laser evoked potentials (LEPs), which showed the expected dependence on the laser stimulus parameters. In agreement with the modelled results, beam diameters from 5-8mm for a 150ms pulse duration were found to elicit painful responses while minimising tissue damage. Psychophysical assessment of the pain threshold energy and energy density in ten volunteers, using the modified staircase technique and the method of constant stimuli, also showed the expected dependence on the laser beam diameter over this range. The topographical distribution of the LEPs elicited by the thulium fibre laser and a CO[2] pain stimulator were found to be very similar. However, statistically significant differences in the peak latencies of the LEP components were observed. The peak latency of the N2, P2 and P3 components elicited by the thulium fibre laser were found to be longer by 44ms, 52ms and 78ms respectively than those elicited by the CO[2] laser across five volunteers. These latency differences are believed to be due to the difference in beam diameter of the two stimuli, which produces an increase in local spatial summation for the CO[2] laser stimuli. The effectiveness of the thulium fibre laser as a controlled pain stimulator for human pain research has been confirmed. Using the current thulium fibre laser stimulation system, the optimum stimulus parameters are provided by a beam diameter of 6mm and a pulse duration of 150ms. However, further application of the current system to human pain research is limited by the available output power and the delivery of the thulium radiation to the subject. Suggestions are made for further work using an improved thulium fibre laser system with an increased output power of 20W, optical fibre delivery and wavelength tuning.

  11. An improved scan laser with a VO2 programmable mirror

    NASA Astrophysics Data System (ADS)

    Chivian, J. S.; Scott, M. W.; Case, W. E.; Krasutsky, N. J.

    1985-04-01

    A 10.6-microns scan laser has been constructed and operated with an off-axis cathode ray tube, high reflectance multilayer thin-film structures, and a tapered plasma discharge tube. Equations are given for the switching time of a high-reflectance spot on the VO2 and for the relation of scan laser output power to cavity geometry, cavity losses, and the gain of the active CO2 medium. A scan capability of 2100 easily resolvable directions was demonstrated, and sequential and randomly addressed spot rates of 100,000/sec were achieved. The equations relating output power and cavity mode size were experimentally verified using a nonscanned beam.

  12. Clinical efficacy of utilizing Ultrapulse CO2 combined with fractional CO2 laser for the treatment of hypertrophic scars in Asians-A prospective clinical evaluation.

    PubMed

    Lei, Ying; Li, Shi Feng; Yu, Yi Ling; Tan, Jun; Gold, Michael H

    2017-06-01

    Hypertrophic scarring is seen regularly. Tissue penetration of laser energy into hypertrophic scars using computer defaults from some lasers may be insufficient and penetration not enough. We have developed a treatment with an interrupted laser "drilling" by the Ultrapulse CO 2 (Manual Fractional Technology, MFT) and, a second pass, with fractional CO 2 . The MFT with fractional CO 2 lasers to treat hypertrophic scars is evaluated. A total of 158 patients with hypertrophic scars had three sessions of MFT with fractional CO 2 laser at 3-month intervals. Evaluations made before and 6 months after the 3rd treatment: (1) the Vancouver Scar Scale (VSS), (2) the University of North Carolina (UNC) Scar Scale, and (3) a survey of patient satisfaction. All data were analyzed using a t-test before and after treatment. The VSS score decreased from 9.35 to 3.12 (P<.0001), and the UNC Scar Scale score decreased from 8.03 to 1.62 (P<.0001). The overall satisfaction rate was 92%. No long-term complications occurred in the clinical trial. The interrupted laser drilling by MFT and a fractional CO2 laser had profound effects on the hypertrophic scars treated. It works by increasing the penetration depth of the CO 2 laser in the scar tissue, exerting more precise effects on the hypertrophic scars. MFT combined with fractional CO 2 laser has the potential to be a major advance in the treatment of hypertrophic scars. © 2017 Wiley Periodicals, Inc.

  13. Development of Double-Pulsed Two-Micron Laser for Atmospheric Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Singh, Upendra N.; Yu, Jirong; Refaat, Tamer F.

    2017-01-01

    A CO2 lidar double-pulse two-micron high-energy transmitter, tuned to on- and off-line absorption wavelengths, has been developed. Transmitter operation and performance has been verified on ground and airborne platform.

  14. Recent progress in development of infrared laser based instruments for real-time ambient measurements of isotopologues of carbon dioxide, water, methane, nitrous oxide and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Nelson, David; McManus, Barry; Shorter, Joanne; Zahniser, Mark; Ono, Shuhei

    2014-05-01

    The capacity for real time precise in situ measurements of isotopic ratios of a variety of trace gases at ambient concentrations continues to create new opportunities for the study of the exchanges and fluxes of gases in the environment. Aerodyne Research has made rapid progress in laser based instruments since our introduction in 2007 of the first truly field worthy instrument for real time measurements of isotopologues of carbon dioxide. We have focused on two instrument design platforms, with either one or two lasers. Absorption cells with more than 200 meters path length allow precise measurements of trace gases with low ambient concentrations. Most of our systems employ mid infrared quantum cascade lasers. However, recently available 3 micron antimonide based diode lasers are also proving useful for isotopic measurements. By substituting different lasers and detectors, we can simultaneously measure the isotopic composition of a variety of gases, including: H2O, CO2, CH4, N2O and CO. Our newest instrument for true simultaneous measurement of isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) has (1 s) precision better than 0.1 per mil for both ratios. The availability of 10 Hz measurements allows measurement of isotopic fluxes via eddy correlation. The single laser instrument fits in a 19 inch rack and is only 25 cm tall. A two laser instrument is larger, but with that instrument we can also measure clumped isotopes of CO2, with 1 second precisions of: 2.3 per mil for 13C18O16O, and 6.7 per mil for 13C17O16O. The sample size for such a measurement corresponds to 0.2 micromole of pure CO2. Another variation on the two laser instrument simultaneously measures isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) and H2O (H216O, H218O, HD16O). Preliminary results for water ratio precisions (in 1s) are 0.1 per mil for H218O and 0.3 per mil for HD16O, simultaneous (1 s) precisions for isotopologues of CO2 of ~0.1 per mil. Methane, nitrous oxide and carbon monoxide have such low ambient concentrations that real-time isotopologue measurements are a serious challenge. For these gases, we typically use our 200 m absorption cell. Several of these instruments have already been used for long term field measurements of isotopologues of methane, (12CH4, 13CH4), with a demonstrated (1 s) precision of 1.5 per mil. A new version of this instrument operating near 3.3 microns has recently been developed to quantify 13CH4 and CH3D simultaneously. In separate experiments at MIT, using trapped concentrated samples, we have made highly precise measurements of the abundance of the clumped isotope of methane: 13CH3D. We are also developing methods to monitor the isotopic abundance of the isotopes of CO and N2O. We have achieved a measurement precision for ambient 13CO (1 s) of 1.9 per mil. For the isotopologues of N2O (14N216O, 14N15N 16O, 15N14N 16O, 14N218O), we have demonstrated (1 s) precision at ambient levels (320 ppb) of ~3 per mil. For N2O, a quasi continuous preconcentrator has been used to give even better precisions (<0.1 per mil) and one is being developed for CO.

  15. Characteristics of an airborne demonstrator for MERLIN

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Dieter, H.; Löhring, J.; Klein, V.

    2012-12-01

    After three years development time, first test measurements on DLR's (Deutsches Zentrum für Luft- und Raumfahrt) CO2 and CH4 airborne Lidar have started. It is an integrated path differential absorption (IPDA) lidar for the simultaneous measurement of CO2 and CH4 columns, designed for operation onboard the new German research aircraft HALO. In the framework of the project "CHARM-F", funded by the German ministry of education and research, the lidar was developed in collaboration with Fraunhofer Institut für Lasertechnik and Kayser-Threde. Due to the special features of the aircraft, such as the maximum flight altitude of 15 km and its long range, as well as the special design of the lidar, the system is particularly suitable to be an airborne demonstrator for the French-German MERLIN project, a spaceborne IPDA lidar sounder for methane. The layout of the receiver optics allows a large field of view, i.e. a large laser footprint on ground is possible, comparable to the size obtained by a spaceborne system. So, important features that come along with ground reflectivity issues, such as albedo variations on different spatial scales, can be taken into account in the same way and can be investigated in detail. Furthermore, two detector types are used, PIN photodiodes and APDs, each with specially adapted telescopes, to compare their respective properties. The basic design of the transmitter is identical to the one envisaged for MERLIN. Also important subsystems of the presented lidar, like wavelengths stabilization and output power monitoring, can serve as demonstrators for the satellite system. The main features of the airborne system are: Two almost identical laser systems for CH4 and CO2. Nd:YAG lasers serve as the pump sources for optical parametric oscillators (OPO), injection seeded by laser diodes, to generate the desired online and offline wavelengths in single mode operation. The online wavelength is tuned to an absorption line of the measured trace gas, the offline to a wavelength nearby showing much less absorption (DIAL principle). Pulsed operation of the laser transmitters allows proper separation of atmospheric influences (e.g. aerosol and clouds) as well as precise ranging, which is crucial for the retrieval of the column averaged gas mixing ratio. Due to double pulse operation with a short temporal separation (250 μs), the areas on ground illuminated by subsequent online and offline laser pulses show only little spatial shifts. Currently, the system is being set into operation, and in the course of this all relevant specifications are being characterized. Extensive tests and validation missions are planned for 2013.

  16. Current laser applications in reconstructive microsurgery: A review of the literature.

    PubMed

    Leclère, Franck Marie; Vogt, Peter; Schoofs, Michel; Delattre, Maryline; Mordon, Serge

    2016-06-01

    Microvascular surgery has become an important method for reconstructing surgical defects following trauma, tumor resection, or burns. Laser-assisted microanastomoses (LAMA) were introduced by Jain in 1979 in order to help the microsurgeon reduce both operating time and complications. This article reviews the literature on clinical applications of LAMA. A Medline literature search was performed and cross-referenced. Articles between 1979 and 2014 were included. Keywords used were laser, laser microanastomoses, laser microanastomosis, LAMA, and microsurgery. Only seven clinical studies using three different wavelengths were found in the literature: 1,064 nm (Nd: YAG), 10,600 nm (CO2), 514 nm (Argon), and 1,950 nm (Diode). Clinical outcomes, type of procedures, laser wavelength and parameters, and possible wider applications in the operating room are discussed in each case. The success rate for reconstructive free flap surgery and hand surgery achieved with LAMA appears promising. In particular, use of the 1950-nm diode laser for microsurgery is likely to increase in the near future.

  17. [Treatment of recurrent laryngeal papilloma by submucosal resection and the effect on prognosis].

    PubMed

    Hu, Huiying; Zhang, Qingxiang; Sun, Guoyan; Yu, Zhenkun

    2015-11-01

    To investigate the efficacy of submucosal resection by CO2 laser in the treatment of recurrent laryngeal papilloma and the effect on prognosis. A total of 11 patients diagnosed as recurrent laryngeal papilloma were included in this review. Papilloma was marked before operation and checked under fibro-laryngoscope. Papilloma was resected completely including the submucosal tissure with CO2 laser or microequipment. In widespread papilloma, false membrane in raw surface were cleared 7-10 days after operation. Surgical specimens (including membrane) were detected by routine pathology, HPV typing and immunohistochemical pathologic examination. The patients were checked once a month in the first 3 months after operation, and then once for every 3 months. Once the hoarseness and other symptoms aggravated or the disease was recurrent, the patients were treated immediately. HPV viral DNA was found in 10/11 cases, with HPV11 (7/11 cases) and HPV6 (3/11 cases). Cases with regards to follow-up, from 6 months to 1 year, 3 cases were followed up 1 year after operation, without recurrence. Five patients including 2 children were followed up 6 to 12 months after operation, without recurrence. Two children underwent 2 or 3 operations, were followed-up more than 6 months withouting recurrence. Papilloma submucosal resection could decrease postoperative recurrence and is worth to be further investigated.

  18. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.

    PubMed

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2014-10-20

    We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.

  19. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  20. Investigation on the applications of fiber grating lasers in industrial sensing and pollution monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Yuanzhong

    The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, <2% intensity fluctuation, 100s Hz switching speed and 1:100,000 wavelength extinction ratio. The outstanding advantage of this approach is the simplicity in laser configuration as well as in detection system for dual wavelength laser, because it uses only an overlapped gain medium and one detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long laser. On the other hand, strong pump absorption in Er/Yb fiber was found to cause significant thermal effects in Er/Yb fiber grating lasers, which can be eliminated by ensuring proper thermal dissipation. Because of fiber laser's long lifetime at the upper laser level, its wavelength cannot be directly modulated at high speed. The widely used wavelength modulation spectroscopy (WMS) method is thus not suitable when using fiber laser sources in gas detection. The wavelength sweep scheme was thus employed as an alternative. Laser wavelength/frequency requirement and noise cancellation in this scheme are discussed. For a demonstration of fiber grating laser's application to pollutant monitoring and industrial sensing, laser spectroscopy of C2H 2 gas was undertaken with the Er/Yb codoped fiber-grating laser. A 10 -4 detection sensitivity was achieved. This is the first time, to our knowledge, that a single frequency fiber-grating laser was used in rapid laser spectroscopy. The investigation has shown that the fiber grating lasers are high performance as well as low cost, rugged and portable laser sources, very suitable for industrial sensing and pollution monitoring. A number of important pollutants, such as CO, CO2, H2S and C2H2 have absorption peaks around 1.55-μm wavelength and thus can be sensed with these lasers. Although the fiber lasers investigated here operate in the 1.5-μm window, the results are also very useful for fiber lasers that use the same operation principle in other wavelength regions.

  1. Diatomic gasdynamic lasers.

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  2. Diatomic gasdynamic lasers

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1971-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  3. Development of safe infrared gas lasers

    NASA Astrophysics Data System (ADS)

    Mainuddin; Singhal, Gaurav; Tyagi, R. K.; Maini, A. K.

    2013-04-01

    Infrared gas lasers find application in numerous civil and military areas. Such lasers are therefore being developed at different institutions around the world. However, the development of chemical infrared gas lasers such as chemical oxygen iodine lasers (COIL) involves the use of several hazardous chemicals. In order to exploit full potential of these lasers, one must take diligent care of the safety issues associated with the handling of these chemicals and the involved processes. The present paper discusses the safety aspects to be taken into account in the development of these infrared gas lasers including various detection sensors working in conjunction with a customized data acquisition system loaded with safety interlocks for safe operation. The developed safety schemes may also be implemented for CO2 gas dynamic laser (GDL) and hydrogen fluoride-deuterium fluoride (HF-DF) Laser.

  4. High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2016-04-01

    In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.

  5. Rapid identification of macro nutrients in pharmaceutical medicine using laser-induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Khumaeni, Ali; Sugito, Heri; Yoyo Wardaya, Asep; Setia Budi, Wahyu

    2018-05-01

    Identification of macro nutrients in medicine is really necessary for healthy purpose. In this study, identification of macro elements in pharmaceutical products was carried out by laser-induced plasma spectroscopy (LIPS). A comparative study was made by employing different types of laser, namely an Nd:YAG laser and a pulse TEA CO2 laser. Experimentally, the laser beam was directed and focused by a convex lens on a mineral supplement tablet. A luminous plasma was induced on the tablet’s surface. Sharp and high-intensity emission spectra of macro elements including Ca and Mg were detected both in LIBS using Nd:YAG and pulse CO2 lasers. However, the intensities of Ca and Mg spectra are much higher for the LIBS using CO2 laser. Based on the analysis, the plasma temperature plays important role in the spectra. Namely, the plasma induced by a TEA CO2 laser is much higher than that of Nd:YAG laser; the plasma temperature for the case of TEA CO2 laser and Nd:YAG laser were 6400 K and 4500 K, respectively.

  6. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  7. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 um

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Ragadio, Jerome N.; Akrivou, Maria; Featherstone, John D.; Murray, Michael W.; Dickenson, Kevin M.

    2001-04-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 micrometers wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1 - 4 microsecond(s) . The pulse duration is well matched to the 1 - 2 microsecond(s) thermal relaxation time of the deposited laser energy at 9.6 micrometers and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  8. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm.

    PubMed

    Temple, P A; Lowdermilk, W H; Milam, D

    1982-09-15

    Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.

  9. [Effect of CO2 laser on prostheses used in middle ear surgery].

    PubMed

    Szymański, Marcin

    2005-01-01

    The use of CO2 laser is advocated in primary and revision stapes surgery. The aim of the study was to assess the effect of CO2 laser on stapes prostheses. CO2 laser was applied on several types of stapes prostheses and PORPs, with power settings suggested by the manufacturer (continuous wave, 2 W and 6 W; 0,05 s). Application of the laser on stainless steel or titanium prosthesis did not exert any effect on the structure of the prosthesis. The use of the laser on the Teflon piston caused superficial burning with power 2 W, and melting and holes in the piston with power settings at 6W. Similar plastipore prostheses were melting. Hydroxyapatite PORP shattered after application of the laser energy. Teflon and hydroxyapatite prostheses are easily damaged by the laser energy, therefore applying a laser on them should be avoided. CO2 laser can be used on stainless steel and titanium prostheses without risk of damaging them. However the possibility of transmission of heat to the vestibule has to be taken into consideration.

  10. Eruptive keratoacanthomas following carbon dioxide laser resurfacing.

    PubMed

    Gewirtzman, A; Meirson, D H; Rabinovitz, H

    1999-08-01

    Skin resurfacing with the carbon dioxide (CO2) laser is currently a popular means of improving rhytides and scars. Scarring, hyperpigmentation, hypopigmentation, and infection are among the complications that have been known to occur in some patients treated with the CO2 laser. We wish to communicate a previously unreported complication of CO2 laser resurfacing-multiple eruptive keratoacanthomas. We describe a 61-year-old woman who presented with multiple eruptive keratoacanthomas subsequent to CO2 laser resurfacing. Her lesions were cultured for fungus and bacteria. Biopsy specimens of two lesions were taken. Cultures were negative for pathogens. Biopsy specimens revealed atypical squamous epithelial proliferation and changes consistent with eruptive keratoacanthomas. Multiple eruptive keratoacanthomas should be considered as a rare complication of CO2 laser resurfacing.

  11. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  12. A nonrandomized comparison of the thulium laser and the CO2 laser in primary stapedotomy for otosclerosis.

    PubMed

    Kamalski, Digna M A; Vincent, Robert; Wegner, Inge; Bittermann, Arnold J N; Grolman, Wilko

    2014-12-01

    Comparing hearing results in patients with otosclerosis treated with laser-assisted stapedotomy using the 2-μm thulium laser or the CO2 laser. Prospective nonrandomized clinical study. In a tertiary referral center in France (Jean Causse Ear Clinic, Béziers), 208 primary stapedotomies were performed in 204 patients between March 2008 and November 2009. Sufficient follow-up data were available for 194 procedures. The fenestration in the footplate was made with the thulium laser in 98 procedures and with a flexible CO2 laser in 96 procedures. Preoperative and postoperative audiometric results were compared. Side effects, such as vertigo and tinnitus, were scored. Patients treated with the CO2 laser had better hearing outcome compared with those treated with the thulium laser at both 3 and 12 months of follow-up. At 3 months, the success of the surgery, defined as closure of the air-bone gap to within 10 dB, was 90.0% in the thulium group compared with 96.8% in the CO2 group. Bone conduction shift showed an overall deterioration of 1.6 dB (standard deviation, 6.9 dB) in the thulium group compared with an improvement of 1.3 dB (standard deviation, 4 dB) in the CO2 group. In the thulium group, there were four patients with sensorineural hearing loss (4.4%) and three with tinnitus (3.1%) compared with none in the CO2 group. Stapedotomy surgery performed with a fiber-delivered thulium laser resulted in a higher chance of inner ear damage measured by bone conduction shift compared with the use of a fiber-delivered CO2 laser. We advise not to use the thulium laser for stapedotomy.

  13. Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier

    NASA Astrophysics Data System (ADS)

    Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.

    2016-02-01

    This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.

  14. Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar

  15. Potential of CO2 lasers (10.6 µm) associated with fluorides in inhibiting human enamel erosion.

    PubMed

    Ramos-Oliveira, Thayanne Monteiro; Ramos, Thaysa Monteiro; Esteves-Oliveira, Marcela; Apel, Christian; Fischer, Horst; Eduardo, Carlos de Paula; Steagall, Washington; Freitas, Patricia Moreira de

    2014-01-01

    This in vitro study aimed to investigate the potential of CO2 lasers associated with different fluoride agents in inhibiting enamel erosion. Human enamel samples were randomly divided into 9 groups (n = 12): G1-eroded enamel; G2-APF gel; G3-AmF/NaF gel; G4-AmF/SnF2 solution; G5-CO2 laser (λ = 10.6 µm)+APF gel; G6-CO2 laser+AmF/NaF gel; G7-CO2laser+AmF/SnF2solution; G8-CO2 laser; and G9-sound enamel. The CO2 laser parameters were: 0.45 J/cm2; 6 μs; and 128 Hz. After surface treatment, the samples (except from G9) were immersed in 1% citric acid (pH 4.0, 3 min). Surface microhardness was measured at baseline and after surface softening. The data were statistically analyzed by one-way ANOVA and Tukey's tests (p < 0.05). G2 (407.6 ± 37.3) presented the highest mean SMH after softening, followed by G3 (407.5 ± 29.8) and G5 (399.7 ± 32.9). Within the fluoride-treated groups, G4 (309.0 ± 24.4) had a significantly lower mean SMH than G3 and G2, which were statistically similar to each other. AmF/NaF and APF application showed potential to protect and control erosion progression in dental enamel, and CO2 laser irradiation at 0.45J/cm2 did not influence its efficacy. CO2 laser irradiation alone under the same conditions could also significantly decrease enamel erosive mineral loss, although at lower levels.

  16. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  17. Healing of rat mouth mucosa after irradiation with CO2, Nd:YAG, and CO2-Nd:YAG combination lasers.

    PubMed

    Luomanen, M; Rauhamaa-Mäkinen, R; Meurman, J H; Kosloff, T; Tiitta, O

    1994-08-01

    The healing process of wounds made by a combination laser was studied in 90 rats. The laser system enabled both separate and combined use of CO2 and Nd:YAG laser irradiations. The laser wounds and the control excision wounds made by alligator forceps appeared on both sides of the tongue. Specimens from the wound sites were taken immediately, 6 h, and 1, 2, 4, 7, 11, 21, 28, and 42 days after surgery. The wound-healing process was studied by macroscopic evaluation before preparing the specimens for light microscopy. Some differences were noted in the wound-healing process among the three groups into which the experimental animals were divided. Tissue coagulation damage was most extensive in the Nd:YAG laser sites, where it was observed in its full extent 4 days after surgery. Epithelial cells were seen to begin to proliferate in all the wounds 6 h after surgery. Re-epithelialization was completed by between 7 (CO2) and 21 days (Nd:YAG) at all the wound sites. The inflammatory cell infiltration was more prominent in the Nd:YAG and the CO2-Nd:YAG combination laser wounds than in the CO2 and excision wounds during healing. Tissue regeneration occurred faster with less contraction in the combination CO2-Nd:YAG wounds than in Nd:YAG wounds. The best macroscopic healing result was seen in the CO2 wound sites. The combination laser was effective both at cutting and at coagulating tissue. Combining the CO2 and Nd:YAG laser irradiation into one beam resulted in a greater incision depth than what could have been expected from using the two lasers separately.

  18. Selective material ablation by the TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Tetsumi; Shiratori, Akira; Ninomiya, Yutaka; Obara, Minoru

    1995-03-01

    This paper reports two topics in the material processing using TEA CO2 lasers. We demonstrated selective ablation of hydrogenated amorphous silicon (a-Si:H) thin layer on a quartz substrate by the second harmonic (SH) radiation of TEA CO2 laser generated by AgGaSe2 nonlinear crystal. Si-H bonds contained in a-Si:H strongly absorb the 5 micrometers SH radiation and resulted in the selective ablation of the a-Si:H layer. The successful ablation processing of ethylenetetrafluoroethylene (ETFE) copolymer by the 9.6 micrometers fundamental wavelength TEA CO2 laser is also reported. Only ETFE thin film adhered to an aluminum substrate can be ablated by the TEA CO2 laser.

  19. REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Panchenko, Vladislav Ya

    1986-07-01

    CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717

  20. Passive Q-switching of a Tm:YLF laser with a Co2+ doped silver halide saturable absorber

    NASA Astrophysics Data System (ADS)

    Hecht, Harel; Burshtein, Zeev; Katzir, Abraham; Noach, Salman; Sokol, Maxim; Frumker, Eugene; Galun, Ehud; Ishaaya, Amiel A.

    2017-02-01

    We report a successful passive Q-switching of a Tm:YLF laser operating at λ = 1.9 μm, using a Co2+:AgCl0.5Br0.5 saturable absorber. Approximately 200-ns long, 150 μJ pulses were obtained. Increase in pump energy resulted in repetitive pulsing, with a repetition rate approximately proportional to the pump pulse energy. Room-temperature optical transmission saturation curves measured in ∼1-mm thick Co2+:AgCl0.5Br0.5 plates yielded a ground state absorption cross section σgs =(7.8 ± 0.5) ×10-18 cm2 , and an excited state absorption cross section σes =(3.3 ± 0.3) ×10-18 cm2 , at λ = 1.9 μm. The lifetime of the A2(4F) second excited-state of the octahedral O symmetry was τ∗ =(0.6 ± 0.06) ns .

  1. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    PubMed Central

    Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li

    2012-01-01

    To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970

  2. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  3. Infrared image construction with computer-generated reflection holograms. [using carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.; Rugh, R. W.; Gallagher, N. C.

    1977-01-01

    Computer-generated reflection holograms hold substantial promise as a means of carrying out complex machining, marking, scribing, welding, soldering, heat treating, and similar processing operations simultaneously and without moving the work piece or laser beam. In the study described, a photographically reduced transparency of a 64 x 64 element Lohmann hologram was used to make a mask which, in turn, was used (with conventional photoresist techniques) to produce a holographic reflector. Images from a commercial CO2 laser (150W TEM(00)) and the holographic reflector are illustrated and discussed.

  4. Soft tissue molding technique in cleft lip and palate patient using laser surgery in combination with orthodontic appliance: A case report.

    PubMed

    Theerasopon, Pornpat; Wangsrimongkol, Tasanee; Sattayut, Sajee

    2017-03-31

    Although surgical treatment protocols for cleft lip and palate patients have been established, many patients still have some soft tissue defects after complete healing from surgical interventions. These are excess soft tissue, high attached fraena and firmed tethering scares. These soft tissue defects resulted shallowing of vestibule, restricted tooth movement, compromised periodontal health and trended to limit the maxillary growth. The aim of this case report was to present a method of correcting soft tissue defects after conventional surgery in cleft lip and palate patient by using combined laser surgery and orthodontic appliance. A bilateral cleft lip and palate patient with a clinical problem of shallow upper anterior vestibule after alveolar bone graft received a vestibular extension by using CO 2 laser with ablation and vaporization techniques at 4 W and continuous wave. A customized orthodontic appliance, called a buccal shield, was placed immediately after surgery and retained for 1 month to 3 months until complete soft tissue healing. The procedures were performed 2 episodes. Both interventions used the same CO 2 laser procedure. The first treatment resulted in partial re-attachment of soft tissue at surgical area. The second laser operation with the proper design of buccal shield providing passive contact with more extended flange resulting in a favorable outcome from 1 year follow up. Then the corrective orthodontic treatment could be continued effectively. The CO 2 laser surgery was a proper treatment for correcting soft tissue defects and the design of buccal shield was a key for success in molding surgical soft tissue.

  5. Favre-Racouchot syndrome: a novel two-step treatment approach using the carbon dioxide laser.

    PubMed

    Rai, S; Madan, V; August, P J; Ferguson, J E

    2014-03-01

    Favre-Racouchot syndrome (FRS) is both disfiguring and difficult to treat. Available medical and surgical therapies are of variable efficacy. Most treatments do not achieve complete resolution and do not show maintenance of therapeutic response. To assess the response to a novel two-step treatment using the CO2 laser in patients with FRS. Seven patients with FRS were treated with the CO2 laser in resurfacing mode with manual expression of comedones under infiltrative local anaesthesia. The procedure was completed in one treatment session lasting 30 min and the wound was left to heal by secondary intention. A topical antibiotic was applied to treated areas, which were covered with a nonadherent dressing. All patients were assessed 3 months postoperatively by the operating laser surgeon and a visual assessment of clinical response to treatment in comparison with pretreatment photographs was made. Patient satisfaction was also recorded. All patients achieved complete resolution of FRS. The follow-up duration for our cohort ranged from 8 months to 3 years. Two patients required further treatment within a 2-3-year period from initial treatment. Disease relapse was noted over 1 year after the primary treatment; both these cases were smokers and repeat treatment with similar laser parameters maintained reproducible results. Our longest disease-free follow-up duration was 3 years postprimary treatment. The laser surgeons and patients reported high levels of therapeutic benefit and satisfaction with the results. This two-step treatment of FRS (CO2 laser resurfacing and manual pressure-induced expression of comedones) is an effective and durable treatment for FRS with an excellent cosmetic outcome. Long-term follow-up beyond 3 years is planned to determine whether later recurrence occurs with this technique. © 2013 British Association of Dermatologists.

  6. Extinction of CO2 Laser Radiation Under Adverse Weather Conditions

    DTIC Science & Technology

    1982-06-01

    System Design 60 a, Gaussian Optics 60 b, Laser Transmissometer 61 4. Measurement Errors 68 VI DISCUSSION OF RESULTS 69 1, Introduction...water soluble aerosols (a 1 106 AFWAL-TR-81 -.1280 TABLE 17 EXTINCTION OF CO2 LASER LINES FOR A CONSTANI RAIN RATE OF 1.82 mm/HR, 22 APRIL, 1935 HOURS...number) Laser Propagation Rain Laser Extinction CO2 Lasers Adverse Weather Aerosol s - 20 RACT (Continue on reverse side If necessary

  7. Recent developments in CO2 lasers

    NASA Astrophysics Data System (ADS)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  8. A randomized controlled clinical and histopathological trial comparing excisional biopsies of oral fibrous hyperplasias using CO2 and Er:YAG laser.

    PubMed

    Suter, Valerie G A; Altermatt, Hans Jörg; Bornstein, Michael M

    2017-04-01

    This study was conducted in order to compare clinical and histopathological outcomes for excisional biopsies when using pulsed CO 2 laser versus Er:YAG laser. Patients (n = 32) with a fibrous hyperplasia in the buccal mucosa were randomly allocated to the CO 2 (140 Hz, 400 μs, 33 mJ) or the Er:YAG laser (35 Hz, 297 μs, 200 mJ) group. The duration of excision, intraoperative bleeding and methods to stop the bleeding, postoperative pain (VAS; ranging 0-100), the use of analgesics, and the width of the thermal damage zone (μm) were recorded and compared between the two groups. The median duration of the intervention was 209 s, and there was no significant difference between the two methods. Intraoperative bleeding occurred in 100% of the excisions with Er:YAG and 56% with CO 2 laser (p = 0.007). The median thermal damage zone was 74.9 μm for CO 2 and 34.0 μm for Er:YAG laser (p < 0.0001). The median VAS score on the evening after surgery was 5 for the CO 2 laser and 3 for the Er:YAG group. To excise oral soft tissue lesions, CO 2 and Er:YAG lasers are both valuable tools with a short time of intervention and postoperative low pain. More bleeding occurs with the Er:YAG than CO 2 laser, but the lower thermal effect of Er:YAG laser seems advantageous for histopathological evaluation.

  9. Calibrating Laser Gas Measurements by Use of Natural CO2

    NASA Technical Reports Server (NTRS)

    Webster, Chris

    2003-01-01

    An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves continuously as a calibration standard for every measurement point. Figure 1 depicts simulated spectral transmission measurements in a wavenumber range that contains two absorption lines of N2O and one of CO2. The simulations were performed for two different upper-atmospheric pressures for an airborne instrument that has a path length of 80 m. The relative abundance of CO2 in air was assumed to be 360 parts per million by volume (approximately its natural level in terrestrial air). In applying the present method to measurements like these, one could average the signals from the two N2O absorption lines and normalize their magnitudes to that of the CO2 absorption line. Other gases with which this calibration method can be used include H2O, CH4, CO, NO, NO2, HOCl, C2H2, NH3, O3, and HCN. One can also take advantage of this method to eliminate an atmospheric-pressure gauge and thereby reduce the mass of the instrument: The atmospheric pressure can be calculated from the temperature, the known relative abundance of CO2, and the concentration of CO2 as measured by spectral absorption. Natural CO2 levels on Mars provide an ideal calibration standard. Figure 2 shows a second example of the application of this method to Mars atmospheric gas measurements. For sticky gases like H2O, the method is particularly powerful, since water is notoriously difficult to handle at low concentrations in pre-flight calibration procedures.

  10. Dental hard tissue modification and removal using sealed TEA lasers operating at λ=9.6 and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Murray, Michael W.; Featherstone, John D. B.; Akrivou, Maria; Dickenson, Kevin M.; Duhn, Clifford W.; Ojeda, Orlando P.

    1999-05-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed TEA laser systems optimally tuned to the highly absorbed 9.6 μm wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce a laser pulse wit a 100-200 ns gain switched spike followed by a long tail of about 1-4 μs in duration. the pulse duration is well matched to the 1-2 μs thermal relaxation time of the deposited laser energy at 9.6 μm and effectively heats the enamel to temperatures required for surface modification for caries prevention at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk, of pulpal necrosis form excessive heat accumulation is minimized. At higher fluences the high peak power of the gain-switched spike rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By slightly stretching the pulse to reduce the energy distributed in the initial 100-200 ns of the laser pulse, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  11. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  12. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  13. Performances of OsO(4) stabilized CO(2) lasers as optical frequency standards near 29 THz.

    PubMed

    Daussy, C; Ducos, F; Rovera, G D; Acef, O

    2000-01-01

    In this paper, we report on the metrological capabilities of CO (2)/OsO(4) optical frequency standards operating around 29 THz. Those frequency standards are currently involved in various fields, such as frequency metrology, high resolution spectroscopy, and Rydberg constant measurements. The most impressive features of the standards lies in the 10(-15) level frequency stability allied to a long-term reproducibility (1 yr) of 1.3x10 (-13).

  14. CO2 laser treatment for regional cutaneous malignant melanoma metastases.

    PubMed

    van Jarwaarde, Jorien A; Wessels, Ronnie; Nieweg, Omgo E; Wouters, Michel W J M; van der Hage, Jos A

    2015-01-01

    Cutaneous in-transit and satellite metastases are distressing presentations of melanoma progression. The purpose of this study was to analyze the efficacy of carbon dioxide (CO2) lasers in patients with melanoma with cutaneous in-transit and satellite metastases. Results of CO2 laser therapy were retrospectively evaluated in 22 patients between January 2004 and January 2008. The number of laser treatments, postoperative morbidity, regional control, and overall survival were analyzed. Twenty-two patients received a total of 42 CO2 laser treatments. The number of lesions treated per session varied from 3 to 329. The median duration of regional control in all patients was 14 weeks (range, 3-117). In 9 of 22 patients, only 1 treatment with CO2 laser was performed resulting in a mean regional control of 11 weeks. In 10 patients, an average of 4 laser treatments (range, 1-17) was necessary to achieve regional control. Three of the 22 patients underwent isolated limb perfusion after laser treatment for disease control. This study shows that (repeated) laser treatment can achieve adequate regional control with little morbidity. CO2 laser is recommended as a first-line treatment to patients with small but numerous cutaneous satellite or in-transit lesions in whom other surgery would induce substantial morbidity.

  15. Propagation of High Power Pulses of 10.6 micrometers Radiation from A CO2 TEA Laser of Novel Design through Clouds Produced by Adiabatic Expansion in the Laboratory

    DTIC Science & Technology

    1976-07-01

    A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by

  16. The clinical effectiveness and cost-effectiveness of fractional CO2 laser in acne scars and skin rejuvenation: A meta-analysis and economic evaluation.

    PubMed

    Ansari, Fereshteh; Sadeghi-Ghyassi, Fatemeh; Yaaghoobian, Barmak

    2018-01-31

    Fractional CO 2 has many indications in medicine including in treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO 2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Several databases including Medline, OVID, EMBASE, CINHAL, SCOPUS, Web of science, CRD, and Cochrane were searched. After conducting the search and evaluation of selected publications, critical appraisal was done and eligible studies were accepted for inclusion in the systematic review. From 2667 identified publications two of the trials were eligible. The effectiveness and complications of Fractional CO 2 laser were comparable with Er:YAG but Fractional CO 2 laser was 14.7% (p = 0.01) more effective than Q-Switched ND:YAG laser. Cost affectivity of this method was the same as other alternative lasers. In conclusion Fractional CO 2 laser is an effective and safe method for curing of several kinds of skin diseases. Nevertheless there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative CO 2 laser that has the same or lower price and comparable effects.

  17. Carbon dioxide laser versus erbium:YAG laser in treatment of epidermal verrucous nevus: a comparative randomized clinical study.

    PubMed

    Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi

    2017-08-01

    A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (p< .0005). No scarring was observed in Er:YAG laser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.

  18. Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh

    NASA Astrophysics Data System (ADS)

    Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.

    2018-04-01

    In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.

  19. Pulsed infrared difference frequency generation in CdGeAs.sub.2

    DOEpatents

    Piltch, Martin S.; Rink, John P.; Tallman, Charles R.

    1977-03-08

    The disclosure relates to a laser apparatus for generating a line-tunable pulsed infrared difference frequency output. The apparatus comprises a CO.sub.2 laser which produces a first frequency, a CO laser which produces a second frequency and a mixer for combining the output of the CO.sub.2 and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  20. Pulsed infrared difference frequency generation in CdGeAs/sub 2/

    DOEpatents

    Piltch, M.S.; Rink, J.P.; Tallman, C.R.

    1975-11-26

    A laser apparatus for generating a line-tunable pulsed infrared difference frequency output is described. The apparatus comprises a CO/sub 2/ laser which produces a first frequency, a CO laser which produces a second frequency, and a mixer for combining the output of the CO/sub 2/ and CO lasers so as to produce a final output comprising a difference frequency from the first and second frequency outputs.

  1. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser.

    PubMed

    Bailey, J Kevin; Blackstone, Britani N; DeBruler, Danielle M; Kim, Jayne Y; Baumann, Molly E; McFarland, Kevin L; Imeokparia, Folasade O; Supp, Dorothy M; Powell, Heather M

    2018-01-01

    The use of pulsed dye laser (PDL) and fractional CO 2 (FX CO 2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO 2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO 2 , and PDL + FX CO 2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO 2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. Treatment with PDL, FX CO 2 , or PDL + FX CO 2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO 2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO 2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO 2 . The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar contraction versus control, though no statistically significant difference was detected between laser modalities or use of both modalities. Overall, FX CO 2 therapy appears to be modestly more effective at reducing erythema, and improving scar texture and biomechanics. The current data adds to prior studies supporting the role of laser therapy in the treatment of burn scars and indicates more study is needed to optimize delivery protocols for maximum efficacy. Lasers Surg. Med. 50:78-87, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Real-time CO2 sensor for the optimal control of electronic EGR system

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul

    2013-12-01

    In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.

  3. Field testing the Raman gas composition sensor for gas turbine operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buric, M.; Chorpening, B.; Mullem, J.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less

  4. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  5. Laser treatment of solar lentigines on dorsum of hands: QS Ruby laser versus ablative CO2 fractional laser - a randomized controlled trial.

    PubMed

    Schoenewolf, Nicola L; Hafner, Jürg; Dummer, Reinhard; Bogdan Allemann, Inja

    2015-04-01

    Lentigines solares (LS) on the dorsum of hands are often esthetically disturbing. Q-switched ruby laser treatment is highly effective in the treatment of these lesions. Ablative fractional photothermolysis may be a suitable alternative. We compared the Q-switched ruby laser with ablative CO2 fractional photothermolysis for the treatment of solar lentigines. To evaluate the efficacy and side-effects of 694nm Q-switched ruby laser (Sinon) with the ablative 10,600nm CO2 fractional laser (Quantel Excel O2) in an intra-individual side-to-side comparison in the treatment of LS on the dorsum of hands. Eleven patients were included in the study. The hands of each patient were randomized for treatment with the two laser systems. Three treatment sessions were scheduled at weeks 0, 4 and 8. Evaluations by patients, treating physician and blinded experts were scheduled at weeks 0, 4, 8, 16 and 24. The Q-switched ruby laser was significantly more efficacious than the ablative CO2 fractional laser for removing LS on the dorsum of hands (p = 0.01). In this first study on this topic, the Q-switched ruby laser was superior to the ablative CO2 fractional laser in the treatment of lentigines solares on the dorsum of hands.

  6. Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

  7. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Sorouri, Milad

    2015-01-01

    Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018

  8. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  9. Comparison of four different lasers for acne scars: Resurfacing and fractional lasers.

    PubMed

    You, Hi-Jin; Kim, Deok-Woo; Yoon, Eul-Sik; Park, Seung-Ha

    2016-04-01

    Acne scars are common and cause cosmetic problems. There is a multitude of treatment options for acne scars, including dermabrasion, chemical peeling, and fillers, but the advent of laser technology has greatly improved the treatment of acne scars. Although several laser systems are available, studies comparing their efficacy are limited. This study compares the results of treatments using resurfacing (carbon dioxide, CO2; erbium-doped yttrium aluminum garnet, Er:YAG) versus fractional (nonablative fractional laser, NAFL; ablative fractional laser, AFL) lasers. A retrospective photographic analysis of 58 patients who underwent laser treatment for facial atrophic acne scars was performed. Clinical improvement was assessed by six blinded investigators with a scale graded from 0 to 10. Adverse events were also noted. Mean improvement scores of the CO2, Er:YAG, NAFL, and AFL groups were 6.0, 5.8, 2.2, and 5.2, respectively. The NAFL group showed a significantly lower score than the other groups. The mean number of treatments was significantly greater in the fractional laser groups than in the resurfacing laser groups. The resurfacing laser groups had a prolonged recovery period and high risk of complications. The Er:YAG laser caused less erythema or pigmentation compared to the CO2 laser. Although the CO2 laser, Er:YAG laser, and AFL improved the acne scars, the CO2 laser had a greater downtime. Three consecutive AFL treatments are as effective as a single treatment with resurfacing lasers, with shorter social downtime periods and less adverse effects. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  11. Fractional CO2 resurfacing: has it replaced ablative resurfacing techniques?

    PubMed

    Duplechain, Jesse Kevin

    2013-05-01

    The author uses the pulsed ablative CO2 laser regularly for skin rejuvenation. This decision is based on the gold standard status of the CO2 modality and an innovative aftercare treatment shown in the author's practice to greatly reduce the complications of ablative pulsed CO2 laser treatment. Depending on the patient and the severity of the skin condition, the author customizes each treatment, which may also include fractional CO2 lasers, fat grafting, facelifting, or any combination of these techniques. This article presents a detailed description of the evolution of skin rejuvenation with lasers and the current role of lasers as an adjunct to face and necklift surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Clinical application of CO2 laser in periodontal treatment

    NASA Astrophysics Data System (ADS)

    Hayase, Yasuhiro

    1994-09-01

    CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.

  13. Long-range open-path greenhouse gas monitoring using mid-infrared laser dispersion spectroscopy

    NASA Astrophysics Data System (ADS)

    Daghestani, Nart; Brownsword, Richard; Weidmann, Damien

    2015-04-01

    Accurate and sensitive methods of monitoring greenhouse gas (GHG) emission over large areas has become a pressing need to deliver improved estimates of both human-made and natural GHG budgets. These needs relate to a variety of sectors including environmental monitoring, energy, oil and gas industry, waste management, biogenic emission characterization, and leak detection. To address the needs, long-distance open-path laser spectroscopy methods offer significant advantages in terms of temporal resolution, sensitivity, compactness and cost effectiveness. Path-integrated mixing ratio measurements stemming from long open-path laser spectrometers can provide emission mapping when combined with meteorological data and/or through tomographic approaches. Laser absorption spectroscopy is the predominant method of detecting gasses over long integrated path lengths. The development of dispersion spectrometers measuring tiny refractive index changes, rather than optical power transmission, may offer a set of specific advantages1. These include greater immunity to laser power fluctuations, greater dynamic range due to the linearity of dispersion, and ideally a zero baseline signal easing quantitative retrievals of path integrated mixing ratios. Chirped laser dispersion spectrometers (CLaDS) developed for the monitoring of atmospheric methane and carbon dioxide will be presented. Using quantum cascade laser as the source, a minimalistic and compact system operating at 7.8 μm has been developed and demonstrated for the monitoring of atmospheric methane over a 90 meter open path2. Through full instrument modelling and error propagation analysis, precision of 3 ppm.m.Hz-0.5 has been established (one sigma precision for atmospheric methane normalized over a 1 m path and 1 s measurement duration). The system was fully functional in the rain, sleet, and moderate fog. The physical model and system concept of CLaDS can be adapted to any greenhouse gas species. Currently we are developing an in-lab instrument that can measure carbon dioxide using a quantum cascade laser operating in the 4 μm range. In this case, the dynamic range benefit of CLaDS is used to provide high precision even when peak absorbance in the CO2 spectrum gets greater than 2. Development for this deployable CO2 measurement system is still at an early stage. So far laboratory gas cell experiments have demonstrated a 9.3 ppm.m.Hz-0.5 for CO2 monitoring. This corresponds to about 0.02% relative precision in measuring CO2 atmospheric background over a 100 m open-path in one second. 1 G. Wysocki and D. Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18(25), 26123-26140 (2010). 2 N.S. Daghestani, R. Brownsword, D. Weidmann, 'Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped dispersion spectroscopy' Opt. Express 22(25), A1731-A1743 (2014).

  14. Cavity-Enhanced Quantum-Cascade Laser-Based Instrument for Trace gas Measurements

    NASA Astrophysics Data System (ADS)

    Provencal, R.; Gupta, M.; Owano, T.; Baer, D.; Ricci, K.; O'Keefe, A.

    2005-12-01

    An autonomous instrument based on Off-Axis Integrated Cavity Output Spectroscopy has been successfully deployed for measurements of CO in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument consists of a measurement cell comprised of two high reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data acquisition electronics, and data analysis software. The instrument reports CO mixing ratio at a 1-Hz rate based on measured absorption, gas temperature and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41000 ft, the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. We will also present recent development efforts to extend the instrument's capabilities for the measurements of CH4, N2O and CO in real time.

  15. Ammonia concentration distribution measurements in the exhaust of a heavy duty diesel engine based on limited data absorption tomography.

    PubMed

    Stritzke, Felix; van der Kley, Sani; Feiling, Alexander; Dreizler, Andreas; Wagner, Steven

    2017-04-03

    A multichannel tunable diode laser absorption spectrometer is used to measure absolute ammonia concentrations and their distributions in exhaust gas applications with intense CO2 and H2O background. Designed for in situ diagnostics in SCR after treatment systems with temperatures up to 800 K, the system employs a fiber coupled near-infrared distributed feedback diode laser. With the laser split into eight coplanar beams crossing the exhaust pipe, the sensor provides eight concentration measurements simultaneously. Three ammonia ro-vibrational transitions coinciding near 2200.5 nm with rather weak temperature dependency and negligible CO2/H2O interference were probed during the measurements. The line-of-sight averaged channel concentrations are transformed into 2-D ammonia distributions using limited data IR species tomography based on Tikhonov regularization. This spectrometer was successfully applied in the exhaust system of a 340 kW heavy duty diesel engine operated without oxidation catalyst or particulate filter. In this harsh environment the multi-channel sensor achieved single path ammonia detection limits of 25 to 80 ppmV with a temporal resolution of 1 Hz whereas, while operated as a single-channel sensor, these characteristics improved to 10 ppmV and 100 Hz. Spatial averaging of the reconstructed 2-D ammonia distributions shows good agreement to cross-sectional extractive measurements. In contrast to extractive methods more information about spatial inhomogeneities and transient operating conditions can be derived from the new spectrometer.

  16. Rapid and Selective Removal of Composite From Tooth Surfaces With a 9.3 μm CO2 Laser Using Spectral Feedback

    PubMed Central

    Chan, Kenneth H.; Hirasuna, Krista; Fried, Daniel

    2015-01-01

    Objective Dental composite restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants, or removing composite adhesives such as residual composite left after debonding orthodontic brackets. Methods In this study, a carbon dioxide laser operating at 9.3-μm with a pulse duration of 10–20-microsecond and a pulse repetition rate of ~200 Hz was integrated with a galvanometer based scanner and used to selectively remove composite from tooth surfaces. Spectra of the plume emission were acquired after each laser pulse and used to differentiate between the ablation of dental enamel or composite. Microthermocouples were used to monitor the temperature rise in the pulp chamber during composite removal. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser beam was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. Results The laser was able to rapidly remove composite from tooth buccal and occlusal surfaces with minimal damage to the underlying sound enamel and without excessive heat accumulation in the tooth. Conclusion This study demonstrated that composite can be selectively removed from tooth surfaces at clinically relevant rates using a CO2 laser operating at 9.3-μm with high pulse repetition rates with minimal heat deposition and damage to the underlying enamel. PMID:21956630

  17. Rapid and selective removal of composite from tooth surfaces with a 9.3 µm CO2 laser using spectral feedback.

    PubMed

    Chan, Kenneth H; Hirasuna, Krista; Fried, Daniel

    2011-09-01

    Dental composite restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants, or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study, a carbon dioxide laser operating at 9.3-µm with a pulse duration of 10-20-microsecond and a pulse repetition rate of ∼200 Hz was integrated with a galvanometer based scanner and used to selectively remove composite from tooth surfaces. Spectra of the plume emission were acquired after each laser pulse and used to differentiate between the ablation of dental enamel or composite. Microthermocouples were used to monitor the temperature rise in the pulp chamber during composite removal. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser beam was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove composite from tooth buccal and occlusal surfaces with minimal damage to the underlying sound enamel and without excessive heat accumulation in the tooth. This study demonstrated that composite can be selectively removed from tooth surfaces at clinically relevant rates using a CO(2) laser operating at 9.3-µm with high pulse repetition rates with minimal heat deposition and damage to the underlying enamel. Copyright © 2011 Wiley-Liss, Inc.

  18. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation.

    PubMed

    González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan

    2011-05-01

    Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully controlled in order to limit increases in pulpal temperature and alterations to the enamel surface.

  19. Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Versnel, Huib; Grolman, Wilko

    2014-08-01

    The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.

  20. Laser detection of CO2 concentration in human breath at various diseases

    NASA Astrophysics Data System (ADS)

    Ageev, Boris G.; Nikiforova, Olga Y.

    2015-12-01

    Absorption spectra of human breath in 10 μm region were recorded by the use of intracavity laser photo-acoustic gas analyzer based on tunable waveguide CO2 laser. Healthy persons and patients with various diseases were studied. For determination of CO2 concentration in exhalation samples gas analyzer was calibrated by reference gaseous mixture CO2-N2. It was obtained that CO2 concentration values in human breath of healthy persons are greater than that of patients with various diseases.

  1. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  2. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1983-01-01

    An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.

  3. The transmyocardial laser revascularization international registry report.

    PubMed

    Burns, S M; Sharples, L D; Tait, S; Caine, N; Wallwork, J; Schofield, P M

    1999-01-01

    This report aimed to provide an analysis of the data submitted from Europe and Asia on transmyocardial laser revascularization. Prospective data was recorded on 967 patients with intractable angina not amenable to conventional revascularization in 21 European and Asian centres performing transmyocardial laser revascularization using the PLC Medical Systems CO2 laser. Patient characteristics, operative details and early complications following transmyocardial laser revascularization were recorded. The in-hospital death rate was 9.7% (95% confidence interval 7.8% to 11.6%). Other early complications were consistent with similar cardiothoracic surgical procedures. There was a decrease of two or more Canadian Cardiovascular Score angina classes in 47.3%, 45.4% and 34.0% of survivors at 3, 6 and 12 months follow-up, respectively (P=0.001 for each). Treadmill exercise time increased by 42 s at 3 months (P=0.008), 1 min 43 s at 6 months (P<0.001) and 1 min 50 s at 12 months (P<0.001) against pre-operative times of 6 min. Uncontrolled registry data suggest that transmyocardial laser revascularization may lead to a decrease in angina and improved exercise tolerance. It does, however, have a risk of peri-operative morbidity and mortality. Definitive results from randomized controlled trials are awaited.

  4. Carbon dioxide laser for detrusor tunnel creation in robot-assisted laparoscopic extravesical ureteral reimplant.

    PubMed

    Diaz, E C; Lindgren, B W; Gong, E M

    2014-12-01

    Demonstrate and report initial results using a carbon dioxide (CO2) laser for detrusor tunnel creation in robot-assisted laparoscopic extravesical ureteral reimplant (RALUR). Retrospective chart review was performed for cases of RALUR from 2011 to 2014. Patients undergoing complex reconstruction (ureteral tailoring, dismembered reimplant, concomitant ureteroureterostomy), and those who had incomplete follow-up were excluded. Variables, including use of the CO2 laser, were collected and correlated with outcomes. 23 patients representing 40 ureteral units were included for analysis. A CO2 laser was used in 9/23 (39%) patients and 16/40 (40%) ureteral units. Intraoperative mucosotomy was reported in 3/14 (21%) patients for the electrocautery group and 1/9 (11%) patients for the CO2 laser group. Resolution of VUR was observed in 11/14 (79%), and 9/9 (100%) of patients for the electrocautery group and the CO2 laser group, respectively. Two complications were identified in the electrocautery group of patients: ileus (Clavien 2), and transient bilateral ureteral obstruction requiring placement of ureteral stents (Clavien 3B). There were no complications in the CO2 laser group. Creation of the detrusor tunnel with a CO2 laser is safe and effective, and is associated with a lower rate of failure and complication in this cohort. Copyright © 2014 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  5. [Tonsillotomy with the argon-supported monopolar needle--first clinical results].

    PubMed

    Huber, K; Sadick, H; Maurer, J T; Hörmann, K; Hammerschmitt, N

    2005-09-01

    Primary management of tonsillar hyperplasia in children is tonsillectomy. Recent data from clinical case-series are clearly in support of the hypothesis that tonsillotomy with the CO2-laser seems to be effective and is noted to have less postoperative bleeding and less pain as compared to tonsillectomy. For the first time we used a monopolar argon-supported needle for tonsillotomy in the following study. Fifty patients (age: 4.58 years; SD +/- 2.33) with benign tonsillar hyperplasia were recruited. For tonsillotomy we used the monopolar argon-supported needle. The outcome measures were postoperative pain, capability of oral intake, consumption of analgesics and postoperative bleeding. No postoperative bleeding occurred. Post-operative pain hardly occurred and could easily be controlled. The third postoperative day analgesics intake was under one portion per day (mean: 0.91; SD +/- 1.26). Capability of oral intake and swallowing was normal on the seventh postoperative day. It was concluded that tonsillotomy, using the monopolar argon-supported needle, is a valid treatment for benign tonsillar hyperplasia in children, which can be performed with slight post-operative pain and a low risk for postoperative bleeding. It offers good dissection and haemostasis abilities. Compared to the CO2-laser the monopolar argon-supported needle does not require any laser safety precautions.

  6. Antibacterial and Odontogenesis Efficacy of Mineral Trioxide Aggregate Combined with CO2 Laser Treatment.

    PubMed

    Hsu, Tuan-Ti; Yeh, Chia-Hung; Kao, Chia-Tze; Chen, Yi-Wen; Huang, Tsui-Hsien; Yang, Jaw-Ji; Shie, Ming-You

    2015-07-01

    Mineral trioxide aggregate (MTA) has been successfully used in clinical applications in endodontics. Studies show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm because of a photothermal mechanism. The aim of this study was to confirm the effects of CO2 laser irradiation on MTA with regard to both material characterization and cell viability. MTA was irradiated with a dental CO2 laser using directly mounted fiber optics in the wound healing mode with a spot area of 0.25 cm(2) and then stored in an incubator at 100% relative humidity and 37°C for 1 day to set. The human dental pulp cells cultured on MTA were analyzed along with their proliferation and odontogenic differentiation behaviors. The results indicate that the setting time of MTA after irradiation by the CO2 laser was significantly reduced to 118 minutes rather than the usual 143 minutes. The maximum diametral tensile strength and x-ray diffraction patterns were similar to those obtained without CO2 laser irradiation. However, the CO2 laser irradiation increased the amount of Ca and Si ions released from the MTA and regulated cell behavior. CO2 laser-irradiated MTA promoted odontogenic differentiation of hDPCs, with the increased formation of mineralized nodules on the substrate's surface. It also up-regulated the protein expression of multiple markers of odontogenic and the expression of dentin sialophosphoprotein protein. The current study provides new and important data about the effects of CO2 laser irradiation on MTA with regard to the decreased setting time and increased ion release. Taking cell functions into account, the Si concentration released from MTA with laser irradiation may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians.

    PubMed

    Vachiramon, Vasanop; Panmanee, Wikanda; Techapichetvanich, Thanya; Chanprapaph, Kumutnart

    2016-04-01

    Solar lentigines are benign pigmented lesions that occur mostly on sun-exposed areas. Q-switched and ablative lasers are effective for removing these lesions but the high incidence of postinflammatory hyperpigmentation raises concern in darker skin types. The objective of this study is to compare the efficacy and degree of postinflammatory hyperpigmentation with the Q-switched Nd:YAG and fractional carbon dioxide (CO2 ) laser for treatment of solar lentigines in Asians. Twenty-five Thai patients (skin phototype III-IV) with at least two lesions of solar lentigines on upper extremities were enrolled in this study. Two lesions were randomly selected for the treatment with a single session of Q-switched Nd:YAG or fractional CO2 laser. Outcomes were evaluated using physician grading scale, colorimeter, and patient self-assessment at 6 and 12 weeks after treatment. Side effects were recorded. A total of 532 nm Q-switched Nd:YAG laser showed significant improvement of pigmentation over fractional CO2 laser at 6th and 12th week by both colorimeter assessment and physician grading scale (P < 0.05). No significant difference in postinflammatory hyperpigmentation from both lasers was observed. In terms of patient self-assessment, 80% of the patients treated with 532 nm Q-switched Nd:YAG laser had excellent results compared to 8% in fractional CO2 laser group. However, fractional CO2 laser treatment had faster healing time and less pain score compared to Q-switched Nd:YAG laser. Q-switched Nd:YAG is superior to fractional CO2 laser for treatment of solar lentigines but requires longer healing time and produces more pain. The incidence of postinflammatory hyperpigmentation was not significantly different with both lasers. Further studies are needed to obtain the proper parameter and the treatment frequency of fractional CO2 laser in solar lentigines. © 2016 Wiley Periodicals, Inc.

  8. Fractional CO2 laser treatment for vaginal laxity: A preclinical study.

    PubMed

    Kwon, Tae-Rin; Kim, Jong Hwan; Seok, Joon; Kim, Jae Min; Bak, Dong-Ho; Choi, Mi-Ji; Mun, Seok Kyun; Kim, Chan Woong; Ahn, Seungwon; Kim, Beom Joon

    2018-05-07

    Various studies have investigated treatment for vaginal laxity with microablative fractional carbon dioxide CO 2 laser in humans; however, this treatment has not yet been studied in an animal model. Herein, we evaluate the therapeutic effects of fractional CO 2 laser for tissue remodeling of vaginal mucosa using a porcine model, with the aim of improving vaginal laxity. The fractional CO 2 laser enables minimally invasive and non-incisional procedures. By precisely controlling the laser energy pulses, energy is sent to the vaginal canal and the introitus area to induce thermal denaturation and contraction of collagen. We examined the effects of fractional CO 2 laser on a porcine model via clinical observation and ultrasound measurement. Also, thermal lesions were histologically examined via hematoxylin-eosin staining, Masson's trichrome staining, and Elastica van Gieson staining and immunohistochemistry. The three treatment groups, which were determined according to the amount of laser-energy applied (60, 90, and 120 mJ), showed slight thermal denaturation in the vaginal mucosa, but no abnormal reactions, such as excessive hemorrhaging, vesicles, or erythema, were observed. Histologically, we also confirmed that the denatured lamina propria induced by fractional CO 2 laser was dose-dependently increased after laser treatment. The treatment groups also showed an increase in collagen and elastic fibers due to neocollagenesis and angiogenesis, and the vaginal walls became firmer and tighter because of increased capillary and vessel formation. Also, use of the fractional CO 2 laser increased HSP (heat shock protein) 70 and collagen type I synthesis. Our results show that microablative fractional CO 2 laser can produce remodeling of the vaginal connective tissue without causing damage to surrounding tissue, and the process of mucosa remodeling while under wound dressings enables collagen to increase and the vaginal wall to become thick and tightened. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Controlling chaotic behavior in CO2 and other lasers

    NASA Astrophysics Data System (ADS)

    1993-06-01

    Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.

  10. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  11. Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.

    PubMed

    Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li

    2012-01-01

    To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  12. Treatment of Bartholin gland cyst with CO2 laser

    PubMed Central

    Speck, Neila Maria de Góis; Boechat, Karol Pereira Ruela; dos Santos, Georgia Mouzinho Lima; Ribalta, Julisa Chamorro Lascasas

    2016-01-01

    ABSTRACT Objective To describe the results of treatment with CO2 laser for Bartholin gland cysts. Methods Thirty-one women with Bartholin gland cysts were treated with CO2 laser at an outpatient´s setting. Skin incision was performed with focused laser beam, the capsule was opened to drain mucoid content, followed by internal vaporization of impaired capsule. Results There were no complications. Five patients had recurrence of the cyst and were submitted to a second and successful session. Conclusion CO2 laser surgery was effective to treat Bartholin gland cysts with minimal or no complications, and can be performed at an outpatient´s setting. PMID:27074230

  13. CO2 laser oscillators for laser radar applications

    NASA Technical Reports Server (NTRS)

    Freed, C.

    1990-01-01

    This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.

  14. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  15. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    PubMed

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  16. Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite - CO2, CH4, N2O, and CO - during the CalNex and HIPPO campaigns

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Daube, B. C.; Kort, E. A.; Jiménez, R.; Park, S.; Pittman, J. V.; Gottlieb, E.; Xiang, B.; Zahniser, M. S.; Nelson, D. D.; McManus, J. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Andrews, A. E.; Sweeney, C.; Hall, B.; Hintsa, E. J.; Moore, F. L.; Elkins, J. W.; Hurst, D. F.; Stephens, B. B.; Bent, J.; Wofsy, S. C.

    2014-06-01

    We present an evaluation of aircraft observations of the carbon and greenhouse gases CO2, CH4, N2O, and CO using a direct-absorption pulsed quantum cascade laser spectrometer (QCLS) operated during the HIPPO and CalNex airborne experiments. The QCLS made continuous 1 Hz measurements with 1σ Allan precisions of 20, 0.5, 0.09, and 0.15 ppb for CO2, CH4, N2O, and CO, respectively, over > 500 flight hours on 79 research flights. The QCLS measurements are compared to two vacuum ultraviolet (VUV) CO instruments (CalNex and HIPPO), a cavity ring-down spectrometer (CRDS) measuring CO2 and CH4 (CalNex), two broadband non-dispersive infrared (NDIR) spectrometers measuring CO2 (HIPPO), two onboard gas chromatographs measuring a variety of chemical species including CH4, N2O, and CO (HIPPO), and various flask-based measurements of all four species. QCLS measurements are tied to NOAA and WMO standards using an in-flight calibration system, and mean differences when compared to NOAA CCG flask data over the 59 HIPPO research flights were 100, 1, 1, and 2 ppb for CO2, CH4, N2O, and CO, respectively. The details of the end-to-end calibration procedures and the data quality assurance and quality control (QA/QC) are presented. Specifically, we discuss our practices for the traceability of standards given uncertainties in calibration cylinders, isotopic and surface effects for the long-lived greenhouse gas tracers, interpolation techniques for in-flight calibrations, and the effects of instrument linearity on retrieved mole fractions.

  17. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less

  18. 120: THE CLINICAL EFFECTIVENESS AND COST-EFFECTIVENESS OF FRACTIONAL CO2 LASER IN ACNE SCARS AND SKIN REJUVENATION: A SYSTEMATIC REVIEW AND ECONOMIC EVALUATION

    PubMed Central

    Yaaghoobian, Barmak; Sadeghi-Ghyassi, Fatemeh; Hajebrahimi, Sakineh

    2017-01-01

    Background and aims Skin rejuvenation is one of high demand cosmetic interventions in Iran. Fractional CO2 Laser is a high power ablative laser which has variety of utilization in medicine including treatment of acne scars and rejuvenation. The aim of this study was to evaluate the safety, efficacy, and cost-effectiveness of Fractional CO2 Laser in comparison with other methods of rejuvenation and acne scar treatment. Methods A systematic database search including Medline (via OVID and PubMed), EMBASE, CINHAL, Cochrane Library, CRD, SCOPUS and Web of Science conducted. After screening search results, selected publications appraised by CASP and Cochrane Collaboration's tool for assessing risk of bias and eligible studies included in the systematic review. In economic evaluation, all costs and benefits analyzed from Iran ministry of health's perspective. Results From 2667 publications, two randomized control trials were eligible and included in the study. The affectivity and complications of Fractional CO2 laser were comparable with Er: YAG but Fractional CO2 laser was 14.7% (P=0.01) more effective than Q-Switched ND: YAG laser. Cost affectivity of this method was the same as other alternative lasers. Conclusions Fractional CO2 laser is an effective and safe method for curing several kinds of skin. Never the less there was not sufficient evidence to support its advantage. This device has equal or lower price in comparison to competent technologies except for the non- fractional ablative Co2 laser that has the same or lower price and comparable effects.

  19. Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R. (Editor); Hoflund, Gar B. (Editor)

    1990-01-01

    Low-temperature CO-oxidation catalysts are necessary for closed-cycle pulsed CO2 lasers as well as for other applications, including air purification. The papers presented in this volume discuss several such catalysts, including information on catalyst preparation, techniques for enhancing catalyst performance, laboratory and laser test results, and mechanistic considerations.

  20. CO2 laser induced refractive index changes in optical polymers.

    PubMed

    Liu, Qing; Chiang, Kin Seng; Reekie, Laurence; Chow, Yuk Tak

    2012-01-02

    We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10(-3), while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

  1. Evaluation of fracture toughness of ZrO 2 and Si 3N 4 engineering ceramics following CO 2 and fibre laser surface treatment

    NASA Astrophysics Data System (ADS)

    Shukla, P. P.; Lawrence, J.

    2011-02-01

    The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.

  2. Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-11 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Mao, J.; Hasselbrack, W.

    2009-04-01

    Accurate measurements of tropospheric CO2 abundances with global-coverage are needed to quantify processes that regulate CO2 exchange with the land and oceans. The 2007 Decadal Survey for Earth Science by the US National Research Council recommended a space-based CO2 measuring mission called ASCENDS. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and as a candidate for the ASCENDS mission. It uses the 1570-nm CO2 band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. During the measurement, the lasers are stepped in wavelength across the CO2 line and an O2 line (near 765 nm) at a ~ 1 kHz rate. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the surface, and to reject photons scattered from thin clouds and aerosols in the path. Previously we had constructed breadboard versions of our CO2 and O2 sensors, using tunable diode lasers, fiber laser amplifiers and 20 cm diameter telescopes. We have used them to make measurements of gas absorptions over 0.2, 0.4 and 1.3 km long outdoor paths. We also have also calculated several characteristics of the technique for space and have performed an initial space mission accommodation study. During 2008 we reconfigured our lidar for airborne use and made measurements of atmospheric CO2 absorption in the nadir column from the aircraft to the surface during 5 flights. The airborne lidar sweeps the laser wavelength across the CO2 line in either 10 or 20 steps per measurement. The line scan rate is ~ 1 KHz and the laser pulse widths are 1 usec. The time resolved laser backscatter is collected by the telescope and detected by a photomultiplier and recorded by a photon counting timing system. We installed our lidar on the NASA Glenn Lear-25 aircraft in October and first made measurements using the 1571.4 nm CO2 absorption line while flying in northern Ohio. We made laser backscatter and absorption measurements over a variety of land surface types, water surfaces and through thin clouds, broken clouds and to cloud tops. Strong laser signals were observed at altitudes from 2.5 to 11 km on two flights. We completed three additional flights during December 2008 and gathered over 6 hours of atmospheric CO2 column measurements using the 1572.02 and 1572.33 nm CO2 lines. Airborne CO2 line shape and absorption measurements were made while flying at 3-11 km altitudes over southwestern Ohio. Subsequently two flights were made from Ponca City OK, just east of the US Department of Energy's (DOE) ARM site. We made 4 hours of airborne measurements in square patterns around the ARM site at altitudes from 3-8 km. The increased CO2 line absorptions at higher altitudes were evident in all flights. The December flights were also coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft inside the CO2 sounder's flight pattern. These yielded two height resolved profiles of CO2 concentrations from 5 km to the surface, which are being analyzed with radiosonde measurements for comparisons. More details of the flights, measurements and their analysis will be described in the presentation.

  3. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  4. Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.

    2010-01-01

    We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.

  5. Autonomous Field Measurements of CO2 in the Atmospheric Column with the Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Technical Reports Server (NTRS)

    Melroy, H. R.; Wilson, E. L.; Clarke, G. B.; Ott, L. E.; Mao, J.; Ramanathan, A. K.; McLinden, M. L.

    2015-01-01

    We present column CO2 measurements taken by the passive Miniaturized Laser Heterodyne Radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory (MLO) in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15 minute intervals during daylight hours. Laser Heterodyne Radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here is a preliminary retrieval analysis and the performance analysis that demonstrates that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

  6. Heterodyne frequency measurements on N2O at 5.3 and 9.0 microns

    NASA Technical Reports Server (NTRS)

    Wells, J. S.; Jennings, D. A.; Hinz, A.; Murray, J. S.; Maki, A. G.

    1985-01-01

    Heterodyne frequency measurements on the 01(1)1-00(0)0 band of N2O have been made with the use of a tunable-diode laser, CO laser transfer oscillator, and a CO2 laser frequency synthesizer. A beat frequency was measured between a CO laser and tunable-diode laser whose frequency was locked to the peak of N2O absorption features. The frequency of the CO laser was simultaneously determined by neasuring the beat frequency with respect to a reference synthesized from two CO2 lasers. New rovibrational constants are given for the 01(1)1 state of N2O, which are in excellent agreement with previous results, although the band center is 4 MHz higher than in the previous measurements. A table for the line frequencies and their absolute uncertainties is given for the N2O absorption lines in the wave-number region from 1830 to 1920 kaysers. Some additional frequency measurements near the lower-frequency end of the 02(0)0-00(0)0 band have also been made with respect to a C-12)(0-18)2 laser.

  7. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of lidar measurements at 11 km altitude reached 376, which was equivalent to a 10-s CO2 error 0.33 ppm. For the entire processed 2014 summer flight campaign data, the mean differences between lidar remote sensed and in-situ estimated CO2 values were about -0.013 ppm. These results indicate that current laser absorption lidar approach could meet space measurement requirements for CO2 science goals.

  8. Fifteen terawatt picosecond CO2 laser system.

    PubMed

    Haberberger, D; Tochitsky, S; Joshi, C

    2010-08-16

    The generation of a record peak-power of 15 TW (45 J, 3 ps) in a single CO(2) laser beam is reported. Using a master oscillator-power amplifier laser system, it is shown that up to 100 J of energy can be extracted in a train of 3 ps laser pulses separated by 18 ps, a characteristic time of the CO(2) molecule. The bandwidth required for amplifying the short injected laser pulse train in a 2.5 atm final CO(2) amplifier is provided by field broadening of the medium at intensities of up to 140 GW/cm(2). The measured saturation energy for 3 ps pulses is 120 mJ/cm(2) which confirms that energy is simultaneously extracted from six rovibrational lines.

  9. Chemical engineering design of CO oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  10. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  11. In vitro analysis of laser meniscectomy.

    PubMed

    Vangsness, C T; Akl, Y; Nelson, S J; Liaw, L H; Smith, C F; Marshall, G J

    1995-01-01

    Partial meniscectomies were performed on 32 fresh human meniscal autopsy specimens. The following laser systems were tested: carbon dioxide (CO2), neodymium:yttrium aluminum garnet (Nd:YAG), potassium titanyl phosphate (KTP), holmium:YAG (Ho:YAG), and excimer. Meniscectomies with these lasers were compared with scalpel, mechanical, and electrocautery meniscectomies. Lasers were applied to specimens in and out of normal saline. Routine hematoxylin and eosin and sirius red sections were prepared for each specimen, and the depths of thermal changes were analyzed. Scanning electron microscopy was used to visualize the meniscectomy interface. Among these specimens, the scalpel and mechanical meniscectomies showed the least extension of cellular changes (range, 10-15 nm). The excimer laser caused the least tissue changes of the lasers tested. Tissue changes were less extensive with the pulsed CO2 laser than with the holmium:YAG, neodymium:YAG, and KTP lasers. Scanning electron microscopy showed that use of the scalpel meniscectomy resulted in the smoothest meniscectomy edge, followed by use of the excimer, CO2, holmium:YAG, neodymium:YAG, and KTP lasers. The most surface disruption occurred with electrocautery. Meniscectomies under saline required more energy and took longer in each case, with the holmium:YAG, neodymium:YAG, and CO2 laser cutting the best. Saline meniscectomies showed less thermal change. The CO2 and KTP lasers cut best in air.

  12. Study into penetration speed during laser cutting of brain tissues.

    PubMed

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  13. NONLINEAR AND FIBER OPTICS: Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals

    NASA Astrophysics Data System (ADS)

    Andreev, Yu M.; Bykanov, A. N.; Gribenyukov, A. I.; Zuev, V. V.; Karyshev, V. D.; Kisletsov, A. V.; Kovalev, I. O.; Konov, Vitalii I.; Kuz'min, G. P.; Nesterenko, A. A.; Osorgin, A. E.; Starodumov, Yu M.; Chapliev, N. I.

    1990-04-01

    A pulsed TEA CO2 laser was used in an investigation of the influence of the pump radiation parameters (mode composition, wavelength, pulse duration), of the focusing conditions, of the properties of the material (absorption coefficient), and of the operating conditions (temperature) on the efficiency of conversion to the second harmonic and on the angular dependences of phase matching in ZnGeP2 crystals. The calculated results were found to be in good agreement with the experimental data.

  14. The application of robotics to microlaryngeal laser surgery.

    PubMed

    Buckmire, Robert A; Wong, Yu-Tung; Deal, Allison M

    2015-06-01

    To evaluate the performance of human subjects, using a prototype robotic micromanipulator controller in a simulated, microlaryngeal operative setting. Observational cross-sectional study. Twenty-two human subjects with varying degrees of laser experience performed CO2 laser surgical tasks within a simulated microlaryngeal operative setting using an industry standard manual micromanipulator (MMM) and a prototype robotic micromanipulator controller (RMC). Accuracy, repeatability, and ablation consistency measures were obtained for each human subject across both conditions and for the preprogrammed RMC device. Using the standard MMM, surgeons with >10 previous laser cases performed superior to subjects with fewer cases on measures of error percentage and cumulative error (P = .045 and .03, respectively). No significant differences in performance were observed between subjects using the RMC device. In the programmed (P/A) mode, the RMC performed equivalently or superiorly to experienced human subjects on accuracy and repeatability measures, and nearly an order of magnitude better on measures of ablation consistency. The programmed RMC performed significantly better for repetition error when compared to human subjects with <100 previous laser cases (P = .04). Experienced laser surgeons perform better than novice surgeons on tasks of accuracy and repeatability using the MMM device but roughly equivalently using the novel RMC. Operated in the P/A mode, the RMC performs equivalently or superior to experienced laser surgeons using the industry standard MMM for all measured parameters, and delivers an ablation consistency nearly an order of magnitude better than human laser operators. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Physics of light and lasers.

    PubMed

    Absten, G T

    1991-09-01

    Because most laser procedures use the heating effect of the light and given the number of parameters that may be varied--such as power density, power, pulsing, and heating of fiber tips and probes--significant overlap in applications of the various lasers can result. This is readily apparent in the conflicting claims of laser manufacturers seen in promotional materials. Despite this, each type has its strengths. The CO2 laser is a specialty instrument, particularly for microscopic applications in neurosurgery, otolaryngology, and gynecology. Its hemostasis and vaporizing abilities allow its use in dermatology and in general surgery for tumor resection and hemostasis. In gynecology it seems best for colposcopy (cervical and vaginal) and, through a micromanipulator, for laparotomy. The beam is focused and delivered by handpieces and micromanipulators on microscopes. Through the laparoscope, it requires the use of a special laser coupler on a special laser laparoscope to allow for line-of-sight delivery of the beam through the operating channel. Waveguide delivery systems have been introduced for CO2 laser laparoscopy using standard laparoscopes. These function as hollow, slender tubes through which the beam is transmitted by means of hundreds of glancing internal reflections in the tube, which emits the beam at its tip. This eliminates many of the alignment problems of coupler cube-type systems and allows the beam to be delivered close to the target. The Nd:YAG laser is the primary endoscopic instrument in pulmonology, gastroenterology, and urology. The use of contact tips, though not a panacea, increases its applications, particularly in general surgery. Its primary use in gynecology is for endometrial ablation with bare fibers for deep coagulation. Its use for laparoscopy with contact probes or sculpted fibers is quickly growing. Green light lasers (argon and KTP) are color-selective photocoagulators and may be used to cut tissue. They are fiberoptically delivered like the Nd:YAG laser. Their best use in gynecology appears to be a versatile instruments for operative laparoscopy and the simple treatment of endometriosis. A standard quartz fiber with these lasers is usually more versatile than a contact tip with an Nd:YAG laser when used for cutting.

  16. Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.

    2011-12-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of delivering 65 mJ at 50 Hz at on-line wavelength and 50 mJ at 50 Hz at off-line wavelength. The planned laser technology development and performance capabilities are a major step forward in the laser transmitter requirements called out in recent comprehensive system studies, e.g., the European Space Agency (ESA) exploration mission studies, A-SCOPE, for future CO2 column density measurements from space. The planned laser technology development is relevant to NASA's earth science priorities, such as NASA ASCENDS mission for space-based CO2 column density measurements. This presentation will provide an overview of the current status of laser transmitter development and describe future technology development to meet the transmitter requirement for a space-based column averaged measurement of CO2 concentration.

  17. Frequency tuning characteristics of a Q-switched Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Lovold, S.; Moulton, P. F.; Killinger, D. K.; Menyuk, N.

    1985-01-01

    A tunable Q-switched Co:MgF2 laser has been developed for atmospheric remote sensing applications. Frequency tuning is provided by a quartz etalon and a specially designed three-element birefringent filter covering the whole gain bandwidth of the Co:MgF2 laser. The laser has good temporal and spectral characteristics, with an emission linewidth of approximately 3 GHz (0.1 per cm).

  18. Carbon analysis for inspecting carbonation of concrete using a TEA CO2 laser-induced plasma.

    PubMed

    Kagawa, Kiichiro; Idris, Nasrullah; Wada, Munehide; Kurniawan, Hendrik; Tsuyuki, Kenichiro; Miura, Satoru

    2004-08-01

    It has been demonstrated that a spectrochemical analysis of carbon using the laser plasma method can be successfully applied to inspect the carbonation of concrete by detecting carbon produced in aged concrete by a chemical reaction of Ca(OH)2 with CO2 gas in environmental air, turning into CaCO3, which induces degradation of the quality of building concrete. A comparative study has been made using a TEA CO2 laser (500-1000 mJ) and a Q-switched Nd-YAG laser (50-200 mJ) to search for the optimum conditions for carbon analysis, proving the advantage of the TEA CO2 laser for this purpose. Also, it was clarified that laser irradiation with suitable defocusing conditions is a crucial point for obtaining high sensitivity in the detection of carbon. Practical experiments on the inspection of carbonation were carried out using both a concrete sample that had been intentionally carbonated by exposure to high concentrations of CO2 gas and a naturally carbonated concrete sample. As a result, good coincidence was observed between the laser method and the ordinary method, which uses the chemical indicator phenolphthalein, implying that this laser technique is applicable as an in situ quantitative method of inspection for carbonation of concrete.

  19. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  20. Efficient 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Haldemann, P. R.

    1988-01-01

    Details of a 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation are presented. The amplifier delivers 30 W into a 50-Ohm load while requiring only 40 W of dc power from a 28-V supply and 100 mW of rf drive power for an overall efficiency of 75 percent. A coupling-starting network design theory is given that provides the initiation over voltage for the discharge plasma from an rf power source of limited output voltage capability. The network then matches the drive circuit to the new input impedance of the operating discharge without any adjustments. This design theory applies to the whole class of networks whose losses can be approximated by a loss conductance in parallel with the gas discharge.

  1. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    PubMed Central

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  2. Experimental Investigation for 100-Joule-class TEA CO2 Laser and Gas Interaction

    NASA Astrophysics Data System (ADS)

    Dou, Zhiguo; Yao, Honglin; Wang, Jun; Wen, Ming; Wang, Peng; Yang, Jan; Li, Chong

    2006-05-01

    Impulse coupling coefficient Cm is one of the most important performance parameters in laser propulsion. Cm is the impulse increment of lightcraft that per joule laser beam energy acts on. The TEA CO2 laser, whose single pulse energy is 100-Joule-class and wavelength is 10.6μm, is adopted by experimental research. In experimental environment cabin, the parabolic lightcraft is fixed on impact pendulum. Using Air, N2, He, CO2, N2-He and N2-CO2, different Cm is obtained. Experimental results indicate that Cm of the mixed gas is improved through changing gas component ratio.

  3. Origin of the enhanced exchange bias in polycrystalline-BiFeO3/Co bilayers by X-ray absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, J. D.; Yang, W. B.; Kumar, A.; Zhao, H. H.; Lai, Y. J.; Feng, L. S.; Xu, Q. Y.; Zhang, Y. Q.; Du, J.; Li, Q.

    2018-04-01

    Polycrystalline-BiFeO3(BFO)/Co bilayers were grown by pulsed laser deposition (PLD) and magnetron sputtering, with fast laser annealing under magnetic field. The enhanced exchange bias (EB) had been found in the BFO/Co bilayers (Appl. Surf. Sci. 367 (2016) 418). In order to reveal the origin of the enhanced EB in the samples, X-ray absorption Spectroscopy (XAS) of Fe 2p, Co 2p and O 1s were performed. The Co 2p XAS indicated the increase of Co oxidation state and the Fe 2p XAS of sample A and B under laser annealing processes showed that crystal field splitting energy decreased and led to the weakening of spin-orbit coupling with the increasing of the laser fluence. It was considered that the appearance of the oxidation state of Co and Fe2+ ions and the existence of the unidirectional anisotropy due to the laser fluence was responsible for the results and also for the enhanced EB.

  4. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  5. Distribution of E/N and N sub e in a cross-flow electric discharge laser

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3.

  6. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows.

    PubMed

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  7. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  8. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  10. Life problems of dc and RF-excited low-power CW CO2 waveguide lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Haldemann, P. R.

    1986-01-01

    A number of different, RF-excited 3-W CW CO2 waveguide lasers have been built. Four of these lasers, after continuously working for 15,000-30,000 h, still yield about 70 percent of their original power output. The design variations cover N2and CO-bearing gas mixtures, as well as internal- and external-capacitively coupled excitation electrodes. A similar laser survived 50,000 5-min-ON/5-min-OFF cycles without significant mirror damage. It was not possible to find suitable cold cathodes that allow the building of longitudinally dc-excited CW CO2 waveguide lasers that work for such extended periods of time.

  11. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  12. The use of CO(2) laser in revision stapes surgery: experimental studies on heat transmission to the vestibule.

    PubMed

    Szymański, Marcin; Morshed, Kamal; Mills, Robert P

    2007-01-01

    The aim of the study was to assess the effect of CO(2) laser on stapes prostheses and measure the heat transmission to the vestibule in experiment model. CO(2) laser was applied on two types of prostheses with power settings (2 and 6W; 0.05 s). Transmission of heat to the 'vestibule' was measured using type K thermocouple and DC-80 data logger during application of the laser on prostheses using a training model of temporal bone. Application of the laser on stainless steel prosthesis did not have any effect on the structure of the prosthesis. The use of the laser on the fluoroplastic-wire piston caused melting and produced holes in the piston. Greater temperature rises occurred with stainless steel than with the fluoroplastic-wire piston. Application of CO(2) laser on stainless steel pistons with 6W can produce inner ear trauma. The use of the laser on fluoroplastic-wire piston is not likely to irritate the inner ear.

  13. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 < C12CO2/CN2 < 2) and 1.11998 (0 < C13CO2/CN2 < 1.5) respectively. It has shown that the representative Raman peak area can be used for the determination of δ13C values within the relative errors range of 0.076% to 1.154% in 13CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  14. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  15. CO2 laser myringotomy with a hand-held otoscope and fiber optic delivery system: animal experimentation and preclinical trials

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Finkelstein, Y.; Katzir, Abraham

    1993-07-01

    CO2 laser myringotomy has previously been proven effective in patients with serous otitis media for short term aeration of the middle ear. However, the system based on a microscope and a coaxially aligned laser is cumbersome and expensive. Also, conventional optical fibers do not transmit CO2 laser energy ((lambda) equals 10.6 micrometers ). We have developed a silver halide optical fiber of diameter 0.9 mm and lengths of several meters, with high transmission at 10.6 micrometers . Using a hand held otoscope coupled to a fiberoptic delivery system CO2 laser myringotomies were performed first in guinea pigs and then in humans. In the animal model the feasibility of the procedure was proven. Different irradiation parameters were studied and a `dose dependent' relationship was found between the total energy used and the duration of a patent myringotomy. This system was used to perform CO2 laser myringotomies under local anesthesia in five patients with serous otitis media and conductive hearing loss. None of the patients complained of discomfort and no scarring was noted. All patients had subjective and audiometric documentation of hearing improvement. The average duration of a patent myringotomy was 21 days. In two patients the effusion recurred. CO2 laser myringotomy utilizing a hand held otoscope coupled to an optical fiber capable of transmitting CO2 laser energy may prove simple and effective in the treatment of serous otitis media.

  16. Effect of CO2, Nd:YAG and Er:YAG Lasers on Microtensile Bond Strength of Composite to Bleached-Enamel.

    PubMed

    Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh

    2016-01-01

    Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group.

  17. Reinjection laser oscillator and method

    DOEpatents

    McLellan, Edward J.

    1984-01-01

    A uv preionized CO.sub.2 oscillator with integral four-pass amplifier capable of providing 1 to 5 GW laser pulses with pulse widths from 0.1 to 0.5 ns full width at half-maximum (FWHM) is described. The apparatus is operated at any pressure from 1 atm to 10 atm without the necessity of complex high voltage electronics. The reinjection technique employed gives rise to a compact, efficient system that is particularly immune to alignment instabilities with a minimal amount of hardware and complexity.

  18. Windvan laser study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The goal of defining a CO2 laser transmitter approach suited to Shuttle Coherent Atmospheric Lidar Experiment (SCALE) requirements is discussed. The adaptation of the existing WINDVAN system to the shuttle environment is addressed. The size, weight, reliability, and efficiency of the existing WINDVAN system are largely compatible with SCALE requirements. Repacking is needed for compatibility with vacuum and thermal environments. Changes are required to ensure survival through launch and landing, mechanical, vibration, and acoustic loads. Existing WINDVAN thermal management approaches depending on convection need to be upgraded zero gravity operations.

  19. Effect of Nd:YAG and CO2 Laser Irradiation on Prevention of Enamel Demineralization in Orthodontics: In Vitro Study.

    PubMed

    Paulos, Renato Siva; Seino, Priscila Yumi; Fukushima, Karen Akemi; Marques, Marcia Martins; de Almeida, Fernanda Campos Sousa; Ramalho, Karen Muller; de Freitas, Patricia Moreira; Brugnera, Aldo; Moreira, Maria Stella

    2017-05-01

    The aim of this study was to investigate Nd:YAG and CO 2 laser effects in the prevention of demineralization in deeper layers of enamel via successive acid challenge cycles. Lasers are promising in the prevention of enamel demineralization around the orthodontic brackets; however, there are very few studies that evaluate if the effects of treatment could be extended after successive acid challenge cycles due to permanent enamel structural alterations. Human enamel samples were divided into five groups (n = 12): G1-application of 1.23% acidulated fluoride phosphate gel (AFP, control); G2-Nd:YAG laser irradiation (0.6 W, 84.9 J/cm 2 , 10 Hz, 110 μs, contact mode); G3-Nd:YAG laser irradiation associated with AFP; G4-CO 2 laser irradiation (0.5 W, 28.6 J/cm 2 , 50 Hz, 5 μs, and 10 mm focal distance); and G5-CO 2 laser irradiation associated with AFP. The samples were submitted to successive acid challenge cycles. Quantitative light-induced fluorescence and scanning electron microscopy were used to assess enamel demineralization. The data were statistically compared (α = 5%). G1: 50.87 ± 4.57; G2: 47.72 ± 2.87; G3: 50.96 ± 4.01; G4: 28.21 ± 2.19; and G5: 30.13 ± 6.38. The CO 2 laser groups had significantly lower mineral losses than those observed in all other groups after successive acid challenge cycles. Only the CO 2 laser (10.6 μm) irradiation prevents enamel demineralization around the orthodontic brackets even after exposure to successive acid challenges. The CO 2 laser at 10.6 μm showed a deeper effect in enamel regarding caries prevention.

  20. Analysis of incidence of bulla formation after tattoo treatment using the combination of the picosecond Alexandrite laser and fractionated CO2 ablation.

    PubMed

    Au, Sonoa; Liolios, Ana M; Goldman, Mitchel P

    2015-02-01

    The picosecond Alexandrite laser has shown increased efficacy in tattoo removal in comparison to Q-switched lasers. However, bulla formation is a well-known and expected side effect of this novel treatment and causes patient discomfort. To analyze the incidence of bulla formation after tattoo treatment using the combination of the picosecond Alexandrite laser and fractionated CO2 ablation. This is a retrospective chart review to determine the incidence of bulla formation after laser tattoo removal in 95 patients who were treated with either with the picosecond Alexandrite laser alone or in combination with fractional CO2 ablation. Twenty-six patients (32%) treated with the picosecond laser alone experienced blistering, whereas none of the patients treated with the combination of the picosecond laser and fractionated CO2 ablation experienced blistering. The difference in incidence of bulla formation between the 2 groups was found to be statistically significant (p < .05). This study shows a significant decrease in bulla formation associated with tattoo treatment when fractionated CO2 ablation is added to the picosecond Alexandrite laser, which is consistent with observations from a previous case series. This is important because decreasing extensive blistering likely results in increased patient satisfaction and willingness to return for future treatments.

  1. Successful Treatment of Rhinophyma With Fractionated Carbon Dioxide (CO2) Laser in an African-American Man: Case Report and Review of Literature of Fractionated CO2 Laser Treatment of Rhinophyma.

    PubMed

    Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared

    2016-11-01

    Rhinophyma, a late complication of rosacea (phymatous subtype), is a chronic, progressive dermatological condition. The classic pre- sentation of rhinophyma is nodular, thickened skin over the distal nose, and is often accompanied by underlying erythema secondary to in ammation. Due to the unpleasant aesthetic and dis guring appearance, rhinophyma may be associated with a signi cant nega- tive psychosocial impact, resulting in decreased patient quality-of-life. Treatment of rhinophyma is challenging as topical and systemic pharmacotherapies have shown limited ef cacy. We present a case of a 39-year-old African-American male with long-standing, mild rhinophyma who was successfully treated with two sessions of fractionated carbon dioxide (CO2) laser. We also review the medical literature on fractionated CO2 laser treatment of rhinophyma. To the best of our knowledge, this is the rst report of successful treat- ment of rhinophyma using fractionated CO2 laser in an African-American man (Fitzpatrick VI). We believe that fractionated CO2 laser may be a safe and ef cacious treatment modality for rhinophyma in skin of color patients (Fitzpatrick IV-VI) and early intervention with fractionated CO2 laser to prevent rhinophyma worsening may yield better results than late intervention. J Drugs Dermatol. 2016;15(11):1465-1468..

  2. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  3. Definition and preliminary design of the LAWS (Laser Atmospheric Wind Sounder). Volume 1, phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of phase 1 of the LAWS study was to define and perform a preliminary design for the Laser Atmospheric Wind Sounder (LAWS) instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System and subsystem configurations were then developed for the chosen concept. The concept and subsequent configurations were to be compatible with two prospective platforms--the Japanese Polar Orbiting Platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, we chose a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron solid state system. The choice of the CO2 approach over solid-state reflects the advanced state of development of CO2 lasers, its maturity in ground-based systems and the eased subsystem requirements associated with the longer wavelength. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. Our approach throughout the configuration design was to take a systems perspective and trade requirements between subsystems, wherever possible, to arrive at configurations which made maximum use of existing, proven technology or relatively straightforward extensions to existing technology to reduce risk and cost. At the conclusion of Phase 1 we arrived at a configuration for LAWS which meets the performance requirements, yet which is less complex than previous designs of space-based wind sensors (e.g. Windsat), employs lightweight technologies to meet its weight goals (less than 800kg) and sufficiently flexible to offer various operational scenarios with power requirements from about 2 kW to 3 kW. The Phase 1 Final Report was released in March 1990. The 21-month Phase 2 began in October 1990. The requirement to accommodate LAWS as an attached payload on Space Station Freedom was deleted and the orbit altitude for the Japanese polar orbiting platform was changed from 824 km to 705 km. The power allocated to LAWS was reduced to 2.2 kW from 3 kW. Subsequently the availability of a Japanese Polar Orbiting Platform was called into question and LAWS accommodation studies were continued using a conceptual, ATLAS-launched platform supplied by MSFC. In March 1991 a modification to the original contracts was funded to provide a LAWS laser breadboard which could demonstrate all the performance requirements of the LAWS laser. Also funded as part of the same contract extension was a lifetest demonstration using an existing laser at STI. The breadboard extension was an eighteen month effort and the period of performance was therefore extended to September 30, 1992.

  4. Fiber optically guided CO2 laser myringotomy through an otoscope: animal experimentation

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Katzir, Abraham

    1992-08-01

    We have developed an otoscope which contains an optical fiber capable of transmitting CO2 laser energy. Such a hand-held unit may prove useful in the treatment of acute otitis media and otitis media with effusion. We used crystalline fibers (0.9 mm diameter) capable of transmitting CO2 laser energy. Four guinea pigs were anaesthetized. In one ear a laser myringotomy was performed using 7.5 watts for 0.1 seconds. The diameter of the myringotomy was 1.5 mm. In the other ear a similar conventional myringotomy was performed. After three weeks three laser and three conventional myringotomies were closed. On the average conventional myringotomies closed 50% sooner than laser myringotomies. Temporal bones from three guinea pigs were removed and sectioned according to accepted methods. No histological differences were found between ears. This experiment has proven the feasibility of using an otoscope for fiberoptically guided CO2 laser myringotomy.

  5. Industrial 2-kW TEA CO2 laser for paint stripping of aircraft

    NASA Astrophysics Data System (ADS)

    Schweizer, Gerhard; Werner, L.

    1995-03-01

    Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.

  6. CO(2) Laser Fascia to Dura Soldering for Pig Dural Defect Reconstruction.

    PubMed

    Forer, Boaz; Vasileyev, Tamar; Gil, Ziv; Brosh, Tamar; Kariv, Naam; Katzir, Abraham; Fliss, Dan M

    2007-02-01

    The purposes of this study were to demonstrate that laser soldering is safe and effective for tissue bonding in dural reconstruction and to compare this new reconstruction technique to an established one. A temperature-controlled fiberoptic CO(2) laser system or fibrin glue were used for in vitro dural defect reconstruction in two groups of pigs. The CO(2) laser technique was also used for dural reconstruction in live pigs. The burst pressure of the reconstructed dura by the laser system was significantly higher than that of fibrin glue (mean pressure 258.5 +/- 117.3 cm H(2)O and 76.8 +/- 47.2 cm H(2)O, respectively). There were no postoperative complications and no signs of thermal damage to the dura, fascia, or underlying tissue on histological analysis following the in vivo CO(2) laser experiments. Temperature-controlled laser soldering is an effective technique for dural repair. It creates a strong tissue bonding with no thermal damage to the tissue. The burst pressure of the reconstructed dura done with laser soldering is significantly higher than that of fibrin glue.

  7. Effect of the CO2 laser (9.6μm) on the dental pulp in humans

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Walsh, Joseph T., Jr.; Mostafi, Reza

    2000-03-01

    There has been great interest in the potential use of a laser to replace the dental handpiece (drill). Ideally a laser emitting radiation that is absorbed strongly by both the water and hydroxyapatite in teeth, would be a more efficient laser. Previous investigators showed that the 9.3 and 9.6 micron wavelength bands of the CO2 laser contain hydroxyapatite absorption peaks. For this study, human patients who were to have teeth removed for either orthodontic or periodontal reasons were used. A total of 16 teeth were irradiated. The number of teeth treated per patient varied from 1 - 4. The laser used was a prototype CO2 laser (ESC Medical Systems, Yokneam, Israel). The CO2 laser emits 50 mJ 60 microsecond-long pulses of 9.6 micrometer radiation in a beam focused to a 300 micrometer diameter (i/e2) spot. The pulps in both the laser and handpiece prepared holes appeared similar and had no apparent inflammation or vascular changes. It appears from this small sample of laser treated human teeth that this laser has an equal effect to the dental pulpal tissue when compared to the dental handpiece.

  8. High-energy D/sub 2/O submillimeter laser for plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semet, A.; Johnson, L.C.; Mansfield, D.K.

    1983-01-01

    A narrow line optically pumped D/sub 2/O laser operating at 385 ..mu..m has delivered more than 5 J in pulses longer than 3 ..mu..sec using a large aperture unstable resonator cavity design. Pulse levels which are > 1 J and 1 ..mu..sec are necessary for a single shot ion temperature measurement by Thomson scattering in large tokamaks. Experiments have, for the most part, been conducted at a 360 J, 5 ..mu..sec CO/sub 2/ laser pump level where high efficiency (approx. 2.5 J at 385 ..mu..m) has been obtained. These are the highest energies reported to date in the far infrared.more » In addition, the pulse length has been extended beyond the vibrational relaxation time.« less

  9. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band. This band is free from interference from other gases and has temperature insensitive absorption lines. During the measurement the lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The lasers use tunable diode seed lasers followed by fiber amplifiers, and have spectral widths much narrower than the gas absorption lines. The receiver uses a 1-m diameter telescope and photon counting detectors and measures the background light and energies of the laser echoes from the surface. The extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and offline surface echo via the differential optical absorption technique. Our technique rapidly alternates between several on-line wavelengths set to the sides of the selected gas absorption lines. It exploits the atmospheric pressure broadening of the lines to weight the measurement sensitivity to the atmospheric column below 5 km. This maximizes sensitivity to CO2 in the boundary layer, where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column will use an identical approach with an O2 line. Thee laser frequencies are tunable and have narrow (MHz) line widths. In combination with sensitive photon counting detectors these enables much higher spectral resolution and precision than is possible with passive spectrometer. 1aser backscatter profiles are also measured, which permits identifying measurements made to cloud tops and through aerosol layers. The measurement approach using lasers in common-nadir-zenith path allows retrieving CO2 column mixing ratios in the lower troposphere irrespective of sun angle. Pulsed laser signals, time gated receiver and a narrow receiver field-of-view are used to isolate the surface laser echo signals and to exclude photons scattered from clouds and aerosols. Nonetheless, the optical absorption change due to a change of a few ppO2 is small, <1 % which makes achieving the needed measurement sensitivities and stabilities quite challenging. Measurement SNRs and stabilities of >600:1 are needed to estimate CO2 mixing ratio at the 1-2 ppm level. We have calculated characteristics of the technique and have demonstrated aspects of the laser, detector and receiver approaches in th e laboratory We have also measured O2 in an absorption cell, and made C02 measurements over a 400 m long (one way) horizontal path using a sensor breadboard. We will describe these and more details of our approach in the paper.

  10. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko

    2014-06-01

    High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.

  11. Numerical simulation of temperature at drilling micro-hole on moving CO2 laser irradiated sticking plaster

    NASA Astrophysics Data System (ADS)

    Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao

    2012-03-01

    This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.

  12. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    NASA Astrophysics Data System (ADS)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  13. Characterization of diamond thin films and related materials

    NASA Astrophysics Data System (ADS)

    McKindra, Travis Kyle

    Thin carbon films including sputtered deposited graphite and CO 2 laser-assisted combustion-flame deposited graphite and diamond thin films were characterized using optical and electron microscopy, X-ray diffraction and micro-Raman spectroscopy. Amorphous carbon thin films were deposited by DC magnetron sputtering using Ar/O2 gases. The film morphology changed with the oxygen content. The deposition rate decreased as the amount of oxygen increased due to oxygen reacting with the growing film. The use of oxygen in the working gas enhanced the crystalline nature of the films. Graphite was deposited on WC substrates by a CO2 laser-assisted O2/C2H2 combustion-flame method. Two distinct microstructural areas were observed; an inner core of dense material surrounded by an outer shell of lamellar-like material. The deposits were crystalline regardless of the laser power and deposition times of a few minutes. Diamond films were deposited by a CO2 laser-assisted O 2/C2H2/C2H4 combustion-flame method with the laser focused parallel to the substrate surface. The laser enhanced diamond growth was most pronounced when deposited with a 10.532 microm CO2 laser wavelength tuned to the CH2-wagging vibrational mode of the C2H4 molecule. Nucleation of diamond thin films deposited with and without using a CO 2 laser-assisted combustion-flame process was investigated. With no laser there was nucleation of a sub-layer of grains followed by irregular grain growth. An untuned laser wavelength yielded nucleation of a sub-layer then columnar grain growth. The 10.532 microm tuned laser wavelength caused growth of columnar grains.

  14. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  15. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited due to the high cost and extreme size of these instruments (these occupy small buildings and require personnel for operation). The LHR/AERONET instrument offers a significantly smaller (carry-on luggage size) autonomous instrument that can be incorporated into AERONET s much larger (450 instruments) global network.

  16. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  17. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  18. A pulser-sustainer carbon monoxide electric-discharge supersonic laser

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Srinivasan, G.

    1977-01-01

    Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.

  19. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    PubMed

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  20. The synergistic effects of CO2 laser treatment with calcium silicate cement of antibacterial, osteogenesis and cementogenesis efficacy

    NASA Astrophysics Data System (ADS)

    Hsu, T.-T.; Kao, C.-T.; Chen, Y.-W.; Huang, T.-H.; Yang, J.-J.; Shie, M.-Y.

    2015-05-01

    Calcium silicate-based material (CS) has been successfully used in dental clinical applications. Some researches show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm, due to a photo-thermal mechanism. The purpose of this study was to confirm the effects of CO2 laser irradiation on CS, with regard to both material characterization and human periodontal ligament cell (hPDLs) viability. CS was irradiated with a dental CO2 laser using directly mounted fiber optics in wound healing mode with a spot area of 0.25 cm2, and then stored in an incubator at 100% relative humidity and 37 °C for 1 d to set. The hPDLs cultured on CS were analyzed, along with their proliferation and odontogenic differentiation behaviors. The results indicate that the CO2 laser irradiation increased the amount of Ca and Si ions released from the CS, and regulated cell behavior. CO2 laser-irradiated CS promoted cementogenic differentiation of hPDLs, with the increased formation of mineralized nodules on the substrate’s surface. It also up-regulated the protein expression of multiple markers of cementogenic and the expression of cementum attachment protein. The current study provides new and important data about the effects of CO2 laser irradiation on CS. Taking cell functions into account, the Si concentration released from CS with laser irradiated may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue.

  1. CO2 lidar for measurements of trace gases and wind velocities

    NASA Technical Reports Server (NTRS)

    Hess, R. V.

    1982-01-01

    CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.

  2. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)

  3. A Broadband Infrared Laser Source (2.5-17 μm) for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kinyaevskii, I. O.; Klimachev, Yu. M.; Kozlov, A. Yu.; Kotkov, A. A.

    2017-12-01

    This paper presents the results of studies aimed at the creation of a hybrid laser system which is composed of a gas lasers and a nonlinear crystal and appreciably broadens and enriches the radiation spectrum of these lasers. A highly efficient conversion (37%) is attained when generating the second harmonic in a ZnGeP2 crystal owing to an increase in the peak power of CO laser radiation in the mode locking regime. The two-cascade conversion (generation of both sum and difference frequencies) of radiation of a broadband CO laser in the single sample of such nonlinear crystals as ZnGeP2 and AgGaSe2 is demonstrated. In this case, the radiation spectrum is broadened by nearly a factor of two, and the number of detected spectral lines grows by a factor of four. The use of a comparatively simple laser system of gas-discharge CO and CO2 lasers to conversion in AgGaSe2 results in laser radiation tunable over a set of narrow spectral lines within a range from 2.5 to 16.6 μm (more than two and a half octaves).

  4. Self-built supercritical CO2 anti-solvent unit design, construction and operation using carbamazepine.

    PubMed

    Meng, Dan; Falconer, James; Krauel-Goellner, Karen; Chen, John J J J; Farid, Mohammed; Alany, Raid G

    2008-01-01

    The purpose of this study was to design and build a supercritical CO(2) anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15 mL/min, CO(2) flow rate of 7.5 mL/min, pressure of 4,200 psi, over 3,000 s and at 33 degrees C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29 mum. Furthermore, the SAS CO(2) process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.

  5. Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.

    PubMed

    Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y

    1986-01-01

    The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.

  6. [Experimental investigations of CO2 laser application in middle ear ossicles].

    PubMed

    Dazert, S; Russ, D; Mlynski, R; Brors, D; Greiner, A; Aletsee, C; Helms, J

    2003-07-01

    During the last few years, several laser systems have been applied for procedures in middle ear surgery. In this study, we determined the technical parameters for the dissection of the middle ear ossicles with the CO(2) laser and analyzed the histological findings. The malleus necks of 16 human temporal bones were dissected under standardized conditions using a CO(2) laser with a power output between 35 and 55 kW/cm(2). The specimens were fixed and histological probes of 50- micro m thickness were prepared. The laser outputs led to crater diameters from 0.14 to 0.55 mm. As an analogy between laser energy and thermal tissue destruction, three zones of thermal damage were differentiated: a cinder zone, a carbonization zone, and a zone of dehydration. The metrical dimensions of these zones did not show any correlation to the applied laser energy. The data of this study show that commercially available CO(2) lasers are sufficient for a safe and effective partial resection of middle ear ossicles using a power output of 35 kW/cm(2).

  7. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  8. Possible stabilization of the frequency of a CO/sub 2/ laser using an external Stark cell containing 1-1 difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avtonomov, V.P.; Alexandrescu, R.; Dumitras, D.

    1979-02-01

    Results are presented of measurements of the Stark modulation index and absorption coefficient of CO/sub 2/ laser radiation due to the P (24) line by 1-1 difluorethane (C/sub 2/H/sub 4/F/sub 2/). The possibility of stabilizing the CO/sub 2/ laser frequency using a Stark cell is demonstrated and the laser frequency tuning efficiency within the P (24) line of the 00/sup 0/1--10/sup 0/0 transition is determined.

  9. Solar-pumped CO laser

    NASA Astrophysics Data System (ADS)

    Treanor, Charles E.

    This paper describes a method of converting thermal radiation directly into laser radiation at a wavelength of about 5 micrometers. The working fluid for the laser operation is a mixture of carbon monoxide and argon. The source of thermal radiation is assumed to be a solar oven or electrical oven operating in the range of 2000 to 2500 K. The use of carbon monoxide as the lasing material presents the advantage that the absorbing lines can be pressure broadened to permit efficient absorption of the thermal radiation without unacceptable increases in vibrational relaxation. Estimates of the efficiency, size, and power loading of such a laser are discussed.

  10. 1.44-μm giant pulse generation

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2007-02-01

    We have compared two solid-state saturable absorbers for Q-switching of longitudinally diode-pumped Nd:YAG laser operating at wavelength 1444 nm: vanadium doped garnet (V 3+:Y 3Al IIO 5, V:YAG), and cobalt doped spinel (Co 2+:MgAl IIO 4, Co:MALO). V:YAG crystal with initial transmission 91% was 2.2mm thick. Co:MALO crystal with initial transmission 91% was 2.0mm thick. Q-switched laser consisted of the Nd:YAG composite rod (8mm long Nd-doped part, 4mm long undoped YAG part) and the saturable absorber placed in 80mm long hemispheric cavity. As an output coupler was used concave mirror (r = 150mm) with reflectivity 98% on lasing wavelength. Giant pulses were obtained with both passive Q-switches. When V:YAG saturable absorber was used, 55 ns long (FWHM) pulses were generated with peak power 0.47kW (pulse energy 26 μJ). Using Co:MALO, more powerful pulses were obtained (40 ns long, 1.0kW peak power, 45 μJ energy). Advantage of less efficient V:YAG consist in possibility of diffusion bonding between Q-switch and laser active medium which allows to prepare miniature compact laser device. This concept was demonstrated by using of Nd:YAG/V:YAG monolith crystal (4mm long undoped YAG part, 8mm long Nd:YAG part, 0.5mm long V:YAG part - initial transmission 97% @ 1444 nm). This monolithic crystal, originally designed for 1338nm lasing, was placed into 23mm long cavity resonating at wavelength 1444 nm. For output coupler reflectivity 96% pulses 39 ns long with peak power 0.64kW were generated at wavelength 1444 nm.

  11. Histological changes induced by CO2 laser microprobe specially designed for root canal sterilization: in vivo study.

    PubMed

    Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R

    1998-10-01

    Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.

  12. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    PubMed

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0

  13. Novel method to sample very high power CO2 lasers: II Continuing Studies

    NASA Astrophysics Data System (ADS)

    Eric, John; Seibert, Daniel B., II; Green, Lawrence I.

    2005-04-01

    For the past 28 years, the Laser Hardened Materials Evaluation Laboratory (LHMEL) at the Wright-Patterson Air Force Base, OH, has worked with CO2 lasers capable of producing continuous energy up to 150 kW. These lasers are used in a number of advanced materials processing applications that require accurate spatial energy measurements of the laser. Conventional non-electronic methods are not satisfactory for determining the spatial energy profile. This paper describes continuing efforts in qualifying the new method in which a continuous, real-time electronic spatial energy profile can be obtained for very high power, (VHP) CO2 lasers.

  14. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    PubMed

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  15. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    PubMed

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  16. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  17. Fractional CO2 Laser Resurfacing Complications

    PubMed Central

    Ramsdell, William M.

    2012-01-01

    Fractionated CO2 laser technology has allowed physicians to resurface patients with a lower rate of complications than nonfractionated ablative laser treatment. Unfortunately, adverse effects can still occur even with the best technology and physician care. Complication prevention, detection, and treatment are an important part of a physician's ability to provide the best result when treating a patient with fractionated CO2 resurfacing. PMID:23904822

  18. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  19. Room-Temperature Spin Polariton Diode Laser

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Iorsh, Ivan; Frost, Thomas; Kavokin, Alexey; Bhattacharya, Pallab

    2017-08-01

    A spin-polarized laser offers inherent control of the output circular polarization. We have investigated the output polarization characteristics of a bulk GaN-based microcavity polariton diode laser at room temperature with electrical injection of spin-polarized electrons via a FeCo /MgO spin injector. Polariton laser operation with a spin-polarized current is characterized by a threshold of ˜69 A / cm2 in the light-current characteristics, a significant reduction of the electroluminescence linewidth and blueshift of the emission peak. A degree of output circular polarization of ˜25 % is recorded under remanent magnetization. A second threshold, due to conventional photon lasing, is observed at an injection of ˜7.2 kA /cm2 . The variation of output circular and linear polarization with spin-polarized injection current has been analyzed with the carrier and exciton rate equations and the Gross-Pitaevskii equations for the condensate and there is good agreement between measured and calculated data.

  20. Evaluation of the effect of fractional CO2 laser on histopathological picture and TGF-β1 expression in hypertrophic scar.

    PubMed

    Makboul, Mohamed; Makboul, Rania; Abdelhafez, Assem Hk; Hassan, Safaa Said; Youssif, Sherif M

    2014-09-01

    Hypertrophic scar is a form of abnormal wound healing process in which tissue repair regulating mechanism is disrupted. Transforming growth factor β1 has a particular importance in the fibrotic scarring response. Treatment of hypertrophic scar included many chemical, physical, and surgical options. Fractional CO2 laser devices have gained acceptance as a way for managing hypertrophic scar. Aims of this study are: (a) to determine the clinical and histopathological effects of fractional CO2 laser on hypertrophic scar, (b) to evaluate the expression pattern of transforming growth factor-β1 (TGF-β1) as an important fibrogenic factor before and 6 months after fractional CO2 laser treatment. Forty patients of hypertrophic scar were selected, each patient was treated by four sessions with 1 month apart with fractional CO2 laser. Vancouver Scar Scale (VSS) was used to assess the patients before and after laser treatment. Skin biopsy was taken from eight cases before and 3 months after four fractional CO2 laser sessions and four normal skin control biopsies. All were assessed by hematoxylin-eosin (H&E), Masson's trichrome, Van Gieson and immunohistochemical (IHC) staining with TGF-β1. The epidermal thickness was assessed before and after treatment by image analyzing system software. There was statistically significant difference in VSS before and after fractional CO2 laser (P > 0.001). The epidermal thickness showed significant increase after laser treatment (P > 0.001), and there was also thinning in stratum corneum and replacement of the irregular collagen bands with organized new collagen fibrils as demonstrated by H&E and the other special stains. The study also showed significant decrease in TGF-β1 expression after laser therapy (P = 0.008). Fractional CO2 laser could be considered as a good way for hypertrophic scar management. It normalizes dermal collagen as imaged by histopathological picture and the change in TGF-β1 expression. © 2014 Wiley Periodicals, Inc.

Top