NASA Astrophysics Data System (ADS)
Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting
2018-02-01
Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.
Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo
2017-11-01
The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.
CO2 Annual and Semiannual Cycles from Satellite Retrievals and Models
NASA Astrophysics Data System (ADS)
Jiang, X.; Crisp, D.; Olsen, E. T.; Kulawik, S. S.; Miller, C. E.; Pagano, T. S.; Yung, Y. L.
2014-12-01
We have compared satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) with in-situ measurements from the Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON), and utilized zonal means to characterize variability and distribution of CO2. In general, zonally averaged CO2 from the three satellite data sets are consistent with the surface and TCCON XCO2 data. Retrievals of CO2 from the three satellites show more (less) CO2 in the northern hemisphere than that in the southern hemisphere in the northern hemispheric winter (summer) season. The difference between the three satellite CO2 retrievals might be related to the different averaging kernels in the satellites CO2 retrievals. A multiple regression method was used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different satellite CO2 retrievals. The CO2 annual cycle and semiannual cycle amplitudes are largest at the surface, as seen in the NOAA-ESRL CO2 data sets. The CO2 annual cycle and semiannual cycle amplitudes in the GOSAT XCO2, AIRS mid-tropospheric CO2, and TES mid-tropospheric CO2 are smaller compared with those from the surface CO2. Similar regression analysis was applied to the Model for OZone And Related chemical Tracers-2 (MOZART-2) and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the model tends to under-estimate the CO2 seasonal cycle amplitudes in the northern hemisphere mid-latitudes from the comparison with GOSAT and TES CO2 and underestimate the CO2 semi-annual cycle amplitudes in the high latitudes from the comparison with AIRS CO2. The difference between model and satellite CO2 can be used to identify possible deficiency in the model and improve the model in the future.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.
2014-09-01
Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining the two modeling approaches and assimilating data of surface carbon flux as well as atmospheric CO2 mixing ratios might significantly improve the quantification of terrestrial carbon fluxes.
NASA Astrophysics Data System (ADS)
Mohammadian, E.; Hamidi, H.; Azdarpour, A.
2018-05-01
CO2 sequestration is considered as one of the most anticipated methods to mitigate CO2 concentration in the atmosphere. Solubility mechanism is one of the most important and sophisticated mechanisms by which CO2 is rendered immobile while it is being injected into aquifers. A semi-empirical, easy to use model was developed to calculate the solubility of CO2 in NaCl brines with thermodynamic conditions (pressure, temperature) and salinity gradients representative CO2 sequestration in the Malay basin. The model was compared to the previous more sophisticated models and a good consistency was found among the data obtained using the two models. A Sensitivity analysis was also conducted on the model to test its performance beyond its limits.
NASA Astrophysics Data System (ADS)
Kleinen, Thomas; Brovkin, Victor; Munhoven, Guy
2016-11-01
Trends in the atmospheric concentration of CO2 during three recent interglacials - the Holocene, the Eemian and Marine Isotope Stage (MIS) 11 - are investigated using an earth system model of intermediate complexity, which we extended with process-based modules to consider two slow carbon cycle processes - peat accumulation and shallow-water CaCO3 sedimentation (coral reef formation). For all three interglacials, model simulations considering peat accumulation and shallow-water CaCO3 sedimentation substantially improve the agreement between model results and ice core CO2 reconstructions in comparison to a carbon cycle set-up neglecting these processes. This enables us to model the trends in atmospheric CO2, with modelled trends similar to the ice core data, forcing the model only with orbital and sea level changes. During the Holocene, anthropogenic CO2 emissions are required to match the observed rise in atmospheric CO2 after 3 ka BP but are not relevant before this time. Our model experiments show a considerable improvement in the modelled CO2 trends by the inclusion of the slow carbon cycle processes, allowing us to explain the CO2 evolution during the Holocene and two recent interglacials consistently using an identical model set-up.
Improved simulation of regional CO2 surface concentrations using GEOS-Chem and fluxes from VEGAS
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Zhu, J.; Zeng, N.
2013-08-01
CO2 measurements have been combined with simulated CO2 distributions from a transport model in order to produce the optimal estimates of CO2 surface fluxes in inverse modeling. However, one persistent problem in using model-observation comparisons for this goal relates to the issue of compatibility. Observations at a single station reflect all underlying processes of various scales. These processes usually cannot be fully resolved by model simulations at the grid points nearest the station due to lack of spatial or temporal resolution or missing processes in the model. In this study the stations in one region were grouped based on the amplitude and phase of the seasonal cycle at each station. The regionally averaged CO2 at all stations in one region represents the regional CO2 concentration of this region. The regional CO2 concentrations from model simulations and observations were used to evaluate the regional model results. The difference of the regional CO2 concentration between observation and modeled results reflects the uncertainty of the large-scale flux in the region where the grouped stations are. We compared the regional CO2 concentrations between model results with biospheric fluxes from the Carnegie-Ames-Stanford Approach (CASA) and VEgetation-Global-Atmosphere-Soil (VEGAS) models, and used observations from GLOBALVIEW-CO2 to evaluate the regional model results. The results show the largest difference of the regionally averaged values between simulations with fluxes from VEGAS and observations is less than 5 ppm for North American boreal, North American temperate, Eurasian boreal, Eurasian temperate and Europe, which is smaller than the largest difference between CASA simulations and observations (more than 5 ppm). There is still a large difference between two model results and observations for the regional CO2 concentration in the North Atlantic, Indian Ocean, and South Pacific tropics. The regionally averaged CO2 concentrations will be helpful for comparing CO2 concentrations from modeled results and observations and evaluating regional surface fluxes from different methods.
Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai
2018-01-01
Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.
The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2
NASA Astrophysics Data System (ADS)
Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.
2009-12-01
A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further attests to the need for remotely sensed CO2 observations from space.
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Three dimensional global modeling of atmospheric CO2
NASA Technical Reports Server (NTRS)
Fung, I.; Hansen, J.; Rind, D.
1983-01-01
A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.
2017-01-01
Several reactions, known from other amine systems for CO2 capture, have been proposed for Lewatit R VP OC 1065. The aim of this molecular modeling study is to elucidate the CO2 capture process: the physisorption process prior to the CO2-capture and the reactions. Molecular modeling yields that the resin has a structure with benzyl amine groups on alternating positions in close vicinity of each other. Based on this structure, the preferred adsorption mode of CO2 and H2O was established. Next, using standard Density Functional Theory two catalytic reactions responsible for the actual CO2 capture were identified: direct amine and amine-H2O catalyzed formation of carbamic acid. The latter is a new type of catalysis. Other reactions are unlikely. Quantitative verification of the molecular modeling results with known experimental CO2 adsorption isotherms, applying a dual site Langmuir adsorption isotherm model, further supports all results of this molecular modeling study. PMID:29142339
NASA Astrophysics Data System (ADS)
Jia, W.; Pan, F.; McPherson, B. J. O. L.
2015-12-01
Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.
Li, Frank Yonghong; Newton, Paul C D; Lieffering, Mark
2014-01-01
Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
NASA Astrophysics Data System (ADS)
Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.
2017-12-01
Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.
NASA Astrophysics Data System (ADS)
Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.
2011-04-01
Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free-troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. The models consistently underestimated the north-tropics mean gradient of CO2 both in the free-troposphere and marine boundary layer during boreal summer. This result suggests that the north-tropics contrast of annual mean net non-fossil CO2 flux should be greater than 2.7 Pg C yr-1 for 2007.
Sivaramakrishnan, Shyam; Rajamani, Rajesh; Johnson, Bruce D
2009-01-01
Respiratory CO(2) measurement (capnography) is an important diagnosis tool that lacks inexpensive and wearable sensors. This paper develops techniques to enable use of inexpensive but slow CO(2) sensors for breath-by-breath tracking of CO(2) concentration. This is achieved by mathematically modeling the dynamic response and using model-inversion techniques to predict input CO(2) concentration from the slow-varying output. Experiments are designed to identify model-dynamics and extract relevant model-parameters for a solidstate room monitoring CO(2) sensor. A second-order model that accounts for flow through the sensor's filter and casing is found to be accurate in describing the sensor's slow response. The resulting estimate is compared with a standard-of-care respiratory CO(2) analyzer and shown to effectively track variation in breath-by-breath CO(2) concentration. This methodology is potentially useful for measuring fast-varying inputs to any slow sensor.
Modeling Silicate Weathering for Elevated CO2 and Temperature
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2016-12-01
A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.
NASA Astrophysics Data System (ADS)
Heimann, M.; Prentice, I. C.; Foley, J.; Hickler, T.; Kicklighter, D. W.; McGuire, A. D.; Melillo, J. M.; Ramankutty, N.; Sitch, S.
2001-12-01
Models of biophysical and biogeochemical proceses are being used -either offline or in coupled climate-carbon cycle (C4) models-to assess climate- and CO2-induced feedbacks on atmospheric CO2. Observations of atmospheric CO2 concentration, and supplementary tracers including O2 concentrations and isotopes, offer unique opportunities to evaluate the large-scale behaviour of models. Global patterns, temporal trends, and interannual variability of the atmospheric CO2 concentration and its seasonal cycle provide crucial benchmarks for simulations of regionally-integrated net ecosystem exchange; flux measurements by eddy correlation allow a far more demanding model test at the ecosystem scale than conventional indicators, such as measurements of annual net primary production; and large-scale manipulations, such as the Duke Forest Free Air Carbon Enrichment (FACE) experiment, give a standard to evaluate modelled phenomena such as ecosystem-level CO2 fertilization. Model runs including historical changes of CO2, climate and land use allow comparison with regional-scale monthly CO2 balances as inferred from atmospheric measurements. Such comparisons are providing grounds for some confidence in current models, while pointing to processes that may still be inadequately treated. Current plans focus on (1) continued benchmarking of land process models against flux measurements across ecosystems and experimental findings on the ecosystem-level effects of enhanced CO2, reactive N inputs and temperature; (2) improved representation of land use, forest management and crop metabolism in models; and (3) a strategy for the evaluation of C4 models in a historical observational context.
Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2
NASA Astrophysics Data System (ADS)
Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.
2017-12-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different biospheric CO2 flux models. This work will improve our understanding of the global carbon cycle, specifically, how OCO-2 observations can be used to constrain biospheric CO2 flux model estimates.
NASA Astrophysics Data System (ADS)
Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.
2015-12-01
We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1% of observed annual budgets of CO2 and CH4, respectively). The use of multiple data streams is critical for constraining parameters and reducing uncertainty in model predictions, thereby providing accurate simulation of greenhouse gas exchange in a wetland restoration project with implications for C market-funded wetland restoration worldwide.
NASA Technical Reports Server (NTRS)
Johnson, Barry
1992-01-01
The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.
Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.
The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisonsmore » with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.« less
NASA Astrophysics Data System (ADS)
Akasaka, Ryo
This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.
NASA Astrophysics Data System (ADS)
Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.
2011-12-01
Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.
Development of WRF-CO2 4DVAR Data Assimilation System
NASA Astrophysics Data System (ADS)
Zheng, T.; French, N. H. F.
2016-12-01
Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.
NASA Astrophysics Data System (ADS)
Saeki, Tazu; Patra, Prabir K.
2017-12-01
Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.
CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study
NASA Astrophysics Data System (ADS)
Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing
2016-07-01
Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.
The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Erickson III, David J; Blasing, T J
A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO{sub 2} by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO{sub 2} flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO{sub 2} flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO{sub 2} seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonallymore » adjust the global annual fossil fuel CO{sub 2} emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO{sub 2} concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO{sub 2} between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO{sub 2} seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO{sub 2} concentrations depend strongly on the natural sources and sinks of CO{sub 2}, but also on the strength of local anthropogenic CO{sub 2} emissions and geographic position. This work further attests to the need for remotely sensed CO{sub 2} observations from space.« less
Predictive modelling of Ketzin - CO2 arrival in the observation well
NASA Astrophysics Data System (ADS)
Kühn, M.; Class, H.; Frykman, P.; Kopp, A.; Nielsen, C. M.; Probst, P.
2009-04-01
The design of the Ketzin CO2 storage site allows testing of different modelling approaches, ranging from analytical approaches to finite element modelling. As three wells are drilled in an L-shape configuration, 3D geophysical observations (electrical resistivity, seismic imaging - for details see further presentations at EGU2009) allow to determine the 4D evolvement of the CO2 plume within the reservoir. Further information is available through smart casing technologies (DTS, ERT), conventional fluid, and permanent gas sampling. As input parameters for the models, a high resolution 3D seismic as well as detailed analysed core samples from all three wells at Ketzin were available. Logging data and laboratory experiments on rock samples act as further boundary conditions for the geological model. Hydraulic testing of all three wells gave further information about the complex hydraulic situation of the highly heterogeneous reservoir. Before CO2 injection started at the Ketzin site on the 30th of June 2008 any member of the CO2SINK project was asked to place a bet in a competition and predict when the CO2 arrival in the observation well - 50 m away from the injection site - is to be expected. This allows for a double blind study, the approval of different modelling strategies, and to improve modelling tools and strategies. The discussed estimates are based on three different numerical models. Eclipse100, Eclipse300 (CO2STORE) and MUFTE-UG were applied for predictive modelling. The geological models are based on all available geophysical and geological information. We present the results of this modelling exercise and discuss the differences of all the models and assess the capability of numerical simulation to estimate processes occurring during CO2 storage. The role of grid size on the precision of the modelled two phase fluid flow in a layered reservoir is demonstrated, as a high resolution model of the two phase flow explains the observed arrival of the CO2 very well. All used models are capable to predict the arrival of the CO2 quite well. However, history matching of the models and comparison to the derived evolution of the CO2 cloud over time and space will help to better understand and constrain the processes involved within the reservoir and to optimize the modelling tools. Last but not least - within the described competition, the best forecast of all was achieved by a modeller.
NASA Astrophysics Data System (ADS)
Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.
2014-02-01
Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.
NASA Technical Reports Server (NTRS)
Philip, Sajeev; Johnson, Matthew S.
2018-01-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.
Duan, Zhenhao; Sun, R.; Zhu, Chen; Chou, I.-Ming
2006-01-01
An improved model is presented for the calculation of the solubility of carbon dioxide in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42- in a wide temperature-pressure-ionic strength range (from 273 to 533 K, from 0 to 2000 bar, and from 0 to 4.5 molality of salts) with experimental accuracy. The improvements over the previous model [Duan, Z. and Sun, R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533K and from 0 to 2000 bar. Chemical Geology, 193: 257-271] include: (1) By developing a non-iterative equation to replace the original equation of state in the calculation of CO 2 fugacity coefficients, the new model is at least twenty times computationally faster and can be easily adapted to numerical reaction-flow simulator for such applications as CO2 sequestration and (2) By fitting to the new solubility data, the new model improved the accuracy below 288 K from 6% to about 3% of uncertainty but still retains the high accuracy of the original model above 288 K. We comprehensively evaluate all experimental CO2 solubility data. Compared with these data, this model not only reproduces all the reliable data used for the parameterization but also predicts the data that were not used in the parameterization. In order to facilitate the application to CO2 sequestration, we also predicted CO2 solubility in seawater at two-phase coexistence (vapor-liquid or liquid-liquid) and at three-phase coexistence (CO2 hydrate-liquid water-vapor CO2 [or liquid CO2]). The improved model is programmed and can be downloaded from the website http://www.geochem-model.org/programs.htm. ?? 2005 Elsevier B.V. All rights reserved.
Modeling pCO2 variability in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Huang, W.-J.; Tian, H.
2014-08-01
A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.
Modeling pCO2 Variability in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.
2014-12-01
A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.
2015-07-01
CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October-November contributed about one third of the annual total.
NASA Astrophysics Data System (ADS)
Siqueira, M. B.; Katul, G. G.
2009-12-01
A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured CO2 profiles reference to the uppermost measured point for TF and RC, respectively.
Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A
2014-04-01
Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled and studied on continental to global scales to understand the global carbon cycle. This work demonstrates the potential of modeling and studying CO2 variability at fine spatiotemporal scales with CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO2 emissions. Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO2 as an air pollutant.
QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA
NASA Astrophysics Data System (ADS)
Zhi, Hui; Zheng, Junxia; Chang, Yiqun; Li, Qingguo; Liao, Guochao; Wang, Qi; Sun, Pinghua
2015-10-01
Forty-six sodium-dependent glucose cotransporters-2 (SGLT-2) inhibitors with hypoglycemic activity were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. A training set of 39 compounds were used to build up the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 7 compounds was used for the external validation. The CoMFA model predicted a q2 value of 0.792 and an r2 value of 0.985. The best CoMSIA model predicted a q2 value of 0.633 and an r2 value of 0.895 based on a combination of steric, electrostatic, hydrophobic and hydrogen-bond acceptor effects. The predictive correlation coefficients (rpred2) of CoMFA and CoMSIA models were 0.872 and 0.839, respectively. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active sglt inhibitors, and on the basis of the models 8 new sglt inhibitors were designed and predicted.
NASA Astrophysics Data System (ADS)
Gersch, Alan M.; Feaga, Lori M.; A’Hearn, Michael F.
2018-02-01
We have adapted Coupled Escape Probability, a new exact method of solving radiative transfer problems, for use in asymmetrical spherical situations for use in modeling optically thick cometary comae. Here we present the extension of our model and corresponding results for two additional primary volatile species of interest, H2O and CO2, in purely theoretical comets. We also present detailed modeling and results for the specific examples of CO, H2O, and CO2 observations of C/2009 P1 Garradd by the Deep Impact flyby spacecraft.
NASA Astrophysics Data System (ADS)
Herbst, M.; Hellebrand, H. J.; Bauer, J.; Vanderborght, J.; Vereecken, H.
2006-12-01
The modelling of soil respiration plays an important role in the prediction of climate change. Soil respiration is usually divided in autotrophic and heterotrophic fractions orginating from root respiration and microbial decomposition of soil organic carbon, respectively. We report on the coupling of a one dimensional water, heat and CO2 flux model (SOILCO2) with a model of carbon turnover (RothC) for the prediction of soil heterotrophic respiration. The coupled model was tested using soil temperature, soil moisture, and CO2 flux measurements in a bare soil experimental plot located in Bornim, Germany. A seven year record of soil and CO2 measurements covering a broad range of atmospheric and soil conditions was availabe to evaluate the model performance. After calibrating the decomposition rate constant of the humic fraction pool, the overall model performance on CO2 efflux prediction was acceptable. The root mean square error for the CO2 efflux prediction was 0.12 cm ³/cm ²/d. During the severe summer draught of 2003 very high CO2 efluxes were measured, which could not be explained by the model. Those high fluxes were attributed to a pressure pumping effect. The soil temperature dependency of CO2 production was well described by th e model, whereas the biggest opportunity for improvement is seen in a better description of the soil moisture dependency of CO2 production. The calibration of the humus decomposition rate constant revealed a value of 0.09 1/d, which is higher than the original value suggested by the RothC model developers but within the range of literature values.
Kicklighter, D.W.; Bruno, M.; Donges, S.; Esser, G.; Heimann, Martin; Helfrich, J.; Ift, F.; Joos, F.; Kaduk, J.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.M.; Meyer, R.; Moore, B.; Nadler, A.; Prentice, I.C.; Sauf, W.; Schloss, A.L.; Sitch, S.; Wittenberg, U.; Wurth, G.
1999-01-01
We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990 to 2300) changes of atmospheric CO2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial Ecosystem Model (TEM). The results of the model intercomparison suggest that CO2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called 'missing carbon sink' of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystems experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO2 fertilization on terrestrial carbon storage.
Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C
2017-07-01
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO 2 in individual models. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Keeling, Charles D.; Piper, S. C.
1998-01-01
Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.
Does Terrestrial Carbon Explain Lake Superior Model-Data pCO2 Discrepancy?
NASA Astrophysics Data System (ADS)
Bennington, V.; McKinley, G. A.; Atilla, N.; Kimura, N.; Urban, N.; Wu, C.; Desai, A.
2008-12-01
As part of the CyCLeS project, a three-dimensional hydrodynamic model (MITgcm) was coupled to a medium- complexity ecosystem model and applied to Lake Superior in order to constrain the seasonal cycle of lake pCO2 and air-lake fluxes of CO2. Previous estimates of CO2 emissions from the lake, while very large, were based on field measurements of very limited spatial and temporal extent. The model allows a more realistic extrapolation from the limited data by incorporation of lake-wide circulation and food web dynamics. A large discrepancy (200 uatm) between observations and model-predicted pCO2 during spring suggests a significant input of terrestrial carbon into the lake. The physical model has 10-km horizontal resolution with 29 vertical layers, ten of which are in the top 50 m of the water column. The model is forced by interpolated meteorological data obtained from land-based weather stations, buoys, and other measurements. Modeled surface temperatures compare well to satellite- based surface water temperature images derived from NOAA AVHRR (Advanced Very High Resolution Radiometer), though there are regional patterns of bias that suggest errors in the heat flux forcing. Growth of two classes of phytoplankton is modeled as a function of temperature, light, and nutrients. One grazer preys upon all phytoplankton. The cycles of carbon and phosphorous are explicitly modeled throughout the water column. The model is able to replicate the observed seasonal cycle of lake chlorophyll and the deep chlorophyll maximum. The model is unable to capture the magnitude of observed CO2 super-saturation during spring without considering external carbon inputs to the lake. Simple box model results suggest that the estimated pool of terrestrial carbon in the lake (17 TgC) must remineralize with a timescale of months during spring in order to account for the model/data pCO2 difference. River inputs and enhanced remineralization in spring due to photo-oxidation are other mechanisms considered to explain the discrepancy between model predictions and observations of pCO2. Model results suggest that year-round and lake-wide direct measurements of pCO2 would help to better constrain the lake carbon cycle.
NASA Astrophysics Data System (ADS)
Stewart, E. M.; Ague, Jay J.
2018-05-01
We undertake thermodynamic pseudosection modeling of metacarbonate rocks in the Wepawaug Schist, Connecticut, USA, and examine the implications for CO2 outgassing from collisional orogenic belts. Two broad types of pseudosections are calculated: (1) a fully closed-system model with no fluid infiltration and (2) a fluid-buffered model including an H2O-CO2 fluid of a fixed composition. This fluid-buffered model is used to approximate a system open to infiltration by a water-bearing fluid. In all cases the fully closed-system model fails to reproduce the observed major mineral zones, mineral compositions, reaction temperatures, and fluid compositions. The fluid-infiltrated models, on the other hand, successfully reproduce these observations when the XCO2 of the fluid is in the range ∼0.05 to ∼0.15. Fluid-infiltrated models predict significant progressive CO2 loss, peaking at ∼50% decarbonation at amphibolite facies. The closed-system models dramatically underestimate the degree of decarbonation, predicting only ∼15% CO2 loss at peak conditions, and, remarkably, <1% CO2 loss below ∼600 °C. We propagate the results of fluid-infiltrated pseudosections to determine an areal CO2 flux for the Wepawaug Schist. This yields ∼1012 mol CO2 km-2 Myr-1, consistent with multiple independent estimates of the metamorphic CO2 flux, and comparable in magnitude to fluxes from mid-ocean ridges and volcanic arcs. Extrapolating to the area of the Acadian orogenic belt, we suggest that metamorphic CO2 degassing is a plausible driver of global warming, sea level rise, and, perhaps, extinction in the mid- to late-Devonian.
Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Verboven, Pieter; Nicolaï, Bart M.
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters. PMID:28880924
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Retta, Moges A; Verboven, Pieter; Nicolaï, Bart M; Struik, Paul C
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Variability of pCO2 in surface waters and development of prediction model.
Chung, Sewoong; Park, Hyungseok; Yoo, Jisu
2018-05-01
Inland waters are substantial sources of atmospheric carbon, but relevant data are rare in Asian monsoon regions including Korea. Emissions of CO 2 to the atmosphere depend largely on the partial pressure of CO 2 (pCO 2 ) in water; however, measured pCO 2 data are scarce and calculated pCO 2 can show large uncertainty. This study had three objectives: 1) to examine the spatial variability of pCO 2 in diverse surface water systems in Korea; 2) to compare pCO 2 calculated using pH-total alkalinity (Alk) and pH-dissolved inorganic carbon (DIC) with pCO 2 measured by an in situ submersible nondispersive infrared detector; and 3) to characterize the major environmental variables determining the variation of pCO 2 based on physical, chemical, and biological data collected concomitantly. Of 30 samples, 80% were found supersaturated in CO 2 with respect to the overlying atmosphere. Calculated pCO 2 using pH-Alk and pH-DIC showed weak prediction capability and large variations with respect to measured pCO 2 . Error analysis indicated that calculated pCO 2 is highly sensitive to the accuracy of pH measurements, particularly at low pH. Stepwise multiple linear regression (MLR) and random forest (RF) techniques were implemented to develop the most parsimonious model based on 10 potential predictor variables (pH, Alk, DIC, Uw, Cond, Turb, COD, DOC, TOC, Chla) by optimizing model performance. The RF model showed better performance than the MLR model, and the most parsimonious RF model (pH, Turb, Uw, Chla) improved pCO 2 prediction capability considerably compared with the simple calculation approach, reducing the RMSE from 527-544 to 105μatm at the study sites. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Zhu, J.; Zeng, N.
2013-01-01
CO2 measurements have been combined with simulated CO2 distributions from a transport model in order to produce the optimal estimates of CO2 surface fluxes in inverse modeling. However one persistent problem in using model-observation comparisons for this goal relates to the issue of compatibility. Observations at a single site reflect all underlying processes of various scales that usually cannot be fully resolved by model simulations at the grid points nearest the site due to lack of spatial or temporal resolution or missing processes in models. In this article we group site observations of multiple stations according to atmospheric mixing regimes and surface characteristics. The group averaged values of CO2 concentration from model simulations and observations are used to evaluate the regional model results. Using the group averaged measurements of CO2 reduces the noise of individual stations. The difference of group averaged values between observation and modeled results reflects the uncertainties of the large scale flux in the region where the grouped stations are. We compared the group averaged values between model results with two biospheric fluxes from the model Carnegie-Ames-Stanford-Approach (CASA) and VEgetation-Global-Atmosphere-Soil (VEGAS) and observations to evaluate the regional model results. Results show that the modeling group averaged values of CO2 concentrations in all regions with fluxes from VEGAS have significant improvements for most regions. There is still large difference between two model results and observations for grouped average values in North Atlantic, Indian Ocean, and South Pacific Tropics. This implies possible large uncertainties in the fluxes there.
Coupled thermal–hydrological–mechanical modeling of CO 2 -enhanced coalbed methane recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.
CO 2 -enhanced coalbed methane recovery, also known as CO 2 -ECBM, is a potential win-win approach for enhanced methane production while simultaneously sequestering injected anthropogenic CO 2 to decrease CO 2 emissions into the atmosphere. Here, CO 2 -ECBM is simulated using a coupled thermal–hydrological–mechanical (THM) numerical model that considers multiphase (gas and water) flow and solubility, multicomponent (CO 2 and CH 4 ) diffusion and adsorption, heat transfer and coal deformation. The coupled model is based on the TOUGH-FLAC simulator, which is applied here for the first time to model CO 2 -ECBM. The capacity of the simulatormore » for modeling methane production is verified by a code-to-code comparison with the general-purpose finite-element solver COMSOL. Then, the TOUGH-FLAC simulator is applied in an isothermal simulation to study the variations in permeability evolution during a CO 2 -ECBM operation while considering four different stress-dependent permeability models that have been implemented into the simulator. Finally, the TOUGH-FLAC simulator is applied in non-isothermal simulations to model THM responses during a CO 2 -ECBM operation.Our simulations show that the permeability evolution, mechanical stress, and deformation are all affected by changes in pressure, temperature and adsorption swelling, with adsorption swelling having the largest effect. The calculated stress changes do not induce any mechanical failure in the coal seam, except near the injection well in one case of a very unfavorable stress field.« less
Coupled thermal–hydrological–mechanical modeling of CO 2 -enhanced coalbed methane recovery
Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.; ...
2017-05-22
CO 2 -enhanced coalbed methane recovery, also known as CO 2 -ECBM, is a potential win-win approach for enhanced methane production while simultaneously sequestering injected anthropogenic CO 2 to decrease CO 2 emissions into the atmosphere. Here, CO 2 -ECBM is simulated using a coupled thermal–hydrological–mechanical (THM) numerical model that considers multiphase (gas and water) flow and solubility, multicomponent (CO 2 and CH 4 ) diffusion and adsorption, heat transfer and coal deformation. The coupled model is based on the TOUGH-FLAC simulator, which is applied here for the first time to model CO 2 -ECBM. The capacity of the simulatormore » for modeling methane production is verified by a code-to-code comparison with the general-purpose finite-element solver COMSOL. Then, the TOUGH-FLAC simulator is applied in an isothermal simulation to study the variations in permeability evolution during a CO 2 -ECBM operation while considering four different stress-dependent permeability models that have been implemented into the simulator. Finally, the TOUGH-FLAC simulator is applied in non-isothermal simulations to model THM responses during a CO 2 -ECBM operation.Our simulations show that the permeability evolution, mechanical stress, and deformation are all affected by changes in pressure, temperature and adsorption swelling, with adsorption swelling having the largest effect. The calculated stress changes do not induce any mechanical failure in the coal seam, except near the injection well in one case of a very unfavorable stress field.« less
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
NASA Technical Reports Server (NTRS)
Durand, Jean-Louis; Delusca, Kenel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Weigel, Hans Johachim; Ruane, Alexander Clark; Rosenzweig, Cynthia E.; Jones, Jim; Ahuja, Laj;
2017-01-01
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration [CO2] on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50 percent of models within a range of plus/minus 1 Mg ha(exp. -1) around the mean. The bias of the median of the 21 models was less than 1 Mg ha(exp. -1). However under water deficit in one of the two years, the models captured only 30 percent of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.
Atmospheric inversion of the surface CO2 flux with 13CO2 constraint
NASA Astrophysics Data System (ADS)
Chen, J. M.; Mo, G.; Deng, F.
2013-10-01
Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.
Informing climate models with rapid chamber measurements of forest carbon uptake.
Metcalfe, Daniel B; Ricciuto, Daniel; Palmroth, Sari; Campbell, Catherine; Hurry, Vaughan; Mao, Jiafu; Keel, Sonja G; Linder, Sune; Shi, Xiaoying; Näsholm, Torgny; Ohlsson, Klas E A; Blackburn, M; Thornton, Peter E; Oren, Ram
2017-05-01
Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support - diversion of excess carbon to storage compounds - into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. © 2016 John Wiley & Sons Ltd.
Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.
2015-12-01
Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the possibilities of future carbon-climate interactions, especially in historically under-observed regions like the Amazon.
NASA Astrophysics Data System (ADS)
Peng, Jing; Dan, Li; Dong, Wenjie
2014-01-01
Three coupled climate-carbon cycle models including CESM (Community Earth System Model), CanEsm (the Canadian Centre for Climate Modelling and Analysis Earth System Model) and BCC (Beijing Climate Center Climate System Model) were used to estimate whether changes in land hydrological cycle responded to the interactive effects of CO2-physiological forcing and CO2-radiative forcing. No signs could be indicated that the interactive effects of CO2-physiological forcing and CO2-radiative forcing on the hydrological variables (e.g. precipitation, evapotranspiration and runoff) were detected at global and regional scales. For each model, increases in precipitation, evapotranspiration and runoff (e.g. 0.37, 0.18 and 0.25 mm/year2) were simulated in response to CO2-radiative forcing (experiment M3). Decreases in precipitation and evapotranspiration (about - 0.02 and - 0.09 mm/year2) were captured if the CO2 physiological effect was only accounted for (experiment M2). In this experiment, a reverse sign in runoff (the increase of 0.08 mm/year2) in contrast to M3 is presented. All models simulated the same signs across Eastern Asia in response to the CO2 physiological forcing and radiative forcing: increases in precipitation and evapotranspiration only considering greenhouse effect; reductions in precipitation and evapotranspiration in response to CO2-physiological effect; and enhanced trends in runoff from all experiments. However, there was still a large uncertainty on the magnitude of the effect of transpiration on runoff (decreased transpiration accounting for 8% to 250% of the increased runoff) from the three models. Two models (CanEsm and BCC) attributed most of the increase in runoff to the decrease in transpiration if the CO2-physiological effect was only accounted for, whereas CESM exhibited that the decrease in transpiration could not totally explain the increase in runoff. The attribution of the CO2-physiological forcing to changes in stomatal conductance versus changes in vegetation structure (e.g. increased Leaf Area Index) is an issue to discuss, and among the three models, no agreement appeared.
Yu, Shuling; Yuan, Jintao; Zhang, Yi; Gao, Shufang; Gan, Ying; Han, Meng; Chen, Yuewen; Zhou, Qiaoqiao; Shi, Jiahua
2017-06-01
Sodium-glucose cotransporter 2 (SGLT2) is a promising target for diabetes therapy. We aimed to develop computational approaches to identify structural features for more potential SGLT2 inhibitors. In this work, 46 triazole derivatives as SGLT2 inhibitors were studied using a combination of several approaches, including hologram quantitative structure-activity relationships (HQSAR), topomer comparative molecular field analysis (CoMFA), homology modeling, and molecular docking. HQSAR and topomer CoMFA were used to construct models. Molecular docking was conducted to investigate the interaction of triazole derivatives and homology modeling of SGLT2, as well as to validate the results of the HQSAR and topomer CoMFA models. The most effective HQSAR and topomer CoMFA models exhibited noncross-validated correlation coefficients of 0.928 and 0.891 for the training set, respectively. External predictions were made successfully on a test set and then compared with previously reported models. The graphical results of HQSAR and topomer CoMFA were proven to be consistent with the binding mode of the inhibitors and SGLT2 from molecular docking. The models and docking provided important insights into the design of potent inhibitors for SGLT2.
CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection
NASA Astrophysics Data System (ADS)
gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi
2014-05-01
The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to design adapted detection and monitoring strategies of early leakage in commercial CO2 storage. The presence of soils with different compactions at surface influences the CO2 dispersion. The inclusion of soils with different permeability, porosity and liquid saturation results in preferential pathways. The formation of preferential pathways in the soil and hot spots on the surface has commonly been observed in natural systems where deep CO2 fluxes interact with shallow aquifers. Increase of ambient temperature increases CO2 fluxes intensity whereas rainfall decreases CO2 emission in gas phase and trap it as aqueous species in the porous media of the soil. A good accuracy has been obtained for surface CO2 fluxes location and intensity between experimental and modelling results taking into account the selected equation of state, the soil characteristics and the operational conditions. Phenomena of compaction and preferential pathways located only in the first centimetres of the soil can explain the heterogeneity of CO2 fluxes in the 16 m2 surface area of PISCO2 experimental platform.
He, Qin; Mohaghegh, Shahab D.; Gholami, Vida
2013-01-01
CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches for bothmore » CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less
NASA Astrophysics Data System (ADS)
Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.
2016-12-01
The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.
Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming
2007-01-01
Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.
Yin, Xinyou
2013-01-01
Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883
Historical emissions critical for mapping decarbonization pathways
NASA Astrophysics Data System (ADS)
Majkut, J.; Kopp, R. E.; Sarmiento, J. L.; Oppenheimer, M.
2016-12-01
Policymakers have set a goal of limiting temperature increase from human influence on the climate. This motivates the identification of decarbonization pathways to stabilize atmospheric concentrations of CO2. In this context, the future behavior of CO2 sources and sinks define the CO2 emissions necessary to meet warming thresholds with specified probabilities. We adopt a simple model of the atmosphere-land-ocean carbon balance to reflect uncertainty in how natural CO2 sinks will respond to increasing atmospheric CO2 and temperature. Bayesian inversion is used to estimate the probability distributions of selected parameters of the carbon model. Prior probability distributions are chosen to reflect the behavior of CMIP5 models. We then update these prior distributions by running historical simulations of the global carbon cycle and inverting with observationally-based inventories and fluxes of anthropogenic carbon in the ocean and atmosphere. The result is a best-estimate of historical CO2 sources and sinks and a model of how CO2 sources and sinks will vary in the future under various emissions scenarios, with uncertainty. By linking the carbon model to a simple climate model, we calculate emissions pathways and carbon budgets consistent with meeting specific temperature thresholds and identify key factors that contribute to remaining uncertainty. In particular, we show how the assumed history of CO2 emissions from land use change (LUC) critically impacts estimates of the strength of the land CO2 sink via CO2 fertilization. Different estimates of historical LUC emissions taken from the literature lead to significantly different parameterizations of the carbon system. High historical CO2 emissions from LUC lead to a more robust CO2 fertilization effect, significantly lower future atmospheric CO2 concentrations, and an increased amount of CO2 that can be emitted to satisfy temperature stabilization targets. Thus, in our model, historical LUC emissions have a significant impact on allowable carbon budgets under temperture targets.
Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?
NASA Astrophysics Data System (ADS)
Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo
2017-12-01
Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0.10 μatm, MR of 1.001 and 1.000, respectively. A sensitivity analysis was conducted to study the uncertainties in the predicted pCO2 as a result of the uncertainties in the input variables of each model. Although the MeSAA was more sensitive to variations in SST and CHL than in sea surface salinity (SSS), and the locally tuned MeSAA and the empirical regression models were more sensitive to changes in SST and SSS than in CHL, generally for these three models the bias induced by the uncertainties in the empirically derived parameters (river endmember total alkalinity (TA) and dissolved inorganic carbon (DIC), biological coefficient of the MeSAA and locally tuned MeSAA models) and environmental variables (SST, SSS, CHL) was within or close to the uncertainty of each model. While all these three models showed that surface pCO2 was positively correlated to SST, the MeSAA showed negative correlation between surface pCO2 and SSS and CHL but the locally tuned MeSAA and the empirical regression showed the opposite. These results suggest that the locally tuned MeSAA worked better in the river-dominated northern GOM than the original MeSAA, with slightly worse statistics but more meaningful physical and biogeochemical interpretations than the empirical regression model. Because data from abnormal upwelling were not used to train the models, they are not applicable for waters with strong upwelling, yet the empirical regression approach showed ability to be further tuned to adapt to such cases.
Estimating lake-atmosphere CO2 exchange
Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.
1999-01-01
Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.
Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...
2015-04-27
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less
NASA Astrophysics Data System (ADS)
Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.
2013-12-01
We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations <0.5 at most sites north of 15N and <1 for Southern Hemisphere sites) different model setups suggest that the CO2 seasonal cycle provides some constraint on gross photosynthesis, respiration, and fire fluxes revealed in the amplitude and phase at northern latitude sites. CarbonTracker inversions (CT) and model show similar phasing of the seasonal fluxes but agreement in the amplitude varies by region. We also evaluate interannual variability (IAV) in the measured atmospheric CO2 which, in contrast to the seasonal cycle, is not well represented by the model. We estimate the contributions of biospheric and fire fluxes, and atmospheric transport variability to explaining observed variability in measured CO2. Comparisons with CT show that modeled IAV has some correspondence to the inversion results >40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.
Digital simulation and experimental evaluation of the CO2-H(plus) control of pulmonary ventilation
NASA Technical Reports Server (NTRS)
Milhorn, H. T., Jr.; Reynolds, W. J.
1972-01-01
Previous models of the CO2-H(+) control of ventilation have been concerned either with the response to CO2 inhalation, or the response to perfusion of the surface of the medulla with mock cerebrospinal fluid having a high P sub CO2. Simulation of both responses with the same model has not been attempted. The purpose of the present study was two fold; first to develop such a model and, second, to obtain experimental data from human subjects for both developing this model and for evaluating this and future models.
Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Randerson, J. T.; Arora, V. K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C. D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K.; Obata, A.; Shevliakova, E.; Six, K. D.; Tjiputra, J. F.; Volodin, E. M.; Wu, T.
2014-02-01
The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations—in which atmospheric CO2levels were computed prognostically—for historical (1850-2005) and future periods (Representative Concentration Pathway (RCP) 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2estimates of 600±14 ppm at 2060 and 947±35 ppm at 2100, which were 21 ppm and 32 ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2from Mauna Loa, our analysis suggests that uncertainties in future climate projections can be reduced.
NASA Astrophysics Data System (ADS)
Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf
2015-01-01
High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.
System-level modeling for economic evaluation of geological CO2storage in gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan
2006-03-02
One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less
NASA Astrophysics Data System (ADS)
Tan, C. H.; Matjafri, M. Z.; Lim, H. S.
2015-10-01
This paper presents the prediction models which analyze and compute the CO2 emission in Malaysia. Each prediction model for CO2 emission will be analyzed based on three main groups which is transportation, electricity and heat production as well as residential buildings and commercial and public services. The prediction models were generated using data obtained from World Bank Open Data. Best subset method will be used to remove irrelevant data and followed by multi linear regression to produce the prediction models. From the results, high R-square (prediction) value was obtained and this implies that the models are reliable to predict the CO2 emission by using specific data. In addition, the CO2 emissions from these three groups are forecasted using trend analysis plots for observation purpose.
Improving the representation of photosynthesis in Earth system models
NASA Astrophysics Data System (ADS)
Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.
2015-12-01
Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.
Assessing model sensitivity and uncertainty across multiple Free-Air CO2 Enrichment experiments.
NASA Astrophysics Data System (ADS)
Cowdery, E.; Dietze, M.
2015-12-01
As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentrations are highly variable and contain a considerable amount of uncertainty. It is necessary that we understand which factors are driving this uncertainty. The Free-Air CO2 Enrichment (FACE) experiments have equipped us with a rich data source that can be used to calibrate and validate these model predictions. To identify and evaluate the assumptions causing inter-model differences we performed model sensitivity and uncertainty analysis across ambient and elevated CO2 treatments using the Data Assimilation Linked Ecosystem Carbon (DALEC) model and the Ecosystem Demography Model (ED2), two process-based models ranging from low to high complexity respectively. These modeled process responses were compared to experimental data from the Kennedy Space Center Open Top Chamber Experiment, the Nevada Desert Free Air CO2 Enrichment Facility, the Rhinelander FACE experiment, the Wyoming Prairie Heating and CO2 Enrichment Experiment, the Duke Forest Face experiment and the Oak Ridge Experiment on CO2 Enrichment. By leveraging data access proxy and data tilling services provided by the BrownDog data curation project alongside analysis modules available in the Predictive Ecosystem Analyzer (PEcAn), we produced automated, repeatable benchmarking workflows that are generalized to incorporate different sites and ecological models. Combining the observed patterns of uncertainty between the two models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.
NASA Technical Reports Server (NTRS)
Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.;
2013-01-01
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).
Development of the WRF-CO2 4D-Var assimilation system v1.0
NASA Astrophysics Data System (ADS)
Zheng, Tao; French, Nancy H. F.; Baxter, Martin
2018-05-01
Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.
Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, Joy S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.
2002-01-01
An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.
NASA Astrophysics Data System (ADS)
Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.
2017-08-01
This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...
2012-12-20
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluidmore » flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.« less
Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Dong-Myung; Sun, Xin
2013-09-01
In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less
CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents.
Vyas, V K; Bhatt, H G; Patel, P K; Jalu, J; Chintha, C; Gupta, N; Ghate, M
2013-01-01
SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q²) of 0.602 and 0.618, respectively, and conventional coefficients (r²) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r² pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Ronald D.; Wang, Zheming; Anderko, Andre
Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developedmore » Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koperna, George
The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to modeling software to enhance model robustness. Research was also conducted to improve algorithms and generalized adsorption models to facilitate realistic simulation of CO2 sequestration in coal seams and shale gas reservoirs. The interaction among water and the adsorbed gases, carbon dioxide (CO2), methane (CH4), and nitrogen (N2) in coalbeds is examined using experimental in situ laboratory techniques to comprehensively model CBM production and CO2 sequestration in coals. An equation of state (EOS) module was developed which is capable of predicting the density of pure components and mixtures involving the wet CBM gases CH4, CO2, and N2 at typical reservoir condition, and is used to inform CO2 injection models. The final research objective examined the effects adsorbed CO2 has on coal strength and permeability. This research studied the weakening or failure of coal by the adsorption of CO2 from empirically derived gas production data to develop models for advanced modeling of permeability changes during CO2 sequestration. The results of this research effort have been used to construct a new and improved model for assessing changes in permeability of coal reservoirs due CO2 injection. The modules developed from these studies and knowledge learned are applied to field validation and basin assessment studies. These data were used to assess the flow and storage of CO2 in a shale reservoir, test newly developed code against large-scale projects, and conduct a basin-oriented review of coal storage potential in the San Juan Basin. The storage potential and flow of CO2 was modeled for shale sequestration of a proprietary Marcellus Shale horizontal gas production well using COMET3 simulation software. Simulation results from five model runs indicate that stored CO2 quantities are linked to the duration of primary production preceding injection. Matrix CO2 saturation is observed to increase in each shale zone after injection with an increase in primary production, and the size of the CO2 plume is also observed to increase in size the longer initial production is sustained. The simulation modules developed around the Coal-Seq experimental work are also incorporated into a pre-existing large-scale numerical simulation model of the Pump Canyon CO2-ECBM pilot in the San Juan Basin. The new model was applied to re-history match the data set to explore the improvements made in permeability prediction against previously published data sets and to validate this module. The assessment of the new data, however, indicates that the impact of the variable Cp is negligible on the overall behavior of the coal for CO2 storage purposes. Applying these new modules, the San Juan Basin and the Marcellus Shale are assessed for their technical ECBM/AGR and CO2 storage potential and the economic potential of these operations. The San Juan Basin was divided into 4 unique geographic zones based on production history, and the Marcellus was divided into nine. Each was assessed based upon each zone’s properties, and simulations were run to assess the potential of full Basin development. Models of a fully developed San Juan Basin suggest the potential for up to 104 Tcf of CO2 storage, and 12.3 Tcf of methane recovery. The Marcellus models suggest 1,248 Tcf of CO2 storage and 924 Tcf of AGR. The economics are deemed favorable where credits cover the cost of CO2 in the San Juan Basin, and in many cases in the Marcellus, but to maximize storage potential, credits need to extend to pay the operator to store CO2.« less
Dessalew, Nigus; Bharatam, Prasad V
2007-07-01
Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.
Multiparameter bifurcations and mixed-mode oscillations in Q-switched CO2 lasers.
Doedel, Eusebius J; Pando L, Carlos L
2014-05-01
We study the origin of mixed-mode oscillations and related bifurcations in a fully molecular laser model that describes CO2 monomode lasers with a slow saturable absorber. Our study indicates that the presence of isolas of periodic mixed-mode oscillations, as the pump parameter and the cavity-frequency detuning change, is inherent to Q-switched CO2 monomode lasers. We compare this model, known as the dual four-level model, to the more conventional 3:2 model and to a CO2 laser model for fast saturable absorbers. In these models, we find similarities as well as qualitative differences, such as the different nature of the homoclinic tangency to a relevant unstable periodic orbit, where the Gavrilov-Shilnikov theory and its extensions may hold. We also show that there are isolas of periodic mixed-mode oscillations in a model for CO2 lasers with modulated losses, as the pump parameter varies. The coarse-grained bifurcation diagrams of the periodic mixed-mode oscillations in these models suggest that these oscillations belong to similar classes.
Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo
2016-01-01
Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.
Multiphase modeling of geologic carbon sequestration in saline aquifers.
Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C
2015-01-01
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.
Vanuytrecht, Eline; Thorburn, Peter J
2017-05-01
Elevated atmospheric CO 2 concentrations ([CO 2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO 2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO 2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO 2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO 2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO 2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO 2 responses within models should be prioritized. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.
2018-05-01
The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.
Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu
2011-08-01
To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.
Photosynthesis sensitivity to climate change in land surface models
NASA Astrophysics Data System (ADS)
Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo
2016-04-01
Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.
Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.
2012-07-01
Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injectedmore » CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO{sub 2} into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity.« less
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng
2018-03-01
CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.
Investigation of a long time series of CO2 from a tall tower using WRF-SPA
NASA Astrophysics Data System (ADS)
Smallman, Luke; Williams, Mathew; Moncrieff, John B.
2013-04-01
Atmospheric observations from tall towers are an important source of information about CO2 exchange at the regional scale. Here, we have used a forward running model, WRF-SPA, to generate a time series of CO2 at a tall tower for comparison with observations from Scotland over multiple years (2006-2008). We use this comparison to infer strength and distribution of sources and sinks of carbon and ecosystem process information at the seasonal scale. The specific aim of this research is to combine a high resolution (6 km) forward running meteorological model (WRF) with a modified version of a mechanistic ecosystem model (SPA). SPA provides surface fluxes calculated from coupled energy, hydrological and carbon cycles. This closely coupled representation of the biosphere provides realistic surface exchanges to drive mixing within the planetary boundary layer. The combined model is used to investigate the sources and sinks of CO2 and to explore which land surfaces contribute to a time series of hourly observations of atmospheric CO2 at a tall tower, Angus, Scotland. In addition to comparing the modelled CO2 time series to observations, modelled ecosystem specific (i.e. forest, cropland, grassland) CO2 tracers (e.g., assimilation and respiration) have been compared to the modelled land surface assimilation to investigate how representative tall tower observations are of land surface processes. WRF-SPA modelled CO2 time series compares well to observations (R2 = 0.67, rmse = 3.4 ppm, bias = 0.58 ppm). Through comparison of model-observation residuals, we have found evidence that non-cropped components of agricultural land (e.g., hedgerows and forest patches) likely contribute a significant and observable impact on regional carbon balance.
Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models
NASA Astrophysics Data System (ADS)
March, Rafael; Doster, Florian; Geiger, Sebastian
2018-03-01
Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.
NASA Astrophysics Data System (ADS)
Zhao, Haining; Fedkin, Mark V.; Dilmore, Robert M.; Lvov, Serguei N.
2015-01-01
A new experimental system was designed to measure the solubility of CO2 at pressures and temperatures (150 bar, 323.15-423.15 K) relevant to geologic CO2 sequestration. At 150 bar, new CO2 solubility data in the aqueous phase were obtained at 323.15, 373.15, and 423.15 K from 0 to 6 mol kg-1 NaCl(aq) for the CO2-NaCl-H2O system. A γ - φ (activity coefficient - fugacity coefficient) type thermodynamic model is presented for the calculation of both the solubility of CO2 in the aqueous phase and the solubility of H2O in the CO2-rich phase for the CO2-NaCl-H2O system. Validation of the model calculations against literature data and other models (MZLL2013, AD2010, SP2010, DS2006, and OLI) show that the proposed model is capable of predicting the solubility of CO2 in the aqueous phase for the CO2-H2O and CO2-NaCl-H2O systems with a high degree of accuracy (AAD <3.9%) at temperatures from 273.15 to 573.15 K and pressures up to 2000 bar. A comparison of modeling results with experimental values revealed a pressure-bounded "transition zone" in which the CO2 solubility decreases to a minimum then increases as the temperature increases. CO2 solubility is not a monotonic function of temperature in the transition zone but outside of that transition zone, the CO2 solubility is decrease or increase monotonically in response to increased temperature. A link of web-based CO2 solubility computational tool can be provided by sending a message to Haining Zhao at hzz5047@gmail.com.
Modeling forest C and N allocation responses to free-air CO2 enrichment
NASA Astrophysics Data System (ADS)
Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke
2015-04-01
Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed models to more reliably capture responses of ecosystem C and N allocation to free-air CO2 enrichment because they were able to simulate the priming effect. Insights were therefore gained into between-site differences observed in forest FACE experiments, and the underlying physiological and biogeochemical mechanisms determining ecosystem C and N allocation responses to elevated CO2. References 1. De Kauwe, M. G., et al. (2014), Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytologist, 203, 883-899. 2. Walker, A. P., et al. (2014), Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration, Journal of Geophysical Research: Biogeosciences, 119, 937-964. 3. Zaehle, S., et al. (2014), Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytologist, 202 (3), 803-822.
Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs
Ampomah, William; Balch, Robert S.; Grigg, Reid B.; ...
2016-08-02
This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less
Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampomah, William; Balch, Robert S.; Grigg, Reid B.
This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This article develops a novel multiscale modeling approach to analyze CO2 reservoirs using Pacific Northwest National Laboratory’s STOMP-CO2-R code that is interfaced with the ABAQUS® finite element package. The STOMP-CO2-R/ABAQUS® sequentially coupled simulator accounts for the reactive transport of CO2 causing mineral composition changes that modify the geomechanical properties of reservoir rocks and seals. Formation rocks’ elastic properties that vary during CO2 injection and govern the poroelastic behavior of rocks are modeled by an Eshelby-Mori-Tanka approach (EMTA) implemented in ABAQUS® via user-subroutines. The computational tool incorporates the change in rock permeability due to both geochemistry and geomechanics. A three-dimensional (3D)more » STOMP-CO2-R model for a model CO2 reservoir containing a vertical fault is built to analyze a formation containing a realistic geochemical reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D ABAQUS® model that maps the above STOMP-CO2-R model is built for the analysis using STOMP-CO2-R/ABAQUS®. The results show that the changes in volume fraction of minerals include dissolution of anorthite, precipitation of calcite and kaolinite, with little change in the albite volume fraction. After a long period of CO2 injection the mineralogical and geomechanical changes significantly reduced the permeability and elastic modulus of the reservoir (between the base and caprock) in front of the fault leading to a reduction of the pressure margin to fracture at and beyond the injection location. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that directly affect the rock stiffness, stress and strain distributions as well as the pressure margin to fracture.« less
NASA Astrophysics Data System (ADS)
Basile, S.; Wieder, W. R.; Hartman, M. D.; Keppel-Aleks, G.
2017-12-01
The atmospheric growth rate of carbon dioxide (CO2) varies interannually and is strongly correlated with climate factors, including temperature and drought. These climate drivers affect vegetation productivity and the rate of respiration of organic matter to CO2 (heterotrophic respiration). Here we quantified the interannual variability in global carbon fluxes from heterotrophic respiration and their relationship to climate drivers. We used a novel testbed approach to simulate respiration, then simulated the imprint that these modeled heterotrophic fluxes have on atmospheric CO2 using an idealized pulse response model. Two of the testbed formulations (MIMICS and CORPSE) are microbially explicit by incorporation of microbial physiological tradeoffs and microbial activity in soil near fine roots (rhizosphere soils), respectively, while the third model (CASA) uses a CENTURY-like microbially implicit framework. Modeled respiration exhibited subtle differences, with MIMICS showing the largest seasonal amplitude in the Northern Hemisphere and the strongest correlation with global temperature variations. At Mauna Loa (MLO) the simulated seasonal CO2 amplitude in response to global heterotrophic respiration ranged by a factor of 1.5 across the models with the MIMICS and CASA models producing the higher amplitude responses between 1987 and 2006. The seasonal CO2 amplitude at MLO varied by about 5% interannually, with the largest variation in the MIMICS model. In the Northern Hemisphere there was a similar response range in average peak-to-trough seasonal CO2 but all models showed slightly higher amplitude values. Comparatively in the Northern Hemisphere, the average seasonal CO2 amplitude in response to respiration ranged between 30%-41% of the seasonal CO2 amplitude in response to net primary productivity. We expect that exploring the imprint of heterotrophic respiration on atmospheric CO2 from these three different models will improve our understanding of the imprint that heterotrophic respiration imparts on atmospheric data. The aim of this work is to ultimately yield an approach for combining CO2 observations with remote sensing-based observations of terrestrial productivity to produce regional constraints on heterotrophic respiration.
Relationship between root water uptake and soil respiration: A modeling perspective
NASA Astrophysics Data System (ADS)
Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo
2017-08-01
Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.
2015-10-14
rate Kinetics •14 Species & 12 reactionsCombustion Model •Participating Media Discrete Ordinate Method •WSG model for CO2, H2O and SootRadiation Model...Inhibition of JP-8 Combustion Physical Acting Agents • Dilute heat • Dilute reactants Ex: water, nitrogen Chemical Acting Agents • Reduce flame...Release; distribution is unlimited 5 Overview of Reduced Kinetics Scheme for FM200 • R1: JP-8 + O2 => CO + CO2 + H2O • R2: CO + O2 <=> CO2 • R3: HFP + JP-8
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad; Riaz, Amir
2017-11-01
CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.
NASA Astrophysics Data System (ADS)
Beger, Richard D.; Buzatu, Dan A.; Wilkes, Jon G.
2002-10-01
A three-dimensional quantitative spectrometric data-activity relationship (3D-QSDAR) modeling technique which uses NMR spectral and structural information that is combined in a 3D-connectivity matrix has been developed. A 3D-connectivity matrix was built by displaying all possible assigned carbon NMR chemical shifts, carbon-to-carbon connections, and distances between the carbons. Two-dimensional 13C-13C COSY and 2D slices from the distance dimension of the 3D-connectivity matrix were used to produce a relationship among the 2D spectral patterns for polychlorinated dibenzofurans, dibenzodioxins, and biphenyls (PCDFs, PCDDs, and PCBs respectively) binding to the aryl hydrocarbon receptor (AhR). We refer to this technique as comparative structural connectivity spectral analysis (CoSCoSA) modeling. All CoSCoSA models were developed using forward multiple linear regression analysis of the predicted 13C NMR structure-connectivity spectral bins. A CoSCoSA model for 26 PCDFs had an explained variance (r2) of 0.93 and an average leave-four-out cross-validated variance (q4 2) of 0.89. A CoSCoSA model for 14 PCDDs produced an r2 of 0.90 and an average leave-two-out cross-validated variance (q2 2) of 0.79. One CoSCoSA model for 12 PCBs gave an r2 of 0.91 and an average q2 2 of 0.80. Another CoSCoSA model for all 52 compounds had an r2 of 0.85 and an average q4 2 of 0.52. Major benefits of CoSCoSA modeling include ease of development since the technique does not use molecular docking routines.
Role of rock/fluid characteristics in carbon (CO2) storage and modeling
Verma, Mahendra K.
2005-01-01
The presentation ? Role of Rock/Fluid Characteristics in Carbon (CO2) Storage and Modeling ? was prepared for the meeting of the Environmental Protection Agency (EPA) in Houston, Tex., on April 6?7, 2005. It provides an overview of greenhouse gases, particularly CO2, and a summary of their effects on the Earth?s atmosphere. It presents methods of mitigating the effects of greenhouse gases, and the role of rock and fluid properties on CO2 storage mechanisms. It also lists factors that must be considered to adequately model CO2 storage.
The Influence of Internal Model Variability in GEOS-5 on Interhemispheric CO2 Exchange
NASA Technical Reports Server (NTRS)
Allen, Melissa; Erickson, David; Kendall, Wesley; Fu, Joshua; Ott, Leslie; Pawson, Steven
2012-01-01
An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability.
Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh
2016-01-01
The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728
Walker, Berkley J; Orr, Douglas J; Carmo-Silva, Elizabete; Parry, Martin A J; Bernacchi, Carl J; Ort, Donald R
2017-06-01
Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C 3 photosynthesis. As models of CO 2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales, it is increasingly important that their temperature dependencies are accurately parameterized. A vital component of the FvCB model, the photorespiratory CO 2 compensation point (Γ * ), combines the biochemistry of Rubisco with the stoichiometry of photorespiratory release of CO 2 . This report details a comparison of the temperature response of Γ * measured using different techniques in three important model and crop species (Nicotiana tabacum, Triticum aestivum, and Glycine max). We determined that the different Γ * determination methods produce different temperature responses in the same species that are large enough to impact higher-scale leaf models of CO 2 assimilation rate. These differences are largest in N. tabacum and could be the result of temperature-dependent increases in the amount of CO 2 lost from photorespiration per Rubisco oxygenation reaction.
Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.
Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre
2016-10-27
Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.
2016-01-01
CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less
The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu
2015-04-01
The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.
Evaluation of Deep Learning Models for Predicting CO2 Flux
NASA Astrophysics Data System (ADS)
Halem, M.; Nguyen, P.; Frankel, D.
2017-12-01
Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.
NASA Astrophysics Data System (ADS)
Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.
2017-12-01
Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.
Mangaraj, S; K Goswami, T; Mahajan, P V
2015-07-01
MAP is a dynamic system where respiration of the packaged product and gas permeation through the packaging film takes place simultaneously. The desired level of O2 and CO2 in a package is achieved by matching film permeation rates for O2 and CO2 with respiration rate of the packaged product. A mathematical model for MAP of fresh fruits applying enzyme kinetics based respiration equation coupled with the Arrhenious type model was developed. The model was solved numerically using MATLAB programme. The model was used to determine the time to reach to the equilibrium concentration inside the MA package and the level of O2 and CO2 concentration at equilibrium state. The developed model for prediction of equilibrium O2 and CO2 concentration was validated using experimental data for MA packaging of apple, guava and litchi.
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.; ...
2016-05-12
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Integrated CO 2 Storage and Brine Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Kelsey; Bielicki, Jeffrey M.; Middleton, Richard
Carbon dioxide (CO 2) capture, utilization, and storage (CCUS) can reduce CO 2 emissions from fossil fuel power plants by injecting CO 2 into deep saline aquifers for storage. CCUS typically increases reservoir pressure which increases costs, because less CO 2 can be injected, and risks such as induced seismicity. Extracting brine with enhanced water recovery (EWR) from the CO 2 storage reservoir can manage and reduce pressure in the formation, decrease the risks linked to reservoir overpressure (e.g., induced seismicity), increase CO 2 storage capacity, and enable CO 2 plume management. We modeled scenarios of CO 2 injection withmore » EWR into the Rock Springs Uplift (RSU) formation in southwest Wyoming. The Finite Element Heat and Mass Transfer Code (FEHM) was used to model CO 2 injection with brine extraction and the corresponding increase in pressure within the RSU. We analyzed the model for pressure management, CO 2 storage, CO 2 saturation, and brine extraction due to the quantity and location of brine extraction wells. The model limited CO 2 injection to a constant pressure increase of two MPa at the injection well with and without extracting brine at hydrostatic pressure. Finally, we found that brine extraction can be used as a technical and cost-effective pressure management strategy to limit reservoir pressure buildup and increase CO 2 storage associated with a single injection well.« less
Integrated CO 2 Storage and Brine Extraction
Hunter, Kelsey; Bielicki, Jeffrey M.; Middleton, Richard; ...
2017-08-18
Carbon dioxide (CO 2) capture, utilization, and storage (CCUS) can reduce CO 2 emissions from fossil fuel power plants by injecting CO 2 into deep saline aquifers for storage. CCUS typically increases reservoir pressure which increases costs, because less CO 2 can be injected, and risks such as induced seismicity. Extracting brine with enhanced water recovery (EWR) from the CO 2 storage reservoir can manage and reduce pressure in the formation, decrease the risks linked to reservoir overpressure (e.g., induced seismicity), increase CO 2 storage capacity, and enable CO 2 plume management. We modeled scenarios of CO 2 injection withmore » EWR into the Rock Springs Uplift (RSU) formation in southwest Wyoming. The Finite Element Heat and Mass Transfer Code (FEHM) was used to model CO 2 injection with brine extraction and the corresponding increase in pressure within the RSU. We analyzed the model for pressure management, CO 2 storage, CO 2 saturation, and brine extraction due to the quantity and location of brine extraction wells. The model limited CO 2 injection to a constant pressure increase of two MPa at the injection well with and without extracting brine at hydrostatic pressure. Finally, we found that brine extraction can be used as a technical and cost-effective pressure management strategy to limit reservoir pressure buildup and increase CO 2 storage associated with a single injection well.« less
System-level modeling for geological storage of CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan
2006-04-24
One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.Themore » objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.« less
NASA Astrophysics Data System (ADS)
Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.
2017-12-01
Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter is mainly caused by the large-scale transport associated with the jet stream that carries the negative biogenic CO2 signals to the northeastern coast. We apply comprehensive statistics to eliminate outliers. We generate a set of flux perturbations based on pre-calibrated flux ensemble members and apply them to the simulations.
NASA Astrophysics Data System (ADS)
Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.
2014-11-01
Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.
Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J
2014-01-01
We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections. PMID:24467623
Xiong, Yongliang
2015-05-06
In this article, solubility measurements of lead carbonate, PbCO 3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO 3 up to I = 1.2 mol•kg –1 and in the mixtures of NaHCO 3 and Na 2CO 3 up to I = 5.2 mol•kg –1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K sp) for cerussite, PbCO 3(cr) = Pb 2+ + CO 3 2- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO 3(aq), Pb(CO 3) 2more » 2-, and Pb(CO 3)Cl – with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less
Relationship between synoptic scale weather systems and column averaged atmospheric CO2
NASA Astrophysics Data System (ADS)
Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.
2005-12-01
Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0.4-0.6 ppmv in summer over Siberia. Therefore it is essential to consider this bias due to covariance with vertical motion, while analyzing the column CO2 from space-borne observations together with in-situ observations, because most optical observations are not available under cloudy conditions typical for the low-pressure system.
Development of a coupled FLEXPART-TM5 CO2 inverse modeling system
NASA Astrophysics Data System (ADS)
Monteil, Guillaume; Scholze, Marko
2017-04-01
Inverse modeling techniques are used to derive information on surface CO2 fluxes from measurements of atmospheric CO2 concentrations. The principle is to use an atmospheric transport model to compute the CO2 concentrations corresponding to a prior estimate of the surface CO2 fluxes. From the mismatches between observed and modeled concentrations, a correction of the flux estimate is computed, that represents the best statistical compromise between the prior knowledge and the new information brought in by the observations. Such "top-down" CO2 flux estimates are useful for a number of applications, such as the verification of CO2 emission inventories reported by countries in the framework of international greenhouse gas emission reduction treaties (Paris agreement), or for the validation and improvement of the bottom-up models used in future climate predictions. Inverse modeling CO2 flux estimates are limited in resolution (spatial and temporal) by the lack of observational constraints and by the very heavy computational cost of high-resolution inversions. The observational limitation is however being lifted, with the expansion of regional surface networks such as ICOS in Europe, and with the launch of new satellite instruments to measure tropospheric CO2 concentrations. To make an efficient use of these new observations, it is necessary to step up the resolution of atmospheric inversions. We have developed an inverse modeling system, based on a coupling between the TM5 and the FLEXPART transport models. The coupling follows the approach described in Rodenbeck et al., 2009: a first global, coarse resolution, inversion is performed using TM5-4DVAR, and is used to provide background constraints to a second, regional, fine resolution inversion, using FLEXPART as a transport model. The inversion algorithm is adapted from the 4DVAR algorithm used by TM5, but has been developed to be model-agnostic: it would be straightforward to replace TM5 and/or FLEXPART by other transport models, thus making it well suited to study transport model uncertainties. We will present preliminary European CO2 inversions using ICOS observations, and comparisons with TM5-4DVAR and TM3-STILT inversions. Reference: Rödenbeck, C., Gerbig, C., Trusilova, K., & Heimann, M. (2009). A two-step scheme for high-resolution regional atmospheric trace gas inversions based on independent models. Atmospheric Chemistry and Physics Discussions, 9(1), 1727-1756. http://doi.org/10.5194/acpd-9-1727-2009
De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J
2014-01-01
Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo
2018-04-01
Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
A multi-model approach to monitor emissions of CO2 and CO from an urban-industrial complex
NASA Astrophysics Data System (ADS)
Super, Ingrid; Denier van der Gon, Hugo A. C.; van der Molen, Michiel K.; Sterk, Hendrika A. M.; Hensen, Arjan; Peters, Wouter
2017-11-01
Monitoring urban-industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry) and a Gaussian plume model (Operational Priority Substances - OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban-industrial complex (Rotterdam, the Netherlands) towards rural conditions for October-December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO : ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm, observed, against 8.8 ppm, modelled), but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO : ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm-1, which agrees better with the observed standard deviation of 0.4 ppb ppm-1. This is partly due to improved wind fields (increase in R2 of 0.10) but also due to improved point source representation (increase in R2 of 0.05) and dilution (increase in R2 of 0.07). Based on our analysis we conclude that a plume model with detailed and accurate dispersion parameters adds substantially to top-down monitoring of greenhouse gas emissions in urban environments with large point source contributions within a ˜ 10 km radius from the observation sites.
Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.
2016-03-22
Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.
Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less
NASA Astrophysics Data System (ADS)
Saito, M.; Ito, A.; Maksyutov, S. S.
2013-12-01
This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial vegetation compositions in some grids. These misfits are assumed to derive from simplified representation in the biosphere model without the impact of land use change and dire disturbance and the seasonal variability in the physiological parameters.
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György
2017-04-01
Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.
Modeling the night-time CO2 4.3 μm emissions in the mesosphere/lower thermosphere
NASA Astrophysics Data System (ADS)
Panka, Peter; Kutepov, Alexander; Feofilov, Artem; Rezac, Ladislav; Janches, Diego
2016-04-01
We present a detailed non-LTE model of the night-time CO2 4.3 μm emissions in the MLT. The model accounts for various mechanisms of the non-thermal excitation of CO2 molecules and both for inter- and intra-molecular vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges. In this model, we pay a specific attention to the transfer of vibrational energy of OH(ν), produced in the chemical reaction H + O3, to the CO2(ν3) vibrational mode. With the help of this model, we simulated a set of non-LTE 4.3 μm MLT limb emissions for typical atmospheric scenarios and compared the vertical profiles of integrated radiances with the corresponding SABER/TIMED observations. The implications, which follow from this comparison, for selecting non-LTE model parameters (rate coefficients), as well as for the night-time CO2 density retrieval in the MLT are discussed.
NASA Astrophysics Data System (ADS)
Duan, Zhenhao; Li, Dedong
2008-10-01
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.
CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels
NASA Astrophysics Data System (ADS)
de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert
2017-04-01
Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2 concentration and marginally decreases isoprene production owing to an increase in the electron demand for carbon fixation. In the long-term, acclimation to rising CO2 growth conditions leads to down regulation of both Jmax and Vcmax, which modulates the stimulating effect of rising CO2 on photosynthesis. This CO2 effect is most pronounced between sub-ambient to present CO2. Our results highlight that the LES-model provides a suitable theoretical framework to model changes in leaf isoprene emissions related to biochemical acclimation to rising CO2. References Harrison, S. P. et al: Volatile isoprenoid emissions from plastid to planet, New Phytol., 197(1), 49-57, 2013. Morfopoulos, C. et al: A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2, New Phytol., 203(1), 125-139, 2014.
CO2 storage capacity estimates from fluid dynamics (Invited)
NASA Astrophysics Data System (ADS)
Juanes, R.; MacMinn, C. W.; Szulczewski, M.
2009-12-01
We study a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a deep saline aquifer under the influence of natural groundwater flow, aquifer slope, gravity override, and capillary trapping. The model leads to a nonlinear advection-diffusion equation, where the diffusive term describes the upward spreading of the CO2 against the caprock. We find that the advective terms dominate the flow dynamics even for moderate gravity override. We solve the model analytically in the hyperbolic limit, accounting rigorously for the injection period—using the true end-of-injection plume shape as an initial condition. We extend the model by incorporating the effect of CO2 dissolution into the brine, which—we find—is dominated by convective mixing. This mechanism enters the model as a nonlinear sink term. From a linear stability analysis, we propose a simple estimate of the convective dissolution flux. We then obtain semi-analytic estimates of the maximum plume migration distance and migration time for complete trapping. Our analytical model can be used to estimate the storage capacity (from capillary and dissolution trapping) at the geologic basin scale, and we apply the model to various target formations in the United States. Schematic of the migration of a CO2 plume at the geologic basin scale. During injection, the CO2 forms a plume that is subject to gravity override. At the end of the injection, all the CO2 is mobile. During the post-injection period, the CO2 migrates updip and also driven by regional groundwater flow. At the back end of the plume, where water displaces CO2, the plume leaves a wake or residual CO2 due to capillary trapping. At the bottom of the moving plume, CO2 dissolves into the brine—a process dominated by convective mixing. These two mechanisms—capillary trapping and convective dissolution—reduce the size of the mobile plume as it migrates. In this communication, we present an analytical model that predicts the migration distance and time for complete trapping. This is used to estimate storage capacity of geologic formations at the basin scale.
Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.
Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo
2017-04-27
In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.
Gupte, Amol; Buolamwini, John K
2009-01-15
3D-QSAR (CoMFA and CoMSIA) studies were performed on human equlibrative nucleoside transporter (hENT1) inhibitors displaying K(i) values ranging from 10,000 to 0.7nM. Both CoMFA and CoMSIA analysis gave reliable models with q2 values >0.50 and r2 values >0.92. The models have been validated for their stability and robustness using group validation and bootstrapping techniques and for their predictive abilities using an external test set of nine compounds. The high predictive r2 values of the test set (0.72 for CoMFA model and 0.74 for CoMSIA model) reveals that the models can prove to be a useful tool for activity prediction of newly designed nucleoside transporter inhibitors. The CoMFA and CoMSIA contour maps identify features important for exhibiting good binding affinities at the transporter, and can thus serve as a useful guide for the design of potential equilibrative nucleoside transporter inhibitors.
Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S
1998-04-01
Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO 2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO 2 .
Pan, Y.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Pitelka, Louis F.; Hibbard, K.; Pierce, L.L.; Running, S.W.; Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Borchers, J.; Neilson, R.; Fisher, H.H.; Kittel, T.G.F.; Rossenbloom, N.A.; Fox, S.; Haxeltine, A.; Prentice, I.C.; Sitch, S.; Janetos, A.; McKeown, R.; Nemani, R.; Painter, T.; Rizzo, B.; Smith, T.; Woodward, F.I.
1998-01-01
Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.
NASA Astrophysics Data System (ADS)
Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.
2013-12-01
Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.
NASA Astrophysics Data System (ADS)
Rehmer, Donald E.
Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic storage of CO2 into saline aquifers does not come into solutions selected by the model until the CO 2 emissions tax approaches 50/tonne. CO2 capture and storage begins to occur when the oil price is above 24.42 a barrel based on the constraints of the model. The annual storage capacity of the basin is nearly maximized when the net price of oil is as low as 40 per barrel and the CO2 emission tax is 60/tonne. The results from every subsequent scenario that was examined by this study demonstrate that EOR utilizing anthropogenically captured CO2 will earn net revenue, and thus represents an economically viable option for CO2 storage in the Illinois Basin.
NASA Astrophysics Data System (ADS)
Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan
2017-04-01
In most regions of the world, maize yields are at risk of be reduced due to rising temperatures and reduced water availability. Rising temperature tends to reduce the length of the growth cycle and the amount of intercepted solar energy. Water deficits reduce the leaf area expansion, photosynthesis and sometimes, with an even more pronounced impact, severely reduce the efficiency of kernel set. In maize, the major consequence of atmospheric CO2 concentration ([CO2]) is the stomatal closure-induced reduction of leaf transpiration rate, which tends to mitigate those negative impacts. Indeed FACE studies report significant positive responses to CO2 of maize yields (and other C4 crops) under dry conditions only. Given the projections by climatologists (typically doubling of [CO2] by the end of this century) projected impacts must take that climate variable into account. However, several studies show a large incertitude in estimating the impact of increasing [CO2] on maize remains using the main crop models. The aim of this work was to compare the simulations of different models using input data from a FACE experiment conducted in Braunschweig during 2 years under limiting and non-limiting water conditions. Twenty modelling groups using different maize models were given the same instructions and input data. Following calibration of cultivar parameters under non-limiting water conditions and under ambient [CO2] treatments of both years, simulations were undertaken for the other treatments: High [ CO2 ] (550 ppm) 2007 and 2008 in both irrigation regimes, and DRY AMBIENT 2007 and 2008. Only under severe water deficits did models simulate an increase in yield for CO2 enrichment, which was associated with higher harvest index and, for those models which simulated it, higher grain number. However, the CO2 enhancement under water deficit simulated by the 20 models was 20 % at most and 10 % on average only, i.e. twice less than observed in that experiment. As in the experiment, the simulated impact of [CO2 ] on water use was negligible, with a general displacement of the water deficit toward later phases of the crop along with longer green leaf area duration at reduced transpiration rate. In general models which used explicit response functions of stomatal conductance to [CO2] performed significantly better than those which did not. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase. We shall discuss the various ways of simulating the response of stomatal conductance to [CO2] and the response of kernel set to water deficits.
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.
NASA Astrophysics Data System (ADS)
Bosman, Arthur D.; Tielens, Alexander G. G. M.; van Dishoeck, Ewine F.
2018-04-01
Context. Radial transport of icy solid material from the cold outer disk to the warm inner disk is thought to be important for planet formation. However, the efficiency at which this happens is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk, enhancing the gas-phase abundances of the major ice constituents such as H2O and CO2. Aim. Our aim is to model the gaseous CO2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. From the model predictions, infrared CO2 spectra are simulated and features that could be tracers of icy CO2, and thus dust, radial transport efficiency are investigated. Methods: We have developed a 1D viscous disk model that includes gas accretion and gas diffusion as well as a description for grain growth and grain transport. Sublimation and freeze-out of CO2 and H2O has been included as well as a parametrisation of the CO2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2, as can be observed with JWST-MIRI. Results: CO2 ice sublimating at the iceline increases the gaseous CO2 abundance to levels equal to the CO2 ice abundance of 10-5, which is three orders of magnitude more than the gaseous CO2 abundances of 10-8 observed by Spitzer. Grain growth and radial drift increase the rate at which CO2 is transported over the iceline and thus the gaseous CO2 abundance, further exacerbating the problem. In the case without radial drift, a CO2 destruction rate of at least 10-11 s-1 or a destruction timescale of at most 1000 yr is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest destruction rate included in chemical databases. A range of potential physical mechanisms to explain the low observed CO2 abundances are discussed. Conclusions: We conclude that transport processes in disks can have profound effects on the abundances of species in the inner disk such as CO2. The discrepancy between our model and observations either suggests frequent shocks in the inner 10 AU that destroy CO2, or that the abundant midplane CO2 is hidden from our view by an optically thick column of low abundance CO2 due to strong UV and/or X-rays in the surface layers. Modelling and observations of other molecules, such as CH4 or NH3, can give further handles on the rate of mass transport.
Global Carbon Cycle Modeling in GISS ModelE2 GCM
NASA Astrophysics Data System (ADS)
Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Romanski, J.
2014-12-01
Consistent and accurate modeling of the Global Carbon Cycle remains one of the main challenges for the Earth System Models. NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM) was recently equipped with a complete Global Carbon Cycle algorithm, consisting of three integrated components: Ent Terrestrial Biosphere Model (Ent TBM), Ocean Biogeochemistry Module and atmospheric CO2 tracer. Ent TBM provides CO2 fluxes from the land surface to the atmosphere. Its biophysics utilizes the well-known photosynthesis functions of Farqhuar, von Caemmerer, and Berry and Farqhuar and von Caemmerer, and stomatal conductance of Ball and Berry. Its phenology is based on temperature, drought, and radiation fluxes, and growth is controlled via allocation of carbon from labile carbohydrate reserve storage to different plant components. Soil biogeochemistry is based on the Carnegie-Ames-Stanford (CASA) model of Potter et al. Ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. Atmospheric CO2 is advected with a quadratic upstream algorithm implemented in atmospheric part of ModelE2. Here we present the results for pre-industrial equilibrium and modern transient simulations and provide comparison to available observations. We also discuss the process of validation and tuning of particular algorithms used in the model.
Fung, I.
1993-01-01
This directory contains the input files used in simulations of atmospheric CO2 using the GISS 3-D global tracer transport model. The directory contains 16 files including a help file (CO2FUNG.HLP), 12 files containing monthly exchanges with vegetation and soils (CO2VEG.JAN - DEC), 1 file containing releases of CO2 from fossil fuel burning (CO2FOS.MRL), 1 file containing releases of CO2 from land transformations (CO2DEF.HOU), and 1 file containing the patterns of CO2 exchange with the oceans (CO2OCN.TAK).
NASA Astrophysics Data System (ADS)
Zhang, Kai; Batterman, Stuart
2010-05-01
The contribution of vehicular traffic to air pollutant concentrations is often difficult to establish. This paper utilizes both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways. The time-series model used generalized additive models (GAMs) and fitted pollutant observations to traffic counts and meteorological variables. A one year period (2004) was analyzed on a seasonal basis using hourly measurements of carbon monoxide (CO) and particulate matter less than 2.5 μm in diameter (PM 2.5) monitored near a major highway in Detroit, Michigan, along with hourly traffic counts and local meteorological data. Traffic counts showed statistically significant and approximately linear relationships with CO concentrations in fall, and piecewise linear relationships in spring, summer and winter. The same period was simulated using emission and dispersion models (Motor Vehicle Emissions Factor Model/MOBILE6.2; California Line Source Dispersion Model/CALINE4). CO emissions derived from the GAM were similar, on average, to those estimated by MOBILE6.2. The same analyses for PM 2.5 showed that GAM emission estimates were much higher (by 4-5 times) than the dispersion model results, and that the traffic-PM 2.5 relationship varied seasonally. This analysis suggests that the simulation model performed reasonably well for CO, but it significantly underestimated PM 2.5 concentrations, a likely result of underestimating PM 2.5 emission factors. Comparisons between statistical and simulation models can help identify model deficiencies and improve estimates of vehicle emissions and near-road air quality.
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.
2010-01-01
We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual variability in the observations, although reasons for persistent discrepancies in northern hemisphere vegetation uptake are examined. At this time, we do not find any serious shortcomings in the model transport representation, but this is still the subject of close scrutiny. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in CO2 fluxes and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.
NASA Astrophysics Data System (ADS)
Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.
Hu, Bowen; Chen, Dafa; Hu, Xile
2014-02-03
[Fe]-hydrogenase has a single iron-containing active site that features an acylmethylpyridinol ligand. This unique ligand environment had yet to be reproduced in synthetic models; however the synthesis and reactivity of a new class of small molecule mimics of [Fe]-hydrogenase in which a mono-iron center is ligated by an acylmethylpyridinol ligand has now been achieved. Key to the preparation of these model compounds is the successful C-O cleavage of an alkyl ether moiety to form the desired pyridinol ligand. Reaction of solvated complex [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3CN)2](+)(BF4)(-) with thiols or thiophenols in the presence of NEt3 yielded 5-coordinate iron thiolate complexes. Further derivation produced complexes [(2-CH2CO-6-HOC5H3N)Fe(CO)2(SCH2CH2OH)] and [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3COO)], which can be regarded as models of FeGP cofactors of [Fe]-hydrogenase extracted by 2-mercaptoethanol and acetic acid, respectively. When the derivative complexes were treated with HBF4 ⋅Et2O, the solvated complex was regenerated by protonation of the thiolate ligands. The reactivity of several models with CO, isocyanide, cyanide, and H2 was also investigated. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties
DOE R&D Accomplishments Database
Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.
1987-12-01
The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.
LAI is the major cause of divergence in CO2 fertilization effect in land surface models
NASA Astrophysics Data System (ADS)
Li, Q.; Luo, Y.; Lu, X.; Wang, Y.; Huang, X.; Lin, G., Sr.
2017-12-01
Concentration-carbon feedback (β), also called CO2 fertilization effect, is an important feedback between terrestrial ecosystems and atmosphere to alleviate global climate change. However, models participating in C4MIP and CMIP5 predicted diverse CO2 fertilization effects under future CO2 inceasing scenarios. Hence identifing the key processes dominating the divergence of β in land surface models is of significance. We calculated CO2 fertilization effects from leaf level, canopy gross productivity level, net ecosystem productivity level and ecosystem carbon stock level in Community Atmosphere Biosphere Land Exchange (CABLE) model. Our results identified LAI is the key factor dominating the divergence of β among C3 plants in CABLE model. Saturation of the ecosystem productivity to increasing CO2 is not only regulated by leaf-level response, but also the response of LAI to increasing CO2. The greatest variation among C3 plants at ecosystem level suggests that other processes such as different allocation patterns and soil carbon dynamics of various vegetation types are also responsible for the divergence. Our results indicate that processes regarding to LAI need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem productivity to increasing CO2.
Piao, Shilong; Sitch, Stephen; Ciais, Philippe; Friedlingstein, Pierre; Peylin, Philippe; Wang, Xuhui; Ahlström, Anders; Anav, Alessandro; Canadell, Josep G; Cong, Nan; Huntingford, Chris; Jung, Martin; Levis, Sam; Levy, Peter E; Li, Junsheng; Lin, Xin; Lomas, Mark R; Lu, Meng; Luo, Yiqi; Ma, Yuecun; Myneni, Ranga B; Poulter, Ben; Sun, Zhenzhong; Wang, Tao; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning
2013-07-01
The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 ± 15 Pg C yr(-1) ) than JU11 (118 ± 6 Pg C yr(-1) ). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5-20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100 ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 ± 0.8 Pg C yr(-1) is remarkably close to the mean value of RLS (2.1 ± 1.2 Pg C yr(-1) ). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980-2009. Both model-to-model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is -3.0 ± 1.5 Pg C yr(-1) °C(-1) , within the uncertainty of what derived from RLS (-3.9 ± 1.1 Pg C yr(-1) °C(-1) ). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation-based GPP and NBP can be fortuitous. Carbon-nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models. © 2013 Blackwell Publishing Ltd.
Predictive model for CO2 generation and decay in building envelopes
NASA Astrophysics Data System (ADS)
Aglan, Heshmat A.
2003-01-01
Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.
NASA Astrophysics Data System (ADS)
Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.
2017-12-01
We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).
A Circular Bioeconomy with Biobased Products from CO2 Sequestration.
Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G
2016-06-01
The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli
2018-01-01
We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.
CO2 infrared emission as a diagnostic of planet-forming regions of disks
NASA Astrophysics Data System (ADS)
Bosman, Arthur D.; Bruderer, Simon; van Dishoeck, Ewine F.
2017-05-01
Context. The infrared ro-vibrational emission lines from organic molecules in the inner regions of protoplanetary disks are unique probes of the physical and chemical structure of planet-forming regions and the processes that shape them. These observed lines are mostly interpreted with local thermal equilibrium (LTE) slab models at a single temperature. Aims: We aim to study the non-LTE excitation effects of carbon dioxide (CO2) in a full disk model to evaluate: (I) what the emitting regions of the different CO2 ro-vibrational bands are; (II) how the CO2 abundance can be best traced using CO2 ro-vibrational lines using future JWST data and; (III) what the excitation and abundances tell us about the inner disk physics and chemistry. CO2 is a major ice component and its abundance can potentially test models with migrating icy pebbles across the iceline. Methods: A full non-LTE CO2 excitation model has been built starting from experimental and theoretical molecular data. The characteristics of the model are tested using non-LTE slab models. Subsequently the CO2 line formation was modelled using a two-dimensional disk model representative of T Tauri disks where CO2 is detected in the mid-infrared by the Spitzer Space Telescope. Results: The CO2 gas that emits in the 15 μm and 4.5 μm regions of the spectrum is not in LTE and arises in the upper layers of disks, pumped by infrared radiation. The v2 15 μm feature is dominated by optically thick emission for most of the models that fit the observations and increases linearly with source luminosity. Its narrowness compared with that of other molecules stems from a combination of the low rotational excitation temperature ( 250 K) and the inherently narrower feature for CO2. The inferred CO2 abundances derived for observed disks range from 3 × 10-9 to 1 × 10-7 with respect to total gas density for typical gas/dust ratios of 1000, similar to earlier LTE disk estimates. Line-to-continuum ratios are low, in the order of a few percent, stressing the need for high signal-to-noise (S/N > 300) observations for individual line detections. Conclusions: The inferred CO2 abundances are much lower than those found in interstellar ices ( 10-5), indicating a reset of the chemistry by high temperature reactions in the inner disk. JWST-MIRI with its higher spectral resolving power will allow a much more accurate retrieval of abundances from individual P- and R-branch lines, together with the 13CO2Q-branch at 15 μm. The 13CO2Q-branch is particularly sensitive to possible enhancements of CO2 due to sublimation of migrating icy pebbles at the iceline(s). Prospects for JWST-NIRSpec are discussed as well.
Enhanced Seasonal Exchange of CO2 by Northern Ecosystems - Observations and Models
NASA Astrophysics Data System (ADS)
Graven, H. D.; Keeling, R. F.; Piper, S. C.; Patra, P. K.; Stephens, B. B.; Wofsy, S. C.; Welp, L. R.; Sweeney, C.; Tans, P. P.; Kelley, J. J.; Daube, B. C.; Kort, E. A.; Santoni, G.; Bent, J. D.; Thomas, R.; Prentice, I. C.
2014-12-01
Long-term measurements of atmospheric CO2 have revealed increasing amplitude in seasonal variations at Northern Hemisphere sites. In a recent paper1, we extended the analysis of seasonal CO2 amplitude using aircraft data from 1958-61 and 2009-11 and found large increases of 50% in the mid-troposphere north of 45°N. Changes in amplitude south of 45°N were less than 25%. The observations indicate that seasonal CO2 exchanges with northern terrestrial ecosystems must have increased by 30-60% over the past 50 years. The increased exchange is likely widespread over northern ecosystems but it must be focused in boreal forests to match the observed spatial pattern in the aircraft data. Small decreases in seasonal CO2 exchange of subtropical and tropical regions may also contribute to CO2 amplitude changes. The required increases in seasonal CO2 exchange in northern ecosystems are larger than simulated by terrestrial models, indicating the models do not capture substantial ecological changes occurring since 1960. This presentation will give an overview of the recent paper1, highlighting the atmospheric evidence for a dominant influence from boreal forests and from the main growing season months. It will also expand on the investigation of modeled changes in seasonal CO2 flux using CMIP5 and other model intercomparisons, including the modeled influences of carbon vs climate drivers. 1. Graven et al. 2013, Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960, Science, 341, 6150, 1085-1089. DOI: 10.1126/science.1239207
Connecting the Mississippi River with Carbon Variability in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.; Ren, W.
2016-02-01
To understand the linkage between landuse/land-cover change within the Mississippi basin and the carbon dynamics in the Gulf of Mexico, a three-dimensional coupled physical-biogeochemical model was used to the examine temporal and spatial variability of surface ocean pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and freshwater and terrestrial nutrient and carbon input from major rivers provided by the Dynamic Land Ecosystem Model (DLEM). A seven-year model hindcast (2004-2010) was performed and was validated against the recently updated Lamont-Doherty Earth Observatory global ocean carbon dataset. Model simulated seawater pCO2 and air-sea CO2 flux are in good agreement with in-situ measurements. An inorganic carbon budget was estimated based on the multi-year mean of the model results. Overall, the GoM is a sink of atmospheric CO2 with a flux of 0.92 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by carbon export through the Loop Current. In a sensitivity experiment with all biological sources and sinks of carbon disabled surface pCO2 was elevated by 70 ppm, suggesting that biological uptake is the most important reason for the simulated CO2 sink. The impact from landuse and land-cover changes within the Mississippi River basin on coastal pCO2 dynamics is also discussed based on a scenario run driven by river conditions during the 1904-1910 provided by the DLEM model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra
2013-03-01
One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rockmore » + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the maximum CO{sub 2} sequestration, 34.5 kg CO{sub 2} per m{sup 3} of sandstone, is attained by 4000 years even though the system does not achieve chemical equilibrium until ~25,000 years. This maximum represents about 20% CO{sub 2} dissolved as CO{sub 2},aq, 50% dissolved as HCO{sub 3}{sup -}{sub ,aq}, and 30% precipitated as calcite. The extent of sequestration as HCO{sub 3}{sup -} at equilibrium can be calculated from equilibrium thermodynamics and is roughly equivalent to the amount of Na+ in the initial sandstone in a soluble mineral (here, oligoclase). Similarly, the extent of trapping in calcite is determined by the amount of Ca2+ in the initial oligoclase and smectite. Sensitivity analyses show that the rate of CO{sub 2} sequestration is sensitive to the mineral-water reaction kinetic constants between approximately 10 and 4000 years. The sensitivity of CO{sub 2} sequestration to the rate constants decreases in magnitude respectively from oligoclase to albite to smectite.« less
Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.
2011-12-01
NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.
Uddling, Johan; Wallin, Göran
2012-12-01
According to well-known biochemical and biophysical mechanisms, the stimulation of C(3) photosynthesis by elevated atmospheric CO(2) concentration ([CO(2)]) is strongly modified by changes in temperature and radiation. In order to investigate whether a static parameterization of the commonly used Farquhar et al. model of photosynthesis (i.e., without CO(2)-induced seasonal or thermal acclimation of photosynthetic capacity) can accurately predict these interactions in mature boreal Norway spruce (Picea abies (L.) Karst.) during the frost-free part of the growing season, shoot gas exchange was continuously measured on trees during their second/third year of exposure to ambient or doubled [CO(2)] inside whole-tree chambers. The relative CO(2)-induced enhancement of net photosynthesis (A(n)) at a given temperature remained stable over the study period, but increased strongly with temperature and radiation, in agreement with predictions by the model. Light-saturated A(n) (+67% at 20 °C), dark respiration (+36%) and intercellular to ambient [CO(2)] ratio (c(i)/c(a); +27%) were significantly increased by CO(2) treatment. Stomatal conductance (g(s)) was not significantly affected. Our results demonstrate that the Farquhar et al. model of photosynthesis has the capability to predict interactions between [CO(2)] and seasonal weather variability on A(n) in Norway spruce during the non-frost growing season without accounting for CO(2)-induced seasonal and/or thermal photosynthetic acclimation. However, stomatal model assumptions of reduced g(s) and constant c(i)/c(a) under rising atmospheric [CO(2)] did not hold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atienzar, Franck A., E-mail: franck.atienzar@ucb.com; Novik, Eric I.; Gerets, Helga H.
Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine modelmore » along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.« less
NASA Astrophysics Data System (ADS)
Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.
2012-10-01
We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.
3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles
NASA Astrophysics Data System (ADS)
Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-10-01
3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.
NASA Astrophysics Data System (ADS)
Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans
2009-02-01
For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.
Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.
2009-01-01
Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.
CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone
Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.
2005-01-01
Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.
Park, Jae Hong; Peters, Thomas M.; Altmaier, Ralph; Jones, Samuel M.; Gassman, Richard; Anthony, T. Renée
2017-01-01
We have developed a time-dependent simulation model to estimate in-room concentrations of multiple contaminants [ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO) and dust] as a function of increased ventilation with filtered recirculation for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality (IAQ) and operational cost for a variety of ventilation conditions over a 3-month winter period for a facility located in the Midwest U.S., using simplified and real-time production parameters, comparing results to field data. A revised model was improved by minimizing the sum of squared errors (SSE) between modeled and measured NH3 and CO2. After optimizing NH3 and CO2, other IAQ results from the simulation were compared to field measurements using linear regression. For NH3, the coefficient of determination (R2) for simulation results and field measurements improved from 0.02 with the original model to 0.37 with the new model. For CO2, the R2 for simulation results and field measurements was 0.49 with the new model. When the makeup air was matched to hallway air CO2 concentrations (1,500 ppm), simulation results showed the smallest SSE. With the new model, the R2 for other contaminants were 0.34 for inhalable dust, 0.36 for respirable dust, and 0.26 for CO. Operation of the air cleaner decreased inhalable dust by 35% and respirable dust concentrations by 33%, while having no effect on NH3, CO2, in agreement with field data, and increasing operational cost by $860 (58%) for the three-month period. PMID:28775911
Impact of mesophyll diffusion on estimated global land CO 2 fertilization
Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; ...
2014-10-13
In C 3 plants, CO 2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO 2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO 2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO 2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO 2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth ratesmore » of historical atmospheric CO 2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr -1ppm -1. This finding implies that the contemporary terrestrial biosphere is more CO 2-limited than previously thought.« less
Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers
NASA Astrophysics Data System (ADS)
Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.
2017-12-01
Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.
Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study
NASA Astrophysics Data System (ADS)
Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong
2018-05-01
This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Butterfield, Z.; Doney, S. C.; Dlugokencky, E. J.; Miller, J.; Morton, D. C.
2017-12-01
Quantifying the climatic drivers of variations in atmospheric CO2 observations over a range of timescales is necessary to develop a mechanistic understanding of the global carbon cycle that will enable prediction of future changes. Here, we combine NOAA cooperative global air sampling network CO2 observations, remote sensing data, and a flux perturbation model to quantify the feedbacks between interannual variability in physical climate and the atmospheric CO2 growth rate. In particular, we focus on the differences between the 1997/1998 El Niño and the 2015/2016 El Niño during which atmospheric CO2 increased at an unprecedented rate. The flux perturbation model was trained on data from 1997 to 2012, and then used to predict regional atmospheric CO2 growth rate anomalies for the period from 2013 through 2016. Given gridded temperature anomalies from the Hadley Center's Climate Research Unit (CRU), precipitation anomalies from the Global Precipitation Climatology Project (GPCP), and fire emissions from the Global Fire Emissions Database (GFEDv4s), the model was able to the reproduce regional growth rate variations observed at marine boundary layer stations in the NOAA network, including the rapid CO2 growth rate in 2015/2016. The flux perturbation model output suggests that the carbon cycle responses differed for1997 and 2015 El Niño periods, with tropical precipitation anomalies causing a much larger net flux of CO2 to the atmosphere during the latter period, while direct fire emissions dominated the former. The flux perturbation model also suggests that high temperature stress in the Northern Hemisphere extratropics contributed almost one-third of the CO2 growth rate enhancement during the 2015 El Niño. We use satellite-based metrics for atmospheric column CO2, vegetation, and moisture to corroborate the regional El Niño impacts from the flux perturbation model. Finally, we discuss how these observational results and independent data on ocean air-sea flux anomalies, couched in an empirical model, may be useful for evaluating the fidelity of mechanistic land models.
Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions
Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...
2016-07-22
Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less
Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Sha; Lauvaux, Thomas; Newman, Sally
Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less
Uncertainties in the Modelled CO2 Threshold for Antarctic Glaciation
NASA Technical Reports Server (NTRS)
Gasson, E.; Lunt, D. J.; DeConto, R.; Goldner, A.; Heinemann, M.; Huber, M.; LeGrande, A. N.; Pollard, D.; Sagoo, N.; Siddall, M.;
2014-01-01
frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of approximately780 parts per million by volume is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene-Oligocene transition approximately 34 million years. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter.
Modeling of nonequilibrium CO Fourth-Positive and CN Violet emission in CO2-N2 gases
NASA Astrophysics Data System (ADS)
Johnston, C. O.; Brandis, A. M.
2014-12-01
This work develops a chemical kinetic rate model for simulating nonequilibrium radiation from CO2-N2 gases, representative of Mars or Venus entry shock layers. Using recent EAST shock tube measurements of nonequilibrium CO 4th Positive and CN Violet emission at pressures and velocities ranging from 0.10 to 1.0 Torr and 6 to 8 km/s, the rate model is developed through an optimization procedure that minimizes the disagreement between the measured and simulated nonequilibrium radiance profiles. Only the dissociation rates of CO2, CO, and NO, along with the CN + O and CO + N rates were treated as unknown in this optimization procedure, as the nonequilibrium radiance was found to be most sensitive to them. The other rates were set to recent values from the literature. Increases in over a factor of 5 in the CO dissociation rate relative to the previous widely used value were found to provide the best agreement with measurements, while the CO2 rate was not changed. The developed model is found to capture the measured nonequilibrium radiance of CO 4th Positive and CN Violet within error bars of ±30%.
Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes
NASA Technical Reports Server (NTRS)
Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.
2006-01-01
Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
Kessler, A.; Tjiputra, J.
2016-04-07
Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, A.; Tjiputra, J.
Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, P. C.; Hao, Y.; Firoozabadi, A.
2015-03-27
Thermodynamic property calculations of mixtures containing carbon dioxide (CO 2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO 2 activity coefficient model by Duanmore » and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO 2, pure water, and both CO 2-rich and aqueous (H 2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO 2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H 2O-CO 2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.« less
Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke
2017-04-01
Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.
Chen, Can; Chen, Deli; Pan, Jianjun; Lam, Shu Kee
2013-01-01
Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha(-1) y(-1) and 2.13 t C ha(-1) y(-1), respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant.
Chen, Deli; Pan, Jianjun; Lam, Shu Kee
2013-01-01
Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha−1 y−1 and 2.13 t C ha−1 y−1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant. PMID:24453915
NASA Astrophysics Data System (ADS)
Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.
2016-12-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.
NASA Technical Reports Server (NTRS)
Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa
2016-01-01
Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.
Multi-model trends in East African rainfall associated with increased CO2
NASA Astrophysics Data System (ADS)
McHugh, Maurice J.
2005-01-01
Nineteen coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Program (CMIP) were used to analyze future rainfall conditions over East Africa under enhanced CO2 conditions. 80 year control runs of these models indicated that four models produced mean annual rainfall distributions closely resembling climatological means and all four models had normalized root mean square errors well within the bounds of observed variability. East African (10°N-20°S, 25°-50°E) rainfall data from transient 80 year experiments which featured CO2 increases of 1% per year were compared with 80 year control simulations. Results indicate enhanced annual and seasonal rainfall rates, and increased extreme wet period frequency. These results indicate that East Africa may face a future in which mosquito-borne diseases such as malaria and Rift Valley fever proliferate resulting from increased CO2.
A model for the evolution of CO2 on Mars
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Tyler, D.; Mckay, C. P.; Davis, W. L.
1993-01-01
Our MSATT work has focused on the evolution of CO2 on Mars. We have constructed a model that predicts the evolution of CO2 on Mars from a specified initial amount at the end of the heavy bombardment to the present. The model draws on published estimates of the main process believed to affect the fate of CO2 during this period: chemical weathering, regolith uptake, polar cap formation, and atmospheric escape. Except for escape, the rate at which these processes act is controlled by surface temperatures that we calculate using a modified version of the Gierasch and Toon energy balance model. Various aspects of this work are covered.
NASA Astrophysics Data System (ADS)
Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.
2017-12-01
We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an excellent seal to ensure long-term security of injected CO2.
NASA Astrophysics Data System (ADS)
Ganopolski, Andrey; Brovkin, Victor
2017-11-01
In spite of significant progress in paleoclimate reconstructions and modelling of different aspects of the past glacial cycles, the mechanisms which transform regional and seasonal variations in solar insolation into long-term and global-scale glacial-interglacial cycles are still not fully understood - in particular, in relation to CO2 variability. Here using the Earth system model of intermediate complexity CLIMBER-2 we performed simulations of the co-evolution of climate, ice sheets, and carbon cycle over the last 400 000 years using the orbital forcing as the only external forcing. The model simulates temporal dynamics of CO2, global ice volume, and other climate system characteristics in good agreement with paleoclimate reconstructions. These results provide strong support for the idea that long and strongly asymmetric glacial cycles of the late Quaternary represent a direct but strongly nonlinear response of the Northern Hemisphere ice sheets to orbital forcing. This response is strongly amplified and globalised by the carbon cycle feedbacks. Using simulations performed with the model in different configurations, we also analyse the role of individual processes and sensitivity to the choice of model parameters. While many features of simulated glacial cycles are rather robust, some details of CO2 evolution, especially during glacial terminations, are sensitive to the choice of model parameters. Specifically, we found two major regimes of CO2 changes during terminations: in the first one, when the recovery of the Atlantic meridional overturning circulation (AMOC) occurs only at the end of the termination, a pronounced overshoot in CO2 concentration occurs at the beginning of the interglacial and CO2 remains almost constant during the interglacial or even declines towards the end, resembling Eemian CO2 dynamics. However, if the recovery of the AMOC occurs in the middle of the glacial termination, CO2 concentration continues to rise during the interglacial, similar to the Holocene. We also discuss the potential contribution of the brine rejection mechanism for the CO2 and carbon isotopes in the atmosphere and the ocean during the past glacial termination.
Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R
2009-12-30
A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
NASA Astrophysics Data System (ADS)
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
NASA Astrophysics Data System (ADS)
Jones, D. B. A.; Deng, F.; Walker, T. W.; Keller, M.; Bowman, K. W.; Nassar, R.
2014-12-01
The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The processes that influence the distribution of atmospheric constituents in the UTLS occur on small vertical scales that are a challenge for models to reliably capture. As a consequence, models typically underestimate the mean age of air in the lowermost stratosphere, reflecting excessive vertical transport and/or mixing in the region. Using the GEOS-Chem global chemical transport model, we quantify the potential impact of discrepancies in vertical transport in the UTLS on inferred sources and sinks of atmospheric CO2. Comparisons of the modeled CO2 and O3 in the polar UTLS with data from the HIAPER Pole-to-Pole Observations (HIPPO) campaign show that the model overestimates CO2 and underestimates O3 in the region. Using the observed CO2/O3 correlations in the UTLS, we correct the modeled CO2 in the Arctic UTLS (primarily between the 320 K and 360 K isentropic surfaces) and quantify the impact of the CO2 correction on the flux estimates using the GEOS-Chem data assimilation system together with XCO2 data from the Greenhouse Gases Observing Satellite (GOSAT). As a result of isentropic transport, the correction is transported down into the subtropical troposphere, where it impacts the regional flux estimates. Our results suggest that discrepancies in mixing in the UTLS could bias the latitudinal distribution of the inferred CO2 fluxes.
NASA Astrophysics Data System (ADS)
Yan, Y.-Y.; Lin, J.-T.; Kuang, Y.; Yang, D.; Zhang, L.
2014-07-01
Global chemical transport models (CTMs) are used extensively to study air pollution and transport at a global scale. These models are limited by coarse horizontal resolutions, not allowing for detailed representation of small-scale nonlinear processes over the pollutant source regions. Here we couple the global GEOS-Chem CTM and its three high-resolution nested models to simulate the tropospheric carbon monoxide (CO) over the Pacific Ocean during five HIAPER Pole-to-Pole Observations (HIPPO) campaigns between 2009 and 2011. We develop a two-way coupler, PKUCPL, to integrate simulation results for chemical constituents from the global model (at 2.5° long. × 2° lat.) and the three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. The coupler obtains nested model results to modify the global model simulation within the respective nested domains, and simultaneously acquires global model results to provide lateral boundary conditions for the nested models. Compared to the global model alone, the two-way coupled simulation results in enhanced CO concentrations in the nested domains. Sensitivity tests suggest the enhancement to be a result of improved representation of the spatial distributions of CO, nitrogen oxides and non-methane volatile organic compounds, the meteorological dependence of natural emissions, and other resolution-dependent processes. The relatively long lifetime of CO allows for the enhancement to be accumulated and carried across the globe. We find that the two-way coupled simulation increases the global tropospheric mean CO concentrations in 2009 by 10.4%, with a greater enhancement at 13.3% in the Northern Hemisphere. Coincidently, the global tropospheric mean hydroxyl radical (OH) is reduced by 4.2% (as compared to the interannual variability of OH at 2.3%), resulting in a 4.2% enhancement in the methyl chloroform lifetime (MCF, via reaction with tropospheric OH). The resulting CO and OH contents and MCF lifetime are closer to observation-based estimates. Both the global and the two-way coupled models capture the general spatiotemporal patterns of HIPPO CO over the Pacific. The two-way coupled simulation is much closer to HIPPO CO, with a mean bias of 1.1 ppb (1.4%) below 9 km compared to the bias at -7.2 ppb (-9.2%) for the global model. The improvement is most apparent over the North Pacific. Our test simulations show that the global model could resemble the two-way coupled simulation (especially below 4 km) by increasing its global CO emissions by 15% for HIPPO-1 and HIPPO-3, by 25% for HIPPO-2 and HIPPO-4, and by 35% for HIPPO-5. This has important implications for using the global model to constrain CO emissions. Thus, the two-way coupled simulation is a significantly improved model tool to studying the global impacts of air pollutants from major anthropogenic source regions.
NASA Astrophysics Data System (ADS)
Houska, Tobias; Kraus, David; Kiese, Ralf; Breuer, Lutz
2017-07-01
This study presents the results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Hesse, Germany. The measured emissions reveal seasonal patterns and management effects, including fertilizer application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha-1 a-1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha-1 a-1 for the arable land, grassland and forest sites, respectively. An innovative model-data fusion concept based on a multicriteria evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test the LandscapeDNDC biogeochemical model. The model is run in a Latin-hypercube-based uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural model runs. The results indicate that the model is generally capable of predicting trace gas emissions, as evaluated with RMSE as the objective function. The model shows a reasonable performance in simulating the ecosystem C and N balances. The model-data fusion concept helps to detect remaining model errors, such as missing (e.g. freeze-thaw cycling) or incomplete model processes (e.g. respiration rates after harvest). This concept further elucidates the identification of missing model input sources (e.g. the uptake of N through shallow groundwater on grassland during the vegetation period) and uncertainty in the measured validation data (e.g. forest N2O emissions in winter months). Guidance is provided to improve the model structure and field measurements to further advance landscape-scale model predictions.
McGuire, A.D.; Melillo, J.M.; Randerson, J.T.; Parton, W.J.; Heimann, Martin; Meier, R.A.; Clein, Joy S.; Kicklighter, D.W.; Sauf, W.
2000-01-01
Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2) at high latitude monitoring stations during the nongrowing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 ??C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30??N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations, in comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.
Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars
NASA Astrophysics Data System (ADS)
Ozak, N.; Aharonson, O.; Halevy, I.
2016-06-01
Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.
Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe
NASA Astrophysics Data System (ADS)
Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.
2017-12-01
Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.
NASA Astrophysics Data System (ADS)
Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin
2015-10-01
Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.
NASA Technical Reports Server (NTRS)
Collatz, G. James; Kawa, R.
2007-01-01
Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.
Mechanical model testing of rebreathing potential in infant bedding materials
Carleton, J.; Donoghue, A.; Porter, W.
1998-01-01
Rebreathing of expired air may be a lethal hazard for prone sleeping infants. This paper describes a mechanical model to simulate infant breathing, and examines the effects of bedding on exhaled air retention. Under simulated rebreathing conditions, the model allows the monitoring of raised carbon dioxide (CO2) inside an artificial lung-trachea system. Resulting levels of CO2 (although probably exaggerated in the mechanical model compared with an infant, due to the model's fixed breathing rate and volume) suggest that common bedding materials vary widely in inherent rebreathing potential. In face down tests, maximum airway CO2 ranged from less than 5% on sheets and waterproof mattresses to over 25% on sheepskins, bean bag cushions, and some pillows and comforters. Concentrations of CO2 decreased with increasing head angle of the doll, away from the face down position. Recreations of 29infant death scenes also showed large CO2 increases on some bedding materials, suggesting these infants could have died while rebreathing. PMID:9623394
NASA Astrophysics Data System (ADS)
Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.
2017-12-01
Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.
Ricciuto, Daniel M.; Mao, Jiafu; Shi, Xiaoying
2016-11-04
Observations show an increasing amplitude in the seasonal cycle of CO 2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5 - 15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO 2 concentrations. We find that the modeled change in ASC is too small but themore » mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO 2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.« less
On solar geoengineering and climate uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas; Kravitz, Benjamin S.; Rasch, Philip J.
2015-09-03
Uncertainty in the climate system response has been raised as a concern regarding solar geoengineering. Here we show that model projections of regional climate change outcomes may have greater agreement under solar geoengineering than with CO2 alone. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the inter-model spread across 12 climate models participating in the Geoengineering Model Intercomparison project (GeoMIP). The model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. That is, the intermodel spread in predictionsmore » of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. Furthermore, differences in efficacy explain most of the differences between models in their temperature response to an increase in CO2 that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks.« less
NASA Technical Reports Server (NTRS)
Fung, Inez Y.; Tucker, C. J.; Prentice, Katharine C.
1985-01-01
The 'normalized difference vegetation indices' (NVI) derived from AVHRR radiances are combined with field data of soil respiration and a global map of net primary productivity to prescribe, for the globe, the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained are used as inputs to a 3-D tracer transport model which uses winds generated by a 3-D atmospheric general circulation model to advect CO2 as an inert constituent. Analysis of the 3-D model results shows reasonable agreement between the simulated and observed annual cycles of atmospheric CO2 at the locations of the remote monitoring stations. The application is shown of atmospheric CO2 distributions to calibrate the NVI in terms of carbon fluxes. The approach suggests that the NVI may be used to provide quantitative information about long term and global scale variations of photosynthetic activity and of atmospheric CO2 concentrations provided that variations in the atmospheric circulation and in atmospheric composition are known.
Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.
García, S; Pis, J J; Rubiera, F; Pevida, C
2013-05-21
We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.
Non-Boussinesq Dissolution-Driven Convection in Porous Media
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Soltanian, M. R.; Moortgat, J.
2017-12-01
Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.
Evaluation of Diagnostic CO2 Flux and Transport Modeling in NU-WRF and GEOS-5
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Collatz, G. J.; Tao, Z.; Wang, J. S.; Ott, L. E.; Liu, Y.; Andrews, A. E.; Sweeney, C.
2015-12-01
We report on recent diagnostic (constrained by observations) model simulations of atmospheric CO2 flux and transport using a newly developed facility in the NASA Unified-Weather Research and Forecast (NU-WRF) model. The results are compared to CO2 data (ground-based, airborne, and GOSAT) and to corresponding simulations from a global model that uses meteorology from the NASA GEOS-5 Modern Era Retrospective analysis for Research and Applications (MERRA). The objective of these intercomparisons is to assess the relative strengths and weaknesses of the respective models in pursuit of an overall carbon process improvement at both regional and global scales. Our guiding hypothesis is that the finer resolution and improved land surface representation in NU-WRF will lead to better comparisons with CO2 data than those using global MERRA, which will, in turn, inform process model development in global prognostic models. Initial intercomparison results, however, have generally been mixed: NU-WRF is better at some sites and times but not uniformly. We are examining the model transport processes in detail to diagnose differences in the CO2 behavior. These comparisons are done in the context of a long history of simulations from the Parameterized Chemistry and Transport Model, based on GEOS-5 meteorology and Carnegie Ames-Stanford Approach-Global Fire Emissions Database (CASA-GFED) fluxes, that capture much of the CO2 variation from synoptic to seasonal to global scales. We have run the NU-WRF model using unconstrained, internally generated meteorology within the North American domain, and with meteorological 'nudging' from Global Forecast System and North American Regional Reanalysis (NARR) in an effort to optimize the CO2 simulations. Output results constrained by NARR show the best comparisons to data. Discrepancies, of course, may arise either from flux or transport errors and compensating errors are possible. Resolving their interplay is also important to using the data in inverse models. Recent analysis is focused on planetary boundary depth, which can be significantly different between MERRA and NU-WRF, along with subgrid transport differences. Characterization of transport differences between the models will allow us to better constrain the CO2 fluxes, which is the major objective of this work.
Nayana, M Ravi Shashi; Sekhar, Y Nataraja; Nandyala, Haritha; Muttineni, Ravikumar; Bairy, Santosh Kumar; Singh, Kriti; Mahmood, S K
2008-10-01
In the present study, a series of 179 quinoline and quinazoline heterocyclic analogues exhibiting inhibitory activity against Gastric (H+/K+)-ATPase were investigated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods. Both the models exhibited good correlation between the calculated 3D-QSAR fields and the observed biological activity for the respective training set compounds. The most optimal CoMFA and CoMSIA models yielded significant leave-one-out cross-validation coefficient, q(2) of 0.777, 0.744 and conventional cross-validation coefficient, r(2) of 0.927, 0.914 respectively. The predictive ability of generated models was tested on a set of 52 compounds having broad range of activity. CoMFA and CoMSIA yielded predicted activities for test set compounds with r(pred)(2) of 0.893 and 0.917 respectively. These validation tests not only revealed the robustness of the models but also demonstrated that for our models r(pred)(2) based on the mean activity of test set compounds can accurately estimate external predictivity. The factors affecting activity were analyzed carefully according to standard coefficient contour maps of steric, electrostatic, hydrophobic, acceptor and donor fields derived from the CoMFA and CoMSIA. These contour plots identified several key features which explain the wide range of activities. The results obtained from models offer important structural insight into designing novel peptic-ulcer inhibitors prior to their synthesis.
Extended probit mortality model for zooplankton against transient change of PCO(2).
Sato, Toru; Watanabe, Yuji; Toyota, Koji; Ishizaka, Joji
2005-09-01
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.
A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.
Greer, T; Bedelbayev, A; Igreja, J M; Gomes, J F; Lie, B
2010-01-01
Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.
NASA Technical Reports Server (NTRS)
Way, J. B.; Rignot, E.; McDonald, K.; Adams, P.; Viereck, L.
1993-01-01
Changes in the seasonal CO(sub 2) flux of the boreal forests may result from increased atmospheric CO(sub 2) concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 during spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO(sub 2) flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO(sub 2) flux is presented. CO(sub 2) flux maps are generated from which areal estimates of CO(sub 2) flux are derived.
Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO(2).
Leuzinger, Sebastian; Bader, Martin K-F
2012-01-01
Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.
Yang, Yu-Chiao; Wei, Ming-Chi
2018-06-30
This study compared the use of ultrasound-assisted supercritical CO 2 (USC-CO 2 ) extraction to obtain apigenin-rich extracts from Scutellaria barbata D. Don with that of conventional supercritical CO 2 (SC-CO 2 ) extraction and heat-reflux extraction (HRE), conducted in parallel. This green procedure yielded 20.1% and 31.6% more apigenin than conventional SC-CO 2 extraction and HRE, respectively. Moreover, the extraction time required by the USC-CO 2 procedure, which used milder conditions, was approximately 1.9 times and 2.4 times shorter than that required by conventional SC-CO 2 extraction and HRE, respectively. Furthermore, the theoretical solubility of apigenin in the supercritical fluid system was obtained from the USC-CO 2 dynamic extraction curves and was in good agreement with the calculated values for the three empirical density-based models. The second-order kinetics model was further applied to evaluate the kinetics of USC-CO 2 extraction. The results demonstrated that the selected model allowed the evaluation of the extraction rate and extent of USC-CO 2 extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr -1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.
2013-01-01
MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.
NASA Astrophysics Data System (ADS)
Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.
2017-12-01
The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.
Modeling 13C discrimination in Tree Rings
NASA Astrophysics Data System (ADS)
Berninger, Frank; Sonninen, Eloni; Aalto, Tuula; Lloyd, Jon
2000-03-01
Annual variations from 1877 to 1995 in tree-ring α-cellulose 13C/12C isotopic ratios for four subarctic Pinus sylvestris trees were determined, and, in conjunction with a recent record of atmospheric 13CO2/12CO2 ratios, the historical pattern of photosynthetic isotope discrimination, Δ13C, was evaluated. Year-to-year variability in Δ13C has been as much as 1.5‰ with the period 1900-1920 showing an extended period of unusually high photosynthetic discriminations. The summers during these years were, on average, unusually cold. Since 1920 a long term trend of increasing Δ13C of ˜0.016‰yr-1 is inferred. We compared measured Δ13C with those predicted on the basis of the theoretical relationship between Δ13C and the ratio of substomatal to ambient CO2 concentration, Ci/Ca using mechanistic equations for chloroplast biochemistry coupled with a stomatal conductance model. Two variations of a nonlinear optimal-regulation stomatal conductance model were compared. Although both models were based on the assumption that stomata serve to minimize the average transpiration rate for a given average rate of CO2 assimilation, one version of the model incorporated reductions in stomatal conductance in response to recent increases in atmospheric CO2 concentrations and the other did not. The CO2 sensitive stomatal model failed to describe the long-term increase in 13C discrimination, especially after 1950. The insensitive model gave good agreement, suggesting that an observed increase in subarctic Pinus sylvestris Δ13C since 1920 is attributable to recent increases in atmospheric CO2 concentrations with subsequent increases in the ratio of substomatal to ambient CO2 concentrations. The model was also capable of accounting for high frequency (year-to-year) variations in Δ13C, these differences being attributable to year-to-year fluctuations in the average leaf-to-air vapor pressure difference affecting stomatal conductance and hence Ci/Ca.
Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes
Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef
2014-01-01
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters. PMID:25119996
McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B
2010-04-01
The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
NASA Astrophysics Data System (ADS)
He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.
2016-12-01
Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with observations for OCS, implicating that OCS could provide independent constraint in joint inversion. Optimization makes less total GPP and Re but more NEE, when testing with prior CO2 fluxes from two biosphere models. This study gives an in-depth insight into the role of joint atmospheric OCS and CO2 observations in constraining CO2 fluxes.
Sun, Ying-Ji; Huang, Qian-Qian; Zhang, Jian-Jun
2014-03-17
A series of mononuclear Co(II)-flavonolate complexes [Co(II)L(R)(fla)] (L(R)H = 2-{[bis(pyridin-2-ylmethyl)amino]methyl}-p/m-R-benzoic acid; R = p-OMe (1), p-Me (2), m-Br (4), and m-NO2 (5); fla = flavonolate) were designed and synthesized as structural and functional models for the ES (enzyme-substrate) complexes to mimic the active site of the Co(II)-containing quercetin 2,3-dioxygenase (Co-2,3-QD). The metal center Co(II) ion in each complex shows a similar distorted octahedral geometry. The model complexes display high enzyme-type dioxygenation reactivity (oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate) at low temperature, presumably due to the attached carboxylate group in the ligands. The reactivity exhibits a substituent group dependent order of -OMe (1) > -Me (2) > -H (3)14b > -Br (4) > -NO2 (5), and the Hammett plot is linear (ρ = -0.78). This can be explained as the electronic nature of the substituent group in the ligands may influence the conformation and redox potential of the bound flavonolate and finally bring different reactivity. The structures, properties, and reactivity of the model complexes show some dependence on the substituent group in the supporting model ligands, and there is some relationship among them. This study is the first example of a series of structural and functional ES models of Co-2,3-QD, with focus on the effects of the electronic nature of substituted groups and the carboxylate group of the ligands to the dioxygenation reactivity, that will provide important insights into the structure-property-reactivity relationship and the catalytic role of Co-2,3-QD.
Carbon dioxide stripping in aquaculture -- part III: model verification
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.
Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO 2 hydrogenation
Asara, Gian Giacomo; Ricart, Josep M.; Rodriguez, Jose A.; ...
2015-02-02
Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO 2 decomposition, thiophene hydrodesulfurization, O 2 and H 2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO 2 + H 2 → CO + H 2O) and CO 2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalyticmore » activity of Au/TiC towards the hydrogenation of CO or CO 2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO 2 involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO 2/H 2/H 2O), CO could be transformed into CO 2 through the water gas shift reaction with subsequent hydrogenation of CO 2 to methanol.« less
NASA Astrophysics Data System (ADS)
Chen, F.; Wiese, B.; Zhou, Q.; Birkholzer, J. T.; Kowalsky, M. B.
2013-12-01
The Stuttgart formation used for ongoing CO2 injection at the Ketzin pilot test site in Germany is highly heterogeneous in nature. The site characterization data, including 3D seismic amplitude images, the regional geology data, and the core measurements and geophysical logs of the wells show the formation is composed of permeable sandstone channels of varying thickness and length embedded in less permeable mudstones. Most of the sandstone channels are located in the upper 10-15 m of the formation, with only a few sparsely distributed sandstone channels in the bottom 70-m layer. Three-dimensional seismic data help to identify the large-scale facies distribution patterns in the Stuttgart formation, but are unable to resolve internal structures at a smaller scale (e.g. ~100 m). Heterogeneity has a large effect on the pressure propagation measured during a suite of pumping tests conducted in 2007-2008 and also impacts strongly the CO2 arrival times observed during the ongoing CO2 injection experiment. The arrival time of the CO2 plume at the observation well Ktzi 202was 12.5 times greater than at the other observation well Ktzi 200, even though the distance to the injection well is only 2.2 times farther than that of Ktzi 200. To characterize subsurface properties and help predict the behavior of injected CO2 in subsequent experiments, we develop a TOUGH2/EOS9 model for modeling the hydraulic pumping tests and use the inverse modeling tool iTOUGH2 for automatic model calibration. The model domain is parameterized using multiple zones, with each zone assumed to have uniform rock properties. The calibrated model produces system responses that are in good agreement with the measured pressure drawdown data, indicating that it captures the essential flow processes occurring during the pumping tests. The estimated permeability distribution shows that the heterogeneity is significant and that the study site is situated a semi-closed system with one or two sides open to permeable regions and the others effectively blocked by low-permeability regions. A low-permeability zone appears at the northern boundary of the model. Of the three wells that are analyzed, permeable channels are found to connect Ktzi 202 with Ktzi 200/Ktzi 201, while a low-permeability zone is observed between Ktzi 201 and Ktzi 200. The calibrated results are consistent with the crosshole ERT data and can help explain the position of a CO2 plume, inferred from 3D seismic surveys in a subsequent CO2 injection experiment. Because the CO2 transport that occurs during a CO2 injection and the pressure propagation that occurs during pumping tests are sensitive to different scales of subsurface heterogeneity, direct application of a model calibrated from pumping test data is inappropriate for predicting CO2 arrival. However, by including a thin layer of highly permeable sandstone, we present a proof-of-concept model that produces CO2 arrival times comparable to those observed at the site.
Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements
NASA Astrophysics Data System (ADS)
Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.
2014-03-01
Terrestrial CO2 flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the BEPS model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced. CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements have improved the inversion results.
NASA Astrophysics Data System (ADS)
Yu, Zhitao; Miller, Franklin; Pfotenhauer, John M.
2017-12-01
Both a numerical and analytical model of the heat and mass transfer processes in a CO2, N2 mixture gas de-sublimating cross-flow finned duct heat exchanger system is developed to predict the heat transferred from a mixture gas to liquid nitrogen and the de-sublimating rate of CO2 in the mixture gas. The mixture gas outlet temperature, liquid nitrogen outlet temperature, CO2 mole fraction, temperature distribution and de-sublimating rate of CO2 through the whole heat exchanger was computed using both the numerical and analytic model. The numerical model is built using EES [1] (engineering equation solver). According to the simulation, a cross-flow finned duct heat exchanger can be designed and fabricated to validate the models. The performance of the heat exchanger is evaluated as functions of dimensionless variables, such as the ratio of the mass flow rate of liquid nitrogen to the mass flow rate of inlet flue gas.
Quegan, Shaun; Banwart, Steven A.
2017-01-01
Enhanced weathering (EW) aims to amplify a natural sink for CO2 by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2 into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas (GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidification in croplands and how the soil weathering CO2 sink is represented in models. Mathematical models capturing the dominant processes and human interventions governing cropland soil chemistry and GHG emissions neglect weathering, while most weathering models neglect agricultural processes. We discuss current approaches to modelling EW and highlight several classes of model having the potential to simulate EW in croplands. Finally, we argue for further integration of process knowledge in mathematical models to capture feedbacks affecting both longer-term CO2 consumption and crop growth and yields. PMID:28381633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.
2014-03-14
Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in themore » meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.« less
Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2
Leggett, Richard W.
2017-03-02
Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less
Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard W.
Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen
2015-03-31
An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximatemore » match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.« less
NASA Astrophysics Data System (ADS)
Liebermann, Ralf; Kraft, Philipp; Houska, Tobias; Breuer, Lutz; Müller, Christoph; Kraus, David; Haas, Edwin; Klatt, Steffen
2015-04-01
Among anthropogenic greenhouse gas emissions, CO2 is the dominant driver of global climate change. Next to its direct impact on the radiation budget, it also affects the climate system by triggering feedback mechanisms in terrestrial ecosystems. Such mechanisms - like stimulated photosynthesis, increased root exudations and reduced stomatal transpiration - influence both the input and the turnover of carbon and nitrogen compounds in the soil. The stabilization and decomposition of these compounds determines how increasing CO2 concentrations change the terrestrial trace gas emissions, especially CO2, N2O and CH4. To assess the potential reaction of terrestrial greenhouse gas emissions to rising tropospheric CO2 concentration, we make use of a comprehensive ecosystem model integrating known processes and fluxes of the carbon-nitrogen cycle in soil, vegetation and water. We apply a state-of-the-art ecosystem model with measurements from a long term field experiment of CO2 enrichment. The model - a grassland realization of LandscapeDNDC - simulates soil chemistry coupled with plant physiology, microclimate and hydrology. The data - comprising biomass, greenhouse gas emissions, management practices and soil properties - has been attained from a FACE (Free Air Carbon dioxide Enrichment) experiment running since 1997 on a temperate grassland in Giessen, Germany. Management and soil data, together with weather records, are used to drive the model, while cut biomass as well as CO2 and N2O emissions are used for calibration and validation. Starting with control data from installations without CO2 enhancement, we begin with a GLUE (General Likelihood Uncertainty Estimation) assessment using Latin Hypercube to reduce the range of the model parameters. This is followed by a detailed sensitivity analysis, the application of DREAM-ZS for model calibration, and an estimation of the effect of input uncertainty on the simulation results. Since first results indicate problems with the correct representation of the seasonal cycle of soil moisture and N2O emissions, our model is soon to be augmented with a more elaborate sub model for hydrology. Subsequent steps include the comparison of simulations and measurements under 20% elevated atmospheric CO2 concentrations, and the integration of a Farquhar-type sub model for photosynthesis.
Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.
Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain
2018-01-15
To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.
2012-01-01
We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which both models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data. Thus suggests that it is reasonable to use STILT as an adjoint model of WRF atmospheric transport.
Porter, Mark L.; Plampin, Michael; Pawar, Rajesh; ...
2014-12-31
The physicochemical processes associated with CO 2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO 2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool thatmore » is capable of capturing the experimentally observed out ow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO 2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO 2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.« less
NASA Astrophysics Data System (ADS)
Kosaka, Michitaka; Yabutani, Takashi
This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon Cycle Model CO2 Decay Response and Future CO2... Absolute GWP for the Adopted Carbon Cycle Model CO2 Decay Response and Future CO2 Atmospheric...
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad A.; Riaz, Amir
2017-09-01
Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.
Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg-1 to 0.1 mol·kg-1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH-)2(CO3)22- and Hf(CO3)56-. The log10 K0 values for the reactions [Hf4++2CO32-+2OH-⇌Hf(OH)2(CO3)22-] and [Hf4++5CO32-⇌Hf(CO3)56-], based on the SIT model, were determined to be 44.53±0.46 andmore » 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.« less
Arnell, Magnus; Astals, Sergi; Åmand, Linda; Batstone, Damien J; Jensen, Paul D; Jeppsson, Ulf
2016-07-01
Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pauly, Tyler; Garrod, Robin T.
2018-02-01
Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.
Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling
NASA Astrophysics Data System (ADS)
King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.
2017-12-01
Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2, while interannual variation is related to variations in global land-surface temperature with weaker sinks in warmer years. We examine whether these relationships are reproduced in models. Their absence might explain weaknesses in model simulations or in the reconstruction of historical climate used as drivers in model intercomparison projects (MIPs).
NASA Astrophysics Data System (ADS)
Andrews, A. E.; Trudeau, M.; Hu, L.; Thoning, K. W.; Shiga, Y. P.; Michalak, A. M.; Benmergui, J. S.; Mountain, M. E.; Nehrkorn, T.; O'Dell, C.; Jacobson, A. R.; Miller, J.; Sweeney, C.; Chen, H.; Ploeger, F.; Tans, P. P.
2017-12-01
CarbonTracker-Lagrange (CT-L) is a regional inverse modeling system for estimating CO2 fluxes with rigorous uncertainty quantification. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We have computed a library of footprints corresponding to in situ and remote sensing measurements of CO2 over North America for 2007-2015. GOSAT and OCO-2 XCO2 retrievals are simulated using a suite of CT-L terrestrial ecosystem flux estimates that have been optimized with respect to in situ atmospheric CO2 measurements along with fossil fuel fluxes from emissions inventories. A vertical profile of STILT-WRF footprints was constructed corresponding to each simulated satellite retrieval, and CO2 profiles are generated by convolving the footprints with fluxes and attaching initial values advected from the domain boundaries. The stratospheric contribution to XCO2 has been estimated using 4-dimensional CO2 fields from the NOAA CarbonTracker model (version CT2016) and from the Chemical Lagrangian Model of the Stratosphere (CLaMS), after scaling the model fields to match data from the NOAA AirCore surface-to-stratosphere air sampling system. Tropospheric lateral boundary conditions are from CT2016 and from an empirical boundary value product derived from aircraft and marine boundary layer data. The averaging kernel and a priori CO2 profile are taken into account for direct comparisons with retrievals. We have focused on North America due to the relatively dense in situ measurements available with the aim of developing strategies for combined assimilation of in situ and remote sensing data. We will consider the extent to which interannual variability in terrestrial fluxes is manifest in the real and simulated satellite retrievals, and we will investigate possible systematic biases in the satellite retrievals and in the model.
CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.
Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F
2015-09-01
CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.
The Impact of CO2-Driven Vegetation Changes on Wildfire Risk
NASA Astrophysics Data System (ADS)
Skinner, C. B.; Poulsen, C. J.
2017-12-01
While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of the wildfire response to CO2-driven vegetation change with the Community Earth System Model will be presented. The results suggest that many atmosphere-centric statistical wildfire metrics do not capture the many processes that will shape future wildfire risk in a high CO2 world and highlight the need for process-based fire modeling.
Feasibility analysis of a Commercial HPWH with CO 2 Refrigerant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawaz, Kashif; Shen, Bo; Elatar, Ahmed F.
2017-02-12
A scoping-level analysis has conducted to establish the feasibility of using CO 2 as refrigerant for a commercial heat pump water heater (HPWH) for U.S. applications. The DOE/ORNL Heat Pump Design Model (HPDM) modeling tool was used for the assessment with data from a Japanese heat pump water heater (Sanden) using CO 2 as refrigerant for calibration. A CFD modeling tool was used to further refine the HPDM tank model. After calibration, the model was used to simulate the performance of commercial HPWHs using CO 2 and R-134a (baseline). The parametric analysis concluded that compressor discharge pressure and water temperaturemore » stratification are critical parameters for the system. For comparable performance the compressor size and water-heater size can be significantly different for R-134 and CO 2 HPWHs. The proposed design deploying a gas-cooler configuration not only exceeds the Energy Star Energy Factor criteria i.e. 2.20, but is also comparable to some of the most efficient products in the market using conventional refrigerants.« less
NASA Astrophysics Data System (ADS)
Zhang, Wei
2013-06-01
It is well known that during CO2 geological storage, density-driven convective activity can significantly accelerate the dissolution of injected CO2 into water. This action could limit the escape of supercritical CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells, consequently increasing permanence and security of storage. First, we investigated the effect of numerical perturbation caused by time and grid resolution and the convergence criteria on the dissolution-diffusion-convection (DDC) process. Then, using the model with appropriate spatial and temporal resolution, some uncertainty parameters investigated in our previous paper such as initial gas saturation and model boundaries, and other factors such as relative liquid permeability and porosity modification were used to examine their effects on the DDC process. Finally, we compared the effect of 2D and 3D models on the simulation of the DDC process. The above modeling results should contribute to clear understanding and accurate simulation of the DDC process, especially the onset of convective activity, and the CO2 dissolution rate during the convection-dominated stage.
NASA Astrophysics Data System (ADS)
Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.
2016-12-01
The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect in current models and needs refinement. Finally, we use OCO-2 column CO2 and Solar Induced Fluorescence observations over the Amazon to elucidate the tropical carbon cycle mechanisms at larger scales.
Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils
NASA Astrophysics Data System (ADS)
Schlotter, D.; Schack-Kirchner, H.
2013-02-01
CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.
NASA Astrophysics Data System (ADS)
Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.
2014-12-01
The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.
Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A
2013-10-10
The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the τd measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the τd measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10 pm, respectively, from the CO(2) line center at 1571.112 nm. The CO(2) column bias errors introduced by the thin clouds are ≤0.1% for cloud optical depth ≤0.4, but they could reach ∼0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO(2) column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission.
Uncertainty Quantification and Risk Mitigation of CO2 Leakage in Groundwater Aquifers
NASA Astrophysics Data System (ADS)
Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.
2013-12-01
The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Yasuda, Tomomi; Yonemura, Seiichiro; Tani, Akira
2012-01-01
Many sensors have to be used simultaneously for multipoint carbon dioxide (CO(2)) observation. All the sensors should be calibrated in advance, but this is a time-consuming process. To seek a simplified calibration method, we used four commercial CO(2) sensor models and characterized their output tendencies against ambient temperature and length of use, in addition to offset characteristics. We used four samples of standard gas with different CO(2) concentrations (0, 407, 1,110, and 1,810 ppm). The outputs of K30 and AN100 models showed linear relationships with temperature and length of use. Calibration coefficients for sensor models were determined using the data from three individual sensors of the same model to minimize the relative RMS error. When the correction was applied to the sensors, the accuracy of measurements improved significantly in the case of the K30 and AN100 units. In particular, in the case of K30 the relative RMS error decreased from 24% to 4%. Hence, we have chosen K30 for developing a portable CO(2) measurement device (10 × 10 × 15 cm, 900 g). Data of CO(2) concentration, measurement time and location, temperature, humidity, and atmospheric pressure can be recorded onto a Secure Digital (SD) memory card. The CO(2) concentration in a high-school lecture room was monitored with this device. The CO(2) data, when corrected for simultaneously measured temperature, water vapor partial pressure, and atmospheric pressure, showed a good agreement with the data measured by a highly accurate CO(2) analyzer, LI-6262. This indicates that acceptable accuracy can be realized using the calibration method developed in this study.
Yasuda, Tomomi; Yonemura, Seiichiro; Tani, Akira
2012-01-01
Many sensors have to be used simultaneously for multipoint carbon dioxide (CO2) observation. All the sensors should be calibrated in advance, but this is a time-consuming process. To seek a simplified calibration method, we used four commercial CO2 sensor models and characterized their output tendencies against ambient temperature and length of use, in addition to offset characteristics. We used four samples of standard gas with different CO2 concentrations (0, 407, 1,110, and 1,810 ppm). The outputs of K30 and AN100 models showed linear relationships with temperature and length of use. Calibration coefficients for sensor models were determined using the data from three individual sensors of the same model to minimize the relative RMS error. When the correction was applied to the sensors, the accuracy of measurements improved significantly in the case of the K30 and AN100 units. In particular, in the case of K30 the relative RMS error decreased from 24% to 4%. Hence, we have chosen K30 for developing a portable CO2 measurement device (10 × 10 × 15 cm, 900 g). Data of CO2 concentration, measurement time and location, temperature, humidity, and atmospheric pressure can be recorded onto a Secure Digital (SD) memory card. The CO2 concentration in a high-school lecture room was monitored with this device. The CO2 data, when corrected for simultaneously measured temperature, water vapor partial pressure, and atmospheric pressure, showed a good agreement with the data measured by a highly accurate CO2 analyzer, LI-6262. This indicates that acceptable accuracy can be realized using the calibration method developed in this study. PMID:22737029
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Driever, Steven M; Retta, Moges A; Nicolaï, Bart M; Struik, Paul C
2016-11-01
One way to increase potential crop yield could be increasing mesophyll conductance g m . This variable determines the difference between the CO 2 partial pressure in the intercellular air spaces (C i ) and that near Rubisco (C c ). Various methods can determine g m from gas exchange measurements, often combined with measurements of chlorophyll fluorescence or carbon isotope discrimination. g m lumps all biochemical and physical factors that cause the difference between C c and C i . g m appears to vary with C i . This variability indicates that g m does not satisfy the physical definition of a conductance according to Fick's first law and is thus an apparent parameter. Uncertainty about the mechanisms that determine g m can be limited to some extent by using analytical models that partition g m into separate conductances. Such models are still only capable of describing the CO 2 diffusion pathway to a limited extent, as they make implicit assumptions about the position of mitochondria in the cells, which affect the re-assimilation of (photo)respired CO 2 . Alternatively, reaction-diffusion models may be used. Rather than quantifying g m , these models explicitly account for factors that affect the efficiency of CO 2 transport in the mesophyll. These models provide a better mechanistic description of the CO 2 diffusion pathways than mesophyll conductance models. Therefore, we argue that reaction-diffusion models should be used as an alternative to mesophyll conductance models, in case the aim of such a study is to identify traits that can be improved to increase g m . Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino
2018-02-22
CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.
CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project
NASA Astrophysics Data System (ADS)
Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.
2012-10-01
Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in the vicinity of airports due to small errors on the horizontal transport (wind direction). A sensitivity test without urban parameterisation removes UHI and underpredicts nighttime BLH over urban and sub-urban sites, leading to large overestimation of nocturnal CO2 concentration at the sub-urban sites. The agreement of daytime and nighttime BLH and CO2 predictions of the reference simulation over Paris agglomeration demonstrates the potential of using the meso-scale system on urban and sub-urban area in the context of inverse modelling.
NASA Astrophysics Data System (ADS)
Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.
2018-04-01
We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less
USDA-ARS?s Scientific Manuscript database
Materials and Methods The simulation exercise and model improvement were implemented in phase-wise. In the first modelling activities, the model sensitivities were evaluated to given CO2 concentrations varying from 360 to 720 'mol mol-1 at an interval of 90 'mol mol-1 and air temperature increments...
USDA-ARS?s Scientific Manuscript database
Rates of carbon dioxide assimilation through photosynthesis are readily modeled through the Farquhar, von Caemmerer and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 carbon assimilation. As models of CO2 assimilation are used more broadly for simula...
Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere
NASA Astrophysics Data System (ADS)
Barclay, Richard S.; Wing, Scott L.
2016-04-01
Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of fossil Ginkgo, or models that can simulate greenhouse climates at lower pCO2.
Zhao, Haining; Dilmore, Robert; Allen, Douglas E; Hedges, Sheila W; Soong, Yee; Lvov, Serguei N
2015-02-03
CO2 solubility data in the natural formation brine, synthetic formation brine, and synthetic NaCl+CaCl2 brine were collected at the pressures from 100 to 200 bar, temperatures from 323 to 423 K. Experimental results demonstrate that the CO2 solubility in the synthetic formation brines can be reliably represented by that in the synthetic NaCl+CaCl2 brines. We extended our previously developed model (PSUCO2) to calculate CO2 solubility in aqueous mixed-salt solution by using the additivity rule of the Setschenow coefficients of the individual ions (Na(+), Ca(2+), Mg(2+), K(+), Cl(-), and SO4(2-)). Comparisons with previously published models against the experimental data reveal a clear improvement of the proposed PSUCO2 model. Additionally, the path of the maximum gradient of the CO2 solubility contours divides the P-T diagram into two distinct regions: in Region I, the CO2 solubility in the aqueous phase decreases monotonically in response to increased temperature; in region II, the behavior of the CO2 solubility is the opposite of that in Region I as the temperature increases.
NASA Technical Reports Server (NTRS)
Li, Peng; Chou, Ming-Dah; Arking, Albert
1987-01-01
The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.
CO2 condensation and the climate of early Mars.
Kasting, J F
1991-01-01
A one-dimensional, radiative-convective climate model was used to reexamine the question of whether early Mars could have been kept warm by the greenhouse effect of a dense, CO2 atmosphere. The new model differs from previous models by considering the influence of CO2 clouds on the convective lapse rate and on the the planetary radiation budget. Condensation of CO2 decreases the lapse rate and, hence, reduces the magnitude of the greenhouse effect. This phenomenon becomes increasingly important at low solar luminosities and may preclude warm (0 degree C), globally averaged surface temperatures prior to approximately 2 billion years ago unless other greenhouse gases were present in addition to CO2 and H2O. Alternative mechanisms for warming early Mars and explaining channel formation are discussed.
Pandey, Gyanendra; Saxena, Anil K
2006-01-01
A set of 65 flexible peptidomimetic competitive inhibitors (52 in the training set and 13 in the test set) of protein tyrosine phosphatase 1B (PTP1B) has been used to compare the quality and predictive power of 3D quantitative structure-activity relationship (QSAR) comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for the three most commonly used conformer-based alignments, namely, cocrystallized conformer-based alignment (CCBA), docked conformer-based alignment (DCBA), and global minima energy conformer-based alignment (GMCBA). These three conformers of 5-[(2S)-2-({(2S)-2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoyl}amino)3-oxo-3-pentylamino)propyl]-2-(carboxymethoxy)benzoic acid (compound number 66) were obtained from the X-ray structure of its cocrystallized complex with PTP1B (PDB ID: 1JF7), its docking studies, and its global minima by simulated annealing. Among the 3D QSAR models developed using the above three alignments, the CCBA provided the optimal predictive CoMFA model for the training set with cross-validated r2 (q2)=0.708, non-cross-validated r2=0.902, standard error of estimate (s)=0.165, and F=202.553 and the optimal CoMSIA model with q2=0.440, r2=0.799, s=0.192, and F=117.782. These models also showed the best test set prediction for the 13 compounds with predictive r2 values of 0.706 and 0.683, respectively. Though the QSAR models derived using the other two alignments also produced statistically acceptable models in the order DCBA>GMCBA in terms of the values of q2, r2, and predictive r2, they were inferior to the corresponding models derived using CCBA. Thus, the order of preference for the alignment selection for 3D QSAR model development may be CCBA>DCBA>GMCBA, and the information obtained from the CoMFA and CoMSIA contour maps may be useful in designing specific PTP1B inhibitors.
NASA Astrophysics Data System (ADS)
Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.
2016-12-01
We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to modeled concentrations and calibrating their emissions.
NASA Technical Reports Server (NTRS)
Zent, A. P.; Quinn, R.
1993-01-01
We are measuring the simultaneous adsorption of H2O and CO2 on palagonite materials in order to improve the formulation of climate models for Mars. We report on the initial co-adsorption data. Models of the Martian climate and volatile inventory indicate that the regolith serves as one of the primary reservoirs of outgassed volatiles and that it exchanges H2O and CO2 with the atmosphere in response to changes in insolation associated with astronomical cycles. Physical adsorbate must exist on the surfaces of the cold particulates that constitute the regolith, and the size of that reservoir can be assessed through laboratory measurements of adsorption on terrestrial analogs. Many studies of the independent adsorption of H2O and CO2 on Mars analog were made and appear in the literature. Empirical expressions that relate the adsorptive coverage of each gas to the temperature of the soil and partial pressure have been derived based on the laboratory data. Numerical models incorporate these adsorption isotherms into climatic models, which predict how the adsorptive coverage of the regolith and hence, the pressure of each gas in the atmosphere will vary as the planet moves through its orbit. These models suggest that the regolith holds several tens to hundreds of millibars of CO2 and that during periods of high obliquity warming of the high-latitude regolith will result in desorption of the CO2, and a consequent increase in atmospheric pressure. At lower obliquities, the caps cool and the equator warms forcing the desorption of several tens of millibars of CO2, which is trapped into quasipermanent CO2 caps.
Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements
NASA Astrophysics Data System (ADS)
Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.
2014-09-01
Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.
Constraining the Late Miocene paleo-CO2 estimates through GCM model-data comparisons
NASA Astrophysics Data System (ADS)
Bradshaw, Catherine; Pound, Matthew; Lunt, Daniel; Flecker, Rachel; Salzmann, Ulrich; Haywood, Alan; Riding, James; Francis, Jane
2010-05-01
The period following the Mid-Miocene Climatic Optimum experienced a continued downward trend in the δ18O record - a record acknowledged as a proxy indicator of both ice volume and temperature (Zachos et al., 2001). Given the link between atmospheric CO2 and temperature (IPCC, 2007), it could be thought that the timeline throughout the Late Miocene would show a general decline in CO2 in accordance with the δ18O record. However, examination of the palaeo-CO2 record shows a relatively flat profile across this time, or perhaps even a slight increase, but there is a wide variation in the palaeo-CO2 estimate for the differing approximation methods. We use the fully coupled atmosphere-ocean-vegetation model of the Hadley Centre, HadCM3L, which has a low resolution ocean (Hadley Centre Coupled Model, Version 3 - low resolution ocean) with TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics: Cox, 2001) to generate CO2 sensitivity scenarios for the Late Miocene: 180ppmv, 280ppmv and 400ppmv, as well as a preindustrial control simulation: 280 ppmv. We also run the BIOME4 model offline to produce predicted biome distributions for each of our scenarios. We compare both marine and terrestrial modelled temperatures, and the predicted vegetation distributions for these scenarios against available palaeodata As we simulate with a coupled dynamic ocean model, we use planktonic and benthic foraminiferal-based proxy palaeotemperature estimates to compare to the modelled marine temperatures at the depths consistent with the reconstructed palaeoecology of the foraminifera. We compare our modelled terrestrial temperatures to vegetation-based proxy palaeotemperatures, and we use a newly compiled vegetation reconstruction for the Late Miocene to compare to our modelled vegetation distributions. The new Late Miocene vegetation reconstruction is based on a 200+ point database of palaeobotanical sites. Each location is classified into a biome consistent with the BIOME4 model, to allow for easy data - model comparison. We use all these data - model comparisons to constrain the best-fit scenario and the overall most likely Late Miocene CO2 estimate according to the model simulations. Preliminary results suggest that the 400ppmv simulation provides the best fit to the proxy data.
Simplified predictive models for CO 2 sequestration performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared
CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessmentmore » modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less
James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapek
2008-01-01
A modeling experiment was designed to investigate the impact of fire management, CO2 emission rate, and the growth response to CO2 on the response of ecosystems in the conterminous United States to climate scenarios produced by three different general circulation models (GCMs) as simulated by the MCl Dynamic General...
NASA Astrophysics Data System (ADS)
Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.
2015-10-01
The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, whose representation in models is sensitive to discrepancies in transport. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2/O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and use the assimilated O3 fields together with the HIPPO CO2/O3 correlations to obtain an adjustment to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived adjustment corresponds to a sink of 0.60 Pg C for March-August 2010 in the Arctic. Imposing this adjustment results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 19, 13, and 49 %, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 23 %. We find that the model also underestimates CO2 in the upper tropical and subtropical troposphere. Correcting for the underestimate in the model relative to HIPPO in the tropical upper troposphere leads to a reduction in the source from tropical South America by 77 %, and produces an estimated sink for tropical Asia that is only 19 % larger than the standard inversion (without the imposed source and sink). Globally, the inversion with the Arctic and tropical adjustment produces a sink of -6.64 Pg C, which is consistent with the estimate of -6.65 Pg C in the standard inversion. However, the standard inversion produces a stronger northern land sink by 0.98 Pg C to account for the CO2 overestimate in the high-latitude UTLS, suggesting that this UTLS discrepancy can impact the latitudinal distribution of the inferred sources and sinks. We find that doubling the model resolution from 4° × 5° to 2° × 2.5° enhances the CO2 vertical gradient in the high-latitude UTLS, and reduces the overestimate in CO2 in the extratropical lower stratosphere. Our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model errors in the UTLS.
Evaluation of Thermodynamic Models for Predicting Phase Equilibria of CO2 + Impurity Binary Mixture
NASA Astrophysics Data System (ADS)
Shin, Byeong Soo; Rho, Won Gu; You, Seong-Sik; Kang, Jeong Won; Lee, Chul Soo
2018-03-01
For the design and operation of CO2 capture and storage (CCS) processes, equation of state (EoS) models are used for phase equilibrium calculations. Reliability of an EoS model plays a crucial role, and many variations of EoS models have been reported and continue to be published. The prediction of phase equilibria for CO2 mixtures containing SO2, N2, NO, H2, O2, CH4, H2S, Ar, and H2O is important for CO2 transportation because the captured gas normally contains small amounts of impurities even though it is purified in advance. For the design of pipelines in deep sea or arctic conditions, flow assurance and safety are considered priority issues, and highly reliable calculations are required. In this work, predictive Soave-Redlich-Kwong, cubic plus association, Groupe Européen de Recherches Gazières (GERG-2008), perturbed-chain statistical associating fluid theory, and non-random lattice fluids hydrogen bond EoS models were compared regarding performance in calculating phase equilibria of CO2-impurity binary mixtures and with the collected literature data. No single EoS could cover the entire range of systems considered in this study. Weaknesses and strong points of each EoS model were analyzed, and recommendations are given as guidelines for safe design and operation of CCS processes.
NASA Astrophysics Data System (ADS)
Gierzynski, A.; Pollyea, R.
2016-12-01
Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular, this research shows that even where fracture networks are sufficiently connected, CO2 flux is often inhibited by a cell of lower permeability, analogous to an obstruction or asperity in a natural fracture. This impresses the importance of considering spatial uncertainty in fracture apertures when modeling CO2 leakage through a caprock.
Maru, Biniam T; Munasinghe, Pradeep C; Gilary, Hadar; Jones, Shawn W; Tracy, Bryan P
2018-04-01
Biological CO2 fixation is an important technology that can assist in combating climate change. Here, we show an approach called anaerobic, non-photosynthetic mixotrophy can result in net CO2 fixation when using a reduced feedstock. This approach uses microbes called acetogens that are capable of concurrent utilization of both organic and inorganic substrates. In this study, we investigated the substrate utilization of 17 different acetogens, both mesophilic and thermophilic, on a variety of different carbohydrates and gases. Compared to most model acetogen strains, several non-model mesophilic strains displayed greater substrate flexibility, including the ability to utilize disaccharides, glycerol and an oligosaccharide, and growth rates. Three of these non-model strains (Blautia producta, Clostridium scatologenes and Thermoanaerobacter kivui) were chosen for further characterization, under a variety of conditions including H2- or syngas-fed sugar fermentations and a CO2-fed glycerol fermentation. In all cases, CO2 was fixed and carbon yields approached 100%. Finally, the model acetogen C. ljungdahlii was engineered to utilize glucose, a non-preferred sugar, while maintaining mixotrophic behavior. This work demonstrates the flexibility and robustness of anaerobic, non-photosynthetic mixotrophy as a technology to help reduce CO2 emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, J.B.; Rignot, E.; McDonald, K.
1993-06-01
Changes in the seasonal CO[sub 2] flux of the boreal forests may result from increased atmospheric CO[sub 2] concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 duringmore » spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO[sub 2] flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO[sub 2] flux is presented. CO[sub 2] flux maps are generated from which areal estimates of CO[sub 2] flux are derived. This work was carried out at the Jet Propulsion Laboratory under contract to the NASA.« less
Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2
Leuzinger, Sebastian; Bader, Martin K.-F.
2012-01-01
Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO2 enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35–40 m tall CO2-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550–700 ppm atmospheric CO2), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response. PMID:23087696
NASA Astrophysics Data System (ADS)
Vermeulen, A.; Verheggen, B.; Pieterse, G.; Haszpra, L.
2007-12-01
Tall towers allow us to observe the integrated influence of carbon exchange processes from large areas on the concentrations of CO2. The signal received shows a large variability at diurnal and synoptic timescales. The question remains how high resolutions and how accurate transport models need to be, in order to discriminate the relevant source terms from the atmospheric signal. We will examine the influence of the resolution of (ECMWF) meteorological fields, antropogenic and biogenic fluxes when going from resolutions of 2° to 0.2° lat-lon, using a simple Lagrangian 2D transport model. Model results will be compared to other Eulerian model results and observations at the CHIOTTO/CarboEurope tall tower network in Europe. Biogenic fluxes taken into account are from the FACEM model (Pieterse et al, 2006). Results show that the relative influence of the different CO2 exchange processes is very different at each tower and that higher model resolution clearly pays off in better model performance.
The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2003-01-01
A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.
21st Century Carbon-Climate Change as Simulated by the Canadian Earth System Model CanESM1
NASA Astrophysics Data System (ADS)
Curry, C.; Christian, J. R.; Arora, V.; Boer, G. J.; Denman, K. L.; Flato, G. M.; Scinocca, J. F.; Merryfield, W. J.; Lee, W. G.; Yang, D.
2009-12-01
The Canadian Earth System Model CanESM1 is a fully coupled climate/carbon-cycle model with prognostic ocean and terrestrial components. The model has been used to simulate the 1850-2000 climate using historical greenhouse gas emissions, and future climates using IPCC emission scenarios. Modelled globally averaged CO2 concentration, land and ocean carbon uptake compare well with observation-based values at year 2000, as do the annual cycle and latitudinal distribution of CO2, instilling confidence that the model is suitable for future projections of carbon cycle behaviour in a changing climate. Land use change emissions are calculated explicitly using an observation-based time series of fractional coverage of different plant functional types. A more complete description of the model may be found in Arora et al. (2009). Differences in the land-atmosphere CO2 flux from the present to the future period under the SRES A2 emissions scenario show an increase in land sinks by a factor of 7.5 globally, mostly the result of CO2 fertilization. By contrast, the magnitude of the global ocean CO2 sink increases by a factor of only 2.3 by 2100. Expressed as a fraction of total emissions, ocean carbon uptake decreases throughout the 2000-2100 period, while land carbon uptake increases until around 2050, then declines. The result is an increase in airborne CO2 fraction after the mid-21st century, reaching a value of 0.55 by 2100. The simulated decline in ocean carbon uptake over the 21st century occurs despite steadily rising atmospheric CO2. This behaviour is usually attributed to climate-induced changes in surface temperature and salinity that reduce CO2 solubility, and increasing ocean stratification that weakens the biological pump. However, ocean biological processes such as dinitrogen fixation and calcification may also play an important role. Although not well understood at present, improved parameterizations of these processes will increase confidence in projections of future trends in CO2 uptake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Rebecca T.; Prentice, Iain Colin; Graven, Heather
2016-11-04
Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5–15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend ismore » generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.« less
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-01-01
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on per capita CO2 emissions. PMID:29236083
NASA Astrophysics Data System (ADS)
De Kauwe, M. G.; Medlyn, B.; Walker, A.; Zaehle, S.; Pendall, E.; Norby, R. J.
2017-12-01
Multifactor experiments are often advocated as important for advancing models, yet to date, such models have only been tested against single-factor experiments. We applied 10 models to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions: comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2-induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.
NASA Astrophysics Data System (ADS)
Zhang, R.; Borgia, A.; Daley, T. M.; Oldenburg, C. M.; Jung, Y.; Lee, K. J.; Doughty, C.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.
2017-12-01
Subsurface permeable faults and fracture networks play a critical role for enhanced geothermal systems (EGS) by providing conduits for fluid flow. Characterization of the permeable flow paths before and after stimulation is necessary to evaluate and optimize energy extraction. To provide insight into the feasibility of using CO2 as a contrast agent to enhance fault characterization by seismic methods, we model seismic monitoring of supercritical CO2 (scCO2) injected into a fault. During the CO2 injection, the original brine is replaced by scCO2, which leads to variations in geophysical properties of the formation. To explore the technical feasibility of the approach, we present modeling results for different time-lapse seismic methods including surface seismic, vertical seismic profiling (VSP), and a cross-well survey. We simulate the injection and production of CO2 into a normal fault in a system based on the Brady's geothermal field and model pressure and saturation variations in the fault zone using TOUGH2-ECO2N. The simulation results provide changing fluid properties during the injection, such as saturation and salinity changes, which allow us to estimate corresponding changes in seismic properties of the fault and the formation. We model the response of the system to active seismic monitoring in time-lapse mode using an anisotropic finite difference method with modifications for fracture compliance. Results to date show that even narrow fault and fracture zones filled with CO2 can be better detected using the VSP and cross-well survey geometry, while it would be difficult to image the CO2 plume by using surface seismic methods.
NASA Astrophysics Data System (ADS)
Marion, G. M.; Millero, F. J.; Feistel, R.
2009-07-01
At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-) and 40°C (at SA=66 g kg-). At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm (557 MPa) (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.
Salinity/temperature ranges for application of seawater SA-T-P models
NASA Astrophysics Data System (ADS)
Marion, G. M.; Millero, F. J.; Feistel, R.
2009-01-01
At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.
Evaluations of carbon fluxes estimated by top-down and bottom-up approaches
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.
2013-12-01
There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.
NASA Astrophysics Data System (ADS)
Yang, R. L.; Zheng, Y. P.; Wang, T. Y.; Li, P. P.; Wang, Y. D.; Yao, D. D.; Chen, L. X.
2018-01-01
A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO2 due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO2 without aggregation state.
NASA Astrophysics Data System (ADS)
Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud
2018-03-01
In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-02-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-07-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
Caracterisation experimentale et numerique de la flamme de carburants synthetiques gazeux
NASA Astrophysics Data System (ADS)
Ouimette, Pascale
The goal of this research is to characterize experimentally and numerically laminar flames of syngas fuels made of hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). More specifically, the secondary objectives are: 1) to understand the effects of CO2 concentration and H2/CO ratio on NOx emissions, flame temperature, visible flame height, and flame appearance; 2) to analyze the influence of H2/CO ratio on the lame structure, and; 3) to compare and validate different H2/CO kinetic mechanisms used in a CFD (computational fluid dynamics) model over different H2/CO ratios. Thus, the present thesis is divided in three chapters, each one corresponding to a secondary objective. For the first part, experimentations enabled to conclude that adding CO2 diminishes flame temperature and EINOx for all equivalence ratios while increasing the H2/CO ratio has no influence on flame temperature but increases EINOx for equivalence ratios lower than 2. Concerning flame appearance, a low CO2 concentration in the fuel or a high H2/CO ratio gives the flame an orange color, which is explained by a high level of CO in the combustion by-products. The observed constant flame temperature with the addition of CO, which has a higher adiabatic flame temperature, is mainly due to the increased heat loss through radiation by CO2. Because NOx emissions of H2/CO/CO 2 flames are mainly a function of flame temperature, which is a function of the H2/CO ratio, the rest of the thesis concentrates on measuring and predicting species in the flame as a good prediction of species and heat release will enable to predict NOx emissions. Thus, for the second part, different H2/CO fuels are tested and major species are measured by Raman spectroscopy. Concerning major species, the maximal measured H 2O concentration decreases with addition of CO to the fuel, while the central CO2 concentration increases, as expected. However, at 20% of the visible flame height and for all fuels tested herein, the measured CO2 concentration is lower than its stoechiometric value while the measured H2O already reached its stoechiometric concentration. The slow chemical reactions necessary to produce CO2 compared to the ones forming H2O could explain this difference. For the third part, a numerical model is created for a partially premixed flame of 50% H 2 / 50% CO. This model compares different combustion mechanisms and shows that a reduced kinetic mechanism reduces simulation times while conserving the results quality of more complex kinetic schemes. This numerical model, which includes radiation heat losses, is also validated for a large range of fuels going from 100% H2 to 5% H2 / 95% CO. The most important recommendation of this work is to include a NOx mechanism to the numerical model in order to eventually determine an optimal fuel. It would also be necessary to validate the model over a wide range for different parameters such as equivalence ratio, initial temperature and initial pressure.
Bias and uncertainty of δ13CO2 isotopic mixing models
Zachary E. Kayler; Lisa Ganio; Mark Hauck; Thomas G. Pypker; Elizabeth W. Sulzman; Alan C. Mix; Barbara J. Bond
2009-01-01
The goal of this study was to evaluate how factorial combinations of two mixing models and two regression approaches (Keeling-OLS, MillerâTans-OLS, Keeling-GMR, MillerâTans-GMR) compare in small [CO2] range versus large[CO2] range regimes, with different combinations of...
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2010-01-01
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r2cv values of 0.747 and 0.518 and r2 values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity. PMID:21152296
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2010-09-28
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.
Atmospheric, Climatic, and Environmental Research
NASA Technical Reports Server (NTRS)
Broecker, Wallace S.; Gornitz, Vivien M.
1994-01-01
The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.
MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions
NASA Astrophysics Data System (ADS)
Afanasyev, A.
2012-12-01
Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period
An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements
NASA Astrophysics Data System (ADS)
Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.
2015-02-01
Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement between measured and modelled concentration gradients. Realistic emissions are retrieved for two 30-day periods and suggest a significant overestimate by the AirParif inventory. Similar inversions over longer periods are necessary for a proper evaluation of the optimised CO2 emissions against independent data.
NASA Astrophysics Data System (ADS)
Yan, Y.-Y.; Lin, J.-T.; Kuang, Y.; Yang, D.; Zhang, L.
2014-12-01
Global chemical transport models (CTMs) are used extensively to study air pollution and transport at a global scale. These models are limited by coarse horizontal resolutions that do not allow for a detailed representation of small-scale nonlinear processes over the pollutant source regions. Here we couple the global GEOS-Chem CTM and its three high-resolution nested models to simulate the tropospheric carbon monoxide (CO) over the Pacific Ocean during five High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) campaigns between 2009 and 2011. We develop a two-way coupler, the PeKing University CouPLer (PKUCPL), allowing for the exchange and interaction of chemical constituents between the global model (at 2.5° long. × 2° lat.) and the three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America, and Europe. The coupler obtains nested model results to modify the global model simulation within the respective nested domains, and simultaneously acquires global model results to provide lateral boundary conditions (LBCs) for the nested models. Compared to the global model alone, the two-way coupled simulation results in enhanced CO concentrations in the nested domains. Sensitivity tests suggest the enhancement to be a result of improved representation of the spatial distributions of CO, nitrogen oxides, and non-methane volatile organic compounds, the meteorological dependence of natural emissions, and other resolution-dependent processes. The relatively long lifetime of CO allows for the enhancement to be accumulated and carried across the globe. We found that the two-way coupled simulation increased the global tropospheric mean CO concentrations in 2009 by 10.4%, with a greater enhancement at 13.3% in the Northern Hemisphere. Coincidently, the global tropospheric mean hydroxyl radical (OH) was reduced by 4.2%, resulting in a 4.2% enhancement in the methyl chloroform lifetime (MCF; via reaction with tropospheric OH). The resulting CO and OH contents and MCF lifetime are closer to observation-based estimates. Both the global and the two-way coupled models capture the general spatiotemporal patterns of HIPPO CO over the Pacific. The two-way coupled simulation is much closer to HIPPO CO, with a mean bias of 1.1 ppb (1.4%) below 9 km compared to the bias at -7.2 ppb (-9.2%) for the global model alone. The improvement is most apparent over the North Pacific. Our test simulations show that the global model alone could resemble the two-way coupled simulation (especially below 4 km) by increasing its global CO emissions by 15% for HIPPO-1 and HIPPO-3, by 25% for HIPPO-2 and HIPPO-4, and by 35% for HIPPO-5. This has important implications for using the global model alone to constrain CO emissions. Thus, the two-way coupled simulation is a significantly improved model tool for studying the global impacts of air pollutants from major anthropogenic source regions.
NASA Technical Reports Server (NTRS)
Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.
2011-01-01
Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...
2017-01-30
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
NASA Astrophysics Data System (ADS)
Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.
2017-09-01
We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (< 1°C) on a global scale, with higher values (up to 8°C) on a regional scale. These findings imply that modeled and reconstructed temperature gradients are to a large degree only qualitatively comparable, providing challenges for the interpretation of proxy data and/or model sensitivity. With respect to the latter, our results suggest that an assessment of greenhouse worlds is best constrained by temperatures in the midlatitudes.
NASA Astrophysics Data System (ADS)
Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.
2011-12-01
Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.
Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Rogers
The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.« less
NASA Astrophysics Data System (ADS)
Boon, A.; Broquet, G.; Clifford, D. J.; Chevallier, F.; Butterfield, D. M.; Pison, I.; Ramonet, M.; Paris, J. D.; Ciais, P.
2015-11-01
Carbon dioxide (CO2) and methane (CH4) mole fractions were measured at four near ground sites located in and around London during the summer of 2012 in view to investigate the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution South of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasting (ECMWF) meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory). First comparisons reveal that local sources have a large impact on measurements and these local sources cannot be represented in the model at 2 km resolution. We evaluate methods to minimise some of the other critical sources of misfits between the observation data and the model simulation that overlap the signature of the errors in the emission inventory. These methods should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a three-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon led us to focus on the afternoon period for all further analyses. The misfits between observations and model simulations are high for both CO2 and CH4 (i.e., their root mean square (RMS) is between 8 and 12 parts per million (ppm) for CO2 and between 30 and 55 parts per billion (ppb) for CH4 at a given site). By analysing the gradients between the urban sites and a suburban or rural reference site, we are able to decrease the impact of uncertainties in the fluxes and transport outside the London area and in the model domain boundary conditions, and to better focus attention on the signature of London urban CO2 and CH4 emissions. This considerably improves the statistical agreement between the model and observations for CO2 (model-data RMS misfit of between 3 and 7 ppm) and to a lesser degree for CH4 (model-data RMS misfit of between 29 and 38 ppb). Between one of the urban sites and either reference site, selecting the gradients during periods wherein the reference site is upwind of the urban site further decreases the statistics of the misfits in general even though not systematically. In a final attempt to focus on the signature of the city anthropogenic emission in the mole fraction measurements, we use a theoretical ratio of gradients of CO to gradients of CO2 from fossil fuel emissions in the London area to diagnose observation based fossil fuel CO2 gradients, and compare them with the modelled ones. This estimate increases the consistency between the model and the measurements when considering one of the urban sites, but not when considering the other. While this study evaluates different approaches for increasing the consistency between the mesoscale model and the near ground data, and manages to decrease the random component of the analysed model data misfits to an extent that should not be prohibitive to extracting the signal from the London urban emissions, large biases remain in the final misfits. These biases are likely to be due to local emissions, to which the urban near ground sites are highly sensitive. This questions our current ability to exploit urban near ground data for the atmospheric inversion of city emissions based on models at spatial resolution coarser than 2 km.
40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...
40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...
40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...
W.J. Mattson; R. Julkunen-Tiitto; D.A. Herms
2005-01-01
Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the...
NASA Astrophysics Data System (ADS)
Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.
2014-12-01
We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.
A simple, mass balance model of carbon flow in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1989-01-01
Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.
Bildirici, Melike; Ersin, Özgür Ömer
2018-01-01
The study aims to combine the autoregressive distributed lag (ARDL) cointegration framework with smooth transition autoregressive (STAR)-type nonlinear econometric models for causal inference. Further, the proposed STAR distributed lag (STARDL) models offer new insights in terms of modeling nonlinearity in the long- and short-run relations between analyzed variables. The STARDL method allows modeling and testing nonlinearity in the short-run and long-run parameters or both in the short- and long-run relations. To this aim, the relation between CO 2 emissions and economic growth rates in the USA is investigated for the 1800-2014 period, which is one of the largest data sets available. The proposed hybrid models are the logistic, exponential, and second-order logistic smooth transition autoregressive distributed lag (LSTARDL, ESTARDL, and LSTAR2DL) models combine the STAR framework with nonlinear ARDL-type cointegration to augment the linear ARDL approach with smooth transitional nonlinearity. The proposed models provide a new approach to the relevant econometrics and environmental economics literature. Our results indicated the presence of asymmetric long-run and short-run relations between the analyzed variables that are from the GDP towards CO 2 emissions. By the use of newly proposed STARDL models, the results are in favor of important differences in terms of the response of CO 2 emissions in regimes 1 and 2 for the estimated LSTAR2DL and LSTARDL models.
A CO2-rich coma model applied to the neutral coma of Comet West
NASA Technical Reports Server (NTRS)
Mitchell, G. F.; Swift, M. B.; Huntress, W. T.
1982-01-01
Models of the cometary coma in which the dominant volatile is CO2 have been constructed for a range of heliocentric distances. Model coma abundances of C2, C3, and CN are compared with the abundances observed in Comet West and are found to be in good agreement. Furthermore, the variation with heliocentric distance of C2, C3, and CN model abundances agree well with the observed variation in Comet West. The present work lends detailed support to a previous suggestion that a substance more volatile than water, such as CO2, controls the evaporation of the nucleus of Comet West. The implications for cometary formation are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu
Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less
Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; ...
2017-01-23
Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less
Han, Liang-Feng; Plummer, Niel
2013-01-01
The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of organic carbon, radiocarbon ages are best estimated by inverse geochemical modeling techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Boyun; Duguid, Andrew; Nygaard, Ronar
The objective of this project is to develop a computerized statistical model with the Integrated Neural-Genetic Algorithm (INGA) for predicting the probability of long-term leak of wells in CO 2 sequestration operations. This object has been accomplished by conducting research in three phases: 1) data mining of CO 2-explosed wells, 2) INGA computer model development, and 3) evaluation of the predictive performance of the computer model with data from field tests. Data mining was conducted for 510 wells in two CO 2 sequestration projects in the Texas Gulf Coast region. They are the Hasting West field and Oyster Bayou fieldmore » in the Southern Texas. Missing wellbore integrity data were estimated using an analytical and Finite Element Method (FEM) model. The INGA was first tested for performances of convergence and computing efficiency with the obtained data set of high dimension. It was concluded that the INGA can handle the gathered data set with good accuracy and reasonable computing time after a reduction of dimension with a grouping mechanism. A computerized statistical model with the INGA was then developed based on data pre-processing and grouping. Comprehensive training and testing of the model were carried out to ensure that the model is accurate and efficient enough for predicting the probability of long-term leak of wells in CO 2 sequestration operations. The Cranfield in the southern Mississippi was select as the test site. Observation wells CFU31F2 and CFU31F3 were used for pressure-testing, formation-logging, and cement-sampling. Tools run in the wells include Isolation Scanner, Slim Cement Mapping Tool (SCMT), Cased Hole Formation Dynamics Tester (CHDT), and Mechanical Sidewall Coring Tool (MSCT). Analyses of the obtained data indicate no leak of CO 2 cross the cap zone while it is evident that the well cement sheath was invaded by the CO 2 from the storage zone. This observation is consistent with the result predicted by the INGA model which indicates the well has a CO 2 leak-safe probability of 72%. This comparison implies that the developed INGA model is valid for future use in predicting well leak probability.« less
Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti
2015-01-01
Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.
Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries
Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen
2016-01-01
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, Alexander; Vilim, Richard
Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less
Fast Atmosphere-Ocean Model Runs with Large Changes in CO2
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.
2013-01-01
How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.
NASA Astrophysics Data System (ADS)
Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe
2017-12-01
This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.
NASA Astrophysics Data System (ADS)
Furukawa, Makoto; Sato, Toru; Suzuki, Yoshimi; Casareto, Beatriz E.; Hirabayashi, Shinichiro
2018-06-01
Ocean surface acidification due to increasing atmospheric CO2 concentration is currently attracting much attention. Coccolithophores distribute widely across the world's oceans and represent a carbon sink containing about 100 million tonnes of carbon. For this reason, there is concern about dissolution of their shells, which are made of calcium carbonate, due to decreasing pH. In this study, intracellular calcification, photosynthesis, and mass transport through biomembranes of Emiliania huxleyi were modelled numerically for understanding biological response in calcifying organisms. Unknown parameters were optimised by a generic algorithm to match existing experimental results. The model showed that the production of calcium carbonate rather than its dissolution is promoted under an acidified environment. Calcite remains at saturation levels in a coccolith even when it is below saturation levels in the external seawater. Furthermore, a coccolith can dissolve even in water where calcite saturation exceeds 1, because the saturation may be below the threshold level locally around the cell membrane. The present model also showed that the different calcification rates of E. huxleyi with respect to rising CO2 concentrations reported in the literature are due to differences in experimental conditions; in particular, how the CO2 concentration is matched. Lastly, the model was able to reproduce differences in calcification rates among coccolithophore species. The above biochemical-kinetic model was then incorporated into an ecosystem model, and the behaviour of coccolithophores in the ecosystem and the influence of increases in CO2 concentration on water quality were simulated and validated by comparison with existing experimental results. The model also suggests that increased CO2 concentration could lead to an increase in the biomass ratio of coccolithophores to diatoms at high CO2 concentrations, particularly in oligotrophic environments, and to a consequent decrease in pH due to calcium dissolution.
Water Footprint and Water Consumption for the Main Crops and Biofuels Produced in Brazil
NASA Astrophysics Data System (ADS)
Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.
2011-12-01
The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
How can mountaintop CO 2 observations be used to constrain regional carbon fluxes?
Lin, John C.; Mallia, Derek V.; Wu, Dien; ...
2017-05-03
Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO 2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found – i.e., areas that have the potential to serve as carbon sinks. As CO 2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield informationmore » about carbon fluxes. In this paper, we present CO 2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO 2 observations, with emphasis on the observed and simulated diurnal cycles of CO 2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO 2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ~4 km or less may be needed to simulate a realistic diurnal cycle of CO 2 for sites on top of the steep mountains examined here in the American Rockies. In conclusion, in the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO 2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.« less
How can mountaintop CO2 observations be used to constrain regional carbon fluxes?
NASA Astrophysics Data System (ADS)
Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.
2017-05-01
Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.
A reaction-diffusion model of CO2 influx into an oocyte
Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela
2012-01-01
We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674
NASA Technical Reports Server (NTRS)
Shirai, T.; Ishizawa, M.; Zhuravlev, R.; Ganshin, A.; Belikov, D.; Saito, M.; Oda, T.; Valsala, V.; Gomez-Pelaez, A. J.; Langenfelds, R.;
2017-01-01
We present an assimilation system for atmospheric carbon dioxide (CO2) using a Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), and demonstrate its capability to capture the observed atmospheric CO2 mixing ratios and to estimate CO2 fluxes. With the efficient data handling scheme in GELCA, our system assimilates non-smoothed CO2 data from observational data products such as the Observation Package (ObsPack) data products as constraints on surface fluxes. We conducted sensitivity tests to examine the impact of the site selections and the prior uncertainty settings of observation on the inversion results. For these sensitivity tests, we made five different sitedata selections from the ObsPack product. In all cases, the time series of the global net CO2 flux to the atmosphere stayed close to values calculated from the growth rate of the observed global mean atmospheric CO2 mixing ratio. At regional scales, estimated seasonal CO2 fluxes were altered, depending on the CO2 data selected for assimilation. Uncertainty reductions (URs) were determined at the regional scale and compared among cases. As measures of the model-data mismatch, we used the model-data bias, root-mean-square error, and the linear correlation. For most observation sites, the model-data mismatch was reasonably small. Regarding regional flux estimates, tropical Asia was one of the regions that showed a significant impact from the observation network settings. We found that the surface fluxes in tropical Asia were the most sensitive to the use of aircraft measurements over the Pacific, and the seasonal cycle agreed better with the results of bottom-up studies when the aircraft measurements were assimilated. These results confirm the importance of these aircraft observations, especially for constraining surface fluxes in the tropics.
Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.
Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B
2015-01-01
The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the CGOn/gas two phase boundary in CO/CO2 and in cathodic polarization can explain why the highest reaction rate is obtained for CO2 electrolysis. Large differences observed between model electrode kinetics and porous electrode kinetics are discussed.
An Effect of the Co-Operative Network Model for Students' Quality in Thai Primary Schools
ERIC Educational Resources Information Center
Khanthaphum, Udomsin; Tesaputa, Kowat; Weangsamoot, Visoot
2016-01-01
This research aimed: 1) to study the current and desirable states of the co-operative network in developing the learners' quality in Thai primary schools, 2) to develop a model of the co-operative network in developing the learners' quality, and 3) to examine the results of implementation of the co-operative network model in the primary school.…
Wells, D J M; Alderson, J A; Dunne, J; Elliott, B C; Donnelly, C J
2017-01-25
To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MR PC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MR PC : SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MR PC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan
2017-04-01
Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging to the reservoir simulation model grid. Our results exhibit an excellent well bottomhole pressure match, good agreement with the observed CO2 arrival times at the observation wells, a reasonable agreement of the spatial CO2 distribution with the CO2 thickness maps derived from the 2009, 2012 and 2015 3D seismic campaigns as well as a good agreement with hydraulic tests conducted before CO2 injection. Hence, the inversely determined permeability multipliers provide an excellent basis for further revision of the static geological model of the Stuttgart Formation.
NASA Astrophysics Data System (ADS)
Marion, Giles M.
2001-06-01
Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4 salts and natron (Na 2CO 3 · 10H 2O) is an incompatible salt assemblage.
Stable isotope reactive transport modeling in water-rock interactions during CO2 injection
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre
2010-05-01
Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.
NASA Astrophysics Data System (ADS)
Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.
2017-12-01
Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.
Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms
NASA Astrophysics Data System (ADS)
Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.
2016-09-01
Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.
Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California
NASA Astrophysics Data System (ADS)
Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.
2018-02-01
The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow gas reservoir. Moreover, we show that both, short-lived (months to years) and long-lived (hundreds of years) events of magmatic fluid injection can lead to critical pressures within the reservoir and potentially trigger fault reactivation. Our sensitivity analysis suggests that observed temporal fluctuations in surface degassing are only indirectly controlled by variations in magmatic degassing and are mainly the result of temporally variable fault permeability. Finally, we suggest that long-term CO2 emission monitoring, seismic tomography and coupled thermal-hydraulic-mechanical modeling are important for CO2-related hazard mitigation.
NASA Astrophysics Data System (ADS)
Thomas, R.; Prentice, I. C. C.; Graven, H. D.
2016-12-01
A simple model for gross primary production (GPP), the P-model, is used to analyse the recent increase in the amplitude of the seasonal cycle of CO2 (ASC) at high northern latitudes. Current terrestrial biosphere models and Earth System Models generally underestimate the observed increase in ASC since 1960. The increased ASC is primarily driven by an increase in net primary productivity (NPP), rather than respiration, so models are likely underestimating increases in NPP. In a recent study of process-based terrestrial biosphere models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we showed that the concept of light-use efficiency can be used to separate modelled NPP changes into structural and physiological components (Thomas et al, 2016). The structural component (leaf area) can be tested against observations of greening, while the physiological component (light-use efficiency) is an emergent model property. The analysis suggests that current models are capturing the increases in vegetation greenness, but underestimating the increases in light-use efficiency and NPP. We test this hypothesis using the P-model, which explicitly uses greenness data and includes the effects of rising CO2 and climate change. In the P-model, GPP is calculated using only a few equations, which are based on a strong empirical and theoretical framework, and vegetation is not separated into plant functional types. The model is driven by observed greenness, CO2, temperature and vapour pressure, and modelled photosynthetically active radiation at a monthly time-step. Photosynthetic assimilation is based on two key assumptions: the co-limitation hypothesis (electron transport- and Rubisco-limited photosynthetic rates are equal), and the least-cost hypothesis (optimal ci:ca ratio), and is limited by modelled soil moisture. We present simulated changes in GPP over the satellite period (1982-2011) in the P-model, and assess the associated changes in light-use efficiency and ASC. Our results have implications for the attribution of drivers of ecosystem change and the formulation of prognostic and diagnostic biosphere models. Thomas, R. T. et al. 2016, CO2 and greening observations indicate increasing light-use efficiency in Northern terrestrial ecosystems, Geophys Res Lett, in review.
Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.H.; Shyu, C.T.
1999-01-01
Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less
NASA Astrophysics Data System (ADS)
Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.
2015-11-01
The brain's CO2 reactivity mechanism is coupled with cerebral autoregulation and other unique features of cerebral hemodynamics. We developed a one-dimensional nonlinear model of blood flow in the cerebral arteries coupled to lumped parameter (LP) networks. The LP networks incorporate cerebral autoregulation, CO2 reactivity, intracranial pressure, cerebrospinal fluid, and cortical collateral blood flow models. The model was used to evaluate hemodynamic variables (arterial deformation, blood velocity and pressure) in the cerebral vasculature during hyperventilation and CO2 inhalation test. Tests were performed for various arterial blood pressure (ABP) representing normal and hypotensive conditions. The increase of the cerebral blood flow rates agreed well with the published measurements for various ABP measurements taken during clinical CO2 reactivity tests. The changes in distal vasculature affected the reflected pulse wave energy, which caused the waveform morphological changes at the middle cerebral, common and internal carotid arteries. The pulse morphological analysis demonstrated agreement with previous clinical measurements for cerebral vasoconstriction and vasodilation.
NASA Astrophysics Data System (ADS)
Takagi, M.; Gyokusen, Koichiro; Saito, Akira
It was found that the atmospheric carbon dioxide (CO2) concentration in an urban canyon in Fukuoka city, Japan during August 1997 was about 30 µmol mol-1 higher than that in the suburbs. When fully exposed to sunlight, in situ the rate of photosynthesis in single leaves of Ilex rotunda planted in the urban canyon was higher when the atmospheric CO2 concentration was elevated. A biochemically based model was able to predict the in situ rate of photosynthesis well. The model also predicted an increase in the daily CO2 exchange rate for leaves in the urban canyon with an increase in atmospheric CO2 concentration. However, in situ such an increase in the daily CO2 exchange rate may be offset by diminished sunlight, a higher air temperature and a lower relative humidity. Thus, the daily CO2 exchange rate predicted using the model based soleley on the environmental conditions prevailing in the urban canyon was lower than that predicted based only on environmental factors found in the suburbs.
Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H
2014-01-01
This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.
Various technological pathways can lead to reduced CO2 emissions. However, different pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. The Global Change Assessment Model (GCAM) is a high resolu...
NASA Astrophysics Data System (ADS)
Antoshechkina, P. M.; Shorttle, O.
2016-12-01
The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite-siderite. Following GG15, we have adopted the CO2 fluid model of Duan & Zhang (2006) and added CO2 and CaCO3 species to the pMELTS liquid model. A key question that we hope to address during calibration is whether a Na2CO3 liquid species is justified instead of, or in addition to, CaCO3 for the range over which pMELTS is calibrated (1 < P < 4 GPa).
McGuire, A.D.; Sitch, S.; Clein, Joy S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, Martin; Joos, F.; Kaplan, J.; Kicklighter, D.W.; Meier, R.A.; Melillo, J.M.; Moore, B.; Prentice, I.C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L.J.; Wittenberg, U.
2001-01-01
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system.
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.
2007-01-01
As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its interannual variations generally respond adequately, but discrepancies in the tropics suggest the need for a refinement of the soil moisture dependence of the respiration flux in CASA. Examples and inferences for interpretation of satellite data will be discussed. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in the terrestrial CO2 sink and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Hunt, L. A.; Maute, A. I.
2015-12-01
Tidal diagnostics of SABER CO2 15 μm data shows a substantial modulation of the energy budget of the lower thermosphere due to nonmigrating tides: relative amplitudes of the CO2 cooling rates for the DE2 and DE3 components are on the order of 15-50% with respect to the monthly mean emissions. Supporting photochemical tidal modeling using TIME-GCM and the empirical CTMT model reproduces the general amplitude structures and phases. Furthermore, it indicates that the main tidal coupling mechanism is the temperature dependence of the collisional excitation of the CO2 (01101) fundamental band transition (ν2). The response to neutral density variations is as important as temperature above 115 km as such explaining an unexpected tidal phase behavior in the observation. The contribution of vertical advection is comparatively small. In order to test the sensitivity of the modeled DE2 and DE3 CO2 VER tides to the solar cycle and to the specific choice of mean temperature, atomic oxygen, and CO2 density, we extend the modeling by using background from MSIS, SABER, and SCIAMACHY. The results indicate that the current uncertainties in the background temperature and atomic oxygen used for the photochemical modeling do not impact our conclusion about the relative importance of the tidal coupling mechanisms. Our results quantify the response of the CO2 15 μm infrared cooling of the lower thermosphere to tropospheric tides and delineate the coupling mechanisms that lead to the observed strong longitudinal and local time variability.
NASA Technical Reports Server (NTRS)
Plitau, Denis; Prasad, Narasimha S.
2012-01-01
The Active Sensing of CO2 Emissions over Nights Days and Seasons (ASCENDS) mission recommended by the NRC Decadal Survey has a desired accuracy of 0.3% in carbon dioxide mixing ratio (XCO2) retrievals requiring careful selection and optimization of the instrument parameters. NASA Langley Research Center (LaRC) is investigating 1.57 micron carbon dioxide as well as the 1.26-1.27 micron oxygen bands for our proposed ASCENDS mission requirements investigation. Simulation studies are underway for these bands to select optimum instrument parameters. The simulations are based on a multi-wavelength lidar modeling framework being developed at NASA LaRC to predict the performance of CO2 and O2 sensing from space and airborne platforms. The modeling framework consists of a lidar simulation module and a line-by-line calculation component with interchangeable lineshape routines to test the performance of alternative lineshape models in the simulations. As an option the line-by-line radiative transfer model (LBLRTM) program may also be used for line-by-line calculations. The modeling framework is being used to perform error analysis, establish optimum measurement wavelengths as well as to identify the best lineshape models to be used in CO2 and O2 retrievals. Several additional programs for HITRAN database management and related simulations are planned to be included in the framework. The description of the modeling framework with selected results of the simulation studies for CO2 and O2 sensing is presented in this paper.
Modeling syngas-fired gas turbine engines with two dilutants
NASA Astrophysics Data System (ADS)
Hawk, Mitchell E.
2011-12-01
Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.
NASA Astrophysics Data System (ADS)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.
2016-11-01
The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.
Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe
2012-01-01
Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1
NASA Astrophysics Data System (ADS)
Hutchinson, David K.; de Boer, Agatha M.; Coxall, Helen K.; Caballero, Rodrigo; Nilsson, Johan; Baatsen, Michiel
2018-06-01
The Eocene-Oligocene transition (EOT), which took place approximately 34 Ma ago, is an interval of great interest in Earth's climate history, due to the inception of the Antarctic ice sheet and major global cooling. Climate simulations of the transition are needed to help interpret proxy data, test mechanistic hypotheses for the transition and determine the climate sensitivity at the time. However, model studies of the EOT thus far typically employ control states designed for a different time period, or ocean resolution on the order of 3°. Here we developed a new higher resolution palaeoclimate model configuration based on the GFDL CM2.1 climate model adapted to a late Eocene (38 Ma) palaeogeography reconstruction. The ocean and atmosphere horizontal resolutions are 1° × 1.5° and 3° × 3.75° respectively. This represents a significant step forward in resolving the ocean geography, gateways and circulation in a coupled climate model of this period. We run the model under three different levels of atmospheric CO2: 400, 800 and 1600 ppm. The model exhibits relatively high sensitivity to CO2 compared with other recent model studies, and thus can capture the expected Eocene high latitude warmth within observed estimates of atmospheric CO2. However, the model does not capture the low meridional temperature gradient seen in proxies. Equatorial sea surface temperatures are too high in the model (30-37 °C) compared with observations (max 32 °C), although observations are lacking in the warmest regions of the western Pacific. The model exhibits bipolar sinking in the North Pacific and Southern Ocean, which persists under all levels of CO2. North Atlantic surface salinities are too fresh to permit sinking (25-30 psu), due to surface transport from the very fresh Arctic ( ˜ 20 psu), where surface salinities approximately agree with Eocene proxy estimates. North Atlantic salinity increases by 1-2 psu when CO2 is halved, and similarly freshens when CO2 is doubled, due to changes in the hydrological cycle.
Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO 2 labeling
Mao, Jiafu; Ricciuto, Daniel M.; Thornton, Peter E.; ...
2016-02-03
Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO 2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO 2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturingmore » short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO 2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO 2 label from the atmosphere through foliage, phloem, roots or surface soil CO 2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types of detailed evaluations of CLM4, paired with intensive field manipulations, can help to identify model strengths and weaknesses, model uncertainties, and additional observations necessary for future model development.« less
NASA Astrophysics Data System (ADS)
1995-12-01
We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772 × 1012 gC yr-1) and total carbon storage (108 to 118 × 1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.
NASA Astrophysics Data System (ADS)
Melillo, J. M.; Borchers, J.; Chaney, J.; Fisher, H.; Fox, S.; Haxeltine, A.; Janetos, A.; Kicklighter, D. W.; Kittel, T. G. F.; McGuire, A. D.; McKeown, R.; Neilson, R.; Nemani, R.; Ojima, D. S.; Painter, T.
1995-12-01
We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772×1012 gCyr-1) and total carbon storage (108 to 118×1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.
VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel
Newman, S.; Lowenstern, J. B.
2002-01-01
We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.
V OLATILEC ALC: a silicate melt-H 2O-CO 2 solution model written in Visual Basic for excel
NASA Astrophysics Data System (ADS)
Newman, Sally; Lowenstern, Jacob B.
2002-06-01
We present solution models for the rhyolite-H 2O-CO 2 and basalt-H 2O-CO 2 systems at magmatic temperatures and pressures below ˜5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within Microsoft ® Excel (Office'98 and 2000). The series of macros, entitled V OLATILEC ALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H 2O and CO 2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H 2O and CO 2 vapors at magmatic temperatures. The basalt-H 2O-CO 2 macros in V OLATILEC ALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar.
Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels
NASA Astrophysics Data System (ADS)
Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.
2010-12-01
For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to the model. Initial studies with this model on quantification of CO2 flux for different sea ice types (first year, multi-year) will be presented. Comparisons with available in-situ/laboratory data will also be discussed.
Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions
2011-01-01
Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface. PMID:22078161
NASA Astrophysics Data System (ADS)
Hou, Z.; Nguyen, B. N.; Bacon, D. H.; White, M. D.; Murray, C. J.
2016-12-01
A multiphase flow and reactive transport simulator named STOMP-CO2-R has been developed and coupled to the ABAQUS® finite element package for geomechanical analysis enabling comprehensive thermo-hydro-geochemical-mechanical (THMC) analyses. The coupled THMC simulator has been applied to analyze faulted CO2 reservoir responses (e.g., stress and strain distributions, pressure buildup, slip tendency factor, pressure margin to fracture) with various complexities in fault and reservoir structures and mineralogy. Depending on the geological and reaction network settings, long-term injection of CO2 can have a significant effect on the elastic stiffness and permeability of formation rocks. In parallel, an uncertainty quantification framework (UQ-CO2), which consists of entropy-based prior uncertainty representation, efficient sampling, geostatistical reservoir modeling, and effective response surface analysis, has been developed for quantifying risks and uncertainties associated with CO2 sequestration. It has been demonstrated for evaluating risks in CO2 leakage through natural pathways and wellbores, and for developing predictive reduced order models. Recently, a parallel STOMP-CO2-R has been developed and the updated STOMP/ABAQUS model has been proven to have a great scalability, which makes it possible to integrate the model with the UQ framework to effectively and efficiently explore multidimensional parameter space (e.g., permeability, elastic modulus, crack orientation, fault friction coefficient) for a more systematic analysis of induced seismicity risks.
Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia
NASA Astrophysics Data System (ADS)
Fransner, Filippa; Gustafsson, Erik; Tedesco, Letizia; Vichi, Marcello; Hordoir, Robinson; Roquet, Fabien; Spilling, Kristian; Kuznetsov, Ivan; Eilola, Kari; Mörth, Carl-Magnus; Humborg, Christoph; Nycander, Jonas
2018-01-01
High inputs of nutrients and organic matter make coastal seas places of intense air-sea CO2 exchange. Due to their complexity, the role of coastal seas in the global air-sea CO2 exchange is, however, still uncertain. Here, we investigate the role of phytoplankton stoichiometric flexibility and extracellular DOC production for the seasonal nutrient and CO2 partial pressure (pCO2) dynamics in the Gulf of Bothnia, Northern Baltic Sea. A 3-D ocean biogeochemical-physical model with variable phytoplankton stoichiometry is for the first time implemented in the area and validated against observations. By simulating non-Redfieldian internal phytoplankton stoichiometry, and a relatively large production of extracellular dissolved organic carbon (DOC), the model adequately reproduces observed seasonal cycles in macronutrients and pCO2. The uptake of atmospheric CO2 is underestimated by 50% if instead using the Redfield ratio to determine the carbon assimilation, as in other Baltic Sea models currently in use. The model further suggests, based on the observed drawdown of pCO2, that observational estimates of organic carbon production in the Gulf of Bothnia, derived with the 14C method, may be heavily underestimated. We conclude that stoichiometric variability and uncoupling of carbon and nutrient assimilation have to be considered in order to better understand the carbon cycle in coastal seas.
Sakai, Jun; Funayama, Masato; Kanetake, Jun
2007-02-14
Rebreathing is a model for the relationship between a prone sleeping position and sudden infant death syndrome. This study used a mechanical simulation model to establish the relationship between types of bedding and rebreathing potential for an infant placed prone (face down) at different postnatal ages. The infant mannequin was connected to a respirator set to deliver physiologically appropriate combinations of tidal volume (V(T)) and respiratory rates (RR) across a range of postnatal ages (0-18 months). Before measurements were made, CO(2) flow was regulated to 5+/-0.1% of end-tidal PCO(2) (EtCO(2)). After the model was placed in a prone position, any increase in the fractional concentration of inspired CO(2) (FiCO(2)) was measured. FiCO(2) increased immediately and rapidly, and reached a maximum value within a few minutes. The maximum FiCO(2) ranged from under 2% to over 10%, depending on the bedding. FiCO(2) was also affected by V(T) and RR. This model is not applicable to actual infants because of the large tissue stores of CO(2) in infants; however, it is useful for evaluation of gas diffusibility of bedding and will simplify the investigation of sleeping environments when a baby is found dead with its face covered by soft bedding. In general, the higher the FiCO(2), the greater the rebreathing potential. Theoretically, considering the paucity of body stores of O(2), changes in FiO(2) would be affected not by changes in FiCO(2), but by CO(2) production and gas movement around the infant's face. The rapid decrease of FiO(2) is approximated at the inverse of the FiCO(2) timecourse, suggesting the significance of not only CO(2) accumulation but also O(2) deprivation in the potential space around the baby's face.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Coherent anti-Stokes Raman spectroscopic modeling for combustion diagnostics
NASA Technical Reports Server (NTRS)
Hall, R. J.
1983-01-01
The status of modelling the coherent anti-Stokes Raman spectroscopy (CARS) spectra of molecules important in combustion, such as N2, H2O, and CO2, is reviewed. It is shown that accurate modelling generally requires highly precise knowledge of line positions and reasonable estimates of Raman linewidths, and the sources of these data are discussed. CARS technique and theory is reviewed, and the status of modelling the phenomenon of collisional narrowing at pressures well above atmospheric for N2, H2O, and CO2 is described. It is shown that good agreement with experiment can be achieved using either the Gordon rotational diffusion model or phenomenological models for inelastic energy transfer rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald Riley; John Wicks; Christopher Perry
The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') wasmore » conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.« less
Xu, T.; Kharaka, Y.K.; Doughty, C.; Freifeld, B.M.; Daley, T.M.
2010-01-01
To demonstrate the potential for geologic storage of CO2 in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO2 were injected into a high-permeability sandstone and the resulting subsurface plume of CO2 was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO2 injection for baseline geochemical characterization, during the CO2 injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO2 breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO3- and aqueous Fe, and significant shifts in the isotopic compositions of H2O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO2 plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO2 concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO2 could ultimately be sequestered as carbonate minerals. ?? 2010 Elsevier B.V.
Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method
NASA Technical Reports Server (NTRS)
Waelbroek, C.; Louis, J.-F.
1995-01-01
A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.
NASA Astrophysics Data System (ADS)
Li, C.; Lu, H.; Wen, X.
2015-12-01
Land surface model (LSM), which simulates energy, water and momentum exchanges between land and atmosphere, is an important component of Earth System Models (ESM). As shown in CMIP5, different ESMs usually use different LSMs and represent various land surface status. In order to select a land surface model which could be embedded into the ESM developed in Tsinghua University, we firstly evaluate the performance of three LSMs: Community Land Model (CLM4.5) and two different versions of Common Land Model (CoLM2005 and CoLM2014). All of three models were driven by CRUNCEP data and simulation results from 1980 to 2010 were used in this study. Diagnostic data provided by NCAR, global latent and sensible heat flux map estimated by Jung, net radiation from SRB, and in situ observation collected from FluxNet were used as reference data. Two variables, surface runoff and snow depth, were used for evaluating the model performance in water budget simulation, while three variables including net radiation, sensible heat, and latent heat were used for assessing energy budget simulation. For 30 years averaged runoff, global average value of Colm2014 is 0.44mm/day and close to the diagnostic value of 0.75 mm/day, while that of Colm2005 is 0.44mm/day and that of CLM is 0.20mm/day. For snow depth simulation, three models all have overestimation in the Northern Hemisphere and underestimation in the Southern Hemisphere compare to diagnostic data. For 30 years energy budget simulation, at global scale, CoLM2005 performs best in latent heat estimation, CoLM2014 performs best in sensible heat simulation, and CoLM2005 and CoLM2014 make similar performance in net radiation estimation but is still better than CLM. At regional and local scale, comparing to the four years average of flux tower observation, RMSE of CoLM2005 is the smallest for latent heat (9.717 W/m2) , and for sensible heat simulation, RMSE of CoLM2005 (13.048 W/m2) is slightly greater than CLM(10.767 W/m2) but still better than CoLM2014(30.085 W/m2). Our analysis shows that both CoLM 2005 and CoLM 2014 are able to reproduce comparable land surface water and energy fluxes. It implies that the ESM developed in Tsinghua University may use CoLM, a LSM developed and maintained in China, as the land surface component. .
NASA Astrophysics Data System (ADS)
de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert
2016-04-01
Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran; ...
2017-03-09
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc L.; Parazoo, Nicholas; Brophy, Kieran
Here, we report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO 2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO 2, together with column-mean CO 2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO 2 exchange, in radiocarbon-based fossil fuel CO 2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find thatmore » flask measurements of radiocarbon and total CO 2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of ~5–10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO 2 exchange of ~6%–12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5 ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.« less
Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.
NASA Astrophysics Data System (ADS)
Frankenberg, C.; Berry, J. A.; Guanter, L.; Joiner, J.
2014-12-01
The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.
Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.
NASA Astrophysics Data System (ADS)
Fleischer, K.
2015-12-01
The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.
Explaining CO2 fluctuations observed in snowpacks
NASA Astrophysics Data System (ADS)
Graham, Laura; Risk, David
2018-02-01
Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
NASA Astrophysics Data System (ADS)
Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.
2012-12-01
The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The aircraft mixing ratios are applied as a top down constraint in Maximum Likelihood Estimation (MLE) and Bayesian inversion frameworks that solves for parameters controlling the flux. Posterior parameter estimates are used to estimate the carbon budget of the BAB. Preliminary results show that the STILT-VPRM model simulates the net emission of CO2 during both transition periods reasonably well. There is significant enhancement from biomass burning during the November 2008 profiles and some from fossil fuel combustion during the May 2009 flights. ΔCO/ΔCO2 emission ratios are used in combination with continuous observations of CO to remove the CO2 contributions from biomass burning and fossil fuel combustion from the observed CO2 measurements resulting in better agreement of observed and modeled aircraft data. Comparing column calculations for each of the vertical profiles shows our model represents the variability in the diurnal cycle. The high altitude CO2 values from above 3500m are similar to the lateral boundary conditions from CarbonTracker 2010 and GEOS-Chem indicating little influence from surface fluxes at these levels. The MLE inversion provides scaling factors for GEE and R for each of the 8 vegetation types and a Bayesian inversion is being conducted. Our initial inversion results suggest the BAB represents a small net source of CO2 during both of the BARCA intensives.
The Ketzin Project, Germany - Status and Future of the First European on-shore CO2 Storage Site
NASA Astrophysics Data System (ADS)
Kuehn, M.; Martens, S.; Moeller, F.; Lueth, S.; Liebscher, A.; Kempka, T.; Ketzin Group
2010-12-01
At the Ketzin site close to Berlin, the German Research Centre for Geosciences operates Europe’s first on-shore CO2 storage site with the aim of increasing the understanding of geological storage of CO2 in saline aquifers. Following site characterization and drilling of three wells, the in-situ field laboratory is fully in use since the CO2 injection started in June 2008. Our presentation summarizes key results from the first (Schilling et al. 2009) and second year (Martens et al. 2010) of injection and outlines future activities. Focus of the research is on interdisciplinary monitoring and modeling approaches. Since start of the CO2 injection on June 30, 2008, the injection facility has been reliably and safely operated. By the end of August 2010, about 37,700 tons of food grade CO2 have been injected into a sandstone aquifer of the Triassic Stuttgart Formation at a depth of about 630 to 700 m. The new project CO2MAN (CO2 Reservoir Management) is planned to succeed the EU-funded CO2SINK project which ended in March 2010 and further nationally funded projects. Our interdisciplinary monitoring concept for the Ketzin site integrates geophysical, geochemical and microbial investigations. Following baseline measurements prior to the injection, repeat measurements have been carried out for a comprehensive characterization of the reservoir and the developing CO2 plume. CO2MAN aims at continuing the injection up to a maximum of 100,000 tons of CO2, advancing the monitoring concept and further integrating numerical modeling. Planned activities include the installation of a third and a fourth observation well and the testing of well abandonment procedures. All data available from the Ketzin wells and the different monitoring techniques are going to be compiled into an integral geological model of the site. Such a geological model is the prerequisite for any holistic approach and understanding of CO2 storage not only at Ketzin. A variety of seismic methods, including cross-hole measurement between both observation wells, surface-downhole observations, and 2D and 3D surface surveys have been used in order to cover the near-injection to regional scale. In addition, geoelectric methods including cross-hole measurements between the wells and additional surface and surface-downhole electrical resistivity tomography have been applied to monitor the CO2 migration process. Geological modeling and dynamic flow modeling is conducted in different phases, including pre-existing data, information obtained from drilling and subsequent CO2 injection. On-going modeling also integrates recent geophysical monitoring data in order to improve the understanding of geological heterogeneities at the Ketzin site and their impact on the CO2 plume distribution. Martens S., Liebscher A., Möller F., Würdemann H, Schilling F., Kühn M., and Ketzin Group (2010) Progress Report on the First European on-shore CO2 Storage Site at Ketzin (Germany) - Second Year of Injection, GHGT 10, subm. Schilling F., Borm G., Würdemann H., Möller F., Kühn M., CO2SINK Group (2009) Status Report on the First European on-shore CO2 Storage Site at Ketzin (Germany). GHGT 9, Energy Procedia 1(1) 2029-2035, doi: 10.1016/j.egypro.2009.01.264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Ronald; Wicks, John; Perry, Christopher
The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) wasmore » conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.« less
NASA Technical Reports Server (NTRS)
Cess, R. D.; Hameed, S.; Hogan, J. S.
1980-01-01
Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Zhou, Y. P.; Schmidt, Gavin A.; Lau, K. M.; Cahalan, R. F.
2008-01-01
A primary concern of CO2-induced warming is the associated rise of tropical (10S-10N) seasurface temperatures (SSTs). GISS Model-E was used to produce two sets of simulations-one with the present-day and one with doubled CO2 in the atmosphere. The intrinsic usefulness of model guidance in the tropics was confirmed when the model simulated realistic convective coupling between SSTs and atmospheric soundings and that the simulated-data correlations between SSTs and 300 hPa moiststatic energies were found to be similar to the observed. Model predicted SST limits: (i) one for the onset of deep convection and (ii) one for maximum SST, increased in the doubled C02 case. Changes in cloud heights, cloud frequencies, and cloud mass-fractions showed that convective-cloud changes increased the SSTs, while warmer mixed-layer of the doubled CO2 contained approximately 10% more water vapor; clearly that would be conducive to more intense storms and hurricanes.
Carbon dioxide emission prediction using support vector machine
NASA Astrophysics Data System (ADS)
Saleh, Chairul; Rachman Dzakiyullah, Nur; Bayu Nugroho, Jonathan
2016-02-01
In this paper, the SVM model was proposed for predict expenditure of carbon (CO2) emission. The energy consumption such as electrical energy and burning coal is input variable that affect directly increasing of CO2 emissions were conducted to built the model. Our objective is to monitor the CO2 emission based on the electrical energy and burning coal used from the production process. The data electrical energy and burning coal used were obtained from Alcohol Industry in order to training and testing the models. It divided by cross-validation technique into 90% of training data and 10% of testing data. To find the optimal parameters of SVM model was used the trial and error approach on the experiment by adjusting C parameters and Epsilon. The result shows that the SVM model has an optimal parameter on C parameters 0.1 and 0 Epsilon. To measure the error of the model by using Root Mean Square Error (RMSE) with error value as 0.004. The smallest error of the model represents more accurately prediction. As a practice, this paper was contributing for an executive manager in making the effective decision for the business operation were monitoring expenditure of CO2 emission.
Study of CO2 bubble dynamics in seawater from QICS field Experiment
NASA Astrophysics Data System (ADS)
Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.
2011-12-01
One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html
Study of CO2 bubble dynamics in seawater from QICS field Experiment
NASA Astrophysics Data System (ADS)
Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.
2013-12-01
One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html
NASA Technical Reports Server (NTRS)
Ott, L.; Putman, B.; Collatz, J.; Gregg, W.
2012-01-01
Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scales
Revised budget for the oceanic uptake of anthropogenic carbon dioxide
Sarmiento, J.L.; Sundquist, E.T.
1992-01-01
TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.
CESM-simulated 21st Century Changes in Large Scale Crop Water Requirements and Yields
NASA Astrophysics Data System (ADS)
Levis, S.; Badger, A.; Drewniak, B. A.; O'Neill, B. C.; Ren, X.
2014-12-01
We assess potential changes in crop water requirements and corresponding yields relative to the late 20th century in major crop producing regions of the world by using the Community Land Model (CLM) driven with 21st century meteorology from RCP8.5 and RCP4.5 Community Earth System Model (CESM) simulations. The RCP4.5 simulation allows us to explore the potential for averted societal impacts when compared to the RCP8.5 simulation. We consider the possibility for increased yields and improved water use efficiency under conditions of elevated atmospheric CO2 due to the CO2 fertilization effect (also known as concentration-carbon feedback). We address uncertainty in the current understanding of plant CO2 fertilization by repeating the simulations with and without the CO2 fertilization effect. Simulations without CO2 fertilization represent the radiative effect of elevated CO2 (i.e., warming) without representing the physiological effect of elevated CO2 (enhanced carbon uptake and increased water use efficiency by plants during photosynthesis). Preliminary results suggest that some plants may suffer from increasing heat and drought in much of the world without the CO2 fertilization effect. On the other hand plants (especially C3) tend to grow more with less water when models include the CO2 fertilization effect. Performing 21st century simulations with and without the CO2 fertilization effect brackets the potential range of outcomes. In this work we use the CLM crop model, which includes specific crop types that differ from the model's default plant functional types in that the crops get planted, harvested, and potentially fertilized and irrigated according to algorithms that attempt to capture human management decisions. We use an updated version of the CLM4.5 that includes cotton, rice, and sugarcane, spring wheat, spring barley, and spring rye, as well as temperate and tropical maize and soybean.
NASA Astrophysics Data System (ADS)
Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.
2014-11-01
We use aircraft observations from the 1991-2000 Cape Grim Overflight Program and the 2009-2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km-1 in austral autumn to 2.2 ppbv km-1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.
The Martian paleoclimate and enhanced atmospheric carbon dioxide
NASA Technical Reports Server (NTRS)
Cess, R. D.; Owen, T.; Ramanathan, V.
1980-01-01
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, a past CO2-H2O greenhouse was modeled and global temperatures which are consistent with an earlier presence of liquid surface water are found in agreement with the extensive evidence for past fluvial erosion. An important aspect of the CO2-H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294 K, but if the hot bands are excluded, a surface temperature of only 250 K is achieved.
Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers
Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...
2014-12-31
Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less
De Kauwe, Martin G; Medlyn, Belinda E; Walker, Anthony P; Zaehle, Sönke; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Lu, Xingjie; Luus, Kristina; Parton, William J; Shu, Shijie; Wang, Ying-Ping; Werner, Christian; Xia, Jianyang; Pendall, Elise; Morgan, Jack A; Ryan, Edmund M; Carrillo, Yolima; Dijkstra, Feike A; Zelikova, Tamara J; Norby, Richard J
2017-09-01
Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO 2 -induced water savings to extend the growing season length. Observed interactive (CO 2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.
Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less
De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.; ...
2017-02-01
Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less
Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data
Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi
2012-01-01
Carbon dioxide (CO2) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO2 concentration (XCO2), we found that the accuracy throughout the World is between −2.56∼3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified. PMID:23443383
Assessment of global carbon dioxide concentration using MODIS and GOSAT data.
Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi
2012-11-26
Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.
Modelling lung and tissue diffusion using a membrane oxygenator circuit.
Dunningham, H; Borland, C; Bottrill, F; Gordon, D; Vuylsteke, A
2007-07-01
A simple model lung has been designed using a membrane oxygenator circuit comprising two membrane oxygenators primed with one to two litres of equine blood, giving reproducible results over several hours. Normoxia and normocapnia were achieved consistently over the duration of the test with a blood flow of 2.5 l/min, oxygenator ventilation gas flow of 5 l/min air with 0.3 l/min O2 and deoxygenator ventilation gas flow of 5 l/min 5% CO2 in N2 with 0.2 l/min CO2. The measured PaO2 was 81.3 (SD 3.35 mmHg), PvO2 38.3 (SD 1.38 mmHg), PvCO2 60.6 (SD 1.13 mmHg) and PaCO2 36.1 (SD 0.69mmHg). MO2 and MCO2 were 116 ml/min and 169 ml/min, respectively. An increasing linear relationship was observed for FiO2 and the corresponding PaO2 and, similarly, with FiCO2 and PvCO2, providing reference ranges for this model.
NASA Astrophysics Data System (ADS)
Boon, Alex; Broquet, Grégoire; Clifford, Deborah J.; Chevallier, Frédéric; Butterfield, David M.; Pison, Isabelle; Ramonet, Michel; Paris, Jean-Daniel; Ciais, Philippe
2016-06-01
Carbon dioxide (CO2) and methane (CH4) mole fractions were measured at four near-ground sites located in and around London during the summer of 2012 with a view to investigating the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution south of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory). First comparisons reveal that local sources, which cannot be represented in the model at a 2 km resolution, have a large impact on measurements. We evaluate methods to filter out the impact of some of the other critical sources of discrepancies between the measurements and the model simulation except that of the errors in the emission inventory, which we attempt to isolate. Such a separation of the impact of errors in the emission inventory should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a 3-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon lead to focusing on the afternoon period for all further analyses. The discrepancies between observations and model simulations are high for both CO2 and CH4 (i.e. their root mean square (RMS) is between 8 and 12 parts per million (ppm) for CO2 and between 30 and 55 parts per billion (ppb) for CH4 at a given site). By analysing the gradients between the urban sites and a suburban or rural reference site, we are able to decrease the impact of uncertainties in the fluxes and transport outside the London area and in the model domain boundary conditions. We are thus able to better focus attention on the signature of London urban CO2 and CH4 emissions in the atmospheric CO2 and CH4 concentrations. This considerably improves the statistical agreement between the model and observations for CO2 (with model-data RMS discrepancies that are between 3 and 7 ppm) and to a lesser degree for CH4 (with model-data RMS discrepancies that are between 29 and 38 ppb). Between one of the urban sites and either the rural or suburban reference site, selecting the gradients during periods wherein the reference site is upwind of the urban site further decreases the statistics of the discrepancies in general, though not systematically. In a further attempt to focus on the signature of the city anthropogenic emission in the mole fraction measurements, we use a theoretical ratio of gradients of carbon monoxide (CO) to gradients of CO2 from fossil fuel emissions in the London area to diagnose observation-based fossil fuel CO2 gradients, and compare them with the fossil fuel CO2 gradients simulated with CHIMERE. This estimate increases the consistency between the model and the measurements when considering only one of the two urban sites, even though the two sites are relatively close to each other within the city. While this study evaluates and highlights the merit of different approaches for increasing the consistency between the mesoscale model and the near-ground data, and while it manages to decrease the random component of the analysed model-data discrepancies to an extent that should not be prohibitive to extracting the signal from the London urban emissions, large biases, the sign of which depends on the measurement sites, remain in the final model-data discrepancies. Such biases are likely related to local emissions to which the urban near-ground sites are highly sensitive. This questions our current ability to exploit urban near-ground data for the atmospheric inversion of city emissions based on models at spatial resolution coarser than 2 km. Several measurement and modelling concepts are discussed to overcome this challenge.
The Global Carbon Cycle: It's a Small World
NASA Astrophysics Data System (ADS)
Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas
2010-05-01
Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric temperatures, or cessation of CO2 additions, showed rapid and proportionate decreases in atmospheric CO2 concentrations. The results indicate that short term terrestrial feedbacks are not sufficient to induce a CO2-temperature runaway scenario and suggest that predictions of atmospheric CO2 by current GCMs may under-estimate the CO2 fertilisation effect on plants and, hence, over-estimate future atmospheric CO2 increases. Perhaps, more importantly, the experiments show that the impacts of imposed elevated CO2 and temperature increase can be reversed. Whilst clearly representing a simplified version of terrestrial CO2 dynamics, it is proposed that closed system research represents a new form of test-bed for validation of processes represented within digital global CO2 models.
NASA Astrophysics Data System (ADS)
Wang, Yuting; Deutscher, Nicholas M.; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Mendonca, Joseph; Strong, Kimberly; Campbell, J. Elliott; Wolf, Adam; Kremser, Stefanie
2016-02-01
Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.
A Simplified Model for Multiphase Leakage through Faults with Applications for CO2 Storage
NASA Astrophysics Data System (ADS)
Watson, F. E.; Doster, F.
2017-12-01
In the context of geological CO2 storage, faults in the subsurface could affect storage security by acting as high permeability pathways which allow CO2 to flow upwards and away from the storage formation. To assess the likelihood of leakage through faults and the impacts faults might have on storage security numerical models are required. However, faults are complex geological features, usually consisting of a fault core surrounded by a highly fractured damage zone. A direct representation of these in a numerical model would require very fine grid resolution and would be computationally expensive. Here, we present the development of a reduced complexity model for fault flow using the vertically integrated formulation. This model captures the main features of the flow but does not require us to resolve the vertical dimension, nor the fault in the horizontal dimension, explicitly. It is thus less computationally expensive than full resolution models. Consequently, we can quickly model many realisations for parameter uncertainty studies of CO2 injection into faulted reservoirs. We develop the model based on explicitly simulating local 3D representations of faults for characteristic scenarios using the Matlab Reservoir Simulation Toolbox (MRST). We have assessed the impact of variables such as fault geometry, porosity and permeability on multiphase leakage rates.
Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Jeff
2012-11-30
Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less
Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G
2017-04-11
The Co 4 O 4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2 (IV) 2 cubane. We demonstrate that the Co(III) 2 (IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III) 2 (IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4 O 4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O-O bond formation.
Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan; ...
2017-03-27
The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less
Tripathy, P P
2015-03-01
Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.
Dash, Ranjan K; Bassingthwaighte, James B
2010-04-01
New mathematical model equations for O(2) and CO(2) saturations of hemoglobin (S(HbO)(2) and S(HbCO)(2) are developed here from the equilibrium binding of O(2) and CO(2) with hemoglobin inside RBCs. They are in the form of an invertible Hill-type equation with the apparent Hill coefficients KHbO(2) and KHbCO(2) in the expressions for SHbO(2) and SHbCO(2) dependent on the levels of O(2) and CO(2) partial pressures (P(O)(2) and P(CO)(2)), pH, 2,3-DPG concentration, and temperature in blood. The invertibility of these new equations allows PO(2) and PCO(2) to be computed efficiently from S(HbO)(2) and S(HbCO)(2) and vice versa. The oxyhemoglobin (HbO(2)) and carbamino-hemoglobin (HbCO(2)) dissociation curves computed from these equations are in good agreement with the published experimental and theoretical curves in the literature. The model solutions describe that, at standard physiological conditions, the hemoglobin is about 97.2% saturated by O(2) and the amino group of hemoglobin is about 13.1% saturated by CO(2). The O(2) and CO(2) content in whole blood are also calculated here from the gas solubilities, hematocrits, and the new formulas for S(HbO)(2) and S(HbCO)(2). Because of the mathematical simplicity and invertibility, these new formulas can be conveniently used in the modeling of simultaneous transport and exchange of O(2) and CO(2) in the alveoli-blood and blood-tissue exchange systems.
O'Leary, Garry J; Christy, Brendan; Nuttall, James; Huth, Neil; Cammarano, Davide; Stöckle, Claudio; Basso, Bruno; Shcherbak, Iurii; Fitzgerald, Glenn; Luo, Qunying; Farre-Codina, Immaculada; Palta, Jairo; Asseng, Senthold
2014-12-05
The response of wheat crops to elevated CO 2 (eCO 2 ) was measured and modelled with the Australian Grains Free-Air CO 2 Enrichment experiment, located at Horsham, Australia. Treatments included CO 2 by water, N and temperature. The location represents a semi-arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha -1 and 1600 to 3900 kg ha -1 , respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO 2 (from 365 to 550 μmol mol -1 CO 2 ) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO 2 , increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM-Wheat, APSIM-Nwheat, CAT-Wheat, CROPSYST, OLEARY-CONNOR and SALUS) in simulating crop responses to eCO 2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO 2 . However, under irrigation, the effect of late sowing on response to eCO 2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO 2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO 2 , water and temperature is required to resolve these model discrepancies. © 2014 John Wiley & Sons Ltd.
Modelling carbon dioxide emissions from agricultural soils in Canada.
Yadav, Dhananjay; Wang, Junye
2017-11-01
Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calculating CO2 uptake for existing concrete structures during and after service life.
Andersson, Ronny; Fridh, Katja; Stripple, Håkan; Häglund, Martin
2013-10-15
This paper presents a model that can calculate the uptake of CO2 in all existing concrete structures, including its uptake after service life. This is important for the calculation of the total CO2 uptake in the society and its time dependence. The model uses the well-documented cement use and knowledge of how the investments are distributed throughout the building sector to estimate the stock of concrete applications in a country. The depth of carbonation of these applications is estimated using two models, one theoretical and one based on field measurements. The maximum theoretical uptake potential is defined as the amount of CO2 that is emitted during calcination at the production of Portland cement, but the model can also, with some adjustments, be used for the other cement types. The model has been applied on data from Sweden and the results show a CO2 uptake in 2011 in all existing structures of about 300,000 tonnes, which corresponds to about 17% of the total emissions (calcination and fuel) from the production of new cement for use in Sweden in the same year. The study also shows that in the years 2030 and 2050, an increase in the uptake in crushed concrete, from 12,000 tonnes today to 200,000 and 500,000 tonnes of CO2, respectively, could be possible if the waste handling is redesigned.
NASA Astrophysics Data System (ADS)
Lesne, P.; Witham, F.; Kohn, S.; Blundy, J.; Botcharnikov, R. E.; Behrens, H.
2010-12-01
Geochemical measurements, from chemistry of melt inclusion to gas fluxes and compositions, give important clues to help understand magma and gas transport from a magma chamber towards the surface. These data are of the utmost importance to constrain models of the mass transport processes occurring in volcanic systems. Experimental work is central to testing such models. The behaviour of water and carbon dioxide fluids in basaltic melts have been well studied in previous works (i.e. Dixon et al., 1995; Newman & Lowenstern, 2002; Papale et al., 2006). The various models agree that the gases exsolved at high pressures are rich in CO_{2}, and at lower pressures, when most of the CO_{2} has already moved to the fluid phase, H_{2}O strongly partitions into the fluid and the melt become dehydrated (e.g. Newman & Lowenstern, 2002; Papale et al, 2006). S and Cl are much less abundant in the atmosphere than H_{2}O and CO_{2} and therefore give much higher signal ratio to noise ratios than volcanogenic H_{2}O and CO_{2}. H_{2}O, CO_{2}, S and Cl being the major volatiles measured at vent in melt inclusions in volcanic systems, a detailed model of S and Cl behaviour in basaltic melts is highly valuable in order to better understand volcanic gas emissions, and to test models of degassing processes. We have developed a model for mixed C-O-H-S-Cl fluids in equilibrium with basalt. The model is based on the premise that the volumetrically dominant volatile components, H_{2}O and CO_{2}, will determine the behaviour of S and Cl. Equilibrium experiments between a C-O-H-S-Cl fluid and basaltic melts from Stromboli and Masaya have been performed, at 1150°C, under oxidized conditions and at pressure from 25 to 400MPa. Analyses of volatiles dissolved in the melt and determined fluid composition allow us to determine equilibrium constants and partition coefficients of S and Cl between a CO_{2}-H_{2}O-rich fluid phase and basaltic melt. Equilibrium constants were parameterized using a S-rich basaltic composition (Stromboli), and have been tested against independent S-poor basaltic composition melts for Stromboli, and two volatile compositions from Masaya volcano. Our model reproduces all these experimental data with good agreement. The geochemical model will be published as a user-friendly software package, SolEx, to allow easy prediction of melt and fluid phase chemistries. We hope that this will facilitate comparisons between fluid-mechanical models of volcanic behaviour and measurements of melt inclusion chemistry and emitted gas compositions and fluxes. Dixon et al., 1995, J. Pet., 36, 1607-1631; Newman & Lowenstern, 2002, Computers & Geosciences, 28, 597-604; Papale et al., 2006, Chem. Geol., 229, 78-95.
Biogeochemical modeling of CO 2 and CH 4 production in anoxic Arctic soil microcosms
Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; ...
2016-09-12
Soil organic carbon turnover to CO 2 and CH 4 is sensitive to soil redox potential and pH conditions. But, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximatelymore » describe the observed pH evolution without additional parameterization. Though Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. Furthermore, the equilibrium speciation predicts a substantial increase in CO 2 solubility as pH increases, and taking into account CO 2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO 2 production from closed microcosms can be substantially underestimated based on headspace CO 2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, R. W.; Gilliam, T. M.; Fowler, V. L.
An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO$sub 2$-O$sub 2$ system. In the model, krypton and xenon in very low concentrations are combined with the CO$sub 2$-O$sub 2$ system, thereby representing the total system of primary interest in the High-Temperature Gas- Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations. (auth)
Gas dispersal potential of bedding as a cause for sudden infant death.
Sakai, Jun; Kanetake, Jun; Takahashi, Shirushi; Kanawaku, Yoshimasa; Funayama, Masato
2008-09-18
We assessed the gas dispersal potential of bedding articles used by 14 infants diagnosed with sudden unexpected infant death at autopsy. Of these cases, eight exhibited FiCO(2) values greater than 10% within 2.5 min, six of which were found prone and two supine. The results demonstrated that these eight beddings had a high rebreathing potential if they covered the babies' faces. We did not, however, take into account in our model the large tissue stores of CO(2). As some bicarbonate pools will delay or suppress the increase of FiCO(2), the time-FiCO(2) graphs of this study are not true for living infants. This model, however, demonstrated the potential gas dispersal ability of bedding. The higher the FiCO(2) values, the more dangerous the situation for rebreathing infants. In addition, FiO(2) in the potential space around the model's face can be estimated mathematically using FiCO(2) values. The FiO(2) graph pattern for each bedding item corresponded roughly to the inverse of the FiCO(2) time course. The FiO(2) of the above eight cases decreased by 8.5% within 2.5 min. Recent studies using living infants placed prone to sleep reported that some babies exhibited larger decreases in FiO(2) than increases observed in FiCO(2). While the decrease of FiO(2) in our model is still theoretical, CO(2) accumulation and O(2) deprivation are closely related. If a striking O(2) deficiency occurs in a short period, babies can lose consciousness before an arousal response is evoked and all infants could be influenced by the poor gas dispersal of bedding; the main cause of sudden death in infancy would thus be asphyxia. When the bedding is soft, the potential for trapping CO(2) seems to be high; however, it is impossible to assess it by appearance alone. We sought to provide some objective indices for the assessment of respiratory compromise in relation to bedding using our model. When a baby is found unresponsive with his/her face covered with poor gas dispersal bedding, we should consider the possibility of asphyxia.
A Global Perspective of Atmospheric CO2 Concentrations
NASA Technical Reports Server (NTRS)
Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo
2016-01-01
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Worthy, D.
2004-05-01
Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, John C.; Mallia, Derek V.; Wu, Dien
Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO 2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found – i.e., areas that have the potential to serve as carbon sinks. As CO 2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield informationmore » about carbon fluxes. In this paper, we present CO 2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO 2 observations, with emphasis on the observed and simulated diurnal cycles of CO 2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO 2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ~4 km or less may be needed to simulate a realistic diurnal cycle of CO 2 for sites on top of the steep mountains examined here in the American Rockies. In conclusion, in the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO 2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.« less
The impact of geoengineering on vegetation in experiment G1 of the GeoMIP
NASA Astrophysics Data System (ADS)
Glienke, Susanne; Irvine, Peter J.; Lawrence, Mark G.
2015-10-01
Solar Radiation Management (SRM) has been proposed as a mean to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) has simulated the climate consequences of a number of SRM techniques. Thus far, the effects on vegetation have not yet been thoroughly analyzed. Here the vegetation response to the idealized GeoMIP G1 experiment from eight fully coupled Earth system models (ESMs) is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations (abrupt4 × CO2). For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will reduce temperatures relative to abrupt4 × CO2, in high latitudes this will offset increases in NPP. In low latitudes, this cooling relative to the abrupt4 × CO2 simulation decreases plant respiration while having little effect on gross primary productivity, thus increasing NPP. In Central America and the Mediterranean, generally dry regions which are expected to experience increased water stress with global warming, NPP is highest in the G1 experiment for all models due to the easing of water limitations from increased water use efficiency at high-CO2 concentrations and the reduced evaporative demand in a geoengineered climate. The largest differences in the vegetation response are between models with and without a nitrogen cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.
Modeling Global Atmospheric CO2 Fluxes and Transport Using NASA MERRA Reanalysis Data
NASA Astrophysics Data System (ADS)
Liu, Y.; Kawa, S. R.; Collatz, G. J.
2010-12-01
We present our first results of CO2 surface biosphere fluxes and global atmospheric CO2 transport using NASA’s new MERRA reanalysis data. MERRA is the Modern Era Retrospective-Analysis For Research And Applications based on the Goddard Global Modeling and Assimilation Office GEOS-5 data assimilation system. After some application testing and analysis, we have generated biospheric CO2 fluxes at 3-hourly temporal resolution from an updated version of the CASA carbon cycle model using the 1x1.25-degree reanalysis data. The experiment covers a period of 9 years from 2000 -2008. The affects of US midwest crop (largely corn and soy) carbon uptake and removal by harvest are explicitly included in this version of CASA. Across the agricultural regions of the Midwest US, USDA crop yield data are used to scale vegetation fluxes producing a strong sink in the growing season and a comparatively weaker source from respiration after harvest. Comparisons of the new fluxes to previous ones generated using GEOS-4 data are provided. The Parameterized Chemistry/Transport Model (PCTM) is then used with the analyzed meteorology in offline CO2 transport. In the simulation of CO2 transport, we have a higher vertical resolution from MERRA (the lowest 56 of 72 levels are used in our simulation). A preliminary analysis of the CO2 simulation results is carried out, including diurnal, seasonal and latitudinal variability. We make comparisons of our simulation to continuous CO2 analyzer sites, especially those in agricultural regions. The results show that the model captures reasonably well the observed synoptic variability due to transport changes and biospheric fluxes.
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.
2013-12-01
The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.
A model of CO-CH4 global transport/chemistry. I - Chemistry model
NASA Technical Reports Server (NTRS)
Peters, L. K.; Kitada, T.
1980-01-01
A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; Lynch, Cary; Hartin, Corinne
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models
Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...
2017-05-12
Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less
Da, Chenxiao; Mooberry, Susan L.; Gupton, John T.; Kellogg, Glen E.
2013-01-01
αβ-tubulin colchicine site inhibitors (CSIs) from four scaffolds that we previously tested for antiproliferative activity were modeled to better understand their effect on microtubules. Docking models, constructed by exploiting the SAR of a pyrrole subset and HINT scoring, guided ensemble docking of all 59 compounds. This conformation set and two variants having progressively less structure knowledge were subjected to CoMFA, CoMFA+HINT, and CoMSIA 3D-QSAR analyses. The CoMFA+HINT model (docked alignment) showed the best statistics: leave-one-out q2 of 0.616, r2 of 0.949 and r2pred (internal test set) of 0.755. An external (tested in other laboratories) collection of 24 CSIs from eight scaffolds were evaluated with the 3D-QSAR models, which correctly ranked their activity trends in 7/8 scaffolds for CoMFA+HINT (8/8 for CoMFA). The combination of SAR, ensemble docking, hydropathic analysis and 3D-QSAR provides an atomic-scale colchicine site model more consistent with a target structure resolution much higher than the ~3.6 Å available for αβ-tubulin. PMID:23961916
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
Potential for iron oxides to control metal releases in CO2 sequestration scenarios
Berger, P.M.; Roy, W.R.
2011-01-01
The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction configuration to match measured geochemical changes due to CO2 injection, we modeled potential changes in groundwater chemistry at the Illinois Basin - Decatur Project (IBDP) site in Decatur, Illinois, USA. At the IBDP, the MGSC will inject 1 million tonnes of CO2 over the course of three years at a depth of about 2 km below the surface into the Mt. Simon Formation. Sections of the Mt. Simon Formation contain up to 10 percent iron oxide, and therefore surface complexes on iron oxides should play a major role in controlling brine chemistry. The batch simulation of this system showed a significant decrease in pH after the injection of CO2 with corresponding changes in brine chemistry resulting from both mineral precipitation/dissolution reactions and changes in the chemistry on iron oxide surfaces. To ensure the safety of shallow drinking water sources, there are several shallow monitoring wells at the IBDP that the MGSC samples regularly to determine baseline chemical concentrations. Knowing what geochemical parameters are most sensitive to CO2 disturbances allows us to focus monitoring efforts. Modeling a major influx of CO2 into the shallow groundwater allowed us to determine that were an introduction of CO2 to occur, the only immediate effect will be dolomite dissolution and calcite precipitation. ?? 2011 Published by Elsevier Ltd.
Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission.
Notz, Dirk; Stroeve, Julienne
2016-11-11
Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO 2 ) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO 2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO 2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response. Copyright © 2016, American Association for the Advancement of Science.
Measuring permanence of CO2 storage in saline formations: The Frio experiment
Hovorka, Susan D.; Benson, Sally M.; Doughty, Christine; Freifeild, Barry M.; Sakurai, Shinichi; Daley, Thomas M.; Kharaka, Yousif K.; Holtz, Mark H.; Trautz, Robert C.; Nance, H. Seay; Myer, Larry R.; Knauss, Kevin G.
2006-01-01
If CO2 released from fossil fuel during energy production is returned to the subsurface, will it be retained for periods of time significant enough to benefit the atmosphere? Can trapping be assured in saline formations where there is no history of hydrocarbon accumulation? The Frio experiment in Texas was undertaken to provide answers to these questions.One thousand six hundred metric tons of CO2 were injected into the Frio Formation, which underlies large areas of the United States Gulf Coast. Reservoir characterization and numerical modeling were used to design the experiment, as well as to interpret the results through history matching. Closely spaced measurements in space and time were collected to observe the evolution of immiscible and dissolved CO2 during and after injection. The high-permeability, steeply dipping sandstone allowed updip flow of supercritical CO2 as a result of the density contrast with formation brine and absence of a local structural trap.The front of the CO2 plume moved more quickly than had been modeled. By the end of the 10-day injection, however, the plume geometry in the plane of the observation and injection wells had thickened to a distribution similar to the modeled distribution. As expected, CO2 dissolved rapidly into brine, causing pH to fall and calcite and metals to be dissolved.Postinjection measurements, including time-lapse vertical seismic profiling transects along selected azimuths, cross-well seismic topography, and saturation logs, show that CO2 migration under gravity slowed greatly 2 months after injection, matching model predictions that significant CO2 is trapped as relative permeability decreases.
Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins
NASA Astrophysics Data System (ADS)
Voigt, A.; Abbot, D. S.
2012-12-01
The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI)*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI)* in the atmosphere-ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma) continents and solar insolation (94% of modern). In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI)* ≈ (500 ppm, 55%). Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI)* ≈ (204 ppm, 70%). This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI)* ≈ (2 ppm, 85%). Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true Jormungand state. Overall, our results demonstrate that differences in sea-ice dynamics schemes can be at least as important as differences in sea-ice albedo for causing the spread in climate models' estimates of the Snowball Earth bifurcation. A detailed understanding of Snowball Earth initiation therefore requires future research on sea-ice dynamics to determine which model's simulation is most realistic.
A theoretical approach to excessive CO2 expiration due to lactate production in exercise.
Yano, T
1987-01-01
Cerretelli et al. (1982) proposed a model to estimate pH changes due to lactate production in exercise. This model was modified in the present study so as to express the relationship between CO2 excess and lactate production. The modified model fitted to the data reported on endurance-trained men.
Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min
2017-08-01
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Poulter, Benjamin; Cadule, Patricia; Cheiney, Audrey; Ciais, Philippe; Hodson, Elke; Peylin, Philippe; Plummer, Stephen; Spessa, Allan; Saatchi, Sassan; Yue, Chao; Zimmermann, Niklaus E.
2015-02-01
Fire plays an important role in terrestrial ecosystems by regulating biogeochemistry, biogeography, and energy budgets, yet despite the importance of fire as an integral ecosystem process, significant advances remain to improve its prognostic representation in carbon cycle models. To recommend and to help prioritize model improvements, this study investigates the sensitivity of a coupled global biogeography and biogeochemistry model, LPJ, to observed burned area measured by three independent satellite-derived products, GFED v3.1, L3JRC, and GlobCarbon. Model variables are compared with benchmarks that include pantropical aboveground biomass, global tree cover, and CO2 and CO trace gas concentrations. Depending on prescribed burned area product, global aboveground carbon stocks varied by 300 Pg C, and woody cover ranged from 50 to 73 Mkm2. Tree cover and biomass were both reduced linearly with increasing burned area, i.e., at regional scales, a 10% reduction in tree cover per 1000 km2, and 0.04-to-0.40 Mg C reduction per 1000 km2. In boreal regions, satellite burned area improved simulated tree cover and biomass distributions, but in savanna regions, model-data correlations decreased. Global net biome production was relatively insensitive to burned area, and the long-term land carbon sink was robust, 2.5 Pg C yr-1, suggesting that feedbacks from ecosystem respiration compensated for reductions in fuel consumption via fire. CO2 transport provided further evidence that heterotrophic respiration compensated any emission reductions in the absence of fire, with minor differences in modeled CO2 fluxes among burned area products. CO was a more sensitive indicator for evaluating fire emissions, with MODIS-GFED burned area producing CO concentrations largely in agreement with independent observations in high latitudes. This study illustrates how ensembles of burned area data sets can be used to diagnose model structures and parameters for further improvement and also highlights the importance in considering uncertainties and variability in observed burned area data products for model applications.
NASA Astrophysics Data System (ADS)
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun
2017-11-01
In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ye
The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination ofmore » the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model equivalency, all the stratigraphic models were successfully upscaled from the reference heterogeneous model for bulk flow and transport predictions (Zhang & Zhang, 2015). GCS simulation was then simulated with all models, yielding insights into the level of parameterization complexity that is needed for the accurate simulation of reservoir pore pressure, CO2 storage, leakage, footprint, and dissolution over both short (i.e., injection) and longer (monitoring) time scales. Important uncertainty parameters that impact these key performance metrics were identified for the stratigraphic models as well as for the heterogeneous model, leading to the development of reduced/simplified models at lower characterization cost that can be used for the reservoir uncertainty analysis. All the CO2 modeling was conducted using PFLOTRAN – a massively parallel, multiphase, multi-component, and reactive transport simulator developed by a multi-laboratory DOE/SciDAC (Scientific Discovery through Advanced Computing) project (Zhang et al., 2017, in review). Within the uncertainty analysis framework, increasing reservoir depth were investigated to explore its effect on the uncertainty outcomes and the potential for developing gravity-stable injection with increased storage security (Dai et al., 20126; Dai et al., 2017, in review). Finally, to accurately model CO2 fluid-rock reactions and resulting long-term storage as secondary carbonate minerals, a modified kinetic rate law for general mineral dissolution and precipitation was proposed and verified that is invariant to a scale transformation of the mineral formula weight. This new formulation will lead to more accurate assessment of mineral storage over geologic time scales (Lichtner, 2016).« less
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
Testing for a CO2 fertilization effect on growth of Canadian boreal forests
NASA Astrophysics Data System (ADS)
Girardin, Martin P.; Bernier, Pierre Y.; Raulier, FréDéRic; Tardif, Jacques C.; Conciatori, France; Guo, Xiao Jing
2011-03-01
The CO2 fertilization hypothesis stipulates that rising atmospheric CO2 has a direct positive effect on net primary productivity (NPP), with experimental evidence suggesting a 23% growth enhancement with a doubling of CO2. Here, we test this hypothesis by comparing a bioclimatic model simulation of NPP over the twentieth century against tree growth increment (TGI) data of 192 Pinus banksiana trees from the Duck Mountain Provincial Forest in Manitoba, Canada. We postulate that, if a CO2 fertilization effect has occurred, climatically driven simulations of NPP and TGI will diverge with increasing CO2. We use a two-level scaling approach to simulate NPP. A leaf-level model is first used to simulate high-frequency responses to climate variability. A canopy-level model of NPP is then adjusted to the aggregated leaf-level results and used to simulate yearly plot-level NPP. Neither model accounts for CO2 fertilization. The climatically driven simulations of NPP for 1912-2000 are effective for tracking the measured year-to-year variations in TGI, with 47.2% of the variance in TGI reproduced by the simulation. In addition, the simulation reproduces without divergence the positive linear trend detected in TGI over the same period. Our results therefore do not support the attribution of a portion of the historical linear trend in TGI to CO2 fertilization at the level suggested by current experimental evidence. A sensitivity analysis done by adding an expected CO2 fertilization effect to simulations suggests that the detection limit of the study is for a 14% growth increment with a doubling of atmospheric CO2 concentration.
NASA Astrophysics Data System (ADS)
Joodaki, S.; Yang, Z.; Niemi, A. P.
2016-12-01
CO2 trapping in saline aquifers can be enhanced by applying specific injection strategies. Water-alternating-gas (WAG) injection, in which intermittent slugs of CO2 and water are injected, is one of the suggested methods to increase the trapping of CO2 as a result of both capillary forces (residual trapping) and dissolution into the ambient water (dissolution trapping). In this study, 3D numerical modeling was used to investigate the importance of parameters needed to design an effective WAG injection sequence including (i) CO2 and water injection rates, (ii) WAG ratio, (iii) number of cycles and their duration. We employ iTOUGH2-EOS17 model to simulate the CO2 injection and subsequent trapping in heterogeneous formations. Spatially correlated random permeability fields are generated using GSLIB based on available data at the Heletz, a pilot injection site in Israel, aimed for scientifically motivated CO2 injection experiments. Hysteresis effects on relative permeability and capillary pressure function are taken into account based on the Land model (1968). The results showed that both residual and dissolution trapping can be enhanced by increasing in CO2 injection rate due to the fact that higher CO2 injection rate reduces the gravity segregation and increases the reservoir volume swept by CO2. Faster water injection will favor the residual and dissolution trapping due to improved mixing. Increasing total amount of water injection will increase the dissolution trapping but also the cost of the injection. It causes higher pressure increases as well. Using numerical modeling, it is possible to predict the best parameter combination to optimize the trapping and find the balance between safety and cost of the injection process.
Atmospheric measurement of point source fossil fuel CO2 emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.
2013-11-01
We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.
Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J
2005-03-10
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.
NASA Technical Reports Server (NTRS)
Box, Elgene O.
1988-01-01
The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.
Equilibrium model analysis of waste plastics gasification using CO2 and steam.
Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C
2017-12-01
Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Hunt, L. A.; Maute, A.
2017-06-01
Carbon dioxide (CO2) infrared emissions at 15 μm is the primary radiative cooling mechanism of the thermosphere in the altitude range of 100-135 km. This paper explores the role of two important diurnal nonmigrating tides, the DE2 and DE3, in the modulation of CO2 15 μm emissions during the solar minimum year 2008 by (i) analyzing Sounding the Atmosphere using Broadband Emission Radiometry (SABER) CO2 cooling rate data and (ii) photochemical modeling using dynamical tides from the empirical Climatological Tidal Model of the Thermosphere model. Tidal diagnostics of SABER data shows that the CO2 cooling rate amplitudes for the DE2 and DE3 components are on the order of approximately 20-50% relative to the monthly means, and they maximize around the lower bound (100 km) of the analyzed height interval. The photochemical modeling reproduces the observed results, albeit with systematic amplitude differences which is likely related to the uncertainty in the model input backgrounds, especially atomic oxygen. The main tidal coupling mechanism is found to be the temperature dependence of the collisional excitation of the CO2 ν2 vibrational state. However, neutral density becomes equally important above ˜110 km, thereby explaining observed evanescent DE2 and DE3 phases which are not present in temperature tides. The contribution of vertical tidal advection is comparatively small. The relative importance of the coupling mechanisms is the same at all latitudes/seasons. These results indicate that upward propagating nonmigrating tides forced by latent heat release in the lower atmosphere impact the thermospheric energy budget by modulating the longitudinal/local time behavior of the CO2 infrared cooling.
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?
NASA Technical Reports Server (NTRS)
Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam;
2014-01-01
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
How do various maize crop models vary in their responses to climate change factors?
Bassu, Simona; Brisson, Nadine; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W; Rosenzweig, Cynthia; Ruane, Alex C; Adam, Myriam; Baron, Christian; Basso, Bruno; Biernath, Christian; Boogaard, Hendrik; Conijn, Sjaak; Corbeels, Marc; Deryng, Delphine; De Sanctis, Giacomo; Gayler, Sebastian; Grassini, Patricio; Hatfield, Jerry; Hoek, Steven; Izaurralde, Cesar; Jongschaap, Raymond; Kemanian, Armen R; Kersebaum, K Christian; Kim, Soo-Hyung; Kumar, Naresh S; Makowski, David; Müller, Christoph; Nendel, Claas; Priesack, Eckart; Pravia, Maria Virginia; Sau, Federico; Shcherbak, Iurii; Tao, Fulu; Teixeira, Edmar; Timlin, Dennis; Waha, Katharina
2014-07-01
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. © 2014 John Wiley & Sons Ltd.
Rao, Anand B; Rubin, Edward S
2002-10-15
Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly
2012-01-01
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.
Operational and environmental determinants of in-vehicle CO and PM2.5 exposure.
Alameddine, I; Abi Esber, L; Bou Zeid, E; Hatzopoulou, M; El-Fadel, M
2016-05-01
This study presents a modeling framework to quantify the complex roles that traffic, seasonality, vehicle characteristics, ventilation, meteorology, and ambient air quality play in dictating in-vehicle commuter exposure to CO and PM2.5. For this purpose, a comprehensive one-year monitoring program of 25 different variables was coupled with a multivariate regression analysis to develop models to predict in-vehicle CO and PM2.5 exposure using a database of 119 mobile tests and 120 fume leakage tests. The study aims to improve the understanding of in-cabin exposure, as well as interior-exterior pollutant exchange. Model results highlighted the strong correlation between out-vehicle and in-vehicle concentrations, with the effect of ventilation type only discerned for PM2.5 levels. Car type, road conditions, as well as meteorological conditions all played a significant role in modulating in-vehicle exposure. The CO and PM2.5 exposure models were able to explain 72 and 92% of the variability in measured concentrations, respectively. Both models exhibited robustness and no-evidence of over-fitting. Copyright © 2016 Elsevier B.V. All rights reserved.
Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California
Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.
2018-01-01
The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108 t) in a shallow gas reservoir. Moreover, we show that both, short-lived (months to years) and long-lived (hundreds of years) events of magmatic fluid injection can lead to critical pressures within the reservoir and potentially trigger fault reactivation. Our sensitivity analysis suggests that observed temporal fluctuations in surface degassing are only indirectly controlled by variations in magmatic degassing and are mainly the result of temporally variable fault permeability. Finally, we suggest that long-term CO2 emission monitoring, seismic tomography and coupled thermal–hydraulic–mechanical modeling are important for CO2-related hazard mitigation.
NASA Astrophysics Data System (ADS)
Virgile, R.
2016-12-01
The continental degassing of mantle volatiles is known from a variety of areas characterized by Asthenosphere updoming, such as the US Basin and Range and the European Cenozoic Rift System. Mantle degassing is there usually associated to magmatic provinces where non-volcanic upwellings of cold to hot waters are frequently associated with high CO2 gas loads. The resulting aquifers, springs and mofets express variable gas compositions which are often attributed to the mixing of crustal and mantle CO2, and less often to the variable degassing states of the waters. Indeed, the compositions of water and gas in CO2, δ13C and the noble gases may justify both models. However, the implications of each model for the bulk degassing mass quantification of mantle volatiles are drastically different, and would therefore need to be confirmed or rejected on a case by case basis. We introduce here a new model for predicting fluid phase equilibrium for systems comprising CO2-CH4-H2-H2S-N2-O2-He-Ne-Ar-Kr-Xe-H2O-NaCl at shallow subsurface conditions (1-250 bars, 0-150°C). The model was applied in P-T conditions comparable to non-volcanic CO2 degassing systems, where initial fluids were defined as variable mixtures of air equilibrated water (AEW) and mantle volatiles (CO2, He, CO2/3He = 5 x109). Literature data from European non-volcanic mantle degassing systems were compiled and compared to different modeling scenarios. The distribution of the CO2/3He (from 108 to 1012) and N2/3He (from 106 to 1011) ratios in natural samples are consistent with the open system degassing of initial fluids at depths above 2000m, with variable recharges of AEW. Initial single phase fluids are composed of up to 300 mol.m-3 CO2, 7 x10-3 mol.m-3 He and N2 with typical AEW contents (0.5 mol.m-3). Most degassed systems correspond to 98% degassed initial fluids, which incorporated up to 10% of fresh AEW subsequently to degassing. Our results suggest that fluid phase fractionation effects alone are sufficient to generate the range of compositions observed in the studied natural water-gas systems, without the need to invoke a crustal CO2 end-member.
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...
2016-11-01
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S
2006-10-01
Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2011-01-01
Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r2cv values of 0.726 and 0.566, and r2 values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed. PMID:21673910
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2011-01-01
Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r(2) (cv) values of 0.726 and 0.566, and r(2) values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed.
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke
2015-01-07
Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.
2018-02-01
One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity
North African savanna fires and atmospheric carbon dioxide
NASA Technical Reports Server (NTRS)
Iacobellis, Sam F.; Frouin, Robert; Razafimpanilo, Herisoa; Somerville, Richard C. J.; Piper, Stephen C.
1994-01-01
The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical structure of the CO2 concentration increase due to biomass burning differs substantially, depending on whether sources are local or remote. A prominent maximum of CO2 concentration increase in the lower layers characterizes the effect of local sources, whereas a more homogeneous profile of CO2 concentration increase characterizes the effect of remote sources. The results demonstrate the strong remote effects of African biomoass burning which, owing to the general circulation of the atmosphere, are felt as far away as South America.
Musa-Aziz, Raif; Boron, Walter F.
2014-01-01
Exposing an oocyte to CO2/HCO3− causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3− solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3− (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3− or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive. PMID:24965589
NASA Astrophysics Data System (ADS)
Sayed, Ahmed R. M. Al; Isa, Zaidi
2015-09-01
Many scholars have shown their interest into the relationship between energy consumption (EC), gross domestic product (GDP) and emissions. The main objective of this study is to investigate the relationship between GDP, EC and CO2 within multivariate model by using panel data method in Asian countries; Korea, Malaysia, Japan and China for annually data during the period 1960 to 2010. The main finding shows that CO2 can be explained more than 86% & 78% by EC and GDP in each of cross section model and period model respectively. As a result of that, CO2 emissions should be considered as an important factor in energy consumption and gross domestic product by policy maker.
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
Validation of lower tropospheric carbon monoxide inferred from MOZART model simulation over India
NASA Astrophysics Data System (ADS)
Yarragunta, Y.; Srivastava, S.; Mitra, D.
2017-02-01
In the present study, MOZART-4 (Model for Ozone and Related chemical Tracers-Version-4) simulation has been made from 2003 to 2007 and compared with satellite and in-situ observations with a specific focus on Indian subcontinent to illustrate the capabilities of MOZART-4 model. The model simulated CO have been compared with latest version (version-6) of MOPITT (Measurement Of Pollution In The Troposphere) carbon monoxide (CO) retrievals at 900, 800 and 700 hPa. Model reproduces major features present in satellite observations. However model significantly overestimates CO over the entire Indian region at 900 hPa and moderately overestimates at 800 hPa and 700 hPa. The frequency distribution of all simulated data points with respect to MOZART error shows maximum in the error range of 10-20% at all pressure levels. Over total Indian landmass, the percentage of gridded CO data that are being overestimated in the range of 0-30% at 900 hPa, 800 hPa and 700 hPa are 58%, 62% and 66% respectively. The study reflects very good correlation between two datasets over Central India (CI) and Southern India (SI). The coefficient of determination (r2) is found to be 0.68-0.78 and 0.70-0.78 over the CI and SI respectively. The weak correlation is evident over Northern India (NI) with r2 values of 0.1-0.3. Over Eastern India (EI), Good correlation at 800 hPa (r2 = 0.72) and 700 hPa (r2 = 0.66) whereas moderately weak correlation at 900 hPa (r2 = 0.48) has been observed. In contrast, Over Western India (WI), strong correlation is evident at 900 hPa (r2 = 0.64) and moderately weak association is found to be present at 800 hPa and 700 hPa. Model fairly reproduces seasonal cycle of CO in the lower troposphere over most of the Indian regions. However, during June to December, model shows overestimation over NI. The magnitude of overestimation is increasing linearly from 900 hPa to 700 hPa level. During April-June months, model results are coinciding with observed CO concentrations over SI region at 900 hPa. Model simulation has been compared with surface in-situ observations over ten Indian locations. Model performance is found to be moderate to good over various observational locations. However, over highly polluted megacities, model underestimates observed CO concentration by up to 3500 ppbv. A case study over the forest fire prone area reveals the clear increase of modeled and retrieved CO in February-March and a decrease in May which is coinciding with biomass burning emissions and fire counts. Model performance is found to be relatively poor over this region with r2 of 0.29 and slope of 0.56.
Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content
Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith
2007-01-01
Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...
A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)
NASA Astrophysics Data System (ADS)
Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.
2005-12-01
We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these two relatively nearby sites; and at Fraser Experimental Forest, allowing us to investigate nocturnal respiration rates across a large intermountain valley. Our data are available to the public on the internet in near real time to support quality control, local science, and larger scale synthesis efforts.
Modeling the transformation of atmospheric CO2 into microalgal biomass.
Hasan, Mohammed Fahad; Vogt, Frank
2017-10-23
Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in anthropogenic CO 2 may not be counterbalanced by an increase in phytoplankton production. Modeling studies have found that for several different atmospheric CO 2 levels provided to single-species cultures as well as to species in competing scenarios the cell production rate does slow down over time.
Postglacial Terrestrial Carbon Dynamics and Atmospheric CO2
NASA Astrophysics Data System (ADS)
Prentice, C. I.; Harrison, S. P.; Kaplan, J. O.
2002-12-01
Combining PMIP climate model results from the last glacial maximum (LGM) with biome modelling indicates the involvement of both cold, dry climate and physiological effects of low atmospheric CO2 in reducing tree cover on the continents. Further results with the LPJ dynamic vegetation model agree with independent evidence for greatly reduced terrestrial carbon storage at LGM, and suggest that terrestrial carbon storage continued to increase during the Holocene. These results point to predominantly oceanic explanations for preindustrial changes in atmospheric CO2, although land changes after the LGM may have contributed indirectly by reducing the aeolian marine Fe source and (on a longer time scale) by triggering CaCO3 compensation in the ocean.
Iguchi, Akira; Kumagai, Naoki H; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro
2014-12-15
In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO2 control system which can produce acidified seawater under stable pCO2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO2 values with low variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jackson, L. C.; Schaller, N.; Smith, R. S.; Palmer, M. D.; Vellinga, M.
2014-06-01
The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.
Development of a Carbon Management Geographic Information System (GIS) for the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard Herzog; Holly Javedan
In this project a Carbon Management Geographical Information System (GIS) for the US was developed. The GIS stored, integrated, and manipulated information relating to the components of carbon management systems. Additionally, the GIS was used to interpret and analyze the effect of developing these systems. This report documents the key deliverables from the project: (1) Carbon Management Geographical Information System (GIS) Documentation; (2) Stationary CO{sub 2} Source Database; (3) Regulatory Data for CCS in United States; (4) CO{sub 2} Capture Cost Estimation; (5) CO{sub 2} Storage Capacity Tools; (6) CO{sub 2} Injection Cost Modeling; (7) CO{sub 2} Pipeline Transport Costmore » Estimation; (8) CO{sub 2} Source-Sink Matching Algorithm; and (9) CO{sub 2} Pipeline Transport and Cost Model.« less
Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Unger, Andre A.J.
2004-02-18
The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less
Impact of atmospheric CO2 levels on continental silicate weathering
NASA Astrophysics Data System (ADS)
Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.
2010-07-01
Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.
No way out? The double-bind in seeking global prosperity alongside mitigated climate change
NASA Astrophysics Data System (ADS)
Garrett, T. J.
2012-01-01
In a prior study (Garrett, 2011), I introduced a simple economic growth model designed to be consistent with general thermodynamic laws. Unlike traditional economic models, civilization is viewed only as a well-mixed global whole with no distinction made between individual nations, economic sectors, labor, or capital investments. At the model core is a hypothesis that the global economy's current rate of primary energy consumption is tied through a constant to a very general representation of its historically accumulated wealth. Observations support this hypothesis, and indicate that the constant's value is λ = 9.7 ± 0.3 milliwatts per 1990 US dollar. It is this link that allows for treatment of seemingly complex economic systems as simple physical systems. Here, this growth model is coupled to a linear formulation for the evolution of globally well-mixed atmospheric CO2 concentrations. While very simple, the coupled model provides faithful multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2. Extending the model to the future, the model suggests that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. For one, global CO2 emission rates cannot be decoupled from wealth through efficiency gains. For another, like a long-term natural disaster, future greenhouse warming can be expected to act as an inflationary drag on the real growth of global wealth. For atmospheric CO2 concentrations to remain below a "dangerous" level of 450 ppmv (Hansen et al., 2007), model forecasts suggest that there will have to be some combination of an unrealistically rapid rate of energy decarbonization and nearly immediate reductions in global civilization wealth. Effectively, it appears that civilization may be in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the risk is that civilization will gradually tend towards collapse.
Phase 1 Free Air CO2 Enrichment Model-Data Synthesis (FACE-MDS): Meteorological Data
Norby, R. J.; Oren, R.; Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL); De Kauwe, M. G.; Kim, D.; Medlyn, B. E.; Riggs, J. S.; Tharp, M. L.; Walker, A. P.; Yang, B.; Zaehle, S.
2015-01-01
These datasets comprise the meteorological, CO2 and N deposition data used to run models for the Duke and Oak Ridge FACE experiments. Phase 1 datasets are reproduced here for posterity and reproducibility although these meteorological datasets are superseded by the Phase 2 datasets. If you would like to use the meteorological datasets to run your own model or for any other purpose please use the Phase 2 datasets.
Observational constraints on the global atmospheric CO2 budget
NASA Technical Reports Server (NTRS)
Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro
1990-01-01
Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.
Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Richardson, S. M.
1985-01-01
A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.
Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Richardson, S. M.
1985-01-01
A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.
Climate change and the middle atmosphere. I - The doubled CO2 climate
NASA Technical Reports Server (NTRS)
Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.
1990-01-01
The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.
Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.
Jin, Qusheng; Kirk, Matthew F
2016-01-01
Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.
Thermodynamic and Kinetic Response of Microbial Reactions to High CO2
Jin, Qusheng; Kirk, Matthew F.
2016-01-01
Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425
Characterizing Uncertainties in Atmospheric Inversions of Fossil Fuel CO2 Emissions in California
NASA Astrophysics Data System (ADS)
Brophy, K. J.; Graven, H. D.; Manning, A.; Arnold, T.; Fischer, M. L.; Jeong, S.; Cui, X.; Parazoo, N.
2016-12-01
In 2006 California passed a law requiring greenhouse gas emissions be reduced to 1990 levels by 2020, equivalent to a 20% reduction over 2006-2020. Assessing compliance with greenhouse gas mitigation policies requires accurate determination of emissions, particularly for CO2 emitted by fossil fuel combustion (ffCO2). We found differences in inventory-based ffCO2 flux estimates for California total emissions of 11% (standard deviation relative to the mean), and even larger differences on some smaller sub-state levels. Top-down studies may be useful for validating ffCO2 flux estimates, but top-down studies of CO2 typically focus on biospheric CO2 fluxes and they are not yet well-developed for ffCO2. Implementing top-down studies of ffCO2 requires observations of a fossil fuel combustion tracer such as 14C to distinguish ffCO2 from biospheric CO2. However, even if a large number of 14C observations are available, multiple other sources of uncertainty will contribute to the uncertainty in posterior ffCO2 flux estimates. With a Bayesian inverse modelling approach, we use simulated atmospheric observations of ffCO2 at a network of 11 tower sites across California in an observing system simulation experiment to investigate uncertainties. We use four different prior ffCO2 flux estimates, two different atmospheric transport models, different types of spatial aggregation, and different assumptions for observational and model transport uncertainties to investigate contributions to posterior ffCO2 emission uncertainties. We show how various sources of uncertainty compare and which uncertainties are likely to limit top-down estimation of ffCO2 fluxes in California.
NASA Technical Reports Server (NTRS)
Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules
2016-01-01
We present the Efficient CH4-CO-OH (ECCOH) chemistry module that allows for the simulation of the methane, carbon monoxide, and hydroxyl radical (CH4-CO- OH) system, within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO, and OH, and the concomitant impacts on climate. We implemented the ECCOH chemistry module in the NASA GEOS-5 atmospheric global circulation model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over 2 decades, and evaluated the model output with surface and satellite data sets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS- 5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.
NASA Astrophysics Data System (ADS)
Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.
2017-12-01
Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled seasonal and interannual variations in net ecosystem productivity (NEP). These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2 ˜ 0.8, slopes ˜ 1 ± 0.1, intercepts ˜ 0.05 µmol m-2 s-1), hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2 ˜ 0.7, slopes ˜ 1 ± 0.1, intercepts ˜ 0.4 µmol m-2 s-1), and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP ˜ 160 g C m-2 yr-1) to carbon neutrality (NEP ˜ 10 g C m-2 yr-1) should the water table deepen by a further ˜ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.