Sample records for co2 mitigation options

  1. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    NASA Astrophysics Data System (ADS)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  2. Natural climate solutions

    NASA Astrophysics Data System (ADS)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  3. Natural climate solutions.

    PubMed

    Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-31

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  4. Natural climate solutions

    PubMed Central

    Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-01-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344

  5. Structural change as a key component for agricultural non-CO2 mitigation efforts.

    PubMed

    Frank, Stefan; Beach, Robert; Havlík, Petr; Valin, Hugo; Herrero, Mario; Mosnier, Aline; Hasegawa, Tomoko; Creason, Jared; Ragnauth, Shaun; Obersteiner, Michael

    2018-03-13

    Agriculture is the single largest source of anthropogenic non-carbon dioxide (non-CO 2 ) emissions. Reaching the climate target of the Paris Agreement will require significant emission reductions across sectors by 2030 and continued efforts thereafter. Here we show that the economic potential of non-CO 2 emissions reductions from agriculture is up to four times as high as previously estimated. In fact, we find that agriculture could achieve already at a carbon price of 25 $/tCO 2 eq non-CO 2 reductions of around 1 GtCO 2 eq/year by 2030 mainly through the adoption of technical and structural mitigation options. At 100 $/tCO 2 eq agriculture could even provide non-CO 2 reductions of 2.6 GtCO 2 eq/year in 2050 including demand side efforts. Immediate action to favor the widespread adoption of technical options in developed countries together with productivity increases through structural changes in developing countries is needed to move agriculture on track with a 2 °C climate stabilization pathway.

  6. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  7. The radiative forcing potential of different climate geoengineering options

    NASA Astrophysics Data System (ADS)

    Lenton, T. M.; Vaughan, N. E.

    2009-01-01

    Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave) radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale. Our approach provides a common framework for the evaluation of climate geoengineering proposals, and our results should help inform the prioritisation of further research into them.

  8. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics

    PubMed Central

    Thornton, Philip K.; Herrero, Mario

    2010-01-01

    We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

  9. The engineering options for mitigating the climate impacts of aviation.

    PubMed

    Williams, Victoria

    2007-12-15

    Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.

  10. A TECHNOLOGY FOR REDUCTION OF CO2 EMISSIONS FROM THE TRANSPORTATION SECTOR

    EPA Science Inventory

    The paper gives results of a preliminary assessment of the Hydrocarb Process which indicates that substantially more fuel energy can be produced--and at lower cost--than other current options for mitigating carbon dioxide (CO2) from mobile sources. The incremental cost...

  11. Methane mitigation shows significant benefits towards achieving the 1.5 degree target.

    NASA Astrophysics Data System (ADS)

    Collins, W.; Webber, C.; Cox, P. M.; Huntingford, C.; Lowe, J. A.; Sitch, S.

    2017-12-01

    Most analyses of allowable carbon emissions to achieve the 1.5 degree target implicitly assume that the ratio of CO2 to non-CO2 greenhouse gases remains near constant, and that all radiative forcing factors have similar impacts on land and ocean carbon storage. Here we determine how plausible reductions in methane emissions will make the carbon targets more feasible. We account for the latest estimates of the methane radiative effect as well as the indirect effects of methane on ozone. We particularly address the differing effects of methane and CO2 mitigation on the land carbon storage including via reduced concentrations of surface ozone. The methodology uses an intermediate complexity climate model (IMOGEN) coupled to a land surface model (JULES) which represents the details of the terrestrial carbon cycle. The carbon emissions inputs to IMOGEN are varied to find allowable pathways consistent with the Paris 1.5 K or 2.0 K targets. The IMOGEN physical parameters are altered to represent the climate characteristics of 38 CMIP5 models (such as climate sensitivity) to provide bounds on the range of allowable CO2 emissions. We examine the effects of three different methane mitigation options that are broadly consistent with the ranges in the SSP scenarios: little mitigation, cost-optimal mitigation, and maximal mitigation. The land and ocean carbon storage increases with methane mitigation, allowing more flexibility in CO2 emission reduction. This is mostly since CO2 fertilisation is reduced less with high methane mitigation, with a small contribution from reduced plant damage with lower surface ozone levels.

  12. Estimating geological CO2 storage security to deliver on climate mitigation.

    PubMed

    Alcalde, Juan; Flude, Stephanie; Wilkinson, Mark; Johnson, Gareth; Edlmann, Katriona; Bond, Clare E; Scott, Vivian; Gilfillan, Stuart M V; Ogaya, Xènia; Haszeldine, R Stuart

    2018-06-12

    Carbon capture and storage (CCS) can help nations meet their Paris CO 2 reduction commitments cost-effectively. However, lack of confidence in geologic CO 2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO 2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO 2 retention, and of surface CO 2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO 2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO 2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO 2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO 2 in the subsurface remains a key uncertainty.

  13. Reducing emissions from agriculture to meet the 2 °C target.

    PubMed

    Wollenberg, Eva; Richards, Meryl; Smith, Pete; Havlík, Petr; Obersteiner, Michael; Tubiello, Francesco N; Herold, Martin; Gerber, Pierre; Carter, Sarah; Reisinger, Andrew; van Vuuren, Detlef P; Dickie, Amy; Neufeldt, Henry; Sander, Björn O; Wassmann, Reiner; Sommer, Rolf; Amonette, James E; Falcucci, Alessandra; Herrero, Mario; Opio, Carolyn; Roman-Cuesta, Rosa Maria; Stehfest, Elke; Westhoek, Henk; Ortiz-Monasterio, Ivan; Sapkota, Tek; Rufino, Mariana C; Thornton, Philip K; Verchot, Louis; West, Paul C; Soussana, Jean-François; Baedeker, Tobias; Sadler, Marc; Vermeulen, Sonja; Campbell, Bruce M

    2016-12-01

    More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO 2 e yr -1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  14. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs.

    PubMed

    Crabbe, M J C

    2009-12-01

    Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.

  15. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    NASA Astrophysics Data System (ADS)

    Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.

    2017-11-01

    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

  16. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.

    PubMed

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2008-05-15

    We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.

  17. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    NASA Astrophysics Data System (ADS)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  18. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-01-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  19. Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.

    PubMed

    Edwards, Morgan R; Klemun, Magdalena M; Kim, Hyung Chul; Wallington, Timothy J; Winkler, Sandra L; Tamor, Michael A; Trancik, Jessika E

    2017-08-24

    Evaluating technology options to mitigate the climate impacts of road transportation can be challenging, particularly when they involve a tradeoff between long-lived emissions (e.g., carbon dioxide) and short-lived emissions (e.g., methane or black carbon). Here we present trends in short- and long-lived emissions for light- and heavy-duty transport globally and in the U.S., EU, and China over the period 2000-2030, and we discuss past and future changes to vehicle technologies to reduce these emissions. We model the tradeoffs between short- and long-lived emission reductions across a range of technology options, life cycle emission intensities, and equivalency metrics. While short-lived vehicle emissions have decreased globally over the past two decades, significant reductions in CO 2 will be required by mid-century to meet climate change mitigation targets. This is true regardless of the time horizon used to compare long- and short-lived emissions. The short-lived emission intensities of some low-CO 2 technologies are higher than others, and thus their suitability for meeting climate targets depends sensitively on the evaluation time horizon. Other technologies offer low intensities of both short-lived emissions and CO 2 .

  20. The urgency of the development of CO2 capture from ambient air

    PubMed Central

    Lackner, Klaus S.; Brennan, Sarah; Matter, Jürg M.; Park, A.-H. Alissa; Wright, Allen; van der Zwaan, Bob

    2012-01-01

    CO2 capture and storage (CCS) has the potential to develop into an important tool to address climate change. Given society’s present reliance on fossil fuels, widespread adoption of CCS appears indispensable for meeting stringent climate targets. We argue that for conventional CCS to become a successful climate mitigation technology—which by necessity has to operate on a large scale—it may need to be complemented with air capture, removing CO2 directly from the atmosphere. Air capture of CO2 could act as insurance against CO2 leaking from storage and furthermore may provide an option for dealing with emissions from mobile dispersed sources such as automobiles and airplanes. PMID:22843674

  1. Sequestering CO2 in the Ocean: Options and Consequences

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood and weighed against those of alternative strategies, including business as usual.

  2. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    PubMed

    Smith, Pete; Haberl, Helmut; Popp, Alexander; Erb, Karl-Heinz; Lauk, Christian; Harper, Richard; Tubiello, Francesco N; de Siqueira Pinto, Alexandre; Jafari, Mostafa; Sohi, Saran; Masera, Omar; Böttcher, Hannes; Berndes, Göran; Bustamante, Mercedes; Ahammad, Helal; Clark, Harry; Dong, Hongmin; Elsiddig, Elnour A; Mbow, Cheikh; Ravindranath, Nijavalli H; Rice, Charles W; Robledo Abad, Carmenza; Romanovskaya, Anna; Sperling, Frank; Herrero, Mario; House, Joanna I; Rose, Steven

    2013-08-01

    Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever. © 2013 John Wiley & Sons Ltd.

  3. 75 FR 39273 - Energy Independence and Security Act (Pub. L. 110-140)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... DEPARTMENT OF THE INTERIOR U.S. Geological Survey Energy Independence and Security Act (Pub. L... Resource Assessment Methodology. SUMMARY: In 2007, the Energy Independence and Security Act (Pub. L. 110... provide important information to evaluate the potential for CO 2 storage as a mitigation option for global...

  4. Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2009-01-05

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less

  5. Economic and energetic analysis of capturing CO2 from ambient air

    PubMed Central

    House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.

    2011-01-01

    Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760

  6. Potential GHG mitigation options for agriculture in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions ismore » improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.« less

  7. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  8. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  9. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  10. 32 CFR 211.9 - Mitigation Options.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...

  11. 32 CFR 211.9 - Mitigation options.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Mitigation options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...

  12. 32 CFR 211.9 - Mitigation Options.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...

  13. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.

  14. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  15. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  16. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Steven T., E-mail: sanderson@usgs.gov

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less

  17. Cost implications of uncertainty in CO2 storage resource estimates: A review

    USGS Publications Warehouse

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.

  18. Municipal forest benefits and costs in five U.S. cities

    Treesearch

    E.G. McPherson; J.R. Simpson; P.J. Peper; S.E. Maco; Q. Xiao

    2005-01-01

    Increasingly, city trees are viewed as a best management practice to control stormwater, an urban-heat–island mitigation measure for cleaner air, a CO2-reduction option to offset emissions, and an alternative to costly new electric power plants. Measuring benefits that accrue from the community forest is the first step to altering forest...

  19. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less

  20. Preface

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    Carbon sequestration has emerged as an important option in policies to mitigate the increasing atmospheric concentrations of anthropogenic carbon dioxide (CO2). Significant quantities of anthropogenic CO2 are sequestered by natural carbon uptake in plants, soils, and the oceans. These uptake processes are objects of intense study by biogeochemists, ecologists, and other researchers who seek to understand the processes that determine the mass balance (“budget”) among global carbon fluxes. At the same time, many scientists and engineers are examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological formations.

  1. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  2. 75 FR 77229 - Federal Requirements Under the Underground Injection Control (UIC) Program for Carbon Dioxide (CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ...This action finalizes minimum Federal requirements under the Safe Drinking Water Act (SDWA) for underground injection of carbon dioxide (CO2) for the purpose of geologic sequestration (GS). GS is one of a portfolio of options that could be deployed to reduce CO2 emissions to the atmosphere and help to mitigate climate change. This final rule applies to owners or operators of wells that will be used to inject CO2 into the subsurface for the purpose of long-term storage. It establishes a new class of well, Class VI, and sets minimum technical criteria for the permitting, geologic site characterization, area of review (AoR) and corrective action, financial responsibility, well construction, operation, mechanical integrity testing (MIT), monitoring, well plugging, post-injection site care (PISC), and site closure of Class VI wells for the purposes of protecting underground sources of drinking water (USDWs). The elements of this rulemaking are based on the existing Underground Injection Control (UIC) regulatory framework, with modifications to address the unique nature of CO2 injection for GS. This rule will help ensure consistency in permitting underground injection of CO2 at GS operations across the United States and provide requirements to prevent endangerment of USDWs in anticipation of the eventual use of GS to reduce CO2 emissions to the atmosphere and to mitigate climate change.

  3. Co-control of urban air pollutants and greenhouse gases in Mexico City.

    PubMed

    West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián

    2004-07-01

    This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.

  4. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood

  5. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO 2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefitsmore » in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO 2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.« less

  6. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benemann, J.R.; Oswald, W.J.

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with threemore » commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.« less

  7. Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    in this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–11 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.

  8. Active transport and heat.

    PubMed

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  9. Strategies to mitigate nitrous oxide emissions from herbivore production systems.

    PubMed

    Schils, R L M; Eriksen, J; Ledgard, S F; Vellinga, Th V; Kuikman, P J; Luo, J; Petersen, S O; Velthof, G L

    2013-03-01

    Herbivores are a significant source of nitrous oxide (N(2)O) emissions. They account for a large share of manure-related N(2)O emissions, as well as soil-related N(2)O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures are necessary to avoid an increase in N(2)O emissions while meeting the growing global food demand. The production and emissions of N(2)O are closely linked to the efficiency of nitrogen (N) transfer between the major components of a livestock system, that is, animal, manure, soil and crop. Therefore, mitigation options in this paper have been structured along these N pathways. Mitigation technologies involving diet-based intervention include lowering the CP content or increasing the condensed tannin content of the diet. Animal-related mitigation options also include breeding for improved N conversion and high animal productivity. The main soil-based mitigation measures include efficient use of fertilizer and manure, including the use of nitrification inhibitors. In pasture-based systems with animal housing facilities, reducing grazing time is an effective option to reduce N(2)O losses. Crop-based options comprise breeding efforts for increased N-use efficiency and the use of pastures with N(2)-fixing clover. It is important to recognize that all N(2)O mitigation options affect the N and carbon cycles of livestock systems. Therefore, care should be taken that reductions in N(2)O emissions are not offset by unwanted increases in ammonia, methane or carbon dioxide emissions. Despite the abundant availability of mitigation options, implementation in practice is still lagging. Actual implementation will only follow after increased awareness among farmers and greenhouse gases targeted policies. So far, reductions in N(2)O emissions that have been achieved are mostly a positive side effect of other N-targeted policies.

  10. 77 FR 67040 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... Proposal Regarding Quote Mitigation November 2, 2012. Pursuant to Section 19(b)(1) under the Securities... (Quote Mitigation) and refine the current quote mitigation strategy for its options trading facility, BOX Market LLC (``BOX'') by replacing the current quote mitigation rule with a ``holdback timer'' mechanism...

  11. 38 CFR 36.4319 - Servicer loss-mitigation options and incentives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...

  12. 38 CFR 36.4319 - Servicer loss-mitigation options and incentives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...

  13. 38 CFR 36.4319 - Servicer loss-mitigation options and incentives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...

  14. 38 CFR 36.4319 - Servicer loss-mitigation options and incentives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...

  15. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  16. Trade-offs of Solar Geoengineering and Mitigation under Climate Targets

    NASA Astrophysics Data System (ADS)

    Mohammadi Khabbazan, M.; Stankoweit, M.; Roshan, E.; Schmidt, H.; Held, H.

    2016-12-01

    Scientific analyses have hitherto focused on the pros and cons of solar-radiation management (SRM) as a climate-policy option mainly in mere isolation. Here we put SRM into the context of mitigation by a strictly temperature-target-based approach. To the best of our knowledge, for the first time, we introduce a concept for a regional integrated analysis of SRM and mitigation in-line with the `2°C target'. We explicitly account for a risk-risk comparison of SRM and global warming, extending the applicability regime of temperature targets from mitigation-only to joint-SRM-mitigation analysis while minimizing economic costs required for complying with the 2°C target. Upgrading it to include SRM, we employ the integrated energy-economy-climate model MIND. We utilize the two-box climate model of DICE and calibrate the short and long time scales respectively into GeoMIP G3 experiment and quadrupled atmospheric CO2 concentrations experiment from CEMIP5 suite. Our results show that without risk-risk accounting SRM will displace mitigation. However, our analysis highlights that the value system enshrined in the 2°C target can almost preclude SRM; this is exemplified by one single regional climate variable, here precipitation, which is confined to regional bounds compatible with 2°C of global warming. Although about a half of policy costs can be saved, the results indicate that the additional amount of CO2 that could be released to the atmosphere corresponds to only 0.2°C of further global warming. Hence, the society might debate whether the risks of SRM should be taken for that rather small amount of additional carbon emissions. Nonetheless, our results point out a significantly larger role for SRM implementation if the guardrails of some regions are relaxed.

  17. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’smore » and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO 2 emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO 2 emission reduction targets for the iron and steel sector under different strategies such as simple CO 2 emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.« less

  19. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-04-01

    To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.

  20. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    PubMed

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  1. Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)

    NASA Astrophysics Data System (ADS)

    Heimann, M.

    2014-01-01

    Becker et al. (2013) argue that an afforestation of 0.73 × 109 ha with Jatropha curcas plants would generate an additional terrestrial carbon sink of 4.3 PgC yr-1, enough to stabilise the atmospheric mixing ratio of carbon dioxide (CO2) at current levels. However, this is not consistent with the dynamics of the global carbon cycle. Using a well-established global carbon cycle model, the effect of adding such a hypothetical sink leads to a reduction of atmospheric CO2 levels in the year 2030 by 25 ppm compared to a reference scenario. However, the stabilisation of the atmospheric CO2 concentration requires a much larger additional sink or corresponding reduction of anthropogenic emissions.

  2. Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)

    NASA Astrophysics Data System (ADS)

    Heimann, M.

    2013-08-01

    Becker et al. (2013) argue that an afforestation of 0.73 109 ha with Jatropha curcas plants would generate an additional terrestrial carbon sink of 4.3 PgC yr-1, enough to stabilise the atmospheric mixing ratio of carbon dioxide (CO2) at current levels. However, this is not consistent with the dynamics of the global carbon cycle. Using a well established global carbon cycle model, the effect of adding such a hypothetical sink leads to a reduction of atmospheric CO2 levels in the year 2030 by 25 ppm compared to a reference scenario. However, the stabilisation of the atmospheric CO2 concentration requires a much larger additional sink or corresponding reduction of anthropogenic emissions.

  3. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    PubMed

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO 2 eq kg -1 rice, 45.54 kg CO 2 eq kg -1 mutton meat and 2.4 kg CO 2 eq kg -1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO 2 eq kg -1 product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  4. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  5. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  6. Towards the Paris Agreement - negative emission and what Korea can contribute

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Lee, Woo Kyun; Son, Yowhan; Kindermann, Georg; Patrizio, Piera; Mesfun, Sennai; Yowargana, Ping; Mac Dowall, Niall; Yamagata, Yoshiki; Shvidenko, Anatoly; Schepaschenko, Dmitry; Aoki, Kentaro

    2017-04-01

    Energy from fossil fuel comprises more than 80% of the total energy consumption in Korea. While aiming at ambitious renewable energy targets, Korea is also investigating the option of carbon capture and storage (CCS) - especially applied to emissions from the conversion of coal to energy. Two CCS pilot plants linked to existing coal plants are in the pipeline - one in the Gangwon Province (north east Korea) and another one in Chungnam Province (in the west of Korea). The final target is the capturing of one million tons of CO2 per year. The best storage options for CO2 have been identified offshore Korea, with the Ulleung Basin, off the east coast of Korea, considered to feature the greatest potential. Kunsan Basin, off the west coast, is considered another optional site. The objective of this study is to analyze Koreas's negative emissions potential through BECCS (bioenergy combined with CCS) created under the assumption that the two CCS pilot plants were retrofit for cofiring biomass from sustainable domestic forest management and coal. Various scenarios include inter-alia additional green field plants for BECCS. In a first step, national and global biophysical forest models (e.g. G4M) are applied to estimate sustainable biomass availability. In a second step, the results from these forest models are used as input data to the engineering model BeWhere. This techno-engineering model optimizes scaling and location of greenfield heat and power plants (CHP) and related feedstock and CO2 transport logistics. The geographically explicit locations and capacities obtained for forest-based bioenergy plants are then overlaid with a geological suitability map for in-situ carbon storage which can be further combined with off-shore storage options. From this, a theoretical potential for BECCS in Korea is derived. Results indicate that, given the abundant forest cover in South Korea, there is substantial potential for bioenergy production, which could contribute not only to substituting emissions from fossil fuels but also to meeting the targets of the country's commitments under any climate change mitigation agreement. However, the BECCS potential varies with the assumptions underlying the different scenarios. Largest potentials can be identified in a combination of retrofitted coal plants with greenfield bioenergy plants favoring off-shore CO2 storage over on-shore in-situ storage. The technical assessment is used to support a policy discussion on the suitability of BECCS as a mitigation tool in Korea.

  7. On the global limits of bioenergy and land use for climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  8. On the global limits of bioenergy and land use for climate change mitigation

    DOE PAGES

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena; ...

    2017-05-24

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  9. A multi-period optimization model for energy planning with CO(2) emission consideration.

    PubMed

    Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M

    2010-05-01

    A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. How green can black be? Assessing the potential for equipping USA's existing coal fleet with carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Patrizio, Piera; Leduc, Sylvain; Mesfun, Sennai; Yowargana, Ping; Kraxner, Florian

    2017-04-01

    The mitigation of adverse environmental impacts due to climate change requires the reduction of carbon dioxide emissions - also from the U.S. energy sector, a dominant source of greenhouse-gas emissions. This is especially true for the existing fleet of coal-fired power plants, accounting for roughly two-thirds of the U.S. energy sectors' total CO2 emissions. With this aim, different carbon mitigation options have been proposed in literature, such as increasing the energy efficiency, co-firing of biomass and/or the adoption of carbon capturing technologies (BECCS). However, the extent to which these solutions can be adopted depends on a suite of site specific factors and therefore needs to be evaluated on a site-specific basis. We propose a spatially explicit approach to identify candidate coal plants for which carbon capture technologies are economically feasible, according to different economic and policy frameworks. The methodology implies the adoption of IIASA's techno economic model BeWhere, which optimizes the cost of the entire BECCS supply chain, from the biomass resources to the storage of the CO2 in the nearest geological sink. The results shows that biomass co-firing appears to be the most appealing economic solution for a larger part of the existing U.S. coal fleet, while the adoption of CCS technologies is highly dependent on the level of CO2 prices as well as on local factors such as the type of coal firing technology and proximity of storage sites.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Zwaan, Bob; Kober, Tom; Calderon, Silvia

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO 2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO 2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, theymore » play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO 2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of the challenges this CO 2 abatement technology experiences. The extent to which different mitigation options can be used in practice varies greatly between countries within Latin America, depending on factors such as resource potentials, economic performance, environmental impacts, and availability of technical expertise. We provide concise assessments of possible deployment opportunities for some low-carbon energy options, for the region at large and with occasional country-level detail in specific cases.« less

  12. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  13. Sociopolitical drivers in the development of deliberate carbon storage

    NASA Astrophysics Data System (ADS)

    Stephens, Jennie C.

    The idea of engineering the storage of carbon released from fossil fuel burning in reservoirs other than the atmosphere has developed in the past 20 years from an obscure idea to an increasingly recognized potential approach that could be an important contributor to stabilizing atmospheric carbon dioxide (CO2) concentrations. Despite the intense application of scientific and technological expertise to the development of options for deliberate carbon storage, nontechnical factors play an important role. This chapter identifies sociopolitical, nontechnical factors that have contributed to the development of ideas and technologies associated with deliberate carbon storage. Broadly, interest in deliberate storage has expanded in response to increasing societal attention to reducing CO2 emissions for climate change mitigation. Specific societal groups, or stakeholders, which have contributed to the recent focus on carbon storage include the fossil fuel industry that has been shifting to a strategy of confronting rather than denying the CO2-climate change connection, a scientific community motivated by an increased sense of urgency of the need to reduce atmospheric CO2 concentrations, the general public with little knowledge about or awareness of carbon storage, and environmental advocacy groups that have demonstrated some divergence in levels of support for deliberate carbon storage. Among the policy mechanisms that have provided incentives for deliberate carbon storage are national accounting of carbon sources and sinks and carbon taxes. Another driver with particular importance in the United States is the political preference of some politicians to support development of advanced technologies for climate change mitigation rather than supporting mandatory CO2 regulations.

  14. Unintended consequences of atmospheric injection of sulphate aerosols.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and formore » that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.« less

  15. CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China

    PubMed Central

    Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia

    2012-01-01

    Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305

  16. Chemical composition of core samples from Newark Basin, a potential carbon sequestration site

    NASA Astrophysics Data System (ADS)

    Seltzer, A. M.; Yang, Q.; Goldberg, D.

    2012-12-01

    Injection of carbon dioxide into deep saline aquifers has been identified as a promising mitigation option of greenhouse gases, the successful management of which is considered to be one of the most urgent and important challenges. Given the high energy production in the New York metropolitan area, the Newark Basin region is considered to be a potential future sequestration site. However, the risk of an upward leak of sequestered CO2, especially to a shallow drinking water aquifer, is a key concern facing geological sequestration as a safe and viable mitigation option. In this study, we measured the chemical composition of 25 cores from various depths throughout Newark Basin as a precursor for an ex situ incubation experiment using these rock samples and aquifer water to simulate a leak event. Inductively coupled plasma mass spectrometry analysis of microwave-assisted digested rock powders and X-ray fluorescence analysis of the rock powders were conducted to obtain the concentrations of major and trace elements. Most of the major and trace elements show wide concentration ranges at one to two orders of magnitude. Understanding the chemical composition of these Newark Basin core samples is important not only for characterizing materials used for the later lab incubation, but also for gaining a broader understanding of the chemistry of the Newark Basin and profiling the region according to the varying risks associated with a leak of sequestered CO2 to a drinking water aquifer.

  17. Co-designing Usable Knowledge with Stakeholders and Fostering Ownership - A Pathway through the communication problem?

    NASA Astrophysics Data System (ADS)

    Schmale, J.; von Schneidemesser, E.; Chabay, I.; Maas, A.; Lawrence, M. G.

    2013-12-01

    Climate change and air pollution both have impacts across a wide range of sectors. While it is fundamental to communicate scientific findings as basis for decision making to a variety of stakeholders, it is difficult to establish long-lasting, multi-way communication and mutual learning between all parties to ensure success. There are many reasons for this difficulty, one of them being the subtle nature of climate change impacts (excluding extreme events). The decadal timescales over which changes occur make it difficult to communicate the urgent need for action, as evidence is difficult to perceive directly in the present or over the short timescales on which people are normally most accustomed to thinking. Here, we analyze experiences from the ClimPol project, designed to identify research needs and pathways to policy implementation for an integrated and sustainable policy approach to mitigate air pollution and climate change simultaneously. These two challenges are inextricably linked with regard to their causes, effects and mitigation options. Due to their linkages, action in one sector will often affect the other sector. This can have positive effects, co-benefits, e.g. by replacing coal-fired power plants through wind power, because overall emissions will be reduced. But adverse effects are also possible, trade-offs, e.g. by increasingly using wood for domestic heating, which reduces the overall CO2 emissions, but increases the emissions of particulate matter and other air pollutants. The ClimPol project uses short-lived climate-forcing air pollutants (SLCPs) as an entry point to exploring joint mitigation approaches. Due to their short atmospheric lifetimes and various adverse qualities, SLCPs exert immediate, local and direct effects across sectors like public health and food security (air quality issues), while also driving climate change. SLCP and CO2 mitigation can be complementary for reducing climate change and improving air quality. Using this linkage to present-day problems in contrast to only focusing on the long-term time scales of CO2-driven climate change, the ClimPol project goes beyond the academic realm and collaborates with a variety of stakeholders across scales from local to international to investigate potential options for joint and sustainable policies. The underlying assumption is that each stakeholder community possesses their own knowledge system which contributes an important piece to the puzzle which is necessary to assemble for creating solutions. We call this approach co-designing usable knowledge. This new type of knowledge can serve as a basis for decision making. This inclusive approach encourages all parties to take ownership in the process and solutions, thereby causing them to be more likely to act on the problem, both at the systemic, policy-driven level, and at the individual level by cooperatively supporting the associated structural and lifestyle developments. For the presentation of the results, we will focus on experiences from joint projects with non-governmental organizations on city authorities.

  18. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  19. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    PubMed Central

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  20. Aquifer disposal of carbon dioxide for greenhouse effect mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N.; Naymik, T.G.; Bergman, P.

    1998-07-01

    Deep aquifer sequestration of carbon dioxide (CO{sup 2}), generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less

  1. Aquifer disposal of carbon dioxide for greenhouse effect mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N.; Naymik, T.G.; Bergman, P.

    1998-04-01

    Deep aquifer sequestration of carbon dioxide (CO{sub 2}) generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less

  2. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Dharmawan, I. W. E.

    2018-02-01

    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  3. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China

    NASA Astrophysics Data System (ADS)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Yang, Yuting; Ma, Jing; Xu, Hua

    2016-09-01

    Traditional land management (no tillage, no drainage, NTND) during the winter fallow season results in substantial CH4 and N2O emissions from double-rice fields in China. A field experiment was conducted to investigate the effects of drainage and tillage during the winter fallow season on CH4 and N2O emissions and to develop mitigation options. The experiment had four treatments: NTND, NTD (drainage but no tillage), TND (tillage but no drainage), and TD (both drainage and tillage). The study was conducted from 2010 to 2014 in a Chinese double-rice field. During winter, total precipitation and mean daily temperature significantly affected CH4 emission. Compared to NTND, drainage and tillage decreased annual CH4 emissions in early- and late-rice seasons by 54 and 33 kg CH4 ha-1 yr-1, respectively. Drainage and tillage increased N2O emissions in the winter fallow season but reduced it in early- and late-rice seasons, resulting in no annual change in N2O emission. Global warming potentials of CH4 and N2O emissions were decreased by 1.49 and 0.92 t CO2 eq. ha-1 yr-1, respectively, and were reduced more by combining drainage with tillage, providing a mitigation potential of 1.96 t CO2 eq. ha-1 yr-1. A low total C content and high C / N ratio in rice residues showed that tillage in the winter fallow season reduced CH4 and N2O emissions in both early- and late-rice seasons. Drainage and tillage significantly decreased the abundance of methanogens in paddy soil, and this may explain the decrease of CH4 emissions. Greenhouse gas intensity was significantly decreased by drainage and tillage separately, and the reduction was greater by combining drainage with tillage, resulting in a reduction of 0.17 t CO2 eq. t-1. The results indicate that drainage combined with tillage during the winter fallow season is an effective strategy for mitigating greenhouse gas releases from double-rice fields.

  4. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  5. 76 FR 7614 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... of orderly markets by helping to mitigate the potential risks associated with legging stock option... orderly markets by helping to mitigate the potential risks associated with legging stock option orders, e... markets by helping to mitigate potential risks associated with the legging of stock-option orders...

  6. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation.

    PubMed

    Tripathy, P P

    2015-03-01

    Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.

  7. Greenhouse Gas Mitigation Options Database(GMOD)and Tool

    EPA Science Inventory

    Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...

  8. The role of non-CO2 mitigation within the dairy sector in pursuing climate goals

    NASA Astrophysics Data System (ADS)

    Rolph, K.; Forest, C. E.

    2017-12-01

    Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.

  9. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration

    PubMed Central

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911

  10. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    PubMed Central

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  11. Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.

    Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less

  12. Metal fractionation in marine sediments acidified by enrichment of CO2: A risk assessment.

    PubMed

    de Orte, Manoela Romanó; Bonnail, Estefanía; Sarmiento, Aguasanta M; Bautista-Chamizo, Esther; Basallote, M Dolores; Riba, Inmaculada; DelValls, Ángel; Nieto, José Miguel

    2018-06-01

    Carbon-capture and storage is considered to be a potential mitigation option for climate change. However, accidental leaks of CO 2 can occur, resulting in changes in ocean chemistry such as acidification and metal mobilization. Laboratory experiments were performed to provide data on the effects of CO 2 -related acidification on the chemical fractionation of metal(loid)s in marine-contaminated sediments using sequential extraction procedures. The results showed that sediments from Huelva estuary registered concentrations of arsenic, copper, lead, and zinc that surpass the probable biological effect level established by international protocols. Zinc had the greatest proportion in the most mobile fraction of the sediment. Metals in this fraction represent an environmental risk because they are weakly bound to sediment, and therefore more likely to migrate to the water column. Indeed, the concentration of this metal was lower in the most acidified scenarios when compared to control pH, indicating probable zinc mobilization from the sediment to the seawater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. CARNOL PROCESS FOR CO2 MITIGATION FROM POWER PLANTS AND THE TRANSFORMATION SECTOR

    EPA Science Inventory

    The report describes an alternative mitigation process that would convert waste carbon dioxide (CO2) to carbon an methanol using natural gas as process feedstock. The process yields 1 mole of methanol from each mole of CO2 recovered, resulting in a net zero CO2 emission when the ...

  14. Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok

    2015-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  15. Visualization of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, B.; Wang, S.; Lee, M.; Um, J. G.

    2014-12-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  16. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok.

    PubMed

    Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus

    2013-10-01

    Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.

  17. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more resilient and productive ecosystems, and more carbon-neutral bioenergy. Better scientific understanding of the sink provides more options for policy design, enables mitigation strategies that capture co-benefits, and increases the chances that global mitigation commitments will be met.

  18. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].

    PubMed

    Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang

    2013-10-01

    Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.

  19. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrological and thermal effects of hydropeaking on early life stages of salmonids: A modelling approach for implementing mitigation strategies.

    PubMed

    Casas-Mulet, Roser; Saltveit, Svein Jakob; Alfredsen, Knut Tore

    2016-12-15

    Alterations in hydrological and thermal regimes can potentially affect salmonid early life stages development and survival. The dewatering of salmon spawning redds due to hydropeaking can lead to mortality in early life stages, with higher impact on the alevins as they have lower tolerance to dewatering than the eggs. Flow-related mitigation measures can reduce early life stage mortality. We present a set of modelling tools to assess impacts and mitigation options to minimise the risk of mortality in early life stages in hydropeaking rivers. We successfully modelled long-term hydrological and thermal alterations and consequences for development rates. We estimated the risk of early life stages mortality and assessed the cost-effectiveness of implementing three release-related mitigation options (A,B,C). The economic cost of mitigation was low and ranged between 0.7% and 2.6% of the annual hydropower production. Options reducing the flow during spawning (B and C) in addition to only release minimum flows during development (A) were considered more effective for egg and alevin survival. Options B and C were however constraint by water availability in the system for certain years, and therefore only option A was always feasible. The set of modelling tools used in this study were satisfactory and their applications can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling tools can be tested on their effectiveness to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Climate mitigation and the future of tropical landscapes.

    PubMed

    Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C

    2010-11-16

    Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.

  2. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.

  3. Disentangling the effects of CO2 and short-lived climate forcer mitigation

    PubMed Central

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T.; Hare, William; Klimont, Zbigniew; Amann, Markus; Schellnhuber, Hans Joachim

    2014-01-01

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2–SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2–SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2–SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182

  4. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    NASA Astrophysics Data System (ADS)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of CO2 storage-specific regulations in the main countries undertaking CCS evaluation and research. It aims to identify the constraints imposed by existing regulations on the protection of groundwater resources and highlight the inconsistencies and gaps between CCS regulations and Water Protection regulations. The present paper focuses specifically on potential risks on groundwater quality caused by CO2 storage in DSF assessed via natural CO2 analogues from both the literature and detailed European case studies.

  5. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

    PubMed Central

    Vilarrasa, Victor; Carrera, Jesus

    2015-01-01

    Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501

  6. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.

  7. Negative CO2 emissions via enhanced silicate weathering in coastal environments

    PubMed Central

    Montserrat, Francesc

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634

  8. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    PubMed

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    NASA Astrophysics Data System (ADS)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.

  10. Accidental spills at sea--risk, impact, mitigation and the need for co-ordinated post-incident monitoring.

    PubMed

    Kirby, Mark F; Law, Robin J

    2010-06-01

    A fully integrated and effective response to an oil or chemical spill at sea must include a well planned and executed post-incident assessment of environmental contamination and damage. While salvage, rescue and clean-up operations are generally well considered, including reviews and exercises, the expertise, resources, networks and logistical planning required to achieve prompt and effective post-spill impact assessment and monitoring are not generally well established. The arrangement and co-ordination of post-incident monitoring and impact assessment need to consider sampling design, biological effects, chemical analysis and collection/interpretation of expert local knowledge. This paper discusses the risks, impacts and mitigation options associated with accidental spills and considers the importance of pre-considered impact assessment and monitoring programmes in the wider response cycle. The PREMIAM (Pollution Response in Emergencies: Marine Impact Assessment and Monitoring; www.premiam.org) project is considered as an example of an improved approach to the planning, co-ordination and conduct of post-incident monitoring.

  11. Two-Basket Approach and Emission Metrics

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Schmale, J.; von Schneidemesser, E.

    2013-12-01

    Cutting the emissions of Short-Lived Climate-Forcing Air Pollutants (SLCPs) gains increasing global attention as a mitigation policy option because of direct benefits for climate and co-benefits such as improvements in air quality. Including SLCPs as target components to abate within a single basket (e.g. the Kyoto Protocol) would, however, face issues with regard to: i) additional assumptions that are required to compare SLCP emissions and CO2 emissions within a basket in terms of climatic effects, especially because of the difference in lifetimes, ii) the accountability of non-climatic effects in the emission trading between SLCPs and CO2. The idea of a two-basket approach was originally proposed as a climatic analogue to the Montreal Protocol dealing with ozone depleting substances (Jackson 2009; Daniel et al. 2012; Smith et al. 2013). In a two-basket approach, emissions are allowed to be traded within a basket but not across the baskets. While this approach potentially ensures scientifically supported emission trading (e.g. (Smith et al. 2013)), this approach leaves open the important issue of how to determine the relative weight between two baskets. Determining the weight cannot be answered by science alone, as the question involves a value judgment as stressed in metric studies (e.g. (Tanaka et al. 2010; Tanaka et al. 2013)). We discuss emission metrics in the context of a two-basket approach and present policy implications of such an approach. In a two-basket approach, the weight between two baskets needs to be determined a priori or exogenously. Here, an opportunity arises to present synergetic policy options targeted at mitigating climate change and air pollution simultaneously. In other words, this could be a strategy to encourage policymakers to consider cross-cutting issues. Under a two-basket climate policy, policymakers would be exposed to questions such as: - What type of damages caused by climate change does one choose to avoid? - To what extent does one wish to prioritize climate change issues over air pollution issues? - What is the time perspective one is most concerned with in a given policy? Because climate change and air pollution are closely linked via emission sources, their impacts and mitigation options, it would be beneficial for the two sets of policies to be dealt with together to make the best of synergies and to avoid trade-offs between them. References Daniel J, Solomon S, Sanford T, McFarland M, Fuglestvedt J, Friedlingstein P (2012) Limitations of single-basket trading: Lessons from the montreal protocol for climate policy. Clim Change 111:241-248 Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science 326:526-527 Smith S, Karas J, Edmonds J, Eom J, Mizrahi A (2013) Sensitivity of multi-gas climate policy to emission metrics. Clim Change 117:663-675 Tanaka K, Johansson DJA, O'Neill BC, Fuglestvedt JS (2013) Emission metrics under the 2°c climate stabilization target. Climatic Change Letters 117:933-941 Tanaka K, Peters GP, Fuglestvedt JS (2010) Policy update: Multicomponent climate policy: Why do emission metrics matter? Carbon Management 1:191-197

  12. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. © The Author(s) 2016.

  13. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.

    The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100more » years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less

  14. The effectiveness of measures to reduce the man-made greenhouse effect. The application of a Climate-policy Model

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Bach, W.

    1994-06-01

    In this paper we briefly describe the characteristics and the performance of our 1-D Muenster Climate Model. The model system consists of coupled models including gas cycle models, an energy balance model and a sea level rise model. The chemical feedback mechanisms among greenhouse gases are not included. This model, which is a scientifically-based parameterized simulation model, is used here primarily to help assess the effectiveness of various plausible policy options in mitigating the additional man-made greenhouse warming and the resulting sea level rise. For setting priorities it is important to assess the effectiveness of the various measures by which the greenhouse effect can be reduced. To this end we take a Scenario Business-as-Usual as a reference case (Leggett et al., 1992) and study the mitigating effects of the following four packages of measures: The Copenhagen Agreements on CFC, HCFC, and halon reduction (GECR, 1992), the Tropical Forest Preservation Plan of the Climate Enquete-Commission of the German Parliament on CO2 reduction (ECGP, 1990), a detailed reduction scheme for energy-related CO2 (ECGP, 1990), and a preliminary scheme for CH4, CO, and N2O reduction (Bach and Jain, 1992 1993). The required reduction depends, among others, on the desired climate and ecosystem protection. This is defined by the Enquete-Commission and others as a mean global rate of surface temperature change of ca. 0.1 °C per decade — assumed to be critical to many ecosystems — and a mean global warming ceiling of ca. 2 °C in 2100 relative to 1860. Our results show that the Copenhagen Agreements, the Tropical Forest Preservation Plan, the energy-related CO2 reduction scheme, and the CH4 and N2O reduction schemes could mitigate the anthropogenic greenhouse warming by ca. 12%, 6%, 35%, and 9% respectively. Taken together, all four packages of measures could reduce the man-made greenhouse effect by more than 60% until 2100; i.e. over the climate sensitivity range 2.5 °C (1.5 to 4.5) for 2 × CO2, the warming could be reduced from 3.5 °C (2.4 to 5.0) without specific measures to 1.3 °C (0.9 to 2.0) with the above packages of measures; and likewise, the mean global sea level rise could be reduced from 65 cm (46 to 88) without specific measures to 32 cm (22 to 47) with the above measures. Finally, the model results also emphasize the importance of trace gases other than CO2 in mitigating additional man-made greenhouse warming. According to our preliminary estimates, CH4 could in the short term make a sizable contribution to the reduction of the greenhouse effect (because of its relatively short lifetime of 10 yr), as could N2O in the medium and long term (with a relatively long lifetime of 150 yr).

  15. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    PubMed

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  17. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    PubMed

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  18. Electricity from Fossil Fuels without CO2 Emissions: Assessing the Costs of Carbon Dioxide Capture and Sequestration in U.S. Electricity Markets.

    PubMed

    Johnson, Timothy L; Keith, David W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  19. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  20. The role of CO2 capture and utilization in mitigating climate change

    NASA Astrophysics Data System (ADS)

    Mac Dowell, Niall; Fennell, Paul S.; Shah, Nilay; Maitland, Geoffrey C.

    2017-04-01

    To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4-8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.

  1. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sourcesmore » together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  2. Emission Inventory of Halogenated greenhouse gases in China during 1980-2050

    NASA Astrophysics Data System (ADS)

    Fang, X.; Velders, G. J. M.; Ravishankara, A. R.; Molina, M.; Su, S.; Zhang, J.; Zhou, X.; Hu, J.; Prinn, R. G.

    2015-12-01

    China is currently the largest producer and consumer of ozone-depleting substances (ODSs) which are regulated by the Montreal Protocol (MP). Many ODSs are also powerful greenhouse gases (GHGs). The Multilateral Fund has subsidized ~1 billion US dollars for the ODS phase out in China, and thus the return on this investment is of great interest. This study gives a comprehensive emission inventory in China from 1980 to 2013 of halocarbons including ODSs and their alternatives, the hydrofluorocarbons (HFCs) that are also greenhouse gases. We then project these emissions up to 2050 according to the MP and several policy options. Total emissions of ODS and HFCs were estimated to be ~500 CO2-eq Tg/yr in 2013 which are equivalent to ~5% of total GHG emissions in China including fossil fuel CO2 emissions. Our estimate shows that China has succeeded in substantially reducing CFC-11-equivalent emissions (to protect the ozone layer), and CO2-equivalent emissions (to protect climate) of ODSs since the mid-1990s when their phase out started in China in compliance with the MP. Furthermore, the avoided CO2-eq emissions due to compliance with the MP are even greater compared to the reduced emissions, for example net cumulative avoided emissions during 19 year period between 1995-2013 are comparable to the current one year CO2 emissions from fossil fuels in China. We find that HFC CO2-eq emissions increased rapidly in last decade, which make up ~2% in 2005 to ~20% of total halocarbon CO2-eq emissions in 2013. Under a baseline scenario in which HFCs are used as alternatives in the ongoing phase out of HCFCs in China, emissions of HFCs are predicted to be important components of both China's and global future GHG emissions. However, potential exists for minimizing China's HFC emissions under mitigation scenarios. Our conclusions about China's past and future ODS and HFC emission trajectories are likely to apply to other developing countries, with important implications for mitigating global GHG emissions.

  3. Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.

    Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15%more » and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« less

  4. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools

    PubMed Central

    Sá, Juliana P.; Branco, Pedro T. B. S.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2017-01-01

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO2, CO, NO2, O3, CH2O, total volatile organic compounds (VOC), PM1, PM2.5, PM10, Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM2.5, PM10, CO2 and CH2O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO2. However, mitigation measures were not always sufficient to decrease the pollutants’ concentrations till values considered safe to protect human health. PMID:28561795

  5. Public willingness to pay for CO2 mitigation and the determinants under climate change: a case study of Suzhou, China.

    PubMed

    Yang, Jie; Zou, Liping; Lin, Tiansheng; Wu, Ying; Wang, Haikun

    2014-12-15

    This study explored the factors that influence respondents' willingness to pay (WTP) for CO2 mitigation under climate change. A questionnaire survey combined with contingent valuation and psychometric paradigm methods were conducted in the city of Suzhou, Jiangsu Province in China. Respondents' traditional demographic attributes, risk perception of greenhouse gas (GHG), and attitude toward the government's risk management practices were established using a Tobit model to analyze the determinants. The results showed that about 55% of the respondents refused to pay for CO2 mitigation, respondent's WTP increased with increasing CO2 mitigation percentage. Important factors influencing WTP include people's feeling of dread of GHGs, confidence in policy, the timeliness of governmental information disclosure, age, education and income level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A strategy for low cost development of incremental oil in legacy reservoirs

    USGS Publications Warehouse

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  7. Carbon footprint related to cattle production in Brazil, management practices and new alternatives.

    NASA Astrophysics Data System (ADS)

    de Figueiredo, Eduardo; de oliveira, Ricardo; Berchielli, Telma; Reis, Ricardo; La Scala, Newton

    2013-04-01

    Brazil has the World largest commercial beef cattle herd, over 209.5 million heads in 2010 and is the leading exports of cattle meat. It has been argued that this activity has an important impact on GHG emissions, but a variety of options exists for greenhouse gases (GHG) mitigation in agriculture. Among those, the most prominent options are associated to the improvement of crops and grazing land management. Our study is focused on the GHG balance related to the improvement of brachiaria spp. pasture, leading to increases in the animal stocking rate and meat production per area and time. This study is based on the IPCC (2006) methodology and others Brazil specific data and results presented by scientific literature to estimate GHG balance (emissions sources and sinks) for three scenarios proposed for brachiaria pasture: 1) degraded pasture, 2) managed pasture and 3) crop-livestock-forest integration system (CLFIS). The approach takes into account the amounts of supplies per hectare used for each of the simulated scenario projected over a 20 years period. The GHG estimates are presented in kg CO2eq per kg of liveweight, considering the following emission sources and sinks within farm-gate: i) CH4 from enteric fermentation, ii) CH4 from manure deposited on pasture, iii) N2O emissions from urine and dung deposited by cattle on pasture, iv) N2O emissions from N synthetic fertilizer, v) N2O emissions from crop residues as of N-fixing crops and pasture renewal returned to soils, vi) CO2 from potassium use, vii) CO2 from phosphorus use, viii) CO2 from insecticides use, ix) CO2 from herbicides use, x) CO2 emissions due to lime application, xi) emissions due to diesel combustion, xii) eucalyptus biomass sequestration and xiii) soil carbon sequestration. We considered initial body weight of 200 kg for each heifer and a final slaughter weight of 450 kg head-1 for all scenarios; for degraded pasture a stocking rate of 0,5 head ha-1 year-1 and liveweight gain of 83 kg head-1year-1 or a gain of 41.5 kg of liveweight ha-1 year-1 and three years to reach slaughter weight. In contrast, for managed pasture and for CLFIS scenarios, two years to reach slaughter time and liveweight gain of 125 kg head-1 year-1 with 4 heads ha-1 year-1, resulting in a gain of 500 kg of liveweight ha-1 year-1. Our results indicate a GHG emission of 17.7 kg CO2eq kg-1 of liveweight to the scenario degraded pasture (1), 11.4 kg CO2eq kg-1 to the scenario managed pasture (2) and a positive balance of 4.9 kg CO2eq kg-1 in the scenario CLFIS (3), which is mainly related to the eucalyptus biomass and soil C sequestrations. Our simulation indicates a great potential not only to reduce GHG emissions associated to cattle production on managed pasture in Brazil, but also a C sequestration in CLFIS, which would be an additional strategy to mitigate the climate change.

  8. Global forestry emission projections and abatement costs

    NASA Astrophysics Data System (ADS)

    Böttcher, H.; Gusti, M.; Mosnier, A.; Havlik, P.; Obersteiner, M.

    2012-04-01

    In this paper we present forestry emission projections and associated Marginal Abatement Cost Curves (MACCs) for individual countries, based on economic, social and policy drivers. The activities cover deforestation, afforestation, and forestry management. The global model tools G4M and GLOBIOM, developed at IIASA, are applied. GLOBIOM uses global scenarios of population, diet, GDP and energy demand to inform G4M about future land and commodity prices and demand for bioenergy and timber. G4M projects emissions from afforestation, deforestation and management of existing forests. Mitigation measures are simulated by introducing a carbon tax. Mitigation activities like reducing deforestation or enhancing afforestation are not independent of each other. In contrast to existing forestry mitigation cost curves the presented MACCs are not developed for individual activities but total forest land management which makes the estimated potentials more realistic. In the assumed baseline gross deforestation drops globally from about 12 Mha in 2005 to below 10 Mha after 2015 and reach 0.5 Mha in 2050. Afforestation rates remain fairly constant at about 7 Mha annually. Although we observe a net area increase of global forest area after 2015 net emissions from deforestation and afforestation are positive until 2045 as the newly afforested areas accumulate carbon rather slowly. About 200 Mt CO2 per year in 2030 in Annex1 countries could be mitigated at a carbon price of 50 USD. The potential for forest management improvement is very similar. Above 200 USD the potential is clearly constrained for both options. In Non-Annex1 countries avoided deforestation can achieve about 1200 Mt CO2 per year at a price of 50 USD. The potential is less constrained compared to the potential in Annex1 countries, achieving a potential of 1800 Mt CO2 annually in 2030 at a price of 1000 USD. The potential from additional afforestation is rather limited due to high baseline afforestation rates assumed. In addition we present results of several sensitivity analyses that were run to understand better model uncertainties and the mechanisms of drivers such as agricultural productivity, GDP, wood demand and national corruption rates.

  9. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions. Copyright (c) IWA Publishing 2008.

  10. On 50th anniversary of the global carbon dioxide record.

    PubMed

    Alexandrov, Georgii A; Heimann, Martin; Jones, Chris D; Tans, Pieter

    2007-12-18

    The 50-year global CO2 record led the way in establishing a scientific fact: modern civilization is changing important properties of the global atmosphere, oceans and biosphere. The evidence on which this scientific fact is based will be refined further, but the next challenge for scientists is broader. In addition to its traditional role in providing discovery, diagnosis, and prediction of the changes that are taking place on our planet, science has now also a role in helping society mitigate emissions by objectively quantifying them, and in helping adaptation by providing environmental forecasts on regional scales. Science is also expected to provide new options for society to tackle the transition to a new energy system, and to provide thorough environmental evaluation of all such options. This is what the meeting recognized as planetary responsibilities for scientists in the next 50 years.

  11. Wetlands Mitigation Banking Concepts

    DTIC Science & Technology

    1992-07-01

    Naval Amphibious Bas Eslgrss Mit. Bank CA, San Diego Co. dredging & facilities Dept of the Navy SeaWorld Eelgras Mitigation Dank CA, San Diego Co...shore development, private projects SeaWorld 8 Table 2. WETLAND MITIGATION BANKS UNDER PLANNING, Institute for Water Resources Preliminary Survey Data

  12. Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget

    NASA Astrophysics Data System (ADS)

    Tian, H.

    2017-12-01

    The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.

  13. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T. S.; Janssens, Ivan A.; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including “all” papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity. PMID:27200030

  14. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process. © 2014 John Wiley & Sons Ltd.

  15. Origins and implications of the relationship between warming and cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Davis, S. J.; Peters, G. P.; Andrew, R. M.; Canadell, J.; Le Quere, C.

    2014-12-01

    A near-linear relationship between warming (T) and cumulative carbon emissions (Q) is a robust finding from numerous studies. This finding opens biophysical questions concerning (1) its theoretical basis, (2) the treatment of non-CO2 forcings, and (3) uncertainty specifications. Beyond these biophysical issues, a profound global policy question is raised: (4) how can a quota on cumulative emissions be shared? Here, an integrated survey of all four issues is attempted. (1) Proportionality between T and Q is an emergent property of a linear carbon-climate system forced by exponentially increasing CO2 emissions. This idealisation broadly explains past but not future near-proportionality between T and Q: in future, the roles of non-CO2 forcings and carbon-climate nonlinearities become important, and trajectory dependence becomes stronger. (2) The warming effects of short-lived non-CO2 forcers depend on instantaneous rather than cumulative fluxes. However, inertia in emissions trajectories reinstates some of the benefits of a cumulative emissions approach, with residual trajectory dependence comparable to that for CO2. (3) Uncertainties arise from several sources: climate projections, carbon-climate feedbacks, and residual trajectory dependencies in CO2 and other emissions. All of these can in principle be combined into a probability distribution P(T|Q) for the warming T from given cumulative CO2 emissions Q. Present knowledge of P(T|Q) allows quantification of the tradeoff between mitigation ambition and climate risk. (4) Cumulative emissions consistent with a given warming target and climate risk are a finite common resource that will inevitably be shared, creating a tragedy-of-the-commons dilemma. Sharing options range from "inertia" (present distribution of emissions is maintained) to "equity" (cumulative emissions are distributed equally per-capita). Both extreme options lead to emissions distributions that are unrealisable in practice, but a blend of the two extremes may be realisable. This perspective provides a means for nations to compare the global consequences of their own proposed emissions quotas if others were to act in a consistent way, a critical step towards achieving consensus.

  16. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less

  17. 40 CFR 75.19 - Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional SO 2, NO X, and CO 2... Provisions § 75.19 Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units. (a...) Determination of SO 2, NO X, and CO 2 emission rates. (i) If the unit combusts only natural gas and/or fuel oil...

  18. 40 CFR 75.19 - Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional SO 2, NO X, and CO 2... Provisions § 75.19 Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units. (a...) Determination of SO 2, NO X, and CO 2 emission rates. (i) If the unit combusts only natural gas and/or fuel oil...

  19. Co-location of air capture, sub-ocean CO2 storage and energy production on the Kerguelen plateau

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Han, P.; Lackner, K.; Wang, T.

    2011-12-01

    How can carbon capture and storage activities be sustained from an energy perspective while keeping the entire activity out of sight and away from material risk and social refrain near populated areas? In light of reducing the atmospheric CO2 level to mitigate its effect on climate change, the combination of new air-capture technologies and large offshore storage reservoirs, supplemented by carbon neutral renewable energy, could address both of these engineering and public policy concerns. Because CO2 mixes rapidly in the atmosphere, air capture scrubbers could be located anywhere in the world. Although the power requirements for this technology may reduce net efficiencies, the local availability of carbon-neutral renewable energy for this purpose would eliminate some net energy loss. Certain locations where wind speeds are high and steady, such as those observed at high latitude and across the open ocean, appeal as carbon-neutral energy sources in close proximity to immense and secure reservoirs for geological sequestration of captured CO2. In particular, sub-ocean basalt flows are vast and carry minimal risks of leakage and damages compared to on-land sites. Such implementation of a localized renewable energy source coupled with carbon capture and storage infrastructure could result in a global impact of lowered CO2 levels. We consider an extreme location on the Kerguelen plateau in the southern Indian Ocean, where high wind speeds and basalt storage reservoirs are both plentiful. Though endowed with these advantages, this mid-ocean location incurs clear material and economic challenges due to its remoteness and technological challenges for CO2 capture due to constant high humidity. We study the wind energy-air capture power balance and consider related factors in the feasibility of this location for carbon capture and storage. Other remote oceanic sites where steady winds blow and near large geological reservoirs may be viable as well, although all would require extensive research. Using these mitigation technologies in combination may offer a pivotal option for reducing atmospheric carbon to pre-industrial levels with minimal human risk or inconvenience.

  20. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the likelihood of satisfying growing global energy demand while helping to stabilize or reduce atmospheric CO2 and its impacts. Policies supporting the search and evaluation of renewable energy and negative emissions options beyond biotic- and land-based methods are needed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organicmore » matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.« less

  2. Effects of sub-seabed CO2 leakage: Short- and medium-term responses of benthic macrofaunal assemblages.

    PubMed

    Amaro, T; Bertocci, I; Queiros, A M; Rastelli, E; Borgersen, G; Brkljacic, M; Nunes, J; Sorensen, K; Danovaro, R; Widdicombe, S

    2018-03-01

    The continued rise in atmospheric carbon dioxide (CO 2 ) levels is driving climate change and temperature shifts at a global scale. CO 2 Capture and Storage (CCS) technologies have been suggested as a feasible option for reducing CO 2 emissions and mitigating their effects. However, before CCS can be employed at an industrial scale, any environmental risks associated with this activity should be identified and quantified. Significant leakage of CO 2 from CCS reservoirs and pipelines is considered to be unlikely, however direct and/or indirect effects of CO 2 leakage on marine life and ecosystem functioning must be assessed, with particular consideration given to spatial (e.g. distance from the source) and temporal (e.g. duration) scales at which leakage impacts could occur. In the current mesocosm experiment we tested the potential effects of CO 2 leakage on macrobenthic assemblages by exposing infaunal sediment communities to different levels of CO 2 concentration (400, 1000, 2000, 10,000 and 20,000 ppm CO 2 ), simulating a gradient of distance from a hypothetic leakage, over short-term (a few weeks) and medium-term (several months). A significant impact on community structure, abundance and species richness of macrofauna was observed in the short-term exposure. Individual taxa showed idiosyncratic responses to acidification. We conclude that the main impact of CO 2 leakage on macrofaunal assemblages occurs almost exclusively at the higher CO 2 concentration and over short time periods, tending to fade and disappear at increasing distance and exposure time. Although under the cautious perspective required by the possible context-dependency of the present findings, this study contributes to the cost-benefit analysis (environmental risk versus the achievement of the intended objectives) of CCS strategies. Copyright © 2018. Published by Elsevier Ltd.

  3. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases.

    PubMed

    Frentzas, Sophia; Simoneau, Eve; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Nathan, Mark; Wotherspoon, Andrew; Gao, Zu-Hua; Shi, Yu; Van den Eynden, Gert; Daley, Frances; Peckitt, Clare; Tan, Xianming; Salman, Ayat; Lazaris, Anthoula; Gazinska, Patrycja; Berg, Tracy J; Eltahir, Zak; Ritsma, Laila; Van Rheenen, Jacco; Khashper, Alla; Brown, Gina; Nystrom, Hanna; Sund, Malin; Van Laere, Steven; Loyer, Evelyne; Dirix, Luc; Cunningham, David; Metrakos, Peter; Reynolds, Andrew R

    2016-11-01

    The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy.

  4. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  5. Optimization of carbon mitigation paths in the power sector of Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping

    2017-08-01

    This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.

  6. Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions

    PubMed Central

    2018-01-01

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606

  7. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.

    PubMed

    Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M

    2018-05-15

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.

  8. 75 FR 14658 - Invitation for Public Comment on Mitigation Options for Global Positioning System Satellite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... use with the SVN 49 satellite and will not be implemented for any other GPS satellite. Responses from.... Air Force GPS Wing to discuss the mitigation options. These will be held on March 26, 2010 and April... without the other mitigations. All mitigations are intended for use with SVN 49 only and no changes will...

  9. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Zhang, Shaojun; Wu, Ye; Li, Zhenhua; Zhou, Yu; Fu, Lixin; Hao, Jiming

    2015-11-01

    A total of 13 diesel buses and 12 diesel trucks in Macao were tested using portable emission measurement systems (PEMS) including a SEMTECH-DS for gaseous emissions and a SEMTECH-PPMD for PM2.5. The average emission rates of gaseous pollutants and CO2 are developed with the operating mode defined by the instantaneous vehicle specific power (VSP) and vehicle speed. Both distance-based and fuel mass-based emission factors for gaseous pollutants (e.g., CO, THC and NOX) are further estimated under typical driving conditions. The average distance-based NOX emission of heavy-duty buses (HDBs) is higher than 13 g km-1. Considering the unfavorable conditions for selective reductions catalyst (SCR) systems, such as low-speed driving conditions, more effective technology options (e.g., dedicated natural gas buses and electric buses) should be considered by policy makers in Macao. We identified strong effects of the vehicle size, engine displacement and driving conditions on real-world CO2 emission factors and fuel consumption for diesel vehicles. Therefore, detailed profiles regarding vehicle specifications can reduce the uncertainty in their fleet-average on-road fuel consumption. In addition, strong correlations between relative emission factors and driving conditions indicated by the average speed of generated micro-trips are identified based on a micro-trip method. For example, distance-based emission factors of HDBs will increase by 39% for CO, 29% for THC, 43% for NOX and 26% for CO2 when the average speed decreases from 30 km h-1 to 20 km h-1. The mitigation of on-road emissions from diesel buses and trucks by improving traffic conditions through effective traffic and economic management measures is therefore required. This study demonstrates the important role of PEMS in understanding vehicle emissions and mitigation strategies from science to policy perspectives.

  10. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    PubMed

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus-prokaryote interactions and functions.

    PubMed

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  12. Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas

    Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less

  13. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment

    NASA Astrophysics Data System (ADS)

    Vrontisi, Zoi; Luderer, Gunnar; Saveyn, Bert; Keramidas, Kimon; Reis Lara, Aleluia; Baumstark, Lavinia; Bertram, Christoph; Sytze de Boer, Harmen; Drouet, Laurent; Fragkiadakis, Kostas; Fricko, Oliver; Fujimori, Shinichiro; Guivarch, Celine; Kitous, Alban; Krey, Volker; Kriegler, Elmar; Broin, Eoin Ó.; Paroussos, Leonidas; van Vuuren, Detlef

    2018-04-01

    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.

  14. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  15. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.

    PubMed

    Anjos, Mariana; Fernandes, Bruno D; Vicente, António A; Teixeira, José A; Dragone, Giuliano

    2013-07-01

    Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Designing climate change mitigation plans that add up.

    PubMed

    Bajželj, Bojana; Allwood, Julian M; Cullen, Jonathan M

    2013-07-16

    Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.

  17. Revaluing unmanaged forests for climate change mitigation.

    PubMed

    Krug, Joachim; Koehl, Michael; Kownatzki, Dierk

    2012-11-14

    Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurements alone and include external impacts on growth (nitrogen immissions, increasing temperatures, CO2 enrichment, changed precipitation patterns) for an evaluation of central European forests in this context. We deduce that the use of CO2 flux measurements alone does not allow conclusions on a superiority of unmanaged to managed forests for mitigation goals. This is based on the critical consideration of uncertainties and the application of system boundaries. Furthermore, the consideration of wood products for material and energetic substitution obviously overrules the mitigation potential of unmanaged forests. Moreover, impacts of nitrogen immissions, CO2 enrichment of the atmosphere, increasing temperatures and changed precipitation patterns obviously lead to a meaningful increase in growth, even in forests of higher age. An impact of unmanaged forests on climate change mitigation cannot be valued by CO2 flux measurements alone. Further research is needed on cause and effect relationships between management practices and carbon stocks in different compartments of forest ecosystems in order to account for human-induced changes. Unexpected growth rates in old-growth forests - managed or not - can obviously be related to external impacts and additionally to management impacts. This should lead to the reconsideration of forest management strategies.

  18. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review.

    PubMed

    Gerber, P J; Hristov, A N; Henderson, B; Makkar, H; Oh, J; Lee, C; Meinen, R; Montes, F; Ott, T; Firkins, J; Rotz, A; Dell, C; Adesogan, A T; Yang, W Z; Tricarico, J M; Kebreab, E; Waghorn, G; Dijkstra, J; Oosting, S

    2013-06-01

    Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed processing and precision feeding have the best prospects among the various available feed and feed management measures. With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic matter excreted are recommended. Among the many 'end-of-pipe' measures available for manure management, approaches that capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping, whereby the reduction of one GHG or emission source leads to unintended increases in another.

  19. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathaye, J.; Makundi, W.; Andrasko, K.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigationmore » potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.« less

  20. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area

    NASA Astrophysics Data System (ADS)

    Järveoja, Järvi; Peichl, Matthias; Maddison, Martin; Soosaar, Kaido; Vellak, Kai; Karofeld, Edgar; Teemusk, Alar; Mander, Ülo

    2016-05-01

    Peatland restoration may provide a potential after-use option to mitigate the negative climate impact of abandoned peat extraction areas; currently, however, knowledge about restoration effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still limited. The aim of this study was to investigate the impact of contrasting mean water table levels (WTLs) on the annual C and GHG balances of restoration treatments with high (ResH) and low (ResL) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were conducted over a full year using the closed chamber method and complemented by measurements of abiotic controls and vegetation cover. Three years following restoration, the difference in the mean WTL resulted in higher bryophyte and lower vascular plant cover in ResH relative to ResL. Consequently, greater gross primary production and autotrophic respiration associated with greater vascular plant cover were observed in ResL compared to ResH. However, the means of the measured net ecosystem CO2 exchanges (NEE) were not significantly different between ResH and ResL. Similarly, no significant differences were observed in the respective means of CH4 and N2O exchanges. In comparison to the two restored sites, greater net CO2, similar CH4 and greater N2O emissions occurred in BP. On the annual scale, ResH, ResL and BP were C sources of 111, 103 and 268 g C m-2 yr-1 and had positive GHG balances of 4.1, 3.8 and 10.2 t CO2 eq ha-1 yr-1, respectively. Thus, the different WTLs had a limited impact on the C and GHG balances in the two restored treatments 3 years following restoration. However, the C and GHG balances in ResH and ResL were considerably lower than in BP due to the large reduction in CO2 emissions. This study therefore suggests that restoration may serve as an effective method to mitigate the negative climate impacts of abandoned peat extraction areas.

  1. Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah

    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the totalmore » co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m -3) than the west (0–0.4 µg m -3) for fine particulate matter (PM 2.5), with an average of 0.47 µg m -3 over the US; for O 3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM 2.5 (96 % of the total co-benefits) and O 3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O 3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM 2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O 3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.« less

  2. CO2 embodied in international trade with implications for global climate policy.

    PubMed

    Peters, Glen P; Hertwich, Edgar G

    2008-03-01

    The flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants. In this article we determine the CO2 emissions embodied in international trade among 87 countries for the year 2001. We find that globally there are over 5.3 Gt of CO2 embodied in trade and that Annex B countries are net importers of CO2 emissions. Depending on country characteristics--such as size variables and geographic location--there are considerable variations in the embodied emissions. We argue that emissions embodied in trade may have a significant impact on participation in and effectiveness of global climate policies such as the Kyoto Protocol. We discuss several policy options to reduce the impact of trade in global climate policy. If countries take binding commitments as a part of a coalition, instead of as individual countries, then the impacts of trade can be substantially reduced. Adjusting emission inventories for trade gives a more consistent description of a country's environmental pressures and circumvents many trade related issues. It also gives opportunities to exploit trade as a means of mitigating emissions. Not least, a better understanding of the role that trade plays in a country's economic and environmental development will help design more effective and participatory climate policy post-Kyoto.

  3. Uncertainty Quantification and Risk Mitigation of CO2 Leakage in Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2013-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, N.; Lorcet, H.; Beauchamp, F.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less

  5. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.

  6. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    PubMed

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses

    NASA Astrophysics Data System (ADS)

    Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko

    This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.

  8. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  9. Recent developments and key barriers to advanced biofuels: A short review.

    PubMed

    Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk

    2018-06-01

    Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. CO{sub 2} mitigation potential of efficient demand-side technologies: The case of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, R.M.; Biswas, W.K.; Timilsina, G.R.

    This study assesses the techno-economic potential of selected demand-side efficient appliances to mitigate CO{sub 2} emission from the power sector in Thailand under national, consumer, and utility perspectives. A key finding of this study is that about 5.5--7% of the total annual CO{sub 2} emission from the electricity sector of the country can be reduced during 1996--2011 from the national perspective.

  11. Pollution Swapping in Agricultural Systems: deciding between mitigation measures with conflicting outcomes

    NASA Astrophysics Data System (ADS)

    Quinton, John; Stevens, Carly

    2010-05-01

    Pollution swapping occurs when a mitigation option introduced to reduce one pollutant results in an increase in a different pollutant. Although the concept of pollution swapping is widely understood it has received little attention in research and policy design. This study investigated diffuse pollution mitigation options applied in combinable crop systems. They are: cover crops, residue management, no-tillage, riparian buffer zones, contour grass strips and constructed wetlands. A wide range of water and atmospheric pollutants were considered, including nitrogen, phosphorus, carbon and sulphur. It is clear from this investigation that there is no single mitigation option that will reduce all pollutants and in this poster we consider how choices may be made between mitigation measures which may have a positive effect on one pollutant but a negative effect on another.

  12. Costs of mitigating CO2 emissions from passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  13. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.

  14. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China.

    PubMed

    Yan, Ming; Luo, Ting; Bian, Rongjun; Cheng, Kun; Pan, Genxing; Rees, Robert

    2015-06-01

    Quantifying the carbon footprint (CF) for crop production can help identify key options to mitigate greenhouse gas (GHG) emissions in agriculture. In the present study, both household and aggregated farm scales were surveyed to obtain the data of rice production and farming management practices in a typical rice cultivation area of Northern Jiangxi, China. The CFs of the different rice systems including early rice, late rice, and single rice under household and aggregated farm scale were calculated. In general, early rice had the lower CF in terms of land use and grain production being 4.54 ± 0.44 t CO2-eq./ha and 0.62 ± 0.1 t CO2-eq./t grain than single rice (6.84 ± 0.79 t CO2-eq./ha and 0.80 ± 0.13 t CO2-eq./t grain) and late rice (8.72 ± 0.54 t CO2-eq./ha and 1.1 ± 0.17 t CO2-eq./t grain). The emissions from nitrogen fertilizer use accounted for 33 % of the total CF on average and the direct CH4 emissions for 57 %. The results indicated that the CF of double rice cropping under aggregated farm being 0.86 ± 0.11 t CO2-eq./t grain was lower by 25 % than that being 1.14 ± 0.25 t CO2-eq./t grain under household farm, mainly due to high nitrogen use efficiency and low methane emissions. Therefore, developing the aggregated farm scale with efficient use of agro-chemicals and farming operation for greater profitability could offer a strategy for reducing GHG emissions in China's agriculture.

  15. Geologic Storage of CO2: Leakage Pathways and Environmental Risks

    NASA Astrophysics Data System (ADS)

    Celia, M. A.; Peters, C. A.; Bachu, S.

    2002-05-01

    Geologic storage of CO2 appears to be an attractive option for carbon mitigation because it offers sufficient capacity to solve the problem, and it can be implemented with existing technology. Among the list of options for storage sites, depleted hydrocarbon reservoirs and deep saline aquifers are two major categories. While injection into hydrocarbon reservoirs offers immediate possibilities, especially in the context of enhanced oil recovery, it appears that deep saline aquifers provide the extensive capacity necessary to solve the problem over the decade to century time scale. Capacity and technology argue favorably for this option, but remaining obstacles to implementation include capture technologies, overall economic considerations, and potential environmental consequences of the injection. Of these, the environmental questions may be most difficult to solve. Experience from CO2 floods for enhanced oil recovery and from CO2 and acid gas disposal operations indicates that geological storage of CO2 is safe over the short term for comparatively small amounts of CO2. However, there is no experience to date regarding the long-term fate and safety of the large volumes of CO2 that must be injected to significantly reduce atmospheric emissions. In order to make proper evaluation of environmental risks, the full range of possible environmental consequences must be considered. Most of these environmental concerns involve migration and leakage of CO2 into shallow portions of the subsurface and eventually into the atmosphere. In shallow subsurface zones, elevated levels of carbon dioxide can cause pH changes, leading to possible mobilization of ground-water contaminants including metals. In the unsaturated zone, vegetation can be adversely affected, as can other ecosystem components. At the land surface, elevated levels of CO2 can lead to asphyxiation in humans and other animals. And finally, in the atmosphere, CO2 that leaks from underground diminishes the effectiveness of the overall storage scheme and contributes to possible climate change. To characterize these environmental consequences, reliable models of leakage characteristics and rates are needed. While leakage through natural flowpaths in the subsurface may occur, a more likely pathway is leakage through abandoned wells. This may be especially troublesome in mature sedimentary basins, which are often "punctured" by a very large number of exploration and production wells. For example, in the Alberta Basin there are more than 100,000 abandoned wells, the oldest from 1883. The cement used in the completion and abandonment of these wells, historically of variable quality and quantity, most probably has degraded with age and under the effect of formation brines. The cement may degrade even more rapidly when contacted by CO2 and possibly other components in the injection mixture (such as H2S). Cement properties and their modification through time must be understood in order to provide reliable estimates of leakage rates. Those leakage rates must then be linked to models of environmental consequences, and ultimately the entire analysis must be embedded in a probabilistic framework. Such an approach will allow leakage to be addressed rationally in terms of safety and long-term environmental impacts.

  16. Negative emissions—Part 2: Costs, potentials and side effects

    NASA Astrophysics Data System (ADS)

    Fuss, Sabine; Lamb, William F.; Callaghan, Max W.; Hilaire, Jérôme; Creutzig, Felix; Amann, Thorben; Beringer, Tim; de Oliveira Garcia, Wagner; Hartmann, Jens; Khanna, Tarun; Luderer, Gunnar; Nemet, Gregory F.; Rogelj, Joeri; Smith, Pete; Vicente, José Luis Vicente; Wilcox, Jennifer; del Mar Zamora Dominguez, Maria; Minx, Jan C.

    2018-06-01

    The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors’ assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO2 yr‑1 for afforestation and reforestation, 0.5–5 GtCO2 yr‑1 for BECCS, 0.5–2 GtCO2 yr‑1 for biochar, 2–4 GtCO2 yr‑1 for enhanced weathering, 0.5–5 GtCO2 yr‑1 for DACCS, and up to 5 GtCO2 yr‑1 for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.

  17. Adaptation to climate change in industry: improving resource efficiency through sustainable production applications.

    PubMed

    Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi

    2015-01-01

    The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.

  18. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peelle, E.; Schweitzer, M.; Scharre, P.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possiblemore » through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.« less

  19. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  20. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  1. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  2. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    NASA Astrophysics Data System (ADS)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  3. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  4. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  5. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  6. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  7. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  8. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  9. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  10. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have been calculated for each measure using the impact pathway or full chain approach. First the changes of emissions - compared with the reference scenario - are estimated, that occur, if the different options are implemented. Then, for each policy scenario the concentrations of pollutants are estimated. Using concentration-response-relationships, impacts, especially risks to human health, are calculated. These impact are then converted into DALYs (disability adjusted life years) and further into monetary values using contingent valuation methods (willingness to pay approach). The most efficient measures are the use of solar energy for heating,insulation of buildings combined with a mechanical ventilation system, wind energy for electricity production, use of more efficient combustion techniques and low and later zero emission zones for vehicles in cities. However, even if all available options are implemented, the air quality requirements for PM10 will not be met under all meteorological conditions.

  11. Climate adaptation as mitigation: the case of agricultural investments

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply with respect to land rents, and the elasticity of substitution between land and non-land inputs. For assessing the mitigation costs, the elasticity of productivity with respect to investments in research and development is also very important. Overall, this study finds that broad-based efforts to adapt agriculture to climate change have mitigation co-benefits that, even when forced to shoulder the entire expense of adaptation, are inexpensive relative to many activities whose main purpose is mitigation. These results therefore challenge the current approach of most climate financing portfolios, which support adaptation from funds completely separate from—and often much smaller than—mitigation ones.

  12. Silk industry and carbon footprint mitigation

    NASA Astrophysics Data System (ADS)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  13. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Purohit, Pallav; Hoglund-Isaksson, Lena

    2016-04-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.

  14. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    NASA Astrophysics Data System (ADS)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks and policy at the state level, and serves as a model for future research on the role of terrestrial carbon stocks in climate change mitigation.

  15. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.

  16. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China

    PubMed Central

    Dou, Zheng-xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G.; Zhang, Fu-Suo

    2013-01-01

    Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO2-eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale. PMID:23671096

  17. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.

    PubMed

    Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo

    2013-05-21

    Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.

  18. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    NASA Astrophysics Data System (ADS)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  19. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, Greg H.; Knauss, Kevin G.; Langer, William H.; Caldeira,

    2004-01-01

    We evaluate accelerated weathering of limestone (AWL: CO2 + CaCO3 + H2O=> Ca2+ + 2HCO3-) as a low-tech, inexpensive, high-capacity, environmentally-friendly CO2 capture and sequestration technology. With access to seawater and limestone being essential to this approach, significant limestone resources are close to most CO2-emitting power plants along the coastal US. Waste fines, representing more than 20% of current US crushed limestone production (>109 tonnes/yr), could be used as an inexpensive source of AWL carbonate. Under such circumstances CO2 mitigation cost could be as low as $3-$4/tonne. More broadly, 10-20% of US point-source CO2 emissions could be treated at $20-$30/tonne CO2. AWL end-solution disposal in the ocean would significantly reduce effects on ocean pH and carbonate chemistry relative to those caused by direct atmospheric or ocean CO2 disposal. Indeed, the increase in ocean Ca2+ and bicarbonate offered by AWL should enhance growth of corals and other calcifying marine organisms.

  20. Implications of MODIS impression of aerosol loading over urban and rural settlements in Nigeria: Possible links to energy consumption patterns in the country

    NASA Astrophysics Data System (ADS)

    Dom Onyeuwaoma, Nnaemeka

    2016-07-01

    A study of aerosol loading patterns in some selected cities in Nigeria was carried out using MODIS, TOMS/OMI AND AIRS satellite imageries for a period of 10 years. The results showed that an aerosol optical depth (AOD) loading obtained ranged from 0.02-0.9, UV aerosol index (AI) and carbon monoxide (CO) results ranged from 1.32- 2.43 and 2.22-2.6 molecule/cm2, respectively. The CO data was used to infer the presence of carbonecous aerosols from biomass, fossil combustion and industrial activities. This result indicates that areas with higher AOD and AI do not correspond in high CO loading. From the HYSPLIT and HAT analysis conducted it showed that advection plays important role in the dispersion of aerosols. This implies that aerosols can reside in a place remote from where they are generated. Also, the high concentration of CO aerosol in the southern cities suggests a high rate of industrial pollution as a result of fossil fuel burning, vehicular emissions, high population density and gas flaring. Therefore, emphasis should be on the need to switch to renewable energy options as an alternative to fossil fuel. Furthermore, plans for mitigations should not be limited to industrialized cities only but extended to other cities which might be bearing the real brunt of industrial emissions as shown in this work.

  1. The sequestration switch: removing industrial CO2 by direct ocean absorption.

    PubMed

    Ametistova, Lioudmila; Twidell, John; Briden, James

    2002-04-22

    This review paper considers direct injection of industrial CO2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration.

  2. The Co-benefits of Domestic and Foreign GHG Mitigation on US Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bowden, J.; Adelman, Z.; Naik, V.; Horowitz, L. W.; West, J. J.

    2013-12-01

    Authors: Yuqiang Zhang1, Jared Bowden2 , Zachariah Adelman1,2, Vaishali Naik3, Larry W. Horowitz4 , J. Jason West1 1 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 2 Institute for the Environment, Chapel Hill, NC 27599 3 UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 Abstract: Actions to mitigate greenhouse gas (GHG) emissions will reduce co-emitted air pollutants, which can immediately affect air quality; slowing climate change through GHG mitigation also influences air quality in the long term. We previously used a global model (MOZART-4) to show that global GHG mitigation will have significant co-benefits for air quality and human health. In doing so, we contrasted the Representative Concentration Pathway Scenario 4.5 (RCP4.5), treated as a GHG mitigation scenario, with its associated reference case scenario (REF). Using these same scenarios, we investigate here the air quality co-benefits due to domestic GHGs mitigation in the US alone at fine resolution, and compare these co-benefits with those resulting from foreign GHG mitigation. This work focuses on downscaling the meteorology and air pollutant chemistry to the US scale. We use the latest Weather Research and Forecasting (WRF) model as a Regional Climate Model (RCM) to dynamically downscale the GFDL AM3 Global Climate Model (GCM) over the US at 36 km resolution, in 2000 and 2050. The 2000 simulation will be compared with the multi-year surface observation data, satellite data, and all simulations with the GCM simulation. These simulations will be used as inputs for the newest Community Multiscale Air Quality (CMAQ) modeling system. Initial conditions (IC) and dynamic boundary conditions (BC) for CMAQ will be derived from the global MOZART-4 simulations. Anthropogenic emissions for the REF and RCP4.5 scenarios will be processed through SMOKE to prepare temporally- and spatially-resolved emission files. We will evaluate the co-benefits of GHG mitigation by changing the meteorological and air pollutant emissions inputs for RCP4.5 and REF, as well as the fixed methane level, and will separate the co-benefits of domestic vs. foreign GHG mitigation by using RCP4.5 emissions in the US only, but REF boundary conditions and REF emissions elsewhere.

  3. Scheduling fertilizer applications as a simple mitigation option for reducing N2O emission in intensively managed mown grassland systems

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Calanca, Pierluigi; Felber, Raphael; Grant, Robert; Conen, Franz

    2014-05-01

    A general principle in all proposed N2O mitigation options is the fertilization according to plants' requirements. Meanwhile the amount of N fertilization allowed is regulated in many countries. Due to the high pressure from food security and the need for economic efficiency the given limits are generally used up. In mown grassland systems a simple mitigation option is to optimize the timing of the fertilizer applications. Application of fertilizer, both organic manure and mineral fertilizer, is generally scheduled after each cut in a narrow time window. In practice, the delay between cut and fertilizer application is determined by weather conditions, management conditions and most important by the planning and experience of the individual farmer. Many field experiments have shown that enhanced N2O emissions tend to occur after cuts but before the application of fertilizer, especially when soils are characterized by a high WFPS. These findings suggest that the time of fertilizer application has an important implications for the N2O emission rate and that scheduling fertilization according to soil conditions might be a simple, cheap and efficient measure to mitigate N2O emissions. In this paper we report on results from a sensitivity analysis aiming at quantifying the effects of the timing of the fertilizer applications on N2O emissions from intensively managed, mown grasslands. Simulations for different time schedules were carried out with the comprehensive ecosystem model "ECOSYS" . To our knowledge this aspect has not been systematically investigated from a scientific point of view, but might have been always there within the experiences of attentive environmentally concerned farmers.

  4. Mitigating GHG emissions in dairy production

    USDA-ARS?s Scientific Manuscript database

    Comprehensive inventories of greenhouse gas (GHG) mitigation options for animal agriculture have been published recently. For dairy production systems, management option include (1) manipulation of dietary components (e.g., forages, concentrates) and use of feed additives (e.g., oils, tannins) to re...

  5. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE PAGES

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; ...

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  6. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  7. Greenhouse gas emissions and the interrelation of urban and forest sectors in reclaiming one hectare of land in the Pacific Northwest.

    PubMed

    Trlica, Andrew; Brown, Sally

    2013-07-02

    The interrelation between urban areas and land use options for greenhouse gas mitigation was evaluated by assessing the utility of urban residuals for soil reclamation. Long-term impacts on soil C storage for mine lands restored with urban organic residuals were quantified by sampling historic sites reclaimed both conventionally and with residuals-based amendments. Use of amendments resulted in greater C storage compared to conventional practices for all sites sampled, with increases ranging from 14.2 Mg C ha(-1) in a coalmine in WA to 38.4 Mg C ha(-1) for a copper mine in British Columbia. Expressed as Mg C per Mg amendment, effective C increases ranged from 0.03 to 0.31 Mg C per Mg amendment. Results were applied to three alternative land-use scenarios to model the net GHG balance for a site restored to forest or low-density development. The model included construction of 3.9 243 m(2)-homes, typical of urban sprawl. Emissions for home and road construction and use over a 30-year period resulted in net emissions of 1269 Mg CO2. In contrast, conventional reclamation to forestland or reclamation with 100 Mg of residuals resulted in net GHG reductions of -293 and -475 Mg CO2. Construction of an equivalent number of smaller homes in an urban core coupled with restoration of 1 ha with amendments was close to carbon neutral. These results indicate that targeted use of urban residuals for forest reclamation, coupled with high-density development, can increase GHG mitigation across both sectors.

  8. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency.

  9. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency. PMID:21655130

  10. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.

    PubMed

    Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P

    2014-04-01

    Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.

  11. Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  12. Identification and Protection of a Bat Colony in the 183-F Clearwell: Mitigation of Bat Habitat on the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. A. Gano, J. G. Lucas, C. T. Lindsey

    An ecological investigation was conducted to evaluate mitigation options for demolition of a retired facility that contained a maternity roost of approximately 2,000 Myotis yumanensis bats. The recommendation from the study was to leave the non-contaminated structure intact and fence the area.

  13. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area

    NASA Astrophysics Data System (ADS)

    Järveoja, J.; Peichl, M.; Maddison, M.; Soosaar, K.; Vellak, K.; Karofeld, E.; Teemusk, A.; Mander, Ü.

    2015-10-01

    Peatland restoration may provide a potential after-use option to mitigate the negative climate impact of abandoned peat extraction areas; currently, however, knowledge about restoration effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still limited. The aim of this study was to investigate the impact of contrasting water table levels (WTL) on the annual C and GHG balances of restoration treatments with high (Res-H) and low (Res-L) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were conducted over a full year using the closed chamber method and complemented by measurements of abiotic controls and vegetation cover. Three years following restoration, the difference in the mean WTL resulted in higher bryophyte and lower vascular plant cover in Res-H relative to Res-L. Consequently, greater gross primary production and autotrophic respiration associated with greater vascular plant cover were observed in Res-L compared to Res-H. However, the means of the measured net ecosystem CO2 exchanges (NEE) were not significantly different between Res-H and Res-L. Similarly, no significant differences were observed in the respective means of CH4 and N2O exchanges in Res-H and Res-L, respectively. In comparison to the two restored sites, greater net CO2, similar CH4 and greater N2O emissions occurred in BP. On the annual scale, Res-H, Res-L and BP were C sources of 111, 103 and 268 g C m-2 yr-1 and had positive GHG balances of 4.1, 3.8 and 10.2 t CO2 eq ha-1 yr-1, respectively. Thus, the different WTLs had a limited impact on the C and GHG balances in the two restored treatments three years following restoration. However, the C and GHG balances in Res-H and Res-L were considerably lower than in BP owing to the large reduction in CO2 emissions. This study therefore suggests that restoration may serve as an effective method to mitigate the negative climate impacts of abandoned peat extraction areas.

  14. Urban cross-sector actions for carbon mitigation with local health co-benefits in China

    NASA Astrophysics Data System (ADS)

    Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao

    2017-10-01

    Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from <1%-37% for CO2 emission reduction and <1%-47% for avoided premature deaths. These results, using multi-scale, multi-sector physical systems modelling, identify cities with high carbon and health co-benefit potential and show that urban-industrial symbiosis is a significant carbon mitigation strategy, achievable with a combination of existing and advanced technologies in diverse city types.

  15. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    PubMed

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. © 2012 Blackwell Publishing Ltd.

  16. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Kovarik, Libor; Wang, Zheming

    2011-10-10

    The capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for mitigating the impacts of greenhouse gases on global warming. In this regard, mineral-fluid interactions are of prime importance since such reactions can result in the long term sequestration of CO2 by trapping in mineral phases. Recently it has been recognized that interactions with neat to water-saturated non-aqueous fluids are of prime importance in understanding mineralization reactions since the introduced CO2 is likely to contain water initially or soon after injection and the supercritical CO2 (scCO2) is lessmore » dense than the aqueous phase which can result in a buoyant scCO2 plume contacting the isolating caprock. As a result, unraveling the molecular/microscopic mechanisms of mineral transformation in neat to water saturated scCO2 has taken on an added important. In this study, we are examining the interfacial reactions of the olivine mineral forsterite (Mg2SiO4) over a range of water contents up to and including complete water saturation in scCO2. The surface precipitates that form on the reacted forsterite grains are extremely fragile and difficult to experimentally characterize. In order to address this issue we have developed experimental protocols for preparing and imaging electron-transparent samples from fragile structures. These electron-transparent samples are then examined using a combination of STEM/EDX, FIB-TEM, and helium ion microscope (HIM) imaging (Figures 1-3). This combination of capabilities has provided unique insight into the geochemical processes that occur on scCO2 reacted mineral surfaces. The experimental procedures and protocols that have been developed also have useful applications for examining fragile structures on a wide variety of materials. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.« less

  17. Social and ethical perspectives of landslide risk mitigation measures

    NASA Astrophysics Data System (ADS)

    Kalsnes, Bjørn; Vangelsten, Bjørn V.

    2015-04-01

    Landslide risk may be mitigated by use of a wide range of measures. Mitigation and prevention options may include (1) structural measures to reduce the frequency, severity or exposure to the hazard, (2) non-structural measures, such as land-use planning and early warning systems, to reduce the hazard frequency and consequences, and (3) measures to pool and transfer the risks. In a given situation the appropriate system of mitigation measures may be a combination of various types of measures, both structural and non-structural. In the process of choosing mitigation measures for a given landslide risk situation, the role of the geoscientist is normally to propose possible mitigation measures on basis of the risk level and technical feasibility. Social and ethical perspectives are often neglected in this process. However, awareness of the need to consider social as well as ethical issues in the design and management of mitigating landslide risk is rising. There is a growing understanding that technical experts acting alone cannot determine what will be considered the appropriate set of mitigation and prevention measures. Issues such as environment versus development, questions of acceptable risk, who bears the risks and benefits, and who makes the decisions, also need to be addressed. Policymakers and stakeholders engaged in solving environmental risk problems are increasingly recognising that traditional expert-based decision-making processes are insufficient. This paper analyse the process of choosing appropriate mitigation measures to mitigate landslide risk from a social and ethical perspective, considering technical, cultural, economical, environmental and political elements. The paper focus on stakeholder involvement in the decision making process, and shows how making strategies for risk communication is a key for a successful process. The study is supported by case study examples from Norway and Italy. In the Italian case study, three different risk mitigation options was presented to the local community. The options were based on a thorough stakeholder involvement process ending up in three different views on how to deal with the landslide risk situation: i) protect lives and properties (hierarchical) ; ii) careful stewardship of the mountains (egalitarian); and iii) rational individual choice (individualist).

  18. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation considers the use of new launch vehicles in defense against near-Earth objects, building upon expertise in launch vehicle and spacecraft design, astronomy and planetary science and missile defense. This work also seeks to demonstrate the synergy needed between architectures for human/robotic exploration initiatives and planetary defense. Three different mitigation operations were baselined for this study--nuclear standoff explosion, kinetic interceptor, and solar collector--however, these are not the only viable options. The design and predicted performance of each of these methods is discussed and compared. It is determined that the nuclear interceptor option can deflect NEOs of smaller size (100-500 m) with 2 years or more time before impact, and larger NEOs with 5 or more years warning; kinetic interceptors may be effective for deflection of asteroids up to 300-400 m but require 8-10 years warning time; and, solar collectors may be able to deflect NEOs up to 1 km if issues pertaining to long operation can be overcome. Ares I and Ares V vehicles show sufficient performance to enable the development of a near-term categorization and mitigation architecture.

  19. Estimation of automobile emissions and control strategies in India.

    PubMed

    Nesamani, K S

    2010-03-15

    Rapid, but unplanned urban development and the consequent urban sprawl coupled with economic growth have aggravated auto dependency in India over the last two decades. This has resulted in congestion and pollution in cities. The central and state governments have taken many ameliorative measures to reduce vehicular emissions. However, evolution of scientific methods for emission inventory is crucial. Therefore, an attempt has been made to estimate the emissions (running and start) from on-road vehicles in Chennai using IVE model in this paper. GPS was used to collect driving patterns. The estimated emissions from motor vehicles in Chennai in 2005 were 431, 119, 46, 7, 4575, 29, and 0.41 tons/days respectively for CO, VOC, NO(x), PM, CO(2,) CH(4) and N(2)O. It is observed from the results that air quality in Chennai has degraded. The estimation revealed that two and three-wheelers emitted about 64% of the total CO emissions and heavy-duty vehicles accounted for more than 60% and 36% of the NO(x) and PM emissions respectively. About 19% of total emissions were that of start emissions. It is also estimated that on-road transport contributes about 6637 tons/day CO(2) equivalent in Chennai. This paper has further examined various mitigation options to reduce vehicular emissions. The study has concluded that advanced vehicular technology and augmentation of public transit would have significant impact on reducing vehicular emissions.

  20. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study

    DOE PAGES

    Markandya, Anil; Sampedro, Jon; Smith, Steven J.; ...

    2018-03-02

    While the co-benefits from addressing both climate change and air pollution related problems have been clearly recognized, there is not much evidence comparing the mitigation costs and economic benefits of air pollution reduction for alternative scenarios to reduce greenhouse gases. This study analyses the extent to which the health co-benefits would compensate the mitigation cost of achieving the targets of Paris Agreement (2ºC and 1·5ºC) under different scenarios where the emissions abatement effort is shared between countries according to three established equity criteria.

  1. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markandya, Anil; Sampedro, Jon; Smith, Steven J.

    While the co-benefits from addressing both climate change and air pollution related problems have been clearly recognized, there is not much evidence comparing the mitigation costs and economic benefits of air pollution reduction for alternative scenarios to reduce greenhouse gases. This study analyses the extent to which the health co-benefits would compensate the mitigation cost of achieving the targets of Paris Agreement (2ºC and 1·5ºC) under different scenarios where the emissions abatement effort is shared between countries according to three established equity criteria.

  2. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    PubMed

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  3. Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Sakamoto, A.; Maea, Y.

    2013-12-01

    CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.

  4. Emissions reduction scenarios in the Argentinean Energy Sector

    DOE PAGES

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...

    2016-04-14

    Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco

    Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less

  6. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of unintended pollutant impacts when evaluating the effectiveness of mitigation options, and showed that high-frequency water quality datasets can be applied to robustly calibrate water quality models, creating DSTs that are more effective and reliable. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry

    NASA Astrophysics Data System (ADS)

    Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.

    2015-04-01

    Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.

  8. Help the climate, change your diet: A cross-sectional study on how to involve consumers in a transition to a low-carbon society.

    PubMed

    de Boer, Joop; de Witt, Annick; Aiking, Harry

    2016-03-01

    This paper explores how the transition to a low-carbon society to mitigate climate change can be better supported by a diet change. As climate mitigation is not the focal goal of consumers who are buying or consuming food, the study highlighted the role of motivational and cognitive background factors, including possible spillover effects. Consumer samples in the Netherlands (n = 527) and the United States (n = 556) were asked to evaluate food-related and energy-related mitigation options in a design that included three food-related options with very different mitigation potentials (i.e. eating less meat, buying local and seasonal food, and buying organic food). They rated each option's effectiveness and their willingness to adopt it. The outstanding effectiveness of the less meat option (as established by climate experts) was recognized by merely 12% of the Dutch and 6% of the American sample. Many more participants gave fairly positive effectiveness ratings and this was correlated with belief in human causation of climate change, personal importance of climate change, and being a moderate meat eater. Willingness to adopt the less meat option increased with its perceived effectiveness and, controlling for that, it was significantly related to various motivationally relevant factors. The local food option appealed to consumer segments with overlapping but partly different motivational orientations. It was concluded that a transition to a low carbon society can significantly benefit from a special focus on the food-related options to involve more consumers and to improve mitigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Coupled Biogeochemical and Hydrodynamic Measurements over a Palauan Seagrass Bed: Can Seagrasses Mitigate Local Acidification Stress?

    NASA Astrophysics Data System (ADS)

    Hirsh, H.; Torres, W.; Shea, M.

    2016-02-01

    Interest in seagrass beds as a tool to locally mitigate ocean acidification is growing rapidly. Much of the interest in seagrasses is motivated by their root structure, which is able to sequester carbon over interannual and longer timescales. Far less is known about their biogeochemistry on shorter diel timescales, yet we know that diel cycle variation in CO2 chemistry on coral reefs can be quite substantial. Understanding short-term seagrass biogeochemistry is critical to evaluating if, and how, seagrasses may eventually be utilized to mitigate OA on coral reefs. We present the results of a high-resolution, 24-hour control volume experiment conducted in the Republic of Palau covering a 50m x 100m seagrass bed. Our dataset includes diel cycles of hydrodynamic (current profiles and turbulence), biogeochemical (pH, pCO2, TA, DIC, and O2), and environmental (temperature and salinity) parameters. We use these coupled hydrodynamic-biogeochemical measurements to estimate ecosystem metabolism and better quantify the capacity of seagrass to mitigate local acidification through the photosynthetic uptake of CO2. Combining our field observations with box model predictions allows us to gain better insight into the mechanisms that control seagrass metabolism and their ability to buffer CO2 for downstream corals.

  10. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk by combining 3D geospatial data with fluid-flow simulations from the ELSA (Estimating Leakage Semi-Analytically) model (e.g., Celia and Nordbotten, 2006) and the Leakage Impact Valuation (LIV) method (Pollak et al, 2013; Bielicki et al, 2013). We extend RISCS to iterate ELSA semi-analytic modeling simulations by drawing values from the frequency distribution of leakage permeabilities. The iterations assign these values to existing wells in the basin, and the probabilistic risk analysis thus incorporates the uncertainty of the extent of leakage. We show that monetized leakage risk can vary significantly over tens of kilometers, and we identify "hot spots" favorable to CO2 injection based on the monetized leakage risk for each potential location in the basin.

  11. Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass.

    PubMed

    Song, Yali; Yu, Jingjin; Huang, Bingru

    2014-01-01

    Elevated CO2 concentration may promote plant growth while high temperature is inhibitory for C3 plant species. The interactive effects of elevated CO2 and high temperatures on C3 perennial grass growth and carbon metabolism are not well documented. Kentucky bluegrass (Poa pratensis) plants were exposed to two CO2 levels (400 and 800 μmol mol-1) and five temperatures (15/12, 20/17, 25/22, 30/27, 35/32°C, day/night) in growth chambers. Increasing temperatures to 25°C and above inhibited leaf photosynthetic rate (Pn) and shoot and root growth, but increased leaf respiration rate (R), leading to a negative carbon balance and a decline in soluble sugar content under ambient CO2. Elevated CO2 did not cause shift of optimal temperatures in Kentucky bluegrass, but promoted Pn, shoot and root growth under all levels of temperature (15, 20, 25, 30, and 35°C) and mitigated the adverse effects of severe high temperatures (30 and 35°C). Elevated CO2-mitigation of adverse effects of high temperatures on Kentucky bluegrass growth could be associated with the maintenance of a positive carbon balance and the accumulation of soluble sugars and total nonstructural carbohydrates through stimulation of Pn and suppression of R and respiratory organic acid metabolism.

  12. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    PubMed

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  13. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain

    PubMed Central

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-01-01

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM’s actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM’s side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990–2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion. PMID:27162346

  14. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.

    PubMed

    Duarte, Jessica Hartwig; de Morais, Etiele Greque; Radmann, Elisângela Martha; Costa, Jorge Alberto Vieira

    2017-06-01

    CO 2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO 2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO 2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO 2 than Spirulina sp. The maximum daily CO 2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL -1 d -1 ), showing a specific growth rate of 0.17±<0.01d -1 . The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO 2 from coal flue gas, and sequential biomass production with different biotechnological destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  16. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  17. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation.

    PubMed

    Petersen, Søren O

    2017-12-07

    The handling and use of manure on livestock farms contributes to emissions of the greenhouse gases (GHG) CH 4 and N 2 O, especially with liquid manure management. Dairy farms are diverse with respect to manure management, with practices ranging from daily spreading to long-term storage for more efficient recycling of manure nutrients for crop production. Opportunities for GHG mitigation will depend on the baseline situation with respect to handling and storage, and therefore prediction and mitigation at the farm level requires a dynamic description of housing systems and storage conditions, and use of treatment technologies. Also, effects of treatment and handling on the properties of field-applied manure must be taken into account. Storage conditions and manure composition importantly define carbon and nitrogen transformations, and the resulting emissions of CH 4 and N 2 O, as well as CO 2 and NH 3 , which are all important for the GHG balance. Currently, inventories for CH 4 and N 2 O emissions from manure are based on emission factors for a limited number of production systems, together with average annual temperature, but the inherent uncertainty of this approach is a barrier toward prediction and mitigation. Although more representative emission factors may be determined at country level, this is both challenging and costly, and effects of management changes for GHG mitigation are not easily quantified. An empirical model of CH 4 emissions during storage is discussed that is based on daily time steps, and a parameterization based on measurements. A distinction between emissions from manure in barns and outside storage facilities is important for assessing effects of treatment technologies, such as anaerobic digestion, where only posttreatment emissions are affected. Upon field application, manure and soil together define the equilibrium distribution of labile carbon and nitrogen between bulk soil and manure hotspots. This introduces heterogeneity with respect to potential for N 2 O emissions, which is not represented in existing prediction models. Manure treatment and management options for GHG mitigation are discussed with emphasis on effects on manure volatile solids and N availability. Anaerobic digestion and acidification represent treatment technologies that are relevant for GHG mitigation on dairy farms. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. A data driven model for the impact of IFT and density variations on CO2 sequestration in porous media

    NASA Astrophysics Data System (ADS)

    Nomeli, Mohammad; Riaz, Amir

    2017-11-01

    CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.

  19. Net Ecosystem Production and Actionable Negative Emissions Strategies

    NASA Astrophysics Data System (ADS)

    DeCicco, J. M.; Heo, J.

    2016-12-01

    Negative emissions strategies, designed to increase the rate at which carbon dioxide (CO2) and other greenhouse gases are removed from the atmosphere, are an important aspect of broader strategies for mitigating climate change. Not only is CO2 the dominant greenhouse gas and the one most intimately tied to existing commercial energy use, but it is also part of the global carbon cycle. On the order of 200 PgC•yr-1 circulates between the atmosphere and the major carbon stocks of the terrestrial biosphere, oceans and geosphere. Anthropogenic flows of roughly 10 PgC•yr-1 from fossil fuel use and 1 PgC•yr-1 from land-use change significantly exceed the Earth's natural carbon sink, and this imbalance causes the buildup of carbon in the atmosphere. In addition to strategies for reducing CO2 emissions, increasing negative emissions through carbon dioxide removal (CDR) is crucial for reducing carbon cycle imbalance in the near term as well as meeting long-term goals such as a 2°C limit. Terrestrial carbon management is important for both reducing emissions and enhancing sinks. Photosynthesis in terrestrial ecosystems is the form of CDR that is now most actionable, referring to mechanisms that can be economically implemented at meaningful scales without technology breakthroughs. Net ecosystem production (NEP) is a crucial metric for guiding CDR involving the terrestrial biosphere, including options such as bioenergy with carbon capture and storage (BECCS) and other forms of bio-based mitigation. We derive the necessary conditions for effective implementation of this category of negative emissions measures, emphasizing the importance of NEP measurement, baselines and appropriate methods of carbon accounting. We present a method for quantitative spatio-temporal analysis of land-use and land-cover changes for estimating landscape-scale NEP; provide a preliminary baseline NEP estimate for the continental United States; apply the method to reveal a cautionary tale regarding NEP and biofuel production; and discuss the implications for negative emissions research and public policy going forward.

  20. Carbon sequestration to mitigate climate change

    USGS Publications Warehouse

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  1. Conserving Critical Sites for Biodiversity Provides Disproportionate Benefits to People

    PubMed Central

    Larsen, Frank W.; Turner, Will R.; Brooks, Thomas M.

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits – in terms of a) climate change mitigation through avoidance of CO2 emissions from deforestation; b) freshwater services to downstream human populations; c) retention of option value; and d) benefits to maintenance of human cultural diversity – significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being. PMID:22666337

  2. Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents

    DOEpatents

    Pennline, Henry W; Hoffman, James S; Gray, McMahan L; Fauth, Daniel J; Resnik, Kevin P

    2013-08-06

    The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub.2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub.2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.

  3. Modification of land-atmosphere interactions by CO2 effects

    NASA Astrophysics Data System (ADS)

    Lemordant, Leo; Gentine, Pierre

    2017-04-01

    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  4. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-02

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources.

  5. Mitigating Local Causes of Ocean Acidification with Existing Laws

    EPA Science Inventory

    The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...

  6. Co-Channel Interference Mitigation Using Satellite Based Receivers

    DTIC Science & Technology

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S...Approved for public release; distribution is unlimited CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS John E. Patterson Commander

  7. Physical and economic potential of geological CO2 storage in saline aquifers.

    PubMed

    Eccles, Jordan K; Pratson, Lincoln; Newell, Richard G; Jackson, Robert B

    2009-03-15

    Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

  8. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guest, Geoffrey, E-mail: geoffrey.guest@ntnu.no; Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco, E-mail: francesco.cherubini@ntnu.no

    2013-11-15

    Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxesmore » in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily − 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of − 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: • Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. • Temporary storage of bio-C does not always equate to a climate cooling impact. • 1 unit of bio-C stored over a time horizon does not always equate to − 1 unit CO{sub 2}eq. • Discrepancies of climate change impact quantification in literature are clarified.« less

  9. Mitigation of wildfire risk by homeowners

    Treesearch

    Hannah Brenkert; Patricia Champ; Nicholas Flores

    2005-01-01

    In-depth interviews conducted with homeowners in Larimer County's Wildland-Urban Interface revealed that homeowners face difficult decisions regarding the implementation of wildfire mitigation measures. Perceptions of wildfire mitigation options may be as important as perceptions of wildfire risk in determining likelihood of implementation. These mitigation...

  10. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    NASA Astrophysics Data System (ADS)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  11. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    PubMed

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  12. Water Footprint and Water Consumption for the Main Crops and Biofuels Produced in Brazil

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2011-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  13. Implications of Deep Decarbonization for Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Williams, J.; Torn, M. S.

    2016-12-01

    The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.

  14. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions

    NASA Astrophysics Data System (ADS)

    Lugato, Emanuele; Leip, Adrian; Jones, Arwyn

    2018-03-01

    International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.

  15. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    USGS Publications Warehouse

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  16. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existingmore » coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.« less

  17. Workshop summary: 'Integrating air quality and climate mitigation - is there a need for new metrics to support decision making?'

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.

    2013-12-01

    Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these metrics, (c) identify gaps in the current information base, whether from the scientific development of metrics or their application by different users.

  18. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Jason; Smith, Steven J.; Silva, Raquel

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less

  19. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.

    PubMed

    Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D

    2017-01-01

    The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China.

    PubMed

    Dong, Kangyin; Sun, Renjin; Dong, Xiucheng

    2018-05-31

    This study aims to test the environmental Kuznets curve (EKC) for carbon dioxide (CO 2 ) emissions in China by developing a new framework based on the suggestion of Narayan and Narayan (2010). The dynamic effect of natural gas and renewable energy consumption on CO 2 emissions is also analyzed. Considering the structural break observed in the sample, a series of econometric techniques allowing for structural breaks is utilized for the period 1965-2016. The empirical results confirm the existence of the EKC for CO 2 emissions in China. Furthermore, in both the long-run and the short-run, the beneficial effects of natural gas and renewables on CO 2 emission reduction are observable. In addition, the mitigation effect of natural gas on CO 2 emissions will be weakened over time, while renewables will become progressively more important. Finally, policy suggestions are highlighted not only for mitigating CO 2 emissions, but also for promoting growth in the natural gas and renewable energy industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  2. The Economics of Forest Carbon Sequestration: The Challenge for Emissions Offset Trading

    NASA Astrophysics Data System (ADS)

    van Kooten, G. C.

    2016-12-01

    This paper provides an overview of the role that forestry activities can play in mitigating climate change. The price of carbon offset credits is used for incentivizing a reduction in the release of CO2 emissions and an increase in sequestration of atmospheric CO2 through forestry activities. Forestland owners essentially have two options for creating carbon offset credits: (1) avoid or delay harvest of mature timber; or (2) harvest timber and allow natural regeneration or regeneration with `regular' or genetically-enhanced growing stock, storing carbon in post-harvest products, using sawmill and potentially logging residues to generate electricity. In this study, a model representative of the Quesnel Timber Supply Area (TSA) in the BC interior is developed. The objective is to maximize net discounted returns to commercial timber operations (and sale of downstream products) plus the benefits of managing carbon fluxes. The model tracks carbon in living trees, organic matter, and, importantly, post-harvest carbon pools and avoided emissions from substituting wood for non-wood in construction or wood bioenergy for fossil fuels. Model constraints ensure that commercial forest management is sustainable, while carbon prices incentivize sequestration to ensure efficient mitigation of climate change. The results are confirmed more generally by comparing the carbon fluxes derived from the integrated forest management model with those from a Faustmann-Hartman rotation age model that explicitly includes benefits of storing carbon. One other question is addressed: If carbon offsets are created when wood biomass substitutes for fossil fuels in power generation, can one count the saved emissions from steel/cement production when wood substitutes for non-wood materials in construction?

  3. Comparison of CO2 Photoreduction Systems: A Review

    EPA Science Inventory

    Carbon dioxide (CO2) emissions are a major contributor to the climate change equation. To alleviate concerns of global warming, strategies to mitigate increase of CO2 levels in the atmosphere have to be developed. The most desirable approach is to convert the carbon dioxide to us...

  4. Bio-Energy Retains Its Mitigation Potential Under Elevated CO2

    PubMed Central

    Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2010-01-01

    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833

  5. Hybrid Energy: Combining Nuclear and Other Energy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Garcia, Humberto E.

    2015-02-01

    The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate atmore » full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a particular HES option proposed for a specific U.S. region and briefly describe our modeling assumptions and procedure utilized for its analysis. Preliminary simulation results are also included addressing several technical characteristics of the proposed nuclear-renewable HES.« less

  6. Committed CO2 Emissions of China's Coal-fired Power Plants

    NASA Astrophysics Data System (ADS)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed emissions. The national and provincial CO2 emission mitigation objectives might be greatly restricted by existing and planned power plants in China. The policy implications of our results have also been discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balashov, Victor N.; Brantley, Susan L.; Guthrie, George D.

    One idea for mitigating the increase in fossil- fuel generated carbon dioxide (CO 2) in the atmosphere is to inject CO 2 into subsurface saline sandstone reservoirs, thereby storing it in those geologic formations and out of the atmosphere.

  8. The Role of Sink Strength and Nitrogen Availability in the Down-Regulation of Photosynthetic Capacity in Field-Grown Nicotiana tabacum L. at Elevated CO2 Concentration.

    PubMed

    Ruiz-Vera, Ursula M; De Souza, Amanda P; Long, Stephen P; Ort, Donald R

    2017-01-01

    Down-regulation of photosynthesis is among the most common responses observed in C 3 plants grown under elevated atmospheric CO 2 concentration ([CO 2 ]). Down-regulation is often attributed to an insufficient capacity of sink organs to use or store the increased carbohydrate production that results from the stimulation of photosynthesis by elevated [CO 2 ]. Down-regulation can be accentuated by inadequate nitrogen (N) supply, which may limit sink development. While there is strong evidence for down-regulation of photosynthesis at elevated [CO 2 ] in enclosure studies most often involving potted plants, there is little evidence for this when [CO 2 ] is elevated fully under open-air field treatment conditions. To assess the importance of sink strength on the down-regulation of photosynthesis and on the potential of N to mitigate this down-regulation under agriculturally relevant field conditions, two tobacco cultivars ( Nicotiana tabacum L. cv. Petit Havana; cv. Mammoth) of strongly contrasting ability to produce the major sink of this crop, leaves, were grown under ambient and elevated [CO 2 ] and with two different N additions in a free air [CO 2 ] (FACE) facility. Photosynthetic down-regulation at elevated [CO 2 ] reached only 9% in cv. Mammoth late in the season likely reflecting sustained sink strength of the rapidly growing plant whereas down-regulation in cv. Petit Havana reached 25%. Increased N supply partially mitigated down-regulation of photosynthesis in cv. Petit Havana and this mitigation was dependent on plant developmental stage. Overall, these field results were consistent with the hypothesis that sustained sink strength, that is the ability to utilize photosynthate, and adequate N supply will allow C 3 crops in the field to maintain enhanced photosynthesis and therefore productivity as [CO 2 ] continues to rise.

  9. 12 CFR 1024.41 - Loss mitigation procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Loss mitigation procedures. 1024.41 Section... (REGULATION X) Mortgage Servicing § 1024.41 Loss mitigation procedures. (a) Enforcement and limitations. A... mitigation option. Nothing in § 1024.41 should be construed to create a right for a borrower to enforce the...

  10. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian.

    PubMed

    Klein, Shannon G; Pitt, Kylie A; Nitschke, Matthew R; Goyen, Samantha; Welsh, David T; Suggett, David J; Carroll, Anthony R

    2017-09-01

    Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O 2 and assimilate CO 2 and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for noncalcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O 2 (~2.09 mg/L) and pH (~ 7.63) scenarios in a full-factorial experiment. Host fitness was characterized as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterized by maximum photochemical efficiency, chla content and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO 2 -stimulated Symbiodinium photosynthetic activity. Indeed, greater CO 2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O 2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesize that this mitigation occurred because of reduced photorespiration under elevated CO 2 conditions where increased net O 2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other noncalcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, noncalcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification. © 2017 John Wiley & Sons Ltd.

  11. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    NASA Astrophysics Data System (ADS)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between agriculture and timber products. We analyze regional changes in land use, output, competitiveness, and food consumption under climate change mitigation policy regimes which differ by participation/exclusion of agricultural sectors and non-Annex I countries, as well as policy instruments. While responsible for only a third of global GHG emissions, under the global carbon tax the land using sectors could contribute half of all economically efficient mitigation in the near term, at modest carbon prices. The imposition of a carbon tax in agriculture, however, has adverse effects on food consumption, especially in developing countries. These effects are much smaller if an agricultural producer subsidy is introduced to compensate for carbon tax the producers pay. The global forest carbon sequestration subsidy effectively controls emission leakage when the carbon tax is imposed only in Annex I regions, since the sequestration subsidy bids land away from agriculture in non-Annex I regions. Though the sequestration subsidy yields GHG abatement benefit, the policy may adversely affect food security and agricultural development in developing countries.

  12. Decoding the "CoDe": A Framework for Conceptualizing and Designing Help Options in Computer-Based Second Language Listening

    ERIC Educational Resources Information Center

    Cardenas-Claros, Monica Stella; Gruba, Paul A.

    2013-01-01

    This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…

  13. Climate change mitigation through livestock system transitions.

    PubMed

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-03-11

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.

  14. Climate change mitigation through livestock system transitions

    PubMed Central

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  15. Agriculture and climate change: Potential for mitigation in Spain.

    PubMed

    Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena

    2017-08-15

    Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Carbon Capture and Sequestration- A Review

    NASA Astrophysics Data System (ADS)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  17. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    NASA Astrophysics Data System (ADS)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  18. Evaluating options for U.S. greenhouse-gas mitigation using multiple criteria

    DOT National Transportation Integrated Search

    2009-01-01

    Choosing a set of policy responses to mitigate greenhouse gases (GHGs) responsible for climate change is one of the great challenges that the United States faces in the coming years. This paper develops a framework for evaluating GHG-mitigation polic...

  19. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectivenessmore » indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.« less

  20. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study.

    PubMed

    Markandya, Anil; Sampedro, Jon; Smith, Steven J; Van Dingenen, Rita; Pizarro-Irizar, Cristina; Arto, Iñaki; González-Eguino, Mikel

    2018-03-01

    Although the co-benefits from addressing problems related to both climate change and air pollution have been recognised, there is not much evidence comparing the mitigation costs and economic benefits of air pollution reduction for alternative approaches to meeting greenhouse gas targets. We analysed the extent to which health co-benefits would compensate the mitigation cost of achieving the targets of the Paris climate agreement (2°C and 1·5°C) under different scenarios in which the emissions abatement effort is shared between countries in accordance with three established equity criteria. Our study had three stages. First, we used an integrated assessment model, the Global Change Assessment Model (GCAM), to investigate the emission (greenhouse gases and air pollutants) pathways and abatement costs of a set of scenarios with varying temperature objectives (nationally determined contributions, 2°C, or 1·5°C) and approaches to the distribution of climate change methods (capability, constant emission ratios, and equal per capita). The resulting emissions pathways were transferred to an air quality model (TM5-FASST) to estimate the concentrations of particulate matter and ozone in the atmosphere and the resulting associated premature deaths and morbidity. We then applied a monetary value to these health impacts by use of a term called the value of statistical life and compared these values with those of the mitigation costs calculated from GCAM, both globally and regionally. Our analysis looked forward to 2050 in accordance with the socioeconomic narrative Shared Socioeconomic Pathways 2. The health co-benefits substantially outweighed the policy cost of achieving the target for all of the scenarios that we analysed. In some of the mitigation strategies, the median co-benefits were double the median costs at a global level. The ratio of health co-benefit to mitigation cost ranged from 1·4 to 2·45, depending on the scenario. At the regional level, the costs of reducing greenhouse gas emissions could be compensated with the health co-benefits alone for China and India, whereas the proportion the co-benefits covered varied but could be substantial in the European Union (7-84%) and USA (10-41%), respectively. Finally, we found that the extra effort of trying to pursue the 1·5°C target instead of the 2°C target would generate a substantial net benefit in India (US$3·28-8·4 trillion) and China ($0·27-2·31 trillion), although this positive result was not seen in the other regions. Substantial health gains can be achieved from taking action to prevent climate change, independent of any future reductions in damages due to climate change. Some countries, such as China and India, could justify stringent mitigation efforts just by including health co-benefits in the analysis. Our results also suggest that the statement in the Paris Agreement to pursue efforts to limit temperature increase to 1·5°C could make economic sense in some scenarios and countries if health co-benefits are taken into account. European Union's Horizon 2020 research and innovation programme. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  1. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone

    2016-10-01

    Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.

  2. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    PubMed

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p < 0.05). Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA) hydrolytic enzyme activity was inhibited by the increasing CO 2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h) ( p < 0.05). However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p < 0.01). Moreover, the abundances of genera Methylophilus , Methylobacillus , and Methylovorus increased, while GP4 , GP6 and GP7 decreased. Canonical correlation analysis results suggested that there was a correlation between the abundance variation of Proteobacteria , Acidobacteria , and the increasing nitrate nitrogen, urease and polyphenol oxidase enzyme activities, as well as the decreasing FDA hydrolytic enzyme activity, Olsen-phosphorus and total phosphorus contents. These results might be useful for evaluating the risk of potential CO 2 leakages on soil ecosystems.

  3. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  4. Solar radiation management - on feasibility, side effects, and reaching the 2 degree target

    NASA Astrophysics Data System (ADS)

    Korhonen, Hannele; Laakso, Anton; Ekholm, Tommi; Maalick, Zubair; Partanen, Antti-Ilari; Kokkola, Harri; Romakkaniemi, Sami

    2015-04-01

    Solar radiation management (SRM), i.e. artificially increasing the reflectivity of the Earth, has been suggested as a fast-response, low-cost method to mitigate the impacts of potential rapid future climate change. We have used 1) large eddy simulations as well as an aerosol-climate model and an earth system model to investigate the feasibility and side effects of two types of SRM (marine cloud brightening and stratospheric sulfur injections) and 2) a sequential decision-making approach to determine strategies that combine emission reductions and an uncertain SRM option to limit global mean temperature increase to 2 degree. Regarding stratospheric injections, we find that a large explosive volcanic eruption taking place while SRM is in full force would result in overcooling of the planet, as expected; however, the radiative and climate effects would be clearly smaller than could be expected from the sum of the effects from volcanic eruption alone or SRM alone. In addition, the stratospheric sulphur load would recover from the eruption faster under SRM and natural conditions. If the eruption took place in the high latitudes, the resulting global forcing would be highly dependent on the season of the eruption. Furthermore, regarding marine cloud brightening we find that the spraying of sea water drops leads to cooling due to evaporation and leads to delay in particle dispersion. This delay enhances particle scavenging, and can influence the efficacy of cloud seeding. In terms of combining emission reductions and SRM to reach the 2° C warming target, we find that before the termination risk for SRM can be completely excluded, the acceptable greenhouse gas emission pathways remain only slightly higher than in scenarios without SRM. More generally, the uncertainties in SRM start time, acceptable magnitude and sustainability mean that it can be only a limited substitute to greenhouse gas (GHG) emission reductions. If an additional constraint for CO2 concentration to mitigate ocean acidification is included, the CO2 emissions need to be rapidly reduced even if strong SRM will become available. However, in such scenarios the reductions for other greenhouse gases are not needed to reach the 2 degree target. Therefore, we conclude that the needs to simultaneously mitigate ocean acidification and temperature increase have important implications on how climatic targets and policies in the presence of uncertain SRM should be framed.

  5. Reducing energy-related CO2 emissions using accelerated weathering of limestone

    USGS Publications Warehouse

    Rau, Greg H.; Knauss, Kevin G.; Langer, William H.; Caldeira, Ken

    2007-01-01

    The use and impacts of accelerated weathering of limestone (AWL; reaction: CO2+H2O+CaCO3→Ca2++2(HCO3-) is explored as a CO2 capture and sequestration method. It is shown that significant limestone resources are relatively close to a majority of CO2-emitting power plants along the coastal US, a favored siting location for AWL. Waste fines, representing more than 20% of current US crushed limestone production (>109 tonnes/yr), could provide an inexpensive or free source of AWL carbonate. With limestone transportation then as the dominant cost variable, CO2 mitigation costs of $3-$4/tonne appear to be possible in certain locations. Perhaps 10–20% of US point–source CO2 emissions could be mitigated in this fashion. It is experimentally shown that CO2 sequestration rates of 10-6 to 10-5 moles/sec per m2 of limestone surface area are achievable, with reaction densities on the order of 10-2 tonnes CO2 m-3day-1, highly dependent on limestone particle size, solution turbulence and flow, and CO2 concentration. Modeling shows that AWL would allow carbon storage in the ocean with significantly reduced impacts to seawater pH relative to direct CO2 disposal into the atmosphere or sea. The addition of AWL-derived alkalinity to the ocean may itself be beneficial for marine biota.

  6. Greenhouse Gas Mitigation Options Database and Tool - Data ...

    EPA Pesticide Factsheets

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop

  7. The potential role for management of U.S. public lands in greenhouse gas mitigation and climate policy.

    PubMed

    Olander, Lydia P; Cooley, David M; Galik, Christopher S

    2012-03-01

    Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.

  8. Rancher-reported efficacy of lethal and non-lethal livestock predation mitigation strategies for a suite of carnivores.

    PubMed

    Scasta, J D; Stam, B; Windh, J L

    2017-10-26

    Pastoralists have dealt with livestock losses from predators for millennia, yet effective mitigation strategies that balance wildlife conservation and sustainable agriculture are still needed today. In Wyoming, USA, 274 ranchers responded to a retrospective survey, and rated the efficacy of predation mitigation strategies for foxes, dogs, coyotes, wolves, bobcats, mountain lions, bears, and birds (buzzards, eagles, hawks, ravens). Rancher reported efficacy of mitigation varied by predator species, mitigation strategy, and lethality of strategies, but not livestock type. Ranchers perceive they were most effective at mitigating predation by foxes and coyotes, moderately effective at mitigating large carnivores, and the least effective at mitigating birds. Ranchers also reported that avian predators seem to be the most challenging predator type. The general perception was lethal mitigation strategies were more effective than non-lethal strategies, with guard animals showing the most potential among the non-lethal options. In general, ranchers did not perceive non-lethal strategies as a proxy for lethal strategies. However, a few ranchers reported being successful with non-lethal options such as herding, fencing, and stalling at night but more details about such successful applications are needed. Innovation in current or novel non-lethal mitigation strategies, and examples of efficacy, are needed to justify producer adoption.

  9. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.

    PubMed

    Jeyanathan, J; Martin, C; Morgavi, D P

    2014-02-01

    Concerns about the environmental effect and the economic burden of methane (CH4) emissions from ruminants are driving the search for ways to mitigate rumen methanogenesis. The use of direct-fed microbials (DFM) is one possible option to decrease CH4 emission from ruminants. Direct-fed microbials are already used in ruminants mainly to increase productivity and to improve health, and are readily accepted by producers and consumers alike. However, studies on the use of DFM as rumen CH4 mitigants are scarce. A few studies using Saccharomyces cerevisiae have shown a CH4-decreasing effect but, to date, there has not been a systematic exploration of DFM as modulators of rumen methanogenesis. In this review, we explored biochemical pathways competing with methanogenesis that, potentially, could be modulated by the use of DFM. Pathways involving the redirection of H2 away from methanogenesis and pathways producing less H2 during feed fermentation are the preferred options. Propionate formation is an example of the latter option that in addition to decrease CH4 formation increases the retention of energy from the diet. Homoacetogenesis is a pathway using H2 to produce acetate, however up to now no acetogen has been shown to efficiently compete with methanogens in the rumen. Nitrate and sulphate reduction are pathways competing with methanogenesis, but the availability of these substances in the rumen is limited. Although there were studies using nitrate and sulphate as chemical additives, use of DFM for improving these processes and decrease the accumulation of toxic metabolites needs to be explored more. There are some other pathways such as methanotrophy and capnophily or modes of action such as inhibition of methanogens that theoretically could be provided by DFM and affect methanogenesis. We conclude that DFM is a promising alternative for rumen methane mitigation that should be further explored for their practical usage.

  10. Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications

    NASA Astrophysics Data System (ADS)

    Shim, C.; Henze, D. K.; Deng, F.

    2017-12-01

    The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.

  11. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{submore » 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,« less

  12. Mitigating amphibian chytridiomycosis in nature

    USGS Publications Warehouse

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  13. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led to decreased CO2 emissions, suggesting this plant's potential role in mitigating agricultural GHGs and in supporting agroecology.

  14. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    PubMed

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some of the issues that, among others, have to be addressed and tested for cost-effective CO2 sequestration. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    PubMed Central

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  16. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies.

    PubMed

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-09-20

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies.

  17. Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepinski, James

    2013-09-30

    A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and themore » potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.« less

  18. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura

    2017-12-01

    The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity for the research community to fill these gaps.

  19. Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India

    NASA Astrophysics Data System (ADS)

    Singh, N.; Mishra, T.; Banerjee, R.

    2017-12-01

    India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.

  20. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for geothermal power systems.

  1. Optimizing spacecraft design - optimization engine development : progress and plans

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim

    2003-01-01

    At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.

  2. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2012-10-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.

  3. The Co-Benefits of Global and Regional Greenhouse Gas Mitigation on US Air Quality at Fine Resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.

    2014-12-01

    Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.

  4. Mitigation options for the industrial sector in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelil, I.A.; El-Touny, S.; Korkor, H.

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less

  5. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

    NASA Astrophysics Data System (ADS)

    Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.

    2018-04-01

    Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.

  6. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deepmore » geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.« less

  7. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    PubMed

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  8. General equilibrium effects of a supply side GHG mitigation option under the Clean Development Mechanism.

    PubMed

    Timilsina, Govinda R; Shrestha, Ram M

    2006-09-01

    The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.

  9. Environmental building policy by the use of microalgae and decreasing of risks for Canadian oil sand sector development.

    PubMed

    Avagyan, Armen B

    2017-09-01

    Environmental building recommendations aimed towards new environmental policies and management-changing decisions which as example demonstrated in consideration of the problems of Canadian oil sands operators. For the implementation of the circular economic strategy, we use an in-depth analysis of reported environmental after-consequence on all stages of the production process. The study addressed the promotion of innovative solutions for greenhouse gas emission, waste mitigation, and risk of falling in oil prices for operators of oil sands with creating market opportunities. They include the addition of microalgae biomass in tailings ponds for improvement of the microbial balance for the water speedily cleaning, recycling, and reusing with mitigation of GHG emissions. The use of food scraps for the nutrition of microalgae will reduce greenhouse gas emission minimally, on 0.33 MtCO 2 eq for Alberta and 2.63 MtCO 2 eq/year for Canada. Microalgae-derived biofuel can reduce this emission for Alberta on 11.9-17.9 MtCO 2 eq and for Canada on 71-106 MtCO 2 eq/year, and the manufacturing of other products will adsorb up to 135.6 MtCO 2 and produce 99.2 MtO 2 . The development of the Live Conserve Industry and principal step from non-efficient protection of the environment to its cultivation in a large scale with mitigation of GHG emission and waste as well as generating of O 2 and value-added products by the use of microalgae opens an important shift towards a new design and building of a biological system.

  10. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  11. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agencies that have the authority to regulate development, as well as businesses, academia and other private... and development trends within the community so that mitigation options can be considered in future...

  12. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identifymore » and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a “post-mortem” analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases where data availability is limited, running injection/production logs and/or running cased-hole saturation tools to provide an indication of vertical heterogeneity will be important.« less

  13. Computer program for calculation of oxygen uptake

    NASA Technical Reports Server (NTRS)

    Castle, B. L.; Castle, G.; Greenleaf, J. E.

    1979-01-01

    A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.

  14. Transport outlook 2008 : focusing on CO2 emissions from road vehicles

    DOT National Transportation Integrated Search

    2008-05-01

    This short outlook is designed to test the potential for key policy instruments for mitigating emissions from road transport, and particularly from light duty vehicles, the largest source of CO2 emissions from transport. It also examines uncertaintie...

  15. Multi-Fluid Geo-Energy Systems for Bulk and Thermal Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Randolph, J.; Saar, M. O.; Hao, Y.; Sun, Y.; Bielicki, J. M.

    2014-12-01

    Integrating renewable energy sources into electricity grids requires advances in bulk and thermal energy storage technologies, which are currently expensive and have limited capacity. We present an approach that uses the huge fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources. CO2 captured from fossil-energy systems and N2 separated from air are injected into permeable formations to store pressure, generate artesian flow of brine, and provide additional working fluids. These enable efficient fluid recirculation, heat extraction, and power conversion, while adding operational flexibility. Our approach can also store and dispatch thermal energy, which can be used to levelize concentrating solar power and mitigate variability of wind and solar power. This may allow low-carbon, base-load power to operate at full capacity, with the stored excess energy being available to addresss diurnal and seasonal mismatches between supply and demand. Concentric rings of horizontal injection and production wells are used to create a hydraulic divide to store pressure, CO2, N2, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Supercritical CO2 and N2 function as cushion gases to provide enormous pressure-storage capacity. Injecting CO2 and N2 displaces large quantities of brine, reducing the use of fresh water. Geologic CO2 storage is a crucial option for reducing CO2 emissions, but valuable uses for CO2 are needed to justify capture costs. The initial "charging" of our system requires permanently isolating large volumes of CO2 from the atmosphere and thus creates a market for its disposal. Our approach is designed for locations where a permeable geologic formation is overlain by an impermeable formation that constrains migration of buoyant CO2 and/or N2, and heated brine. Such geologic conditions exist over nearly half of the contiguous United States. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NASA Astrophysics Data System (ADS)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  17. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    PubMed Central

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  18. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    PubMed

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-07-27

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  19. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  20. Design of a perfluorocarbon tracer based monitoring network to support monitoring verification and accounting of sequestered CO2

    NASA Astrophysics Data System (ADS)

    Watson, T.; Sullivan, T.

    2013-05-01

    The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.

  1. Carbon farming economics: What have we learned?

    PubMed

    Tang, Kai; Kragt, Marit E; Hailu, Atakelty; Ma, Chunbo

    2016-05-01

    This study reviewed 62 economic analyses published between 1995 and 2014 on the economic impacts of policies that incentivise agricultural greenhouse (GHG) mitigation. Typically, biophysical models are used to evaluate the changes in GHG mitigation that result from landholders changing their farm and land management practices. The estimated results of biophysical models are then integrated with economic models to simulate the costs of different policy scenarios to production systems. The cost estimates vary between $3 and $130/t CO2 equivalent in 2012 US dollars, depending on the mitigation strategies, spatial locations, and policy scenarios considered. Most studies assessed the consequences of a single, rather than multiple, mitigation strategies, and few considered the co-benefits of carbon farming. These omissions could challenge the reality and robustness of the studies' results. One of the biggest challenges facing agricultural economists is to assess the full extent of the trade-offs involved in carbon farming. We need to improve our biophysical knowledge about carbon farming co-benefits, predict the economic impacts of employing multiple strategies and policy incentives, and develop the associated integrated models, to estimate the full costs and benefits of agricultural GHG mitigation to farmers and the rest of society. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The effect of ICT on CO2 emissions in emerging economies: does the level of income matters?

    PubMed

    Danish; Khan, Noheed; Baloch, Muhammad Awais; Saud, Shah; Fatima, Tehreem

    2018-05-31

    In the modern era of globalization, the rapid increase in information and telecommunication technologies (ICTs) contributes in various sectors of an economy; however, the environmental consequences of ICTs cannot be ignored. Therefore, the study investigates the nexus between ICTs, economic growth, financial development, and environmental quality in emerging economies. The novel feature of the study is that the interaction term of ICT is introduced with economic growth and financial development. The empirical findings of the study are based on panel mean group (MG) and augmented mean group (AMG) estimation methods from 1990 to 2015. The following empirical results are established: first the ICTs significantly affect CO 2 emissions. Second, the moderating effect of ICT and financial development stimulate the level of CO 2 emissions. Third, economic growth contributes CO 2 emission; however, the interaction between ICT and GDP mitigates the level of pollution. Policy thresholds with the R&D in ICT sector are required to mitigate the level of CO 2 emission. Introduction of green ICTs projects in the financial sector is a better choice to improve the energy efficiency.

  3. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less

  4. Strategic Environmental Assessment of Greenhouse Gas Mitigation Options in the Canadian Agricultural Sector

    NASA Astrophysics Data System (ADS)

    Noble, Bram F.; Christmas, Lisa M.

    2008-01-01

    This article presents a methodological framework for strategic environmental assessment (SEA) application. The overall objective is to demonstrate SEA as a systematic and structured policy, plan, and program (PPP) decision support tool. In order to accomplish this objective, a stakeholder-based SEA application to greenhouse gas (GHG) mitigation policy options in Canadian agriculture is presented. Using a mail-out impact assessment exercise, agricultural producers and nonproducers from across the Canadian prairie region were asked to evaluate five competing GHG mitigation options against 13 valued environmental components (VECs). Data were analyzed using multi-criteria and exploratory analytical techniques. The results suggest considerable variation in perceived impacts and GHG mitigation policy preferences, suggesting that a blanket policy approach to GHG mitigation will create gainers and losers based on soil type and associate cropping and on-farm management practices. It is possible to identify a series of regional greenhouse gas mitigation programs that are robust, socially meaningful, and operationally relevant to both agricultural producers and policy decision makers. The assessment demonstrates the ability of SEA to address, in an operational sense, environmental problems that are characterized by conflicting interests and competing objectives and alternatives. A structured and systematic SEA methodology provides the necessary decision support framework for the consideration of impacts, and allows for PPPs to be assessed based on a much broader set of properties, objectives, criteria, and constraints whereas maintaining rigor and accountability in the assessment process.

  5. Greenhouse gas mitigation options in the Forest sector of Russia: National and project level assessments

    NASA Astrophysics Data System (ADS)

    Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.

    1996-01-01

    Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  6. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  7. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  8. The Climate Science Special Report: Perspectives on Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    DeAngelo, B. J.

    2017-12-01

    This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.

  9. Global Mitigation of Non-CO2 GHGs Report: Download the Report

    EPA Pesticide Factsheets

    View the report illustrating the abatement potential of non-CO2 greenhouse gases through a comprehensive global analysis and resulting data set of marginal abatement cost (MAC) curves. The report can be viewed as a whole or by individual section.

  10. Early atmospheric detection of carbon dioxide from carbon capture and storage sites.

    PubMed

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B

    2016-08-01

    The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = -ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1-1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.

  11. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing

    2018-01-01

    Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and Steam, Manufacture of Food and Tobacco and Manufacture of Chemicals, and Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.

  12. Brine Extraction and Treatment Strategies to Enhance Pressure Management and Control of CO 2 Plumes in Deep Geologic Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okwen, Roland; Frailey, Scott; Dastgheib, Seyed

    The overall goal of the this project is to develop and validate pressure management and carbon dioxide (CO 2) plume control strategies that can address technical and economic barriers to commercial deployment of CO 2 storage technologies, based on computational and field demonstration work at the Archer Daniels Midland Company (ADM) facility where the Illinois Basin–Decatur Project (IBDP) and the Illinois-Industrial Carbon Capture and Storage (IL-ICCS) projects are located. To accomplish the overall goal, the ISGS designed a brine extraction storage test (BEST) that could be completed in two phases. The goal of BEST Phase I was to evaluate themore » feasibilities of extraction well(s) placement, the brine extraction to CO 2 injection rate ratio, extraction well completion, and brine treatment and handling. The goal of BEST Phase II would be to validate the brine extraction and treatment options deemed feasible in Phase I by (1) demonstrating the efficacy of brine extraction (BE) in managing pressure (i.e., formation) and the CO 2 plume, and (2) demonstrating treatment of extracted brine with high total dissolved solids (TDS; >200,000 mg/L) using multiple advanced treatment technologies. This report details work done in Phase I. Several brine extraction and treatment scenarios were tested, simulated, and analyzed for their effectiveness in extracting brine. Initially a vertical well was studied; however, geologic modeling, reservoir modeling, and the existing facility and wellbore infrastructure dictated that the location of a vertical brine extraction well was limited to an area with no existing monitoring wells and where the well would be in relative proximity to an existing CO 2 plume. Consequently, a vertical well was excluded, and a horizontal brine extraction well placed above the existing CO 2 plume near two existing wells was studied. The horizontal well option allows the project to leverage the availability of cased-hole logs and cross-well tomography to monitor CO 2 saturation and plume distribution, respectively. Because of the proximity of the horizontal well option to two existing wells, no additional monitoring well (or caprock penetration) is required. The recommended brine extraction pilot design options are (1) a horizontal extraction well at the base of the Middle Mt. Simon, which is 350–520 ft (107–158 m) above the CO 2 plume at CCS#1 and VW#1; or (2) a vertical extraction well 0.5 mi (0.8 km) from CCS#2 in a direction approximately southeast of CCS#2, perpendicular to the direction of high hydraulic connectivity. A horizontal extraction well has advantages over a vertical extraction well, including less risk of drilling into an existing CO 2 plume and it can be located between two other wells that can be used for monitoring. Thus, because the two existing wells can serve as monitoring wells, it eliminates the need for a third verification well and allows for a lower extraction rate to control the CO 2 plume and pressure. Managing pressure and the CO 2 plume distribution via brine extraction creates the obvious and important challenge of handling and treating the extracted brine. There were three options for brine disposal: (1) underground injection control (UIC) disposal well, (2) brine treatment and industrial use, and (3) brine pretreatment and discharge into municipal wastewater system. The primary design elements were budget and permitting requirements. The disposal well would be a vertical well drilled and completed into the Potosi Dolomite. For the range of extraction rates anticipated, the cost of this well is relatively constant. The cost of brine treatment is highly depends on the extraction rate, which depends on the well orientation. If relatively high rates are required, the vertical disposal well option is more favorable; for relatively lower rates, the two brine treatment options have lower costs. Life-cycle-analysis studies on extracted brine handling options suggest that a UIC well has a lower environmental impact than brine treatment. Both brine disposal options using brine treatment require removal of suspended solids from the extracted brine. The most suitable commercially available technology and the most promising emerging and innovative technology are recommended for implementation in Phase II. Though the challenges of this project are written specific to Decatur, every CO 2 storage site considering the use of brine extraction integrated with CO 2 storage will have similar, if not identical, technical and logistical challenges.« less

  13. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p<0.05) in pulse period. Compare to SW, the cumulative N2O and CO2 emissions and its integrative GWPs from SUW soil decreased by 21.0% (p<0.05), 15.9% and 18.0%, respectively. The contributions of N2O to GWPs were lower than those of CO2 during most of time, except in pulse emission periods, and the proportion of N2O from SUW soil was 1.4% (p>0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  14. Role of rock/fluid characteristics in carbon (CO2) storage and modeling

    USGS Publications Warehouse

    Verma, Mahendra K.

    2005-01-01

    The presentation ? Role of Rock/Fluid Characteristics in Carbon (CO2) Storage and Modeling ? was prepared for the meeting of the Environmental Protection Agency (EPA) in Houston, Tex., on April 6?7, 2005. It provides an overview of greenhouse gases, particularly CO2, and a summary of their effects on the Earth?s atmosphere. It presents methods of mitigating the effects of greenhouse gases, and the role of rock and fluid properties on CO2 storage mechanisms. It also lists factors that must be considered to adequately model CO2 storage.

  15. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert Bock; Richard Rhudy; Howard Herzog

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  16. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less

  17. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Arnold William; Baysinger, Mike; Crane, Tracie; Capizzo, Pete; Sutherlin, Steven; Dankanich, John; Woodcock, Gordon; Edlin, George; Rushing, Johnny; Fabisinski, Leo; hide

    2007-01-01

    This work documents the advancements in MSFC threat modeling and mitigation technology research completed since our last major publication in this field. Most of the work enclosed here are refinements of our work documented in NASA TP-2004-213089. Very long development times from start of funding (10-20 years) can be expected for any mitigation system which suggests that delaying consideration of mitigation technologies could leave the Earth in an unprotected state for a significant period of time. Fortunately there is the potential for strong synergy between architecture requirements for some threat mitigators and crewed deep space exploration. Thus planetary defense has the potential to be integrated into the current U.S. space exploration effort. The number of possible options available for protection against the NEO threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. A summary of the major lessons learned during this study is presented, as are recommendations for future work.

  18. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  19. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  20. Direct carbon dioxide emissions from civil aircraft

    NASA Astrophysics Data System (ADS)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common valuations. It is clear that, whilst aviation must remain one piece of the transport-jigsaw, environmentally a global regulator with ‘teeth' is urgently required.

  1. Bubble Stripping as a Tool to Reduce High Dissolved CO2 in Coastal Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Koweek, D.; Mucciarone, D. A.; Dunbar, R. B.

    2016-02-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism and long residence times. Many of the socially, commercially, and recreationally important species may have adapted to this natural variability over time. However, eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use an empirically validated numerical model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a non-bubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change emphasizes the need to both adapt to and mitigate the effects of climate change and ocean acidification. We believe shallow water bubble stripping could be one approach for reducing high CO2 conditions in coastal ecosystems and should be added to the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  2. Crop yield changes induced by emissions of individual climate-altering pollutants

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.

    2016-08-01

    Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.

  3. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    NASA Astrophysics Data System (ADS)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  4. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.

  6. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed Central

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios. PMID:29559990

  7. Long-term climate change mitigation potential with organic matter management on grasslands.

    PubMed

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.

  8. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model-driven assessment by considering issues of risk, geological storage capacity, and regulation. Extensive experience with offshore oil and gas operations suggests that the technical uncertainties associated with OCS sequestration are not large. The legality of seabed CO 2 disposal under US law and international environmental agreements, however, is ambiguous, and the OCS may be the first region where these regulatory regimes clash over CO2 sequestration.

  9. Implications of Abundant Gas and Oil for Climate Forcing

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2015-12-01

    Perhaps the most important development in the field of energy over the past decade has been the advent of technologies that enable the production of larger volumes of natural gas and oil at lower cost. The availability of more abundant gas and oil is reshaping the global energy system, with implications for both evolving emissions of CO2 and other climate forcers. More abundant gas and oil will also transform the character of greenhouse gas emissions mitigation. We review recent findings regarding the impact of abundant gas and oil for climate forcing and the challenge of emissions mitigation. We find strong evidence that, absent policies to limits its penetration against renewable energy, abundant gas has little observable impact on CO2 emissions, and tends to increase overall climate forcing, though the latter finding is subject to substantial uncertainty. The presence of abundant gas also affects emissions mitigation. There is relatively little literature exploring the implication of expanded gas availability on the difficulty in meeting emissions mitigation goals. However, preliminary results indicate that on global scales abundant gas does not substantially affect the cost of emissions mitigation, even though natural gas could have an expanded role in emissions mitigation scenarios as compared with scenarios in which natural gas is less abundant.

  10. Framing and bias in CO2 capture and storage communication films: Reflections from a CO2 capture and storage research group.

    PubMed

    Maynard, Carly M; Shackley, Simon

    2017-03-01

    There has been a growing trend towards incorporating short, educational films as part of research funding and project proposals. Researchers and developers in CO 2 capture and storage are using films to communicate outcomes, but such films can be influenced by experiences and values of the producers. We document the content and presentation of seven online CO 2 capture and storage films to determine how framing occurs and its influence on the tone of films. The core frame presents CO 2 capture and storage as a potential solution to an imminent crisis in climatic warming and lack of a sustainable energy supply. Three subsidiary frames represent CO 2 capture and storage as (1) the only option, (2) a partial option or (3) a scientific curiosity. The results demonstrate that an understanding of the nuanced explicit and implicit messages portrayed by films is essential both for effective framing according to one's intention and for wider public understanding of a field.

  11. Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies.

    PubMed

    Wood, Alison; Blackhurst, Michael; Hawkins, Troy; Xue, Xiaobo; Ashbolt, Nicholas; Garland, Jay

    2015-03-01

    Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. This paper addresses two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets are also attractive options in some cases, particularly best-case nitrogen mitigation. Innovative/advanced septic systems designed for high-level nitrogen removal are cost-competitive options for newly constructed homes, except at their most expensive. A centralized wastewater treatment plant is the most expensive and least cost-effective option in all cases. Using a greywater recycling system with any treatment technology increases the cost without adding any nitrogen removal benefits. Sensitivity analysis shows that these results are robust considering a range of cases and uncertainties. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  13. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    NASA Astrophysics Data System (ADS)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1, respectively) than under CT treatment (399 g C-CO2 m-2 yr-1) in site 2. Tillage operations had a rapid but short-lived effect on soil CO2 efflux rates, with no significant influence on the annual soil CO2 emissions. The larger amounts of plant biomass incorporated into soil annually in the reduced tillage treatments compared to the conventional tillage treatment promoted soil aggregation and the physico-chemical soil organic carbon stabilization while soil CO2 emissions did not significantly increase. According to our results, reduced-tillage is strongly recommended as a beneficial SLM strategy for mitigating atmospheric CO2 increase through soil carbon sequestration and stabilization in semiarid Mediterranean agroecosystems.

  14. Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors

    Treesearch

    Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores

    2015-01-01

    Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...

  15. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

  16. Temporal variability in the sources and fluxes of CO2 in a residential area in an evergreen subtropical city

    NASA Astrophysics Data System (ADS)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2016-10-01

    Measurements of CO2 fluxes in temperate climates have shown that urban areas are a net source of CO2 and that photosynthetic CO2 uptake is generally not sufficient to offset local CO2 emissions. However, little is known about the role of vegetation in cities where biogenic CO2 uptake is not limited to a 2-8 months growing season. This study used the eddy covariance technique to quantify the atmospheric CO2 fluxes over a period of 12 months in a residential area in subtropical Auckland, New Zealand, where the vegetation cover (surface cover fraction: 47%) is dominated by evergreen vegetation. Radiocarbon isotope measurements of CO2 were conducted at three different times of the day (06:00-09:00, 12:00-15:00, 01:00-04:00) for four consecutive weekdays in summer and winter to differentiate anthropogenic sources of CO2 (fossil fuel combustion) from biogenic sources (ecosystem respiration, combustion of biofuel/biomass). The results reveal previously unreported patterns for CO2 fluxes, with no seasonal variability and negative (net uptake) CO2 midday fluxes throughout the year, demonstrating photosynthetic uptake by the evergreen vegetation all year-round. The winter radiocarbon measurements showed that 85% of the CO2 during the morning rush hour was attributed to fossil fuel emissions, when wind was from residential areas. However, for all other time periods radiocarbon measurements showed that fossil fuel combustion was not a large source of CO2, suggesting that biogenic processes likely dominate CO2 fluxes at this residential site. Overall, our findings highlight the importance of vegetation in residential areas to mitigate local CO2 emissions, particularly in cities with a climate that allows evergreen vegetation to maintain high photosynthetic rates over winter. As urban areas grow, urban planners need to consider the role of urban greenspace to mitigate urban CO2 emissions.

  17. Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Spano, D.

    2015-12-01

    Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current study highlighted that balanced combination of fuel management techniques could not only be a viable mean to reduce fire emissions but at the same time prevent future wildfires and the related threat to human lives and activities.

  18. Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: a case study of North East Scotland.

    PubMed

    Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete

    2013-05-15

    The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    USGS Publications Warehouse

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  20. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Joshua A.; Foxall, William; Bachmann, Corinne

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO 2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO 2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO 2 injection and fluid injection from other applications that have induced significant events—e.g.more » geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO 2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO 2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk assessment and mitigation approach. A phased approach to risk management is then introduced. The basic goal of the phased approach is to constantly adapt site operations to current conditions and available characterization data. The remainder of the report then focuses in detail on different components of the monitoring, risk assessment, and mitigation strategies. Issues in current seismic risk assessment methods that must be modified to address induce seismicity are highlighted. The report then concludes with several specific recommendations for operators and regulatory authorities to consider when selecting, permitting, and operating a storage project.« less

  1. Transport impacts on atmosphere and climate: Shipping

    NASA Astrophysics Data System (ADS)

    Eyring, Veronika; Isaksen, Ivar S. A.; Berntsen, Terje; Collins, William J.; Corbett, James J.; Endresen, Oyvind; Grainger, Roy G.; Moldanova, Jana; Schlager, Hans; Stevenson, David S.

    2010-12-01

    Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO 2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO 2, the climate response from sulphate is of the order decades while that of CO 2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO 2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO 2 and cooling by sulphate and nitrogen oxides.

  2. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, Melvin

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  3. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE PAGES

    Pomerantz, Melvin

    2017-04-20

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  4. Risk Assessment of Arsenic Mitigation Options in Bangladesh

    PubMed Central

    Ahmed, M. Feroze; Shamsuddin, Abu Jafar; Mahmud, Shamsul Gafur; Deere, Daniel

    2006-01-01

    The provision of alternative water sources is the principal arsenic mitigation strategy in Bangladesh, but can lead to risk substitution. A study of arsenic mitigation options was undertaken to assess water quality and sanitary condition and to estimate the burden of disease associated with each technology in disability-adjusted life years (DALYs). Dugwells and pond-sand filters showed heavy microbial contamination in both dry and monsoon seasons, and the estimated burden of disease was high. Rainwater was of good quality in the monsoon but deteriorated in the dry season. Deep tubewells showed microbial contamination in the monsoon but not in the dry season and was the only technology to approach the World Health Organization's reference level of risk of 10-6 DALYs. A few dugwells and one pond-sand filter showed arsenic in excess of 50 μg/L. The findings suggest that deep tubewells and rainwater harvesting provide safer water than dugwells and pond-sand filters and should be the preferred options. PMID:17366776

  5. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    PubMed

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  6. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste.

    PubMed

    Capson-Tojo, Gabriel; Ruiz, Diane; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-12-01

    The objective of this study was to test three different alternatives to mitigate the destabilizing effect of accumulation of ammonia and volatile fatty acids during food waste anaerobic digestion. The three options tested (low temperature, co-digestion with paper waste and trace elements addition) were compared using consecutive batch reactors. Although methane was produced efficiently (∼500ml CH 4 gVS -1 ; 16l CH 4 lreactor -1 ), the concentrations of propionic acid increased gradually (up to 21.6gl -1 ). This caused lag phases in the methane production and eventually led to acidification at high substrate loads. The addition of trace elements improved the kinetics and allowed higher substrate loads, but could not avoid propionate accumulation. Here, it is shown for the first time that addition of activated carbon, trace elements and dilution can favor propionic acid consumption after its accumulation. These promising options should be optimized to prevent propionate accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 75 FR 22416 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Document Management System; (13) develops and distributes leadership reports, including the Secretary's 90... principal advisor to the Director, CDC, on internal and external affairs of CDC; (2) convenes key leadership for assessment, management, mitigation options, and resolution of issues and initiatives affecting CDC...

  8. Land use and desertification in the Binh Thuan Province of Southeastern Vietnam: mitigation and adaptation options now and under climate change

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.

    2012-04-01

    Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.

  9. Will Transition of Staple Food Strategy in China Really Mitigate Global Climate Change?

    NASA Astrophysics Data System (ADS)

    Liu, B.; Zhao, D.

    2017-12-01

    With the increase in agricultural demand, reducing greenhouse gas (GHG) emissions is a vital challenge in mitigating climate change. Potato staple food strategy in China introduced by Ministry of Agriculture in 2015 is to gradually adjust staple food structure, which provides an opportunity to meet with the challenge. Apart from staple food structure, difference on energy, material input, geography, and crop management are essential to determine agriculture's contribution to climate change. In this study, we conduct a life cycle analysis of four staple foods in China, namely rice, wheat, maize, and potato, to develop crop-specific estimates of GHG emissions and GHG intensity by using `Production intensity' (carbon dioxide equivalent emissions per kilocalorie produced), to help us understand potential synergies and frictions between food producing and climate mitigation. Data used in this study is on city / province levels if city level is unavailable in 2015. First, we evaluate GHG reductions due to transition of staple food structure in China. Staple food GHG emissions in China are 546.90 Tg CO2e yr-1 in 2015, with 47.6%, 21.9%, 27.3% and 3.2% from rice, wheat, maize and potato. Mean production intensity of staple food is 0.45 Mg CO2e M kcal-1 in 2015. Maize leads the intensity with 0.77 Mg CO2e M kcal-1, followed by rice (0.49 Mg CO2e M kcal-1), wheat (0.28 Mg CO2e M kcal-1) and potato (0.24 Mg CO2e M kcal-1). After staple food structure adjustment, 25 Tg CO2e yr-1 (4.2%) reduction will be accomplished in 2020 without any crop management improvement. Further reduction (33.3% - 40.4%) could be achieved with crop management improvement. In addition, because of staple food structure switching, native rice production will decline, which might lead to more export from countries with higher production intensity. Estimated emission leakage from rice import is 30.10 Tg CO2e yr-1, exceeds emission reduction in native China. Therefore, potato staple food strategy could meet the demand for food in China, but it increases risk of global climate change.

  10. What can we learn from field experiments about the development of SOC and GHG emissions under different management practices?

    NASA Astrophysics Data System (ADS)

    Spiegel, Heide; Lehtinen, Taru; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2015-04-01

    Successful agricultural management practices are required to maintain or enhance soil quality; at the same time climate change mitigation is becoming increasingly important. Within the EU project CATCH-C we analysed the effects of different agricultural practices not only on crop productivity, but also on soil quality indicators (e.g. soil organic carbon (SOC)) and climate change (CC) mitigation indicators (e.g. CO2, CH4, N2O emissions). European data sets and associated literature, mainly from long-term experiments were evaluated. This evaluation of agricultural management practices was carried out comparing a set of improved ("best") and often applied ("current") management practices. Positive and negative effects occurred when best management practices are adopted. As expected, none of the investigated practices could comply with all objectives simultaneously, i.e. maintaining high yields, mitigating climate change and improving chemical, physical and biological soil quality. The studied soil management practices "non-inversion tillage", "organic fertilisation" (application of farm yard manure, slurry, compost) and "incorporation of crop residues" represent important management practices for farmers to increase SOC, thus improving soil quality. However, CO2 and, especially, N2O emissions may rise as well. The evaluation of CC mitigation is often limited by the lack of data from - preferably - continuous GHG emission measurements. Thus, more long-term field studies are needed to better assess the CO2, CH4 and, especially, N2O emissions following the above mentioned favorably rated MPs. Only if SOC and GHG emissions are measured in the same field experiments, it will be possible to compute overall balances of necessary CO2-C equivalent emissions. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).

  11. 40 CFR 75.57 - General recordkeeping provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...

  12. 40 CFR 75.57 - General recordkeeping provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...

  13. 40 CFR 75.57 - General recordkeeping provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...

  14. 40 CFR 75.57 - General recordkeeping provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...

  15. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  16. Life cycle assessment of treatment and handling options for a highly saline brine extracted from a potential CO2 storage site.

    PubMed

    Salih, Hafiz H; Li, Jiaxing; Kaplan, Ruth; Dastgheib, Seyed A

    2017-10-01

    Carbon dioxide (CO 2 ) injection in deep saline aquifers is a promising option for CO 2 geological sequestration. However, brine extraction may be necessary to control the anticipated increase in reservoir pressure resulting from CO 2 injection. The extracted brines usually have elevated concentrations of total dissolved solids (TDS) and other contaminants and require proper handling or treatment. Different options for the handling or treatment of a high-TDS brine extracted from a potential CO 2 sequestration site (Mt. Simon Sandstone, Illinois, USA) are evaluated here through a life cycle assessment (LCA) study. The objective of this LCA study is to evaluate the environmental impact (EI) of various treatment or disposal options, namely, deep well disposal (Case 1); near-zero liquid discharge (ZLD) treatment followed by disposal of salt and brine by-products (Case 2); and near-ZLD treatment assuming beneficial use of the treatment by-products (Case 3). Results indicate that energy use is the dominant factor determining the overall EI. Because of the high energy consumption, desalination of the pretreated brine (Cases 2 and 3) results in the highest EI. Consequently, the overall EI of desalination cases falls mainly into two EI categories: global warming potential and resources-fossil fuels. Deep well disposal has the least EI when the EI of brine injection into deep formations is not included. The overall freshwater consumption associated with different life cycle stages of the selected disposal or treatment options is 0.6-1.8 m 3 of freshwater for every 1.0 m 3 of brine input. The freshwater consumption balance is 0.6 m 3 for every 1.0 m 3 of brine input for Case 3 when desalination by-products are utilized for beneficial uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOS

    EPA Science Inventory

    CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOs John Haines and Shane Rogers NRMRL Science Questions MYP Science Ouestion: What BMP treatment systems and restoration technologies are most effective options for watershed management? For mixed land use wa...

  18. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  19. Dioxin uptake by Indian plant species.

    PubMed

    Pandey, J S; Kumar, R; Wate, S R

    2008-08-01

    Dioxins like various gaseous pollutants and aerosols can be scavenged by appropriate vegetative greenbelts. Based on their stomatal properties and the models for contaminant uptake, uptake of dioxin (2,3,7,8-TCDD) by three important Indian plant species, viz. Eugenia jambolana (Jamun), Azadirachta indica (Neem) and Ficus religiosa (Peepal), has been estimated. 2,3,7,8-TCDD is a contaminant with severe harmful ecological ramifications. Computations show that Ficus religiosa has highest uptake capacity. The present exercise has its utility in designing appropriate green-belts for mitigating adverse environmental and human health impacts due to dioxins. This can be an effective management option for mitigating the damages caused by dioxins.

  20. Sustainable biochar to mitigate global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmentalmore » and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.« less

  1. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  2. Regulating emission of air pollutants for near-term relief from global warming

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  3. Mitigating amphibian chytridiomycoses in nature.

    PubMed

    Garner, Trenton W J; Schmidt, Benedikt R; Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A; Weldon, Che; Fisher, Matthew C; Bosch, Jaime

    2016-12-05

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  4. Mitigating amphibian chytridiomycoses in nature

    PubMed Central

    Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A.; Weldon, Che; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080996

  5. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    PubMed

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic silica and CO 2 -H 2 O interfaces displayed a linear correlation, which can in turn explain the constant contact angle on the hydrophilic silica surface. In view of the literature and our study results, a few recommendations seem necessary to construct a molecular system suitable to study wettability with MD simulations. Future work should be conducted to determine the influence of brine salinity on the wettability of minerals with high cation exchange capacity. Mineral trapping is believed to be an extremely slow process, likely taking thousands of years. However, a recent pilot study demonstrated that CO 2 mineralization occurs within 2 years in highly reactive basalt reservoirs. A first-principles MD study has also shown that carbonation reactions occur rapidly at the surface oxygen sites of a reactive mineral. We observed carbonate ions on both a newly cleaved quartz surface (without hydrolysis), and a basalt andesine surface after hydrolysis in a CO 2 -rich environment. Future work should consider the influence of water, gas impurities, and mineral cation type on carbonation.

  6. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    USGS Publications Warehouse

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Large amounts of limestone fines co-produced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point sources such as cement manufacturing. AWL reactants are readily available, inexpensive and environmentally benign. Waste CO2 is hydrated with water to produce carbonic acid. This reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate.

  7. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    PubMed

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  8. Mapping High Biomass Corridors for Climate and Biodiversity Co-Benefits

    NASA Astrophysics Data System (ADS)

    Jantz, P.; Goetz, S. J.; Laporte, N. T.

    2013-12-01

    A key issue in global conservation is how climate mitigation activities can secure biodiversity co-benefits. Tropical deforestation releases significant amounts of CO2 to the atmosphere and results in widespread biodiversity loss. The dominant strategy for forest conservation has been protected area designation. However, maintaining biodiversity in protected areas requires ecological exchange with ecosystems in which they are embedded. At current funding levels, existing conservation strategies are unlikely to prevent further loss of connectivity between protected areas and surrounding landscapes. The emergence of REDD+, a mechanism for funding carbon emissions reductions from deforestation in developing countries, suggests an alignment of goals and financial resources for protecting forest carbon, maintaining biodiversity in protected areas, and minimizing loss of forest ecosystem services. Identifying, protecting and sustainably managing vegetation carbon stocks between protected areas can provide both climate mitigation benefits through avoided CO2 emissions from deforestation and biodiversity benefits through the targeted protection of forests that maintain connectivity between protected areas and surrounding ecosystems. We used a high resolution, pan-tropical map of vegetation carbon stocks derived from MODIS, GLAS lidar and field measurements to map corridors that traverse areas of highest aboveground biomass between protected areas. We mapped over 13,000 corridors containing 49 GtC, accounting for 14% of unprotected vegetation carbon stock in the tropics. In the majority of cases, carbon density in corridors was commensurate with that of the protected areas they connect, suggesting significant opportunities for achieving climate mitigation and biodiversity co-benefits. To further illustrate the utility of this approach, we conducted a multi-criteria analysis of corridors in the Brazilian Amazon, identifying high biodiversity, high vegetation carbon stock corridors with low opportunity costs which may be good candidates for inclusion in climate mitigation activities like those being considered under REDD+.

  9. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-11-19

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.

  10. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    USDA-ARS?s Scientific Manuscript database

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  11. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  12. Mitigation of environmental problems in Lake Victoria, East Africa: causal chain and policy options analyses.

    PubMed

    Odada, Eric O; Olago, Daniel O; Kulindwa, Kassim; Ntiba, Micheni; Wandiga, Shem

    2004-02-01

    Lake Victoria is an international waterbody that offers the riparian communities a large number of extremely important environmental services. Over the past three decades or so, the lake has come under increasing and considerable pressure from a variety of interlinked human activities such as overfishing, species introductions, industrial pollution, eutrophication, and sedimentation. In this paper we examine the root causes for overfishing and pollution in Lake Victoria and give possible policy options that can help remediate or mitigate the environmental degradation.

  13. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.

    PubMed

    Rodríguez-Romero, Araceli; Jiménez-Tenorio, Natalia; Riba, Inmaculada; Blasco, Julián

    2016-01-01

    The capture and storage of CO2 in sub-seabed geological formations has been proposed as one of the potential options to decrease atmospheric CO2 concentrations in order to mitigate the abrupt and irreversible consequences of climate change. However, it is possible that CO2 leakages could occur during the injection and sequestration procedure, with significant repercussions for the marine environment. We investigate the effects of acidification derived from possible CO2 leakage events on the European green crab, Carcinus maenas. To this end, a lab-scale experiment involving direct release of CO2 was conducted at pH values between 7.7 and 6.15. Female crabs were exposed for 10 days to sediment collected from two different coastal areas, one with relatively uncontaminated sediment (RSP) and the other with known contaminated sediment (MZ and ML), under the pre-established seawater pH conditions. Survival rate, histopathological damage and metal (Fe, Mn, Cu, Zn, Cr, Cd and Pb) and As accumulation in gills and hepatopancreas tissue were employed as endpoints. In addition, the obtained results were compared with the results of the physico-chemical characterization of the sediments, which included the determination of the metals Fe, Mn, Cu, Zn, Cr, Pb and Cd, the metalloid As, certain polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), as well as nonchemical sediment properties (grain size, organic carbon and total organic matter). Significant associations were observed between pH and the histological damage. Concentrations of Fe, Mn, Cr, Pb, Cd and PAHs in sediment, presented significant negative correlations with the damage to gills and hepatopancreas, and positive correlations with metal accumulation in both tissues. The results obtained in this study reveal the importance of sediment properties in the biological effects caused by possible CO2 leakage. However, a clear pattern was not observed between metal accumulation in tissues and pH reduction. Animals' avoidance behavior and degree of tolerance to acidification are confounding factors for assessing metal bioaccumulation. Further research is required to find a suitable assay that would allow us to predict the risk to environmental health of possible negative side effects of metal mobility derived from CO2 leakage during its injection and storage in sub-seabed formations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Carbon debt and carbon sequestration parity in forest bioenergy production

    Treesearch

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  15. Untangling the confusion around land carbon science and climate change mitigation policy

    NASA Astrophysics Data System (ADS)

    Mackey, Brendan; Prentice, I. Colin; Steffen, Will; House, Joanna I.; Lindenmayer, David; Keith, Heather; Berry, Sandra

    2013-06-01

    Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.

  16. Element interactions limit soil carbon storage

    PubMed Central

    van Groenigen, Kees-Jan; Six, Johan; Hungate, Bruce A.; de Graaff, Marie-Anne; van Breemen, Nico; van Kessel, Chris

    2006-01-01

    Rising levels of atmospheric CO2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO2 only enhances N2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO2 is constrained both directly by N availability and indirectly by nutrients needed to support N2 fixation. PMID:16614072

  17. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  18. Nutrients recycling strategy for microalgae-based CO2 mitigation system

    NASA Astrophysics Data System (ADS)

    E, Xinyi

    Coal-fired electricity production is the major emitter of CO2 and other greenhouse gases including NOx and SO x. Microalgae-based CO2 mitigation systems have been proposed to reduce the net CO2 emission from coal-fired power plants. This study focused on developing an optimum culture media and exploring the possibilities for recycling nutrients, which were added as commercial mineralized chemicals at the beginning of cultivation. In order to release the nutrients embedded in the cells so that they can be used as a nutrient source for new cells, Scenedesmus biomass was digested by anaerobic bacteria. Results showed that thermal pretreatment enhanced the methane production rate for the first 7 days of digestion. Three operational factors were tested: heating temperature, heating duration and NaOH dosage. The combination of 10 min heating with 3˜6% NaOH at 50 °C gave the highest cell wall destruction for all samples except oven-dried algae. The anaerobic digestate, rich in mineralized nutrients including ammonium and phosphate, potassium and magnesium ions, was tested as a possible nutrient source for the algae cultivation. To cope with the high solid content of the digestates, the dosage of the digestates was reduced or the solid particles were removed prior to addition to the microalgae. Both approaches worked well in terms of providing nutrients with minimal effect on light penetration. Using digestates without any sterilization did not cause contamination or other deleterious effects on the Scenedesmus growth rate. Harvesting microalgae cells was critical to ensure a continuous and robust growth rate. The used media could be recycled at least four times without altering the algae growth. Nutrient replenishment was the key for a healthy culture when used media was incorporated. The combination of used media and digestates can sustain a normal algae growth. Life cycle assessment was conducted on the system including the photobioreactor, the anaerobic digester, the biomass settling and dewatering and used media and nutrient recycling. Considering methane as the energy source, the overall energy return of the system was 2.4. CO2 mitigation rate was about 39% under current mitigation system. KEYWORDS: Scenedesmus, urea, anaerobic digestion, used media, life cycle assessment.

  19. The U. S. DOE Carbon Storage Program: Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations capable of storing from 50 to 100 million metric tons of CO2 in a saline formation. These projects will lay the foundation for fully integrated carbon capture and storage demonstrations of future first of a kind (FOAK) coal power projects. Future research will also bring added focus on offshore CCS.

  20. Laser Prevention of Earth Impact Disasters

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Smalley, L.; Boccio, D.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 100,000 or more objects in the 100m size range. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes! We have the technology to prevent collisions. By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in a month while smaller rocks may be moved in a shorter time span.We recommend that the World's space objectives be immediately reprioritized to start us moving quickly towards a multiple option defense capability. While lasers should be the primary approach, all mitigation options depend on robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow mitigation. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.

  1. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    DOT National Transportation Integrated Search

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  2. Greenhouse gas emissions in the state of Morelos, Mexico: a first approximation for establishing mitigation strategies.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura

    2013-11-01

    In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future.

  3. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis.

    PubMed

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A; Moris, Jose V; Viñas, Raúl Abad

    2016-12-01

    Forests and the forest sector may play an important role in mitigating climate change. The Paris Agreement and the recent legislative proposal to include the land use sector in the EU 2030 climate targets reflect this expectation. However, greater confidence on estimates from national greenhouse gas inventories (GHGI) and more comprehensive analyses of mitigation options are needed to seize this mitigation potential. The aim of this paper is to provide a tool at EU level for verifying the EU GHGI and for simulating specific policy and forest management scenarios. Therefore, the Carbon Budget Model (CBM) was applied for an integrated assessment of the EU forest carbon (C) balance from 2000 to 2012, including: (i) estimates of the C stock and net CO 2 emissions for forest management (FM), afforestation/reforestation (AR) and deforestation (D), covering carbon in both the forest and the harvest wood product (HWP) pools; (ii) an overall analysis of the C dynamics associated with harvest and natural disturbances (mainly storms and fires); (iii) a comparison of our estimates with the data reported in the EU GHGI. Overall, the average annual FM sink (-365 Mt CO 2 year -1 ) estimated by the CBM in the period 2000-2012 corresponds to about 7 % of total GHG emissions at the EU level for the same period (excluding land use, land-use change and forestry). The HWP pool sink (-44 Mt CO 2 year -1 ) contributes an additional 1 %. Emissions from D (about 33 Mt CO 2 year -1 ) are more than compensated by the sink in AR (about 43 Mt CO 2 year -1 over the period). For FM, the estimates from the CBM were about 8 % lower than the EU GHGI, a value well within the typical uncertainty range of the EU forest sink estimates. For AR and D the match with the EU GHGI was nearly perfect (difference <±2 % in the period 2008-2012). Our analysis on harvest and natural disturbances shows that: (i) the impact of harvest is much greater than natural disturbances but, because of salvage logging (often very relevant), the impact of natural disturbances is often not easily distinguishable from the impact of harvest, and (ii) the impact of storms on the biomass C stock is 5-10 times greater than fires, but while storms cause only indirect emissions (i.e., a transfer of C from living biomass to dead organic matter), fires cause both direct and indirect emissions. This study presents the application of a consistent methodological approach, based on an inventory-based model, adapted to the forest management conditions of EU countries. The approach captures, with satisfactory detail, the C sink reported in the EU GHGI and the country-specific variability due to harvest, natural disturbances and land-use changes. To our knowledge, this is the most comprehensive study of its kind at EU level, i.e., including all the forest pools, HWP and natural disturbances, and a comparison with the EU GHGI. The results provide the basis for possible future policy-relevant applications of this model, e.g., as a tool to support GHGIs (e.g., on accounting for natural disturbances) and to verify the EU GHGI, and for the simulation of specific scenarios at EU level.

  4. 78 FR 30367 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... mitigate risk in managing large portfolios, particularly for institutional investors.'' \\7\\ \\7\\ Id. The... next four most actively traded options was: Apple Inc. (option symbol AAPL)--1,074,351; S&P 500 Index... listed solely on the Exchange, the Exchange operates in a highly competitive market compromised of eleven...

  5. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Treesearch

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  6. Current knowledge on effects of forest silvicultural operations on carbon sequestration in southern forests

    Treesearch

    John D. Cason; Donald L. Grebner; Andrew J. Londo; Stephen C. Grado

    2006-01-01

    Incentive programs to reduce carbon dioxide (CO2) emissions are increasing in number with the growing threat of global warming. Terrestrial sequestration of CO2 through forestry practices on newly established forests is a potential mitigation tool for developing carbon markets in the United States. The extent of industrial...

  7. MICROBIAL SOLUTION: APPLICATION OF MICROORGANISMS FOR BIOFUEL PRODUCTION AND CO2 MITIGATION

    EPA Science Inventory

    A 100 L photobioreactor for biodiesel generation from microalga Chlorella vulgaris was constructed from two parallel clear PVC 10 feet tubes (6’ diameter) with a small slope (10%). The gas mixture (5% CO2 and air) flowed up the top of the PVC tubes from the bottom as...

  8. Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  9. Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE PAGES

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; ...

    2015-06-03

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  10. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?

    NASA Astrophysics Data System (ADS)

    Feng, Ellias Y.; Keller, David P.; Koeve, Wolfgang; Oschlies, Andreas

    2016-07-01

    Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.

  11. Land use and climate change: A global perspective on mitigation options: discussion

    Treesearch

    R. J. Alig

    2010-01-01

    Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestry’s and agriculture’s potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...

  12. Health co-benefits of climate change mitigation policies in the transport sector

    NASA Astrophysics Data System (ADS)

    Shaw, Caroline; Hales, Simon; Howden-Chapman, Philippa; Edwards, Richard

    2014-06-01

    Theory, common sense and modelling studies suggest that some interventions to mitigate carbon emissions in the transport sector can also have substantial short-term benefits for population health. Policies that encourage active modes of transportation such as cycling may, for example, increase population physical activity and decrease air pollution, thus reducing the burden of conditions such as some cancers, diabetes, heart disease and dementia. In this Perspective we systematically review the evidence from 'real life' transport policies and their impacts on health and CO2 emissions. We identified a few studies that mostly involved personalized travel planning and showed modest increases in active transport such as walking, and reductions in vehicle use and CO2 emissions. Given the poor quality of the studies identified, urgent action is needed to provide more robust evidence for policies.

  13. Rapid Surface Detection of CO2 Leaks from Geologic Sequestration Sites

    NASA Astrophysics Data System (ADS)

    Moriarty, D. M.; Krevor, S. C.; Benson, S. M.

    2013-12-01

    Carbon sequestration is becoming a viable option for global CO2 mitigation but effective monitoring methods are needed assure the carbon dioxide stays underground. Above surface monitoring using a mobile gas analyzer is one such method (e.g. Krevor et al., 2010). The Picarro gas analyzer uses wavelength-scanned cavity ring down spectroscopy to accurately identify concentrations of various atmospheric gases including their isotopic composition. These measurements can then be used for anomaly (leak) detection and source attribution. Leaks are detected by anomalous absolute concentration of CO2 and anomalous δ13C values. Source attribution is determined by the isotopic concentrations of the identified leaking gas. To distinguish between noise from ambient signals and leaks, a method based on mixing ratios has been developed. A newly acquired data set presented here has been collected from a 3.7km2 area with naturally occurring CO2 springs near Green River, Utah. All of the areas of known leakage were readily detected using this method along with several other areas that showed significant signs of leakage. In addition, testing on the Stanford campus has shown that this method is sensitive enough to distinguish between open fields and roadways. Another data set is being collected at Montana State University at the ZERT monitoring test site where an artificial leak has been created for the purpose of testing leak detection and quantification methods. Data collected from this site are being used for (1) assessing of detection levels and how they depend on environmental parameters such as wind speed, and acquisition variables such as sample rate and traverse speed, (2) optimizing acquisition parameters to increase detection levels and increase confidence in leak detection, (3) evaluating the potential for quantifying the magnitude of the leak and (4) spatial data analysis to identify the most probable leak locations.

  14. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    PubMed

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  15. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    NASA Astrophysics Data System (ADS)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  16. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  17. Agriculture, forestry, and other land-use emissions in Latin America

    DOE PAGES

    Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...

    2016-04-07

    Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less

  18. Agriculture, forestry, and other land-use emissions in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo

    Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less

  19. Can Roadway Design be used to Mitigate Air Quality Impacts from Traffic?

    EPA Science Inventory

    Recent studies have confirmed the increased risks to human health for populations near roadways with large traffic volumes. This paper summarizes methods in which these impacts may be mitigated by infrastructure design options such as roadway configuration and roadside structures...

  20. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then carried out to investigate the impact of various assumptions and scenarios, such as the plant capacity factor, capital costs, CO2 mitigation targets, oil prices, and CO2 storage costs.

  1. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  2. Cuba's Urban Landscape Needs a Second Round of Innovation for Health.

    PubMed

    Peña, Jorge

    2015-07-01

    Cuba's economy spiraled downward in the 1990s, reeling from the collapse of European socialism and a tightened US embargo. To mitigate the crash's drastic effects, measures were adopted that transformed our urban landscape, especially in large cities such as Havana, paradoxically linking the period to nascent health-promoting options. One of the most important was the introduction of bicycle lanes on city streets, paths daily ridden by people on the over one million bicycles imported to offset the nearly nonexistent public transport caused by fuel shortages. Second, urban gardens began to sprout up, involving urban dwellers in production of their own food, particularly vegetables. Without minimizing the impact of the crisis, these two seemingly disparate phenomena meant people were getting more exercise, consuming fewer fats and carbohydrates and more fresh vegetables. People were even breathing fresher air, with fewer CO2-belching trucks, old cars and buses on the streets and less diesel used to transport produce in from afar.

  3. Air quality and climate--synergies and trade-offs.

    PubMed

    von Schneidemesser, Erika; Monks, Paul S

    2013-07-01

    Air quality and climate are often treated as separate science and policy areas. Air quality encompasses the here-and-now of pollutant emissions, atmospheric transformations and their direct effect on human and ecosystem health. Climate change deals with the drivers leading to a warmer world and the consequences of that. These two science and policy issues are inexorably linked via common pollutants, such as ozone (methane) and black carbon. This short review looks at the new scientific evidence around so-called "short-lived climate forcers" and the growing realisation that a way to meet short-term climate change targets may be through the control of "air quality" pollutants. None of the options discussed here can replace reduction of long-lived greenhouse gases, such as CO2, which is required for any long-term climate change mitigation strategy. An overview is given of the underlying science, remaining uncertainties, and some of the synergies and trade-offs for addressing air quality and climate in the science and policy context.

  4. Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests

    Treesearch

    Julia I. Burton; Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity...

  5. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    Treesearch

    John B. Bradford; Douglas N. Kastendick

    2010-01-01

    Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...

  6. Detailed assessment of global transport-energy models’ structures and projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sonia; Mishra, Gouri Shankar; Fulton, Lew

    This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in partmore » to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.« less

  7. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?

    PubMed

    Donnem, Tom; Hu, Jiangting; Ferguson, Mary; Adighibe, Omanma; Snell, Cameron; Harris, Adrian L; Gatter, Kevin C; Pezzella, Francesco

    2013-08-01

    Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10-30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.

  8. Co-development of climate smart flooded rice farming systems

    NASA Astrophysics Data System (ADS)

    de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner

    2017-04-01

    Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers-field trial in Vietnam, pre-planting and early season drainage was tested in spring and summer rice, under individual and community water management regimes, and at 2 straw application levels. Pre-season drainage was difficult for farmers to implement, due to the short duration of fallow between cropping seasons. Early season drainage was most effective in lowering methane emissions at both straw application levels. Unsurprisingly, the well-managed drainage control (community system) was significantly more effective in mitigating emissions, than the individually water management. Surveys among farming communities in Philippines, subject to agricultural campaigns on alternate-wetting-and-drying showed higher adoption among farmers who actively pumped water to their fields, compared to gravity-fed water supply, due to the direct savings experienced by farmers pumping water. Several other factors positively influenced adoption of mitigation techniques, including education level, access to extension services, wealth and farm size, and age of farmer (negatively correlated to adoption rate). In conclusion, drainage periods are even more important to mitigate emissions when including organic manures or residues in flooded rice, and early-season drainage should be further explored as a more safe and convenient option for smallholders. Participatory development of climate smart prototypes will be essential, and a model for such is presented.

  9. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    USDA-ARS?s Scientific Manuscript database

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  10. Feeling bogged down about climate change mitigation? Insights from a new high resolution peatland-bog model validated at two Dutch monitoring sites.

    NASA Astrophysics Data System (ADS)

    Lippmann, Tanya; van Huissteden, Ko; Hendriks, Dimmie

    2017-04-01

    Increasing the global carbon sink is one of two options to mitigate CO2 and CH4 increases in the atmosphere (the other is emissions reductions at the source). Peatlands release carbon to the atmosphere when disturbed by natural or human causes and absorb carbon when vegetation and soil organic matter accumulate after rewetting or natural revegetation. However, rewetting of drained peatlands is frequently not considered as a climate mitigation strategy due to the enhanced methane emissions that accompany newly formed anaerobic peatland environments. We hypothesise that at most sites, this trend will be temporal but long-term, lasting for tens of years post re-wetting before stabilisation takes place. This study investigates the ability of rewetted peatland sites to act as either a source or sink for atmospheric methane and carbon dioxide under climate change. The hydrology of a peatland is fundamental to its functioning. Therefore, the use of a full water balance table has the potential to simulate greenhouse gas fluxes to a greater degree of certainty. MODFLOW is the internationally most widely used ground and surface water model and is freely available to the scientific community. This is the first time that a gridded peatland process based model has been constructed at a spatial resolution as high as 25m x 25m. This new high-resolution model allows for investigation into the complex biophysical and hydrological factors that are necessary to reliably estimate atmospheric greenhouse gas fluxes in a peatland ecosystem. We assess the model's skill against observations collected at two monitoring sites of differing soil properties and vegetation in the Netherlands. These results discuss site-specific suitability of peatland regeneration, useful for climate change mitigation activities. Aside from the insight into transient atmosphere-peatland carbon fluxes, this work is a stepping stone towards more robust model coupling and greater spatial coverage.

  11. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  12. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.

    PubMed

    Fine, Pinchas; Hadas, Efrat

    2012-02-01

    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  14. Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs

    NASA Astrophysics Data System (ADS)

    Strefler, Jessica; Bauer, Nico; Kriegler, Elmar; Popp, Alexander; Giannousakis, Anastasis; Edenhofer, Ottmar

    2018-04-01

    There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a‑1 in any year. At least 8 Gt CO2 a‑1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a‑1 to keep transitional challenges in bounds.

  15. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    NASA Astrophysics Data System (ADS)

    Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina

    2013-06-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially economy of scale residue collection prices at higher collection volumes associated with low SOC loss, the lignin-land amendment option is economically and environmentally preferable, with the lowest GHG abatement costs relative to gasoline among the three lignin co-product options we consider.

  16. EU mitigation potential of harvested wood products.

    PubMed

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  17. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    EPA Science Inventory

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  18. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.

    PubMed

    Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun

    2015-09-01

    Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessment of environmental impact on air quality by cement industry and mitigating measures: a case study.

    PubMed

    Kabir, G; Madugu, A I

    2010-01-01

    In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249-3,745 mg/m3 and 2,440-2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NOx, SOx and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062-0.093 mg/m3 NOx, 0.026 mg/m3 SOx and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker-roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.

  20. Evaluating Health Co-Benefits of Climate Change Mitigation in Urban Mobility

    PubMed Central

    Wolkinger, Brigitte; Weisz, Ulli; Hutter, Hans-Peter; Delcour, Jennifer; Griebler, Robert; Mittelbach, Bernhard; Maier, Philipp; Reifeltshammer, Raphael

    2018-01-01

    There is growing recognition that implementation of low-carbon policies in urban passenger transport has near-term health co-benefits through increased physical activity and improved air quality. Nevertheless, co-benefits and related cost reductions are often not taken into account in decision processes, likely because they are not easy to capture. In an interdisciplinary multi-model approach we address this gap, investigating the co-benefits resulting from increased physical activity and improved air quality due to climate mitigation policies for three urban areas. Additionally we take a (macro-)economic perspective, since that is the ultimate interest of policy-makers. Methodologically, we link a transport modelling tool, a transport emission model, an emission dispersion model, a health model and a macroeconomic Computable General Equilibrium (CGE) model to analyze three climate change mitigation scenarios. We show that higher levels of physical exercise and reduced exposure to pollutants due to mitigation measures substantially decrease morbidity and mortality. Expenditures are mainly born by the public sector but are mostly offset by the emerging co-benefits. Our macroeconomic results indicate a strong positive welfare effect, yet with slightly negative GDP and employment effects. We conclude that considering economic co-benefits of climate change mitigation policies in urban mobility can be put forward as a forceful argument for policy makers to take action. PMID:29710784

  1. Evaluating Health Co-Benefits of Climate Change Mitigation in Urban Mobility.

    PubMed

    Wolkinger, Brigitte; Haas, Willi; Bachner, Gabriel; Weisz, Ulli; Steininger, Karl; Hutter, Hans-Peter; Delcour, Jennifer; Griebler, Robert; Mittelbach, Bernhard; Maier, Philipp; Reifeltshammer, Raphael

    2018-04-28

    There is growing recognition that implementation of low-carbon policies in urban passenger transport has near-term health co-benefits through increased physical activity and improved air quality. Nevertheless, co-benefits and related cost reductions are often not taken into account in decision processes, likely because they are not easy to capture. In an interdisciplinary multi-model approach we address this gap, investigating the co-benefits resulting from increased physical activity and improved air quality due to climate mitigation policies for three urban areas. Additionally we take a (macro-)economic perspective, since that is the ultimate interest of policy-makers. Methodologically, we link a transport modelling tool, a transport emission model, an emission dispersion model, a health model and a macroeconomic Computable General Equilibrium (CGE) model to analyze three climate change mitigation scenarios. We show that higher levels of physical exercise and reduced exposure to pollutants due to mitigation measures substantially decrease morbidity and mortality. Expenditures are mainly born by the public sector but are mostly offset by the emerging co-benefits. Our macroeconomic results indicate a strong positive welfare effect, yet with slightly negative GDP and employment effects. We conclude that considering economic co-benefits of climate change mitigation policies in urban mobility can be put forward as a forceful argument for policy makers to take action.

  2. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    PubMed

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Semi-Empirical Model to Estimate the Solubility of CO2 NaCl Brine in Conditions Representative of CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Mohammadian, E.; Hamidi, H.; Azdarpour, A.

    2018-05-01

    CO2 sequestration is considered as one of the most anticipated methods to mitigate CO2 concentration in the atmosphere. Solubility mechanism is one of the most important and sophisticated mechanisms by which CO2 is rendered immobile while it is being injected into aquifers. A semi-empirical, easy to use model was developed to calculate the solubility of CO2 in NaCl brines with thermodynamic conditions (pressure, temperature) and salinity gradients representative CO2 sequestration in the Malay basin. The model was compared to the previous more sophisticated models and a good consistency was found among the data obtained using the two models. A Sensitivity analysis was also conducted on the model to test its performance beyond its limits.

  4. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field campaigns in California, and we will give an outlook for future development of the technique in California.

  5. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    PubMed

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    NASA Astrophysics Data System (ADS)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in <2° scenarios expands, on average, by 8.2 Mha yr-1 and 11.7% p.a. across scenarios. This rate exceeds, by more than 3-fold, the observed expansion of soybean, the most rapidly expanding commodity crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  7. Foamed Cement Interactions with CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Circe; Montross, Scott; Spaulding, Richard

    2017-02-02

    Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO 2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO 2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO 2 mitigation choice.

  8. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors.

    PubMed

    Pereira, Hugo; Páramo, Jaime; Silva, Joana; Marques, Ana; Barros, Ana; Maurício, Dinis; Santos, Tamára; Schulze, Peter; Barros, Raúl; Gouveia, Luísa; Barreira, Luísa; Varela, João

    2018-03-23

    Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m 3 industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17 th October - 14 th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65-1.35 m s -1 and a pH set-point for CO 2 injection of 8.0. Highest volumetric (0.08 ± 0.01 g L -1 d -1 ) and areal (20.3 ± 3.2 g m -2 d -1 ) biomass productivities were attained in the 100-m 3 PBR compared to those of the 35-m 3 PBR (0.05 ± 0.02 g L -1 d -1 and 13.5 ± 4.3 g m -2 d -1 , respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO 2 sequestration was followed in the 100-m 3 PBR, revealing a mean CO 2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.

  9. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.

    PubMed

    Lee, Kwan Yin; Ng, Tsz Wai; Li, Guiying; An, Taicheng; Kwan, Ka Ki; Chan, King Ming; Huang, Guocheng; Yip, Ho Yin; Wong, Po Keung

    2015-10-30

    The phycoremediation process has great potential for effectively addressing environmental pollution. To explore the capabilities of simultaneous algal nutrient removal, CO2 mitigation and biofuel feedstock production from spent water resources, a Chlorogonium sp. isolated from a tilapia pond in Hong Kong was grown in non-sterile saline sewage effluent for a bioremediation study. With high removal efficiencies of NH3-N (88.35±14.39%), NO3(-)-N (85.39±14.96%), TN (93.34±6.47%) and PO4(3-)-P (91.80±17.44%), Chlorogonium sp. achieved a CO2 consumption rate of 58.96 mg L(-1) d(-1), which was optimised by the response surface methodology. Under optimised conditions, the lipid content of the algal biomass reached 24.26±2.67%. Overall, the isolated Chlorogonium sp. showed promising potential in the simultaneous purification of saline sewage effluent in terms of tertiary treatment and CO2 sequestration while delivering feedstock for potential biofuel production in a waste-recycling manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, wasmore » examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow technology to cool the gas stream and enhance bicarbonate concentrations could both enhance organism growth rates and make the process one that could be applied at any fossil-fired power generation unit. These results were augmented by measurements of CO{sub 2} loss from the bioreactor test section. The corresponding mass balance was resolved to within 2%, which is remarkable for the low level of CO{sub 2} actually absorbed by the cyanobacteria. The net result was approximately 10.2 g of CO{sub 2} absorbed of the original 2.97 m{sup 3} of circulating flue gas, (or about 19% of the original CO{sub 2}). While this result in no way predicts the ability of the system to remove CO{sub 2} over the long term in a full-scale operating system, it appears to give credence to the workability of the system.« less

  11. Trading-off emission reduction, carbon capture and geoengineering to reach the Paris agreement

    NASA Astrophysics Data System (ADS)

    Gasser, T.; Boucher, O.; Lecocq, F.; Obersteiner, M.

    2017-12-01

    We explore virtually all possible future pathways that respect the Paris agreement, with an innovative modeling framework. We show that immediate and extreme mitigation of CO2 and non-CO2 species alike, carbon dioxide removal (CDR) and/or solar radiation management (SRM) technologies are required. We analyze the tradeoffs between these solutions. We generate thousands of temperature change pathways that extend historical records, stay below 2°C, and aim at 1.5°C in the long run. Non-CO2 forcings are generated likewise. With a simple model of the Earth system, we then back-calculate anthropogenic CO2 emissions compatible with these pathways. Other key global variables such as ocean acidity, sea level and permafrost thaw are also simulated. From this large ensemble of fully consistent scenarios, we analyze subsets that meet certain criteria: physical targets, emission levels, technology use, or any combination thereof. We show that staying below 1.5°C is feasible if CO2 emissions peak before 2025 and non-CO2 forcings are also reduced to zero. In case of a positive long-term non-CO2 forcing (a mitigation floor), CDR is necessary. Alternatively, emissions can peak later and/or higher if SRM is allowed. For pathways overshooting 1.5°C, results depend on the overshoot's size and length. Because of thawing permafrost, virtually all overshoot pathways require CDR, unless non-CO2 species (possibly SRM) are cooling the system at the time of peak temperature. When considering additional physical targets, which can be relevant for preserving ecosystems, the space of allowable pathways is systematically reduced. Especially: limiting ocean acidification rules out SRM. The nationally determined contributions (NDCs) indicate that reaching even the strictest interpretation of the agreement is feasible. However, if SRM is ruled out and only a reasonable amount of CDR is allowed, NDCs are compatible with very few of our pathways (≈5%). If a mitigation floor is added on top of that, virtually no pathways remain (<1%). We conclude that, in its strictest interpretation, the Paris agreement relies heavily on currently non-existent (and potentially harmful) technologies. In a looser interpretation, these technologies may not be needed, although the window of opportunity is closing extremely fast.

  12. Use of Carbon Steel for Construction of Post-combustion CO 2 Capture Facilities: A Pilot-Scale Corrosion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Landon, James; Irvin, Bradley

    Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less

  13. Use of Carbon Steel for Construction of Post-combustion CO 2 Capture Facilities: A Pilot-Scale Corrosion Study

    DOE PAGES

    Li, Wei; Landon, James; Irvin, Bradley; ...

    2017-04-13

    Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less

  14. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2018-05-07

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  15. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage.

    PubMed

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas

    2018-01-15

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p<0.01) decreased yield-scaled GWP by 85% and 87% respectively. This was associated with carbon being stabilised early in the season, thereby reducing available C for methanogenesis. Overall N 2 O emissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models.

    PubMed

    Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Bilecz, Agnes; Daley, Frances; Kostaras, Eleftherios; Nathan, Mark R; Wan, Elaine; Frentzas, Sophia; Schweiger, Thomas; Hegedus, Balazs; Hoetzenecker, Konrad; Renyi-Vamos, Ferenc; Kuczynski, Elizabeth A; Vasudev, Naveen S; Larkin, James; Gore, Martin; Dvorak, Harold F; Paku, Sandor; Kerbel, Robert S; Dome, Balazs; Reynolds, Andrew R

    2017-02-01

    Anti-angiogenic therapies have shown limited efficacy in the clinical management of metastatic disease, including lung metastases. Moreover, the mechanisms via which tumours resist anti-angiogenic therapies are poorly understood. Importantly, rather than utilizing angiogenesis, some metastases may instead incorporate pre-existing vessels from surrounding tissue (vessel co-option). As anti-angiogenic therapies were designed to target only new blood vessel growth, vessel co-option has been proposed as a mechanism that could drive resistance to anti-angiogenic therapy. However, vessel co-option has not been extensively studied in lung metastases, and its potential to mediate resistance to anti-angiogenic therapy in lung metastases is not established. Here, we examined the mechanism of tumour vascularization in 164 human lung metastasis specimens (composed of breast, colorectal and renal cancer lung metastasis cases). We identified four distinct histopathological growth patterns (HGPs) of lung metastasis (alveolar, interstitial, perivascular cuffing, and pushing), each of which vascularized via a different mechanism. In the alveolar HGP, cancer cells invaded the alveolar air spaces, facilitating the co-option of alveolar capillaries. In the interstitial HGP, cancer cells invaded the alveolar walls to co-opt alveolar capillaries. In the perivascular cuffing HGP, cancer cells grew by co-opting larger vessels of the lung. Only in the pushing HGP did the tumours vascularize by angiogenesis. Importantly, vessel co-option occurred with high frequency, being present in >80% of the cases examined. Moreover, we provide evidence that vessel co-option mediates resistance to the anti-angiogenic drug sunitinib in preclinical lung metastasis models. Assuming that our interpretation of the data is correct, we conclude that vessel co-option in lung metastases occurs through at least three distinct mechanisms, that vessel co-option occurs frequently in lung metastases, and that vessel co-option could mediate resistance to anti-angiogenic therapy in lung metastases. Novel therapies designed to target both angiogenesis and vessel co-option are therefore warranted. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  17. Vegetation and other development options for mitigating urban air pollution impacts

    Treesearch

    Richard Baldauf; David J. Nowak

    2014-01-01

    While air pollution control devices and programs are the primary method of reducing emissions, urban air pollution can be further mitigated through planning and design strategies, including vegetation preservation and planting, building design and development, installing roadside and near-source structures, and modifying surrounding terrain features.

  18. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  19. Supervisory Control and Data Acquisition (SCADA) Security Awareness In a Resource Constrained Learning Environment

    DTIC Science & Technology

    2014-06-16

    SCADA systems. These professionals should be aware of the vulnerabilities so they can take intelligent precautions to mitigate attacks. SCADA...vulnerabilities • Describe mitigation options for protecting a system from SCADA attacks For students that go on to pursue a degree in Computer...from SCADA attacks For students who do not remain in the IT realm, this introduction provides an awareness to help them mitigate threats for their

  20. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion.

    PubMed

    Breccia, Massimo; Pregno, Patrizia; Spallarossa, Paolo; Arboscello, Eleonora; Ciceri, Fabio; Giorgi, Mauro; Grossi, Alberto; Mallardo, Mario; Nodari, Savina; Ottolini, Stefano; Sala, Carla; Tortorella, Giovanni; Rosti, Gianantonio; Pane, Fabrizio; Minotti, Giorgio; Baccarani, Michele

    2017-04-01

    Ponatinib (Iclusig, ARIAD Pharmaceuticals-Incyte Co.) is a third-generation structure-guided tyrosine kinase inhibitor that is approved for treatment of Philadelphia chromosome-positive leukaemias resistant or intolerant to other inhibitors. The clinical use of ponatinib is complicated by the possible development of cardiovascular events, primarily hypertension and arterial or venous thrombotic events. The US Food and Drug Administration and the European Medicine Agency recommend that the cardiovascular profile of patients candidate for ponatinib should be carefully evaluated. For patients deemed to carry a high risk of cardiovascular events, other life-saving therapeutic options should be considered. When alternative options are not available, treatment with ponatinib is indicated but requires that haematologists and cardiologists collaborate and identify modalities of surveillance and risk mitigation in the best interest of the patient. This article reports on the expert opinion provided by a panel of Italian haematologists, cardiologists and clinical pharmacologists. It summarises suggestions that may help to improve the therapeutic index of ponatinib, primarily in the settings of chronic-phase chronic myeloid leukaemia.

  1. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.

    PubMed

    Rehl, T; Müller, J

    2013-01-15

    Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  3. Mitigating effects of ex situ application of rice straw on CH4 and N2O emissions from paddy-upland coexisting system

    PubMed Central

    Wang, Wei; Wu, Xiaohong; Chen, Anlei; Xie, Xiaoli; Wang, Yunqiu; Yin, Chunmei

    2016-01-01

    The in situ application of rice straw enhances CH4 emissions by a large margin. The ex situ application of rice straw in uplands, however, may mitigate total global warming potential (GWP) of CH4 and N2O emissions from paddy-upland coexisting systems. To evaluate the efficiency of this practice, two field trials were conducted in rice-rice-fallow and maize-rape cropping systems, respectively. Year-round measurements of CH4 and N2O emissions were conducted to evaluate the system-scaled GWP. The results showed that CH4 accounted for more than 98% of GWP in paddy. Straw removal from paddy decreased 44.7% (302.1 kg ha−1 yr−1) of CH4 emissions and 51.2% (0.31 kg ha−1 yr−1) of N2O emissions, thus decreased 44.8% (7693 kg CO2-eqv ha−1 yr−1) of annual GWP. N2O accounted for almost 100% of GWP in upland. Straw application in upland had insignificant effects on CH4 and N2O emissions, which increased GWP only by 91 kg CO2-eqv ha−1 yr−1. So, the transfer of straw from paddy to upland could decrease GWP by 7602 kg CO2-eqv ha−1 yr−1. Moreover, straw retention during late rice season contributed to 88.2% of annual GWP increment. It is recommended to transfer early rice straw to upland considering GWP mitigation, nutrient recycling and labor cost. PMID:27869209

  4. Mitigating effects of ex situ application of rice straw on CH4 and N2O emissions from paddy-upland coexisting system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wu, Xiaohong; Chen, Anlei; Xie, Xiaoli; Wang, Yunqiu; Yin, Chunmei

    2016-11-01

    The in situ application of rice straw enhances CH4 emissions by a large margin. The ex situ application of rice straw in uplands, however, may mitigate total global warming potential (GWP) of CH4 and N2O emissions from paddy-upland coexisting systems. To evaluate the efficiency of this practice, two field trials were conducted in rice-rice-fallow and maize-rape cropping systems, respectively. Year-round measurements of CH4 and N2O emissions were conducted to evaluate the system-scaled GWP. The results showed that CH4 accounted for more than 98% of GWP in paddy. Straw removal from paddy decreased 44.7% (302.1 kg ha-1 yr-1) of CH4 emissions and 51.2% (0.31 kg ha-1 yr-1) of N2O emissions, thus decreased 44.8% (7693 kg CO2-eqv ha-1 yr-1) of annual GWP. N2O accounted for almost 100% of GWP in upland. Straw application in upland had insignificant effects on CH4 and N2O emissions, which increased GWP only by 91 kg CO2-eqv ha-1 yr-1. So, the transfer of straw from paddy to upland could decrease GWP by 7602 kg CO2-eqv ha-1 yr-1. Moreover, straw retention during late rice season contributed to 88.2% of annual GWP increment. It is recommended to transfer early rice straw to upland considering GWP mitigation, nutrient recycling and labor cost.

  5. Improved representation of investment decisions in assessments of CO2 mitigation

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Flannery, Brian P.; Hultman, Nathan E.; McJeon, Haewon C.; Victor, David G.

    2015-05-01

    Assessments of emissions mitigation patterns have largely ignored the huge variation in real-world factors--in particular, institutions--that affect where, how and at what costs firms deploy capital. We investigate one such factor--how national institutions affect investment risks and thus the cost of financing. We use an integrated assessment model (IAM; ref. ) to represent the variation in investment risks across technologies and regions in the electricity generation sector--a pivotally important sector in most assessments of climate change mitigation--and compute the impact on the magnitude and distribution of mitigation costs. This modified representation of investment risks has two major effects. First, achieving an emissions mitigation goal is more expensive than it would be in a world with uniform investment risks. Second, industrialized countries mitigate more, and developing countries mitigate less. Here, we introduce a new front in the research on how real-world factors influence climate mitigation. We also suggest that institutional reforms aimed at lowering investment risks could be an important element of cost-effective climate mitigation strategies.

  6. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    PubMed

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-09-01

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  8. Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships

    PubMed Central

    Gately, Conor K.; Hutyra, Lucy R.; Sue Wing, Ian

    2015-01-01

    Emissions of CO2 from road vehicles were 1.57 billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions, but the spatial distributions of these emissions are highly uncertain. We develop a new emissions inventory, the Database of Road Transportation Emissions (DARTE), which estimates CO2 emitted by US road transport at a resolution of 1 km annually for 1980–2012. DARTE reveals that urban areas are responsible for 80% of on-road emissions growth since 1980 and for 63% of total 2012 emissions. We observe nonlinearities between CO2 emissions and population density at broad spatial/temporal scales, with total on-road CO2 increasing nonlinearly with population density, rapidly up to 1,650 persons per square kilometer and slowly thereafter. Per capita emissions decline as density rises, but at markedly varying rates depending on existing densities. We make use of DARTE’s bottom-up construction to highlight the biases associated with the common practice of using population as a linear proxy for disaggregating national- or state-scale emissions. Comparing DARTE with existing downscaled inventories, we find biases of 100% or more in the spatial distribution of urban and rural emissions, largely driven by mismatches between inventory downscaling proxies and the actual spatial patterns of vehicle activity at urban scales. Given cities’ dual importance as sources of CO2 and an emerging nexus of climate mitigation initiatives, high-resolution estimates such as DARTE are critical both for accurately quantifying surface carbon fluxes and for verifying the effectiveness of emissions mitigation efforts at urban scales. PMID:25847992

  9. Coupled Geochemical Impacts of Leaking CO2 and Contaminants from Subsurface Storage Reservoirs on Groundwater Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Hongbo; Qafoku, Nikolla; Lawter, Amanda R.

    2015-07-07

    The leakage of CO2 and the concomitant saline solutions from deep storage reservoirs to overlying groundwater aquifers is considered one of the major potential risks associated with geologic CO2 sequestration (GCS). Batch and column experiments were conducted to determine the fate of trace metals in groundwater in the scenarios of CO2 and metal contaminated brine leakage. The sediments used in this work were collected from an unconsolidated sand and gravel aquifer in Kansas, and contained 0-4 wt% carbonates. Cd and As were spiked into the reaction system to represent potential contaminants from the reservoir brine that could intrude into groundwatermore » aquifers with leaking CO2 at initial concentrations of 114 and 40 ppb, respectively. Through this research we demonstrated that Cd and As were adsorbed on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. Cd concentrations were well below its MCL in both batch and column studies, even for sediment samples without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent were also significantly lower than influent concentration, suggesting that the sediments tested have the capacity to mitigate the coupled adverse effects of CO2 leakage and brine intrusion. However, the mitigation capacity of sediment is a function of its geochemical properties [e.g., the calcite content; the presence of adsorbed As(III); and the presence of P in the natural sediment]. The competitive adsorption between phosphate and arsenate may result in higher concentrations of As in the aqueous phase.« less

  10. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  11. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    PubMed

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  12. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  13. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  14. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  15. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  16. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  17. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  18. Climate, Health, Agricultural and Economic Impacts of Tighter Vehicle-Emission Standards

    NASA Technical Reports Server (NTRS)

    Shindell, Drew; Faluvegi, Greg; Walsh, Michael; Anenberg, Susan C.; VanDingen, Rita; Muller, Nicholas Z.; Austin, Jeff; Koch, Dorothy; Milly, George

    2011-01-01

    Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000-280,000 avoided premature air pollution-related deaths, 6.1-19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6-2.4 trillion avoided health damage and $US1.1-4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/-0.17) C of Northern Hemisphere extratropical warming during 2040-2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.

  19. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  20. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  1. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities

    Treesearch

    Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer

    2010-01-01

    Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...

  2. Post-fire management regimes affect carbon sequestration and storage in a Sierra Nevada mixed conifer forest

    Treesearch

    Elizabeth M. Powers; John D. Marshall; Jianwei Zhang; Liang Wei

    2013-01-01

    Forests mitigate climate change by sequestering CO2 from the atmosphere and accumulating it in biomass storage pools. However, in dry conifer forests, fire occasionally returns large quantities of CO2 to the atmosphere. Both the total amount of carbon stored and its susceptibility to loss may be altered by post-fire land...

  3. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies.

    PubMed

    Quam, Vivian G M; Rocklöv, Joacim; Quam, Mikkel B M; Lucas, Rebekah A I

    2017-04-27

    This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1) active transport health co-benefits, and (2) dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA) was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE) outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s) best suit individual communities.

  4. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies

    PubMed Central

    Quam, Vivian G. M.; Rocklöv, Joacim; Quam, Mikkel B. M.; Lucas, Rebekah A. I.

    2017-01-01

    This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1) active transport health co-benefits, and (2) dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA) was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE) outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s) best suit individual communities. PMID:28448460

  5. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    NASA Astrophysics Data System (ADS)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  6. International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Christopher; Hasanbeigi, Ali; Price, Lynn

    Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part of GHG mitigation strategies, can be from between 30% to over 100% of the costs of such policies and programs strategies. Policy makers around the world are increasingly interested in including both GHG and non-GHG impacts in analyses of energy efficiency and fuel switching policies and programs and a set of methodologies has matured from the efforts of early moving jurisdictions such as the European Union, the United States, and Japan.« less

  7. Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China.

    PubMed

    Peng, Wei; Yang, Junnan; Wagner, Fabian; Mauzerall, Denise L

    2017-11-15

    China is the world's top carbon emitter and suffers from severe air pollution. We examine near-term air quality and CO 2 co-benefits of various current sector-based policies in China. Using a 2015 base case, we evaluate the potential benefits of four sectoral mitigation strategies. All scenarios include a 20% increase in conventional air pollution controls as well as the following sector-specific fuel switching or technology upgrade strategies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 10% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with stoves using liquefied petroleum gas (LPG). Conducting an integrated assessment using the regional air pollution model WRF-Chem, we find that the IND scenario reduces national air-pollution-related deaths the most of the four scenarios examined (27,000, 24,000, 13,000 and 23,000 deaths reduced annually in IND, POW, TRA and RES, respectively). In addition, the IND scenario reduces CO 2 emissions more than 8times as much as any other scenario (440, 53, 0 and 52Mt CO 2 reduced in IND, POW, TRA and RES, respectively). We also examine the benefits of an industrial efficiency improvement of just 5%. We find the resulting air quality and health benefits are still among the largest of the sectoral scenarios, while the carbon mitigation benefits remain more than 3 times larger than any other scenario. Our analysis hence highlights the importance of even modest industrial energy efficiency improvements and air pollution control technology upgrades for air quality, health and climate benefits in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel

    PubMed Central

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-01-01

    Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and efficient approach to meeting carbon mitigation targets. PMID:24882922

  9. The trade-offs between milk production and soil organic carbon storage in dairy systems under different management and environmental factors.

    PubMed

    Kirschbaum, Miko U F; Schipper, Louis A; Mudge, Paul L; Rutledge, Susanna; Puche, Nicolas J B; Campbell, David I

    2017-01-15

    A possible agricultural climate change mitigation option is to increase the amount of soil organic carbon (SOC). Conversely, some factors might lead to inadvertent losses of SOC. Here, we explore the effect of various management options and environmental changes on SOC storage and milk production of dairy pastures in New Zealand. We used CenW 4.1, a process-based ecophysiological model, to run a range of scenarios to assess the effects of changes in management options, plant properties and environmental factors on SOC and milk production. We tested the model by using 2years of observations of the exchanges of water and CO 2 measured with an eddy covariance system on a dairy farm in New Zealand's Waikato region. We obtained excellent agreement between the model and observations, especially for evapotranspiration and net photosynthesis. For the scenario analysis, we found that SOC could be increased through supplying supplemental feed, increasing fertiliser application, or increasing water availability through irrigation on very dry sites, but SOC decreased again for larger increases in water availability. Soil warming strongly reduced SOC. For other changes in key properties, such as changes in soil water-holding capacity and plant root:shoot ratios, SOC changes were often negatively correlated with changes in milk production. The work showed that changes in SOC were determined by the complex interplay between (1) changes in net primary production; (2) the carbon fraction taken off-site through grazing; (3) carbon allocation within the system between labile and stabilised SOC; and (4) changes in SOC decomposition rates. There is a particularly important trade-off between carbon either being removed by grazing or remaining on site and available for SOC formation. Changes in SOC cannot be fully understood unless all four factors are considered together in an overall assessment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO2 Reduction.

    PubMed

    Bi, Wentuan; Li, Xiaogang; You, Rui; Chen, Minglong; Yuan, Ruilin; Huang, Weixin; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2018-05-01

    Electrochemical conversion of CO 2 to value-added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion-adsorption strategy is reported to construct highly active graphene-based catalysts for CO 2 reduction to CO. The isolated transition metal cyclam-like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid-leaching procedures, this solution-chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high-efficiency catalysts for CO 2 reduction and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transforming a Liability Into An Asset-Creating a Market for CO2-based Products

    NASA Astrophysics Data System (ADS)

    David, B. J.

    2016-12-01

    This session will discuss converting CO2 from a liability into an asset. It will specifically discuss how at least 25 products can be created using CO2 as a feedstock and deployed in the market at large scale. Focus will be on products that can both achieve scale from a market standpoint as well as climate significance in use of CO2 as a feedstock. The session will describe the market drivers supporting and inhibiting commercial deployment of CO2-based products. It will list key barriers and risks in the various CO2-based product segments. These barriers/risks could occur across technology, policy, institutional, economic, and other dimensions. The means to mitigate each barrier and the likelihood for such means to be deployed will be discussed.

  12. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types for US census regions and individual states. At the national level, rural roads show a 5% higher CO2 relative fraction compared to the VMT relative fraction, mostly due to a 15% higher CO2 fraction on rural interstates as a result of a higher proportion of heavy-duty vehicles such as large trucks. The diesel vehicle fleet has a 62% higher CO2 fraction compared to VMT with the largest contributors being buses and the heaviest truck classes. The differences become larger when analyzed at the state level. For example, Tennessee has 30% higher CO2 fractions compared to VMT on rural interstates and New York has 175% higher CO2 fractions compared to VMT for the bus vehicle class. Using VMT as a proxy for CO2 emissions results in incorrect estimations of CO2 emissions because of the strong space and time variations in fleet composition and road type. At the national scale the differences among the two methods are very small, but the spatial signature of CO2 emitted by onroad traffic is very strong and highly dependent on the region which can be confirmed with atmospheric measurements from aircraft and flux towers.

  13. Carbon dioxide-selective membranes and their applications in hydrogen processing

    NASA Astrophysics Data System (ADS)

    Zou, Jian

    Fuel cells, which are regarded as a promising energy conversion approach in the 21st century, are now receiving increasing attention worldwide. In most cases, hydrogen is the preferred fuel for fuel cells, especially for proton-exchange membrane fuel cells (PEMFCs). One key issue in the development of PEMFC is how to generate hydrogen from the available hydrocarbon fuels. Most feasible strategies consist of a reforming step followed by the water gas shift (WGS) reaction. The resulting synthesis gas (syngas) still consists of 0.5--1.0% CO, which needs to be reduced to less than 10 ppm to meet the requirement of PEMFCs. Therefore, a further CO clean-up step is usually used to decrease CO concentration. In the present work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO 2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers (1 Barrer = 10-10 cm3 (STP).cm/(cm 2.s.cm.Hg)) and a CO2/H2 selectivity of 290 at 110°C. This membrane had a permeability of 1200 Barrers and a CO 2/H2 selectivity of 33 even at 170°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to less than 10 ppm. With such membranes, there are several options to reduce the CO concentration of syngas. One option is to develop a WGS membrane reactor, in which both the low temperature WGS reaction and the CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane module followed by a conventional low-temperature WGS reactor. A third option is to use methanation after the CO2-removal, one of the most widely used processes for the CO clean-up step. Experimental results showed that CO concentration was reduced to below 10 ppm with all three approaches. In the membrane reactor, a CO concentration of less than 10 ppm and a H 2 concentration of greater than 50% (on the dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5 % CO2 removed from the synthesis gas, the reversible WGS was shifted forward so that the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for PEMFC. The WGS reactor had a gas hourly space velocity of 7650 h-1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. Synthesis gas is the primary source for hydrogen as well as an intermediate for a broad range of chemicals. The separation of CO2 from synthesis gas is a critical step to obtain high purity hydrogen in many industrial plants, especially refinery plants. We studied the synthesized polymeric CO2 -selective membranes for synthesis gas purification at feed pressures higher than 200 psia and temperatures ranging from 100 to 150°C. The effects of feed pressure, microporous support, temperature, and permeate pressure were investigated using a simulated synthesis gas containing 20% carbon dioxide and 80% hydrogen. The membranes synthesized showed best CO2 permeability and CO2/H2 selectivity at 110°C. At a feed pressure of 220 psia, the CO2 permeability and CO2/H2 selectivity reached 756 Barrers and 42, respectively, whereas at a feed pressure of 440 psia, the CO2 permeability was 391 Barrers and the CO 2/H2 selectivity was about 25.

  14. Quantifying the Contribution of Urban-Industrial Efficiency and Symbiosis to Deep Decarbonization: Impact of 637 Chinese Cities

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.; Tong, K.; Fang, A.; Lal, R.; Nagpure, A.; Li, Y.; Yu, H.; Jiang, D.; Russell, A. G.; Shi, L.; Chertow, M.; Wang, Y.; Wang, S.

    2016-12-01

    Urban activities in China contribute significantly to global greenhouse gas (GHG) emissions and to local air pollution-related health risks. Co-location analysis can help inform the potential for energy- and material-exchanges across homes, businesses, infrastructure and industries co-located in cities. Such co-location dependent urban-industrial symbiosis strategies offer a new pathway toward urban energy efficiency and health that have not previously been quantified. Key examples includes the use of waste industrial heat in other co-located industries, and in residential-commercial district heating-cooling systems of cities. To quantify the impact of these strategies: (1) We develop a new data-set of 637 Chinese cities to assess the potential for efficiency and symbiosis across co-located homes, businesses, industries and the energy and construction sectors in the different cities. (2) A multi-scalar urban systems model quantifies trans-boundary CO2 impacts as well as local health benefits of these uniquely urban, co-location-dependent strategies. (3) CO2 impacts are aggregated across the 637 Chinese cities (home to 701 million people) to quantify national CO2 mitigation potential. (4) The local health benefits are modeled specific to each city and mapped geospatially to identify areas where co-benefits between GHG mitigation and health are maximized. Results: A first order conservative analysis of co-location dependent urban symbiosis indicates potential for reducing 6% of China's national total CO2 emissions in a relatively short time period, yielding a new pathway not previously considered in China's energy futures models. The magnitude of these reductions (6%) was similar in magnitude to sector specific industrial, power sector and buildings efficiency strategeies that together contributed 9% CO2 reduction aggregated across the nation. CO2 reductions mapped to the 637 cities ranged from <1% to 40%, depending upon co-location patterns, climate and other features of the cities. The modeled reductions in fossil-fuel use yield reductions in PM-2.5 emissions from <1% to 73%, depending on the city, and avoided annual mortality >40,000 premature deaths (avoided) across all cities. These results demonstrate the contribution urban symbiosis on decarbonization and health co-benefits.

  15. A wildfire risk assessment framework for land and resource management

    Treesearch

    Joe H. Scott; Matthew P. Thompson; David E. Calkin

    2013-01-01

    Wildfires can result in significant, long-lasting impacts to ecological, social, and economic systems. It is necessary, therefore, to identify and understand the risks posed by wildland fire, and to develop cost-effective mitigation strategies accordingly. This report presents a general framework with which to assess wildfire risk and explore mitigation options, and...

  16. GHG emission mitigation measures and technologies in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  17. Climate-Change Science and Policy: What Do We Know? What Should We Do

    DTIC Science & Technology

    2010-09-06

    These briefing charts discuss climate change science and policy including: the essence of the challenge, five myths and their refutations, climate ... change risks and impact going forward, available options, how much mitigation, how soon?, mitigation supply curve and its implications, and the Obama Administration’s strategy.

  18. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-11-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 - ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 - injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Global socioeconomic carbon stocks in long-lived products 1900-2008

    NASA Astrophysics Data System (ADS)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  20. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Treesearch

    Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto

    2016-01-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...

Top