Sample records for co2 partial pressure

  1. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.

    PubMed

    Atwell, B J; Henery, M L; Whitehead, D

    2003-01-01

    Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.

  2. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    PubMed

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  4. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains.

    PubMed

    Zinder, S H; Anguish, T

    1992-10-01

    CO and H(2) have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H(2), CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H(2) to partial pressures of 40 to 70 Pa (1 Pa = 0.987 x 10 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H(2) to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N(2)-CO(2), accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H(2) (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 mumol of viologen reduced min mg of protein. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H(2) in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.

  5. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains

    PubMed Central

    Zinder, S. H.; Anguish, T.

    1992-01-01

    CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate. PMID:16348788

  6. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.

    PubMed

    Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M

    2017-01-01

    Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Development of a three-man preprototype CO2 collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.

    1977-01-01

    Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.

  8. Randomized trial of low versus high carbon dioxide insufflation pressures in posterior retroperitoneoscopic adrenalectomy.

    PubMed

    Fraser, Sheila; Norlén, Olov; Bender, Kyle; Davidson, Joanne; Bajenov, Sonya; Fahey, David; Li, Shawn; Sidhu, Stan; Sywak, Mark

    2018-05-01

    Posterior retroperitoneoscopic adrenalectomy has gained widespread acceptance for the removal of benign adrenal tumors. Higher insufflation pressures using carbon dioxide (CO 2 ) are required, although the ideal starting pressure is unclear. This prospective, randomized, single-blinded, study aims to compare physiologic differences with 2 different CO 2 insufflation pressures during posterior retroperitoneoscopic adrenalectomy. Participants were randomly assigned to a starting insufflation pressure of 20 mm Hg (low pressure) or 25 mm Hg (high pressure). The primary outcome measure was partial pressure of arterial CO 2 at 60 minutes. Secondary outcomes included end-tidal CO 2 , arterial pH, blood pressure, and peak airway pressure. Breaches of protocol to change insufflation pressure were permitted if required and were recorded. A prospective randomized trial including 31 patients (low pressure: n = 16; high pressure: n = 15) was undertaken. At 60 minutes, the high pressure group had greater mean partial pressure of arterial CO 2 (64 vs 50 mm Hg, P = .003) and end-tidal CO 2 (54 vs 45 mm Hg, P = .008) and a lesser pH (7.21 vs 7.29, P = .0005). There were no significant differences in base excess, peak airway pressure, operative time, or duration of hospital stay. Clinically indicated protocol breaches were more common in the low pressure than the high pressure group (8 vs 3, P = .03). In posterior retroperitoneoscopic adrenalectomy, greater insufflation pressures are associated with greater partial pressure of arterial CO 2 and end-tidal CO 2 and lesser pH at 60 minutes, be significant. Commencing with lesser CO 2 insufflation pressures decreases intraoperative acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  10. Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.B.; Lee, H.; Lee, K.H.

    1998-09-01

    The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selectedmore » as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.« less

  11. A new approach to non-invasive oxygenated mixed venous PCO(sub)2

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph A.; Ansel, Clifford A.

    1986-01-01

    A clinically practical technique was developed to calculate mixed venous CO2 partial pressure for the calculation of cardiac output by the Fick technique. The Fick principle states that the cardiac output is equal to the CO2 production divided by the arterio-venous CO2 content difference of the pulmonary vessels. A review of the principles involved in the various techniques used to estimate venous CO2 partial pressure is presented.

  12. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.

  13. Thermodynamic Equilibrium Solubility of Diethanolamine – N-Butyl-1-Methylpyrrolidinium Dicyanamide [DEABMPYRR DCA] Mixtures for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Jamaludin, S. N.

    2018-05-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with pyrrolidinium-based ionic liquid: N-Butyl-1-Methylpyrrolidinium Dıcyanamıde [Bmpyrr][DCA] are presented at various temperatures (313.15K-333.15K) and pressure up to about 700 psi. The concentration of [Bmpyrr][DCA] ranges from 0-10wt% and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The CO2 loading in all studied mixtures increases with an increase in CO2 partial pressure and decreases with temperature. It was also found that the CO2 loading capacity decrease as the concentration of [Bmpyrr][DCA] increases. The experimental data were correlated as a function of temperature and CO2 partial pressure to predict the solubility of CO2 in the mixtures. It was found that the model predicted results in a good agreement with experimental value.

  14. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    NASA Astrophysics Data System (ADS)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  15. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  16. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion

    NASA Astrophysics Data System (ADS)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  17. Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.

    PubMed

    Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh

    2017-12-15

    This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods

    PubMed Central

    Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme

    2017-01-01

    Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403

  19. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

  20. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    NASA Astrophysics Data System (ADS)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  1. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  2. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less

  3. Oxidation and Condensation of Zinc Fume From Zn-CO 2-CO-H 2O Streams Relevant to Steelmaking Off-Gas Systems

    DOE PAGES

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; ...

    2017-01-23

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2-CO-H 2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2/CO = 40/7). Rate expressions that correlate CO 2 and H 2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Ratemore » $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 406 exp $$ \\left(\\frac{-50.2 kJ/mol}{RT}\\right) $$ (pZnpCO 2 $-$ PCO/K eqCO 2) $$\\frac{mol}{m^2 x s}$$ Rate $$ \\left(\\frac{mol}{m^2s}\\right) $$ = 32.9 exp $$ \\left(\\frac{-13.7 kJ/mol}{RT}\\right) $$ (pZnPH 2O $-$ PH 2/K eqH 2O) $$\\frac{mol}{m^2 x s}$$. It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO 2:CO ratios, and H 2O partial pressures.« less

  4. Synthesis of Size-Tunable CO2-Philic Imprinted Polymeric Particles (MIPs) for Low-Pressure CO2 Capture Using Oil-in-Oil Suspension Polymerization.

    PubMed

    Nabavi, Seyed Ali; Vladisavljević, Goran T; Zhu, Yidi; Manović, Vasilije

    2017-10-03

    Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO 2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO 2 -philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO 2 . At 0.15 bar CO 2 partial pressure, the CO 2 /N 2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO 2 partial pressures. The imprinted polymers showed considerably higher CO 2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO 2 capture capacity of 1.1 mmol g -1 was achieved at 273 K. The heat of adsorption was below 32 kJ mol -1 and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO 2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO 2 capture systems due to large particles with a diameter up to 1200 μm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.

  5. The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias).

    PubMed

    Perry, S F; Montpetit, C J; McKendry, J; Desforges, P R; Gilmour, K M; Wood, C M; Olson, K R

    2001-11-01

    The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

  6. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  7. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  8. A new device for continuous monitoring the CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.

    2009-04-01

    The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.

  9. Carbon dioxide exchange of lettuce plants under hypobaric conditions

    NASA Technical Reports Server (NTRS)

    Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)

    1996-01-01

    Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.

  10. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  11. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    PubMed

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P <0.05). At the same time, there was no significant change in PcCO(2) ( P >0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  12. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  14. Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3 ceramics under controlled low oxygen partial pressure and their properties

    NASA Astrophysics Data System (ADS)

    Noritake, Kouta; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2018-02-01

    Reduction-resistant lead-free (Ba,Ca)(Ti,Sn)O3 piezoceramics with high piezoelectric constants were fabricated by optimizing the amount of Li2CO3 added. Oxygen partial pressure was controlled during the sintering of (Ba,Ca)(Ti,Sn)O3 ceramics in a reducing atmosphere using H2-CO2 gas. Enhanced grain growth and a high-polarization state after poling treatment were achieved by adding Li2CO3. Optimizing the amount of Li2CO3 added to (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics sintered under a low oxygen partial pressure resulted in improved piezoelectric properties while maintaining the high sintered density. The prepared Li2CO3-added ceramic samples had homogeneous microstructures with a uniform dispersion of each major constituent element. However, the residual Li content in the 3 mol % Li2CO3-added (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics after sintering was less than 0.3 mol %. Sintered bodies of this ceramic prepared in a CO2 (1.5%)-H2 (0.3%)/Ar reducing atmosphere (PO2 = 10-8 atm at 1350 °C), exhibited sufficient electrical resistivity and a piezoelectric constant (d 33) exceeding 500 pC/N. The piezoelectric properties of this nonreducible ceramic were comparable or superior to those of the same ceramic sintered in air.

  15. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  16. Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark.

    PubMed

    Cernusak, Lucas A; Farquhar, Graham D; Wong, S Chin; Stuart-Williams, Hilary

    2004-10-01

    We measured the oxygen isotope composition (delta(18)O) of CO(2) respired by Ricinus communis leaves in the dark. Experiments were conducted at low CO(2) partial pressure and at normal atmospheric CO(2) partial pressure. Across both experiments, the delta(18)O of dark-respired CO(2) (delta(R)) ranged from 44 per thousand to 324 per thousand (Vienna Standard Mean Ocean Water scale). This seemingly implausible range of values reflects the large flux of CO(2) that diffuses into leaves, equilibrates with leaf water via the catalytic activity of carbonic anhydrase, then diffuses out of the leaf, leaving the net CO(2) efflux rate unaltered. The impact of this process on delta(R) is modulated by the delta(18)O difference between CO(2) inside the leaf and in the air, and by variation in the CO(2) partial pressure inside the leaf relative to that in the air. We developed theoretical equations to calculate delta(18)O of CO(2) in leaf chloroplasts (delta(c)), the assumed location of carbonic anhydrase activity, during dark respiration. Their application led to sensible estimates of delta(c), suggesting that the theory adequately accounted for the labeling of CO(2) by leaf water in excess of that expected from the net CO(2) efflux. The delta(c) values were strongly correlated with delta(18)O of water at the evaporative sites within leaves. We estimated that approximately 80% of CO(2) in chloroplasts had completely exchanged oxygen atoms with chloroplast water during dark respiration, whereas approximately 100% had exchanged during photosynthesis. Incorporation of the delta(18)O of leaf dark respiration into ecosystem and global scale models of C(18)OO dynamics could affect model outputs and their interpretation.

  17. Gas-liquid equilibrium in a CO{sub 2}-MDEA-H{sub 2}O system and the effect of piperazine on it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.W.; Zhang, C.F.; Qin, S.J.

    1998-04-01

    Aqueous N-methyldiethanolamine (MDEA) solutions are widely used for removal of the acid gas (H{sub 2}S and CO{sub 2}) from natural gas synthesis and refinery gas streams. Solubility data of CO{sub 2} and vapor pressure of water in 3.04--4.28 kmol/m{sup 3} aqueous N-methyldiethanolamine (MDEA) solutions were obtained at temperatures ranging from 40 to 100 C and CO{sub 2} partial pressures ranging from 0.876 to 1,013 kPa. A thermodynamic model was proposed and used for predicting CO{sub 2} solubility and water vapor pressure. An enthalpy change of absorption of CO{sub 2} in 4.28 kmol/m{sup 3} MDEA solution was estimated. The effect ofmore » piperazine (PZ) concentration on CO{sub 2} loading in MDEA solutions was determined at piperazine concentration ranging from 0 to 0.515 kmol/m{sup 3}. The results show that piperazine is beneficial to the CO{sub 2} loading. The equilibrium partial pressure of piperazine in the PZ-MDEA-H{sub 2}O system was measured in an Ellis Cell. Results show that the PZ-MDEA-H{sub 2}O system is a typical negative deviation system, with the strength of deviation decreasing with MDEA solutions.« less

  18. The Application of Transcutaneous CO2 Pressure Monitoring in the Anesthesia of Obese Patients Undergoing Laparoscopic Bariatric Surgery

    PubMed Central

    Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming

    2014-01-01

    To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2–PaCO2) and. (PTCCO2–PaCO2) were calculated. Bland–Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19–54 yr, mean 29, SD 9 yr; weight 86–160 kg, mean119.3, SD 22.1 kg; BMI 35.3–51.1 kg/m2, mean 42.1,SD 5.4 kg/m2) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2–PTCCO2 difference was 0.9±1.3 mmHg (mean±SD). And the average PaCO2–PetCO2 difference was 10.3±2.3 mmHg (mean±SD). The linear regression equation of PaCO2–PetCO2 is PetCO2 = 11.58+0.57×PaCO2 (r2 = 0.64, P<0.01), whereas the one of PaCO2–PTCCO2 is PTCCO2 = 0.60+0.97×PaCO2 (r2 = 0.89). The LOA (limits of agreement) of 95% average PaCO2–PetCO2 difference is 10.3±4.6 mmHg (mean±1.96 SD), while the LOA of 95% average PaCO2–PTCCO2 difference is 0.9±2.6 mmHg (mean±1.96 SD). In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery. PMID:24699267

  19. Variations in respiratory excretion of carbon dioxide can be used to calculate pulmonary blood flow.

    PubMed

    Preiss, David A; Azami, Takafumi; Urman, Richard D

    2015-02-01

    A non-invasive means of measuring pulmonary blood flow (PBF) would have numerous benefits in medicine. Traditionally, respiratory-based methods require breathing maneuvers, partial rebreathing, or foreign gas mixing because exhaled CO2 volume on a per-breath basis does not accurately represent alveolar exchange of CO2. We hypothesized that if the dilutional effect of the functional residual capacity was accounted for, the relationship between the calculated volume of CO2 removed per breath and the alveolar partial pressure of CO2 would be reversely linear. A computer model was developed that uses variable tidal breathing to calculate CO2 removal per breath at the level of the alveoli. We iterated estimates for functional residual capacity to create the best linear fit of alveolar CO2 pressure and CO2 elimination for 10 minutes of breathing and incorporated the volume of CO2 elimination into the Fick equation to calculate PBF. The relationship between alveolar pressure of CO2 and CO2 elimination produced an R(2) = 0.83. The optimal functional residual capacity differed from the "actual" capacity by 0.25 L (8.3%). The repeatability coefficient leveled at 0.09 at 10 breaths and the difference between the PBF calculated by the model and the preset blood flow was 0.62 ± 0.53 L/minute. With variations in tidal breathing, a linear relationship exists between alveolar CO2 pressure and CO2 elimination. Existing technology may be used to calculate CO2 elimination during quiet breathing and might therefore be used to accurately calculate PBF in humans with healthy lungs.

  20. Uptake and storage of anthropogenic CO2 in the pacific ocean estimated using two modeling approaches

    NASA Astrophysics Data System (ADS)

    Li, Yangchun; Xu, Yongfu

    2012-07-01

    A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2, whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO2. The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon. The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB. The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific, except for the subtropical South Pacific. This, to large extent, leads to the difference in the surface anthropogenic CO2 concentration between the two runs. The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850. This is probably not caused by dissolved inorganic carbon (DIC), but rather by a factor independent of time. In both runs, the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.

  1. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars

    NASA Astrophysics Data System (ADS)

    Richards, Jeffrey T.; Corey, Kenneth A.; Paul, Anna-Lisa; Ferl, Robert J.; Wheeler, Raymond M.; Schuerger, Andrew C.

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures. Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  2. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    PubMed

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  3. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails

    USGS Publications Warehouse

    Nielson, R. Jordan; Moffitt, Christine M.; Watten, Barnaby J.

    2012-01-01

    The authors tested the efficacy of elevated partial pressures of CO2 to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO2 may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  4. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  5. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose.

    PubMed

    Gebald, Christoph; Wurzbacher, Jan A; Borgschulte, Andreas; Zimmermann, Tanja; Steinfeld, Aldo

    2014-02-18

    A fundamental analysis of single-component and binary CO2 and H2O adsorption of amine-functionalized nanofibrillated cellulose is carried out in the temperature range of 283-353 K and at CO2 partial pressures in the range of 0.02-105 kPa, where the ultralow partial pressure range is relevant for the direct capture of CO2 from atmospheric air. Single-component CO2 and H2O adsorption experimental data are fitted to the Toth and Guggenheim-Anderson-de Boer models, respectively. Corresponding heats of adsorption, derived from explicit solutions of the van't Hoff equation, are -50 kJ/mol CO2 and -48.8 kJ/mol H2O. Binary CO2/H2O adsorption measurements for humid air reveal that the presence of H2O at 2.55 kPa enhances CO2 adsorption, while the presence of CO2 at 0.045 kPa does not influence H2O adsorption. The energy demand of the temperature-vacuum-swing adsorption/desorption cycle for delivering pure CO2 from air increases significantly with H2O adsorption and indicates the need to reduce the hygroscopicity of the adsorbent.

  6. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas leakage into unsaturated zones. Finally, knowing the flow characteristic of gas mixture can guide CO2 storage, CO2-EOR and CO2-ECBM projects. Future studies should pay attention to the effects of saline water with different salt types and concentrations on the multi-phase flow behavior with applications to geological CO2 storage and energy storage using CH4.

  7. Analysis of the CO 2 Chemisorption in Li 5FeO 4, a New High Temperature CO 2 Captor Material. Effect of the CO 2 and O 2 Partial Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-García, Hugo A.; Sanchez-Camacho, Pedro; Duan, Yuhua

    Pentalithium ferrite (Li 5FeO 4) was tested in this paper as possible CO 2 captor, both by theoretical calculations and experimental measurements. The pristine Li 5FeO 4 compound with orthorhombic structure was synthesized via solid-state reaction and it was structural and microstructurally characterized. Later, sample was heat-treated at temperatures from room temperature to 900 °C under different CO 2 or CO 2–O 2 atmospheres. Li 5FeO 4 exhibits excellent CO 2 chemisorption abilities with a capture capacity about 12.9 mmol/g, which is outstanding in comparison to other previously reported ceramic captors. This material is able to react with CO 2more » from 200 °C to approximately 715 °C showing a high kinetic of reaction even at CO 2 partial pressure values as low as 0.2. Finally and additionally, results suggest that oxygen addition does enhance the CO 2 chemisorption on Li 5FeO 4 at temperatures below 700 °C, although oxygen addition seems to favor the desorption process at higher temperatures.« less

  8. Analysis of the CO 2 Chemisorption in Li 5FeO 4, a New High Temperature CO 2 Captor Material. Effect of the CO 2 and O 2 Partial Pressures

    DOE PAGES

    Lara-García, Hugo A.; Sanchez-Camacho, Pedro; Duan, Yuhua; ...

    2017-01-23

    Pentalithium ferrite (Li 5FeO 4) was tested in this paper as possible CO 2 captor, both by theoretical calculations and experimental measurements. The pristine Li 5FeO 4 compound with orthorhombic structure was synthesized via solid-state reaction and it was structural and microstructurally characterized. Later, sample was heat-treated at temperatures from room temperature to 900 °C under different CO 2 or CO 2–O 2 atmospheres. Li 5FeO 4 exhibits excellent CO 2 chemisorption abilities with a capture capacity about 12.9 mmol/g, which is outstanding in comparison to other previously reported ceramic captors. This material is able to react with CO 2more » from 200 °C to approximately 715 °C showing a high kinetic of reaction even at CO 2 partial pressure values as low as 0.2. Finally and additionally, results suggest that oxygen addition does enhance the CO 2 chemisorption on Li 5FeO 4 at temperatures below 700 °C, although oxygen addition seems to favor the desorption process at higher temperatures.« less

  9. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa - Implications for carbon flux in subduction zones

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2014-01-01

    Partial melts of subducting sediments are thought to be critical agents in carrying trace elements and water to arc basalt source regions. Sediment partial melts may also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts that derive from partial fusion of downgoing sediment at sub-arc depths remains unconstrained. We conducted CO2-solubility experiments on a rhyolitic composition similar to average, low-degree experimental partial melt of pelitic sediments between 1.5 and 3.0 GPa at 1300 °C and containing variable water content. Concentrations of water and carbon dioxide were measured using FTIR. Molecular CO2(CO2mol.) and carbonate anions (CO32-) both appear as equilibrium species in our experimental melts. Estimated total CO2 concentrations (CO2mol.+CO32-) increased with increasing pressure and water content. At 3.0 GPa, the bulk CO2 solubility are in the range of ∼1-2.5 wt.%, for melts with H2O contents between 0.5 and 3.5 wt.%. For melts with low H2O content (∼0.5 wt.%), CO2mol. is the dominant carbon species, while in more H2O-rich melts CO32- becomes dominant. The experimentally determined, speciation-specific CO2 solubilities yielded thermodynamic parameters that control dissolution of CO2 vapor both as CO2mol. and as CO32- in silicate melt for each of our compositions with different water content; CO2vapor ↔CO2melt :lnK0=-15 to -18, ΔV0 = 29 to 14 cm3 mol-1 and CO2vapor +Omelt →CO32-melt :lnK0=-20 to -14, ΔV0 = 9 to 27 cm3 mol-1, with ΔV0 of reaction being larger for formation of CO2mol. in water-poor melts and for formation of CO32- in water-rich melts. Our bulk CO2 solubility data, [CO2] (in wt.%) can be fitted as a function of pressure, P (in GPa) and melt water content, [H2O] (in wt.%) with the following function: [CO2](wt.%)=(-0.01108[H2O]+0.03969)P2+(0.10328[H2O]+0.41165)P. This parameterization suggests that over the range of sub-arc depths of 72-173 km, water-rich sediment partial melt may carry as much as 2.6-5.5 wt.% CO2 to the sub-arc mantle source regions. At saturation, 1.6-3.3 wt.% sediment partial melt relative to the mantle wedge is therefore sufficient to bring up the carbon budget of the mantle wedge to produce primary arc basalts with 0.3 wt.% CO2. Sediment plumes in mantle wedge: Sediment plumes or diapirs may form from the downgoing slab because the sediment layer atop the slab is buoyant relative to the overlying, hanging wall mantle (Currie et al., 2007; Behn et al., 2011). Via this process, sediment layers with carbonates would carry CO2 to the arc source region. Owing to the higher temperature in the mantle wedge, carbonate can breakdown. Behn et al. (2011) suggested that sediment layers as thin as 100 m, appropriate for modern arcs, could form sediment diapirs. They predicted that diapirs would form from the slab in the sub-arc region for most subduction zones today without requiring hydrous melting. H2O-rich fluid driven carbonate breakdown: Hydrous fluid flushing of the slab owing to the breakdown of hydrous minerals could drive carbonate breakdown (Kerrick and Connolly, 2001b; Grove et al., 2002; Gorman et al., 2006). The addition of water would cause decarbonation creating an H2O-CO2-rich fluid that would then flux through the overlying sediment layer, lower the solidus temperature, and trigger melting. Recent geochemical (Cooper et al., 2012) and geodynamic (van Keken, 2003; Syracuse et al., 2010) constraints suggest that the sub-arc slab top temperatures are above the hydrous fluid-present sediment solidus, thus in the presence of excess fluid, both infiltration induced decarbonation and sediment melting may occur. Hot subduction: This is relevant for subduction zones such as Cascadia and Mexico, where slab-surface temperatures are estimated to be higher (Syracuse et al., 2010). A higher temperature could cause carbonate breakdown and sediment partial melting without requiring a hydrous fluid flux. In this case a relatively dry silicate sediment melt will have the opportunity to dissolve and carry CO2. For hot subduction zones, even if sedimentary layer itself does not carry carbonate, CO2 released from basalt-hosted carbonates may be dissolved in sediment partial melt. Experiments conducted on subducted sediment compositions show that the partial melt compositions are generally rhyolitic (Johnson and Plank, 1999; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Spandler et al., 2010; Tsuno and Dasgupta, 2011). Therefore, solubility of CO2 in rhyolitic sediment partial melts needs to be known. Previous studies on rhyolitic melts experimentally determined CO2 solubility from 0.05 to 0.66 GPa (Fig. 1; Fogel and Rutherford, 1990; Blank et al., 1993; Tamic et al., 2001). This pressure range is not appropriate for global sub-arc depth range of 72-173 km (Syracuse and Abers, 2006) settings (P = 2-5 GPa). Carbon dioxide solubility experiments at pressures from 1.5 to 3.5 GPa are available but only on simple compositions - i.e., albite, which does not have the chemical complexity of natural sediment partial melts (Fig. 1; Brey, 1976; Mysen, 1976; Mysen et al., 1976; Mysen and Virgo, 1980; Stolper et al., 1987; Brooker et al., 1999). For example, natural rhyolitic melt derived from partial fusion of pelitic sediments contain non-negligible concentrations of Ca2+, Mg2+, Fe2+. Many of these studies were also conducted under mixed-volatile conditions (CO2 + H2O) with H2O contents from 0.06 to 3.3 wt.%. These studies were used in calculating various solubility models: Volatile-Calc (Newman and Lowenstern, 2002), that of Liu et al. (2005), and that of Papale et al. (2006). Volatile-Calc can be used to calculate CO2 solubility only on a generic rhyolite composition up to 0.5 GPa. The model of Liu et al. (2005) is also on a generic rhyolite up to 0.5 GPa, but can calculate mixed volatile concentrations provided the vapor composition is known. The model of Papale et al. (2006) can be used to calculate mixed volatile concentrations for a melt composition of interest, but only up to 1.0 GPa.The literature data show that CO2 solubility increases with increasing pressure and decreases with increasing melt silica content (decreasing NBO/T; e.g., Brooker et al., 2001). The effect of temperature remains somewhat ambiguous, but is thought to be relatively smaller than the pressure or compositional effects, with Mysen (1976) measuring increasing CO2 solubility with temperature for albite melt, Brooker et al. (2001) and Fogel and Rutherford (1990) noticing decreasing CO2 solubility with increasing temperature, and Stolper et al. (1987) concluding that temperature has essentially no effect on total melt CO2 concentration at saturation. The presence of water in the melt also is known to affect CO2 solution (e.g., Mysen, 1976; Eggler and Rosenhauer, 1978), yet quantitative effect of water on CO2 solution in natural rhyolitic melt has only been investigated up to 0.5 GPa (Tamic et al., 2001). In order to determine the CO2 carrying capacity of sediment partial melts, experiments must be conducted at conditions (pressure, temperature, major element compositions, and XH2O) relevant to sub-arc settings.In this study we measured the solubility and speciation of CO2 in rhyolitic sediment partial melts. Experiments were conducted from 1.5 to 3.0 GPa at 1300 °C with variable water contents and synthesized glasses were analyzed for water and carbon speciation using Fourier-transformed infrared spectroscopy. Our measured solubility data allowed us to constrain volume change and equilibrium constant of the CO2 dissolution reactions. Moreover, we parameterize CO2 solubility in sediment partial melt as a function of pressure and melt water content. Our data and empirical model suggest that the CO2 carrying capacity of sediment partial melts is sufficiently high at sub-arc depths and hydrous sediment melt can potentially carry the necessary dose of CO2 to arc mantle source regions.

  10. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part II. Application in the study of mineral waters of reference.

    PubMed

    Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie

    2002-02-01

    In the first part, we have designed a new model of evolution for the calco-carbonic system which includes the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate) (J. Eur. Hydr. 30 (1999) 47). According to this model, it is the precipitation of one or other of these hydrated forms which could be responsible for the breakdown of the metastable state. After this first step, the precipitates evolve to dehydrated solid forms. Through the elaboration of computer programs in which the CaCO3(0) (aq) ion pair formation was considered, this model was compared to experimental data obtained by the critical pH method applied to synthetic solutions. In the present article, the same method was applied for four French mineral waters, at 25 degrees C under study. Three samples formed a precipitation during the sodium hydroxide addition. For these three cases, this precipitation began for the CaCO3 H2O saturation. The added volume of sodium hydroxide was more than what was required for neutralizing free CO2 initially in solution. These results indicate that during a spontaneous scaling phenomenon, the pH rises at the same time by loss of the initial free CO2 and of the one produced by the hydrogen carbonate ions decomposition. Then we calculated, at various temperatures for the three studied scaling waters: CO2 partial pressures and loss of total carbon corresponding to the solubility products of CaCO3 hydrated forms. The results show that the partial pressure monitoring of the carbon dioxide is important in managing the behavior of scaling waters.

  11. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    DOE PAGES

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO 2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure p CO, to a strongly-correlated near-O-covered steady-state for low p CO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low p CO.

  12. The CO2 stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end-tidal partial pressures.

    PubMed

    Fisher, Joseph A

    2016-06-01

    Cerebrovascular reactivity (CVR) studies have elucidated the physiology and pathophysiology of cerebral blood flow regulation. A non-invasive, high spatial resolution approach uses carbon dioxide (CO2) as the vasoactive stimulus and magnetic resonance techniques to estimate the cerebral blood flow response. CVR is assessed as the ratio response change to stimulus change. Precise control of the stimulus is sought to minimize CVR variability between tests, and show functional differences. Computerized methods targeting end-tidal CO2 partial pressures are precise, but expensive. Simpler, improvised methods that fix the inspired CO2 concentrations have been recommended as less expensive, and so more widely accessible. However, these methods have drawbacks that have not been previously presented by those that advocate their use, or those that employ them in their studies. As one of the developers of a computerized method, I provide my perspective on the trade-offs between these two methods. The main concern is that declaring the precision of fixed inspired concentration of CO2 is misleading: it does not, as implied, translate to precise control of the actual vasoactive stimulus - the arterial partial pressure of CO2 The inherent test-to-test, and therefore subject-to-subject variability, precludes clinical application of findings. Moreover, improvised methods imply widespread duplication of development, assembly time and costs, yet lack uniformity and quality control. A tabular comparison between approaches is provided. © The Author(s) 2016.

  13. Photosynthetic responses to altitude: an explanation based on optimality principles

    NASA Astrophysics Data System (ADS)

    Wang, Han; Prenticce, Iain Colin; Davis, Tyler; Keenan, Trevor; Wright, Ian; Peng, Changhui

    2017-04-01

    Increasing altitude is commonly accompanied by a declining ratio of leaf-internal to ambient CO2 partial pressures (ci:ca; hereafter, χ) and an increase in carboxylation capacity (Vcmax), while carbon assimilation (A) shows little to no change. Here we provide a consistent, quantitative explanation for these responses based on the 'least-cost hypothesis' for the regulation of χ and the 'co-ordination hypothesis' for the regulation of Vcmax. With leaf temperature held constant, our analysis predicts that the cost of maintaining water transport capacity increases with altitude (due to declining atmospheric pressure and increasing vapour pressure deficit, VPD) while the cost of maintaining carboxylation capacity decreases (due to the enhanced affinity of Rubisco for CO2 at low O2 partial pressures). Both effects favour investment in carboxylation capacity rather than water transport capacity. The response of A then reflects the competing effects of stronger CO2 limitation at low ci versus increased radiation penetration through a thinner atmosphere. These effects of atmospheric pressure are expected to be most strongly expressed in herbaceous plants that can maintain leaf temperatures in a narrow range. In leaves closely coupled to the atmosphere additional effects of declining temperature on photosynthesis are expected to modify but not obliterate those of pressure.

  14. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  15. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    PubMed

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Solubility of carbon monoxide in n-hexane between 293 and 473 K and CO pressures up to 200 bar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koelliker, R.; Thies, H.

    The solubility of carbon monoxide, CO, in n-hexane was measured at 293, 323, 373, 423, and 473 K for CO partial pressures up to 200 bar. The enthalpy of solution was calculated between 293 and 473 K. Using the Krichevsky-Ilinskaya equation of state, the solubility of CO in n-hexane can be calculated between 293 and 423 K for CO partial pressures up to 200 bar with an accuracy better than 5%.

  17. Environmental Resistance in the Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Pint, Bruce A.; Tortorelli, Peter F.

    2005-02-01

    The atmosphere of Mars is ~6mbar of total pressure (compared to ~1 bar on Earth) and 95%CO2. Thermodynamic calculations have been made of the partial pressure of oxygen as a function of temperature assuming various impurities in the remaining 5%. These oxygen pressures are sufficient to oxidize most common metals in the 900-1300K range. Therefore, oxidation resistance will be a concern for materials of construction in a high temperature fission reactor on Mars. An additional environmental resistance consideration is internal carburization during exposures in CO2. The effect of low pressure CO2 exposures on the mechanical properties of austenitic alloys is being investigated.

  18. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-07-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }}s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }}s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  19. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-03-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }} s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }} s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  20. User's manual for a computer program for the emulation/simulation of a space station Environmental Control and Life Support System (ESCM)

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    This manual describes how to use the Emulation Simulation Computer Model (ESCM). Based on G189A, ESCM computes the transient performance of a Space Station atmospheric revitalization subsystem (ARS) with CO2 removal provided by a solid amine water desorbed subsystem called SAWD. Many performance parameters are computed some of which are cabin CO2 partial pressure, relative humidity, temperature, O2 partial pressure, and dew point. The program allows the user to simulate various possible combinations of man loading, metabolic profiles, cabin volumes and certain hypothesized failures that could occur.

  1. A dual mode breath sampler for the collection of the end-tidal and dead space fractions.

    PubMed

    Salvo, P; Ferrari, C; Persia, R; Ghimenti, S; Lomonaco, T; Bellagambi, F; Di Francesco, F

    2015-06-01

    This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties. Copyright © 2015. Published by Elsevier Ltd.

  2. Diaphragm electrical activity during negative lower torso pressure in quadriplegic men.

    PubMed

    Banzett, R B; Inbar, G F; Brown, R; Goldman, M; Rossier, A; Mead, J

    1981-09-01

    We recorded the diaphragm electromyogram (EMG) of quadriplegic men before and during exposure of the lower torso to continuous negative pressure, which caused shortening of the inspiratory muscles by expanding the respiratory system by one tidal volume. The moving-time-averaged diaphragm EMG was larger during expansion of the respiratory system. When we repeated the experiment with subjects who breathed through a mouthpiece, we found qualitatively similar EMG changes and little or no change in tidal volume or end-tidal CO2 partial pressure. When the pressure was applied or removed rapidly, changes in EMG occurred within one or two breaths. Because end-tidal CO2 partial pressure did not increase, and because the response was rapid, we suggest that the response results from proprioceptive, rather than chemoreceptive, reflexes. As most of these men had complete spinal lesions at C6 or C7 the afferent pathways are likely to be vagal or phrenic.

  3. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  4. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  5. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  6. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  7. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    PubMed

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  8. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  9. Studies on the structural stability of Co2P2O7 under pressure

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Pang, H.; Jin, M. L.; Shen, X.; Yao, Y.; Wang, Y. G.; Li, Y. C.; Li, X. D.; Jin, C. Q.; Yu, R. C.

    2018-05-01

    The crystal structural evolution of Co2P2O7 was studied by using in situ high pressure angle dispersive x-ray diffraction with synchrotron radiation. The results demonstrate that the α phase of Co2P2O7 goes through a partially irreversible structural transformation to β phase under pressure. The pressure is conductive to reduce the longest Cosbnd O bond length of the α phase, and then more uniform Cosbnd O bonds and regular hexagonal arrangement of CoO6 octahedra of the β phase are favored. According to the Birch-Murnaghan equation, the fitted bulk modulus B0 is 158.1(±5.6) GPa for α phase and 276.5(±6.5) GPa for β phase. Furthermore, the first-principles calculations show that these two phases of Co2P2O7 have almost equal total energies, and also have similar band structures and spin-polarized density of states at their ground states. This may be the reason why these two phases of Co2P2O7 can coexist in the pressure released state. It is found that the band gap energies decrease with increasing pressure for both phases.

  10. Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO2 Separation.

    PubMed

    Guo, Li-Ping; Hu, Qing-Tao; Zhang, Peng; Li, Wen-Cui; Lu, An-Hui

    2018-06-12

    CO 2 capture under a dynamical flow situation requires adsorbents possessing balanced proportion of macropores as diffusion path and micropores as adsorption reservoir. However, the construction of interconnected micro-/macropores structure coupled with abundant nitrogen species into one carbon skeleton remains a challenge. Here, we report a new approach to prepare sponge-like carbon with a well-developed micro-/macroporous structure and enriched nitrogen species through aqueous phase polymerization of acrylonitrile in the presence of graphene oxide. The tension stress caused by the uniform thermal shrinkage of polyacrylonitrile during the pyrolysis together with the favorable flexibility of graphene oxide sheets are responsible for the formation of the sponge-like morphology. The synergistic effect of micro-/macroporous framework and rich CO 2 -philic site enables such carbon to decrease resistance to mass transfer and show high CO 2 dynamic selectivity over N 2 (454) and CH 4 (11), as well as good CO 2 capacity at 298 K under low CO 2 partial pressure (0.17 bar, a typical CO 2 partial pressure in flue gas). The above attributes make this porous carbon a promising candidate for CO 2 capture from flue gas, methane sources and other relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions

    PubMed Central

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-01-01

    Abstract Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. PMID:29340578

  12. Carbon dioxide supersaturation in the surface waters of lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.J.; Caraco, N.F.; Kling, G.W.

    1994-09-09

    Data on the partial pressure of carbon dioxide (CO{sub 2}) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within {+-}20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO{sub 2} averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO{sub 2}. On a global scale, the potential efflux of CO{sub 2} from lakesmore » (about 0.14 x 10{sup 15} grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon for terrestrial sources to the atmospheric sink. 18 refs., 2 figs., 1 tab.« less

  13. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-02-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8-2.1 GPa and 1,280-1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile-peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.

  14. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  15. High-pressure polymorphism of Pb F 2 to 75 GPa

    DOE PAGES

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; ...

    2016-07-06

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  16. Development of system design information for carbon dioxide using an amine type sorber

    NASA Technical Reports Server (NTRS)

    Rankin, R. L.; Roehlich, F.; Vancheri, F.

    1971-01-01

    Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.

  17. Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.

    2011-12-01

    The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Rare-gas effects on metabolism and inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed examination is reported of the theory that narcosis results from expansion of the cell membrane under high partial pressures. The research is partially based on the hypothesis that, like oxygen toxicity, the mechanism of metabolic effects of rare gases may be similar at both low and high pressures and are simply more observable at high pressures. Using adult female goats, the parameters measured include oxygen consumption, CO2 production, respiration rate, heart rate, rectal and skin temperatures and the analysis of electroencephalograms and evoked response. Additionally, the specific activity is measured of plasma glucose subsequent to injection of glucose-UL-C-14, intravenous infusion, specific activity of expired CO2, unesterified fatty acid levels and whole blood lactate-to-pyruvate ratios. Also studied were the effects of acetylsalicylic acid, vitamin E and cationic detergents (which alleviate narcosis) upon metabolic changes induced by high pressure narcosis.

  19. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  20. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    PubMed

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  1. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt

    USGS Publications Warehouse

    Striegl, Robert G.; Kortelainen, Pirkko; Chanton, J.P.; Wickland, K.P.; Bugna, G.C.; Rantakari, M.

    2001-01-01

    Carbon dioxide (CO2) accumulates under lake ice in winter and degasses to the atmosphere after ice melt. This large springtime CO2 pulse is not typically considered in surface-atmosphere flux estimates, because most field studies have not sampled through ice during late winter. Measured CO2 partial pressure (pCO2) of lake surface water ranged from 8.6 to 4,290 Pa (85-4,230 ??atm) in 234 north temperate and boreal lakes prior to ice melt during 1998 and 1999. Only four lakes had surface pCO2 less than or equal to atmospheric pCO2, whereas 75% had pCO2 >5 times atmospheric. The ??13CDIC (DIC = ??CO2) of 142 of the lakes ranged from -26.28??? to +0.95.???. Lakes with the greatest pCO2 also had the lightest ??13CDIC, which indicates respiration as their primary CO2 source. Finnish lakes that received large amounts of dissolved organic carbon from surrounding peatlands had the greatest pCO2. Lakes set in noncarbonate till and bedrock in Minnesota and Wisconsin had the smallest pCO2 and the heaviest ??13CDIC, which indicates atmospheric and/or mineral sources of C for those lakes. Potential emissions for the period after ice melt were 2.36 ?? 1.44 mol CO2 m-2 for lakes with average pCO2 values and were as large as 13.7 ?? 8.4 mol CO2 m-2 for lakes with high pCO2 values.

  2. Viability and metal reduction of Shewanella oneidensis MR-1 under CO2 stress: implications for ecological effects of CO2 leakage from geologic CO2 sequestration.

    PubMed

    Wu, Bing; Shao, Hongbo; Wang, Zhipeng; Hu, Yandi; Tang, Yinjie J; Jun, Young-Shin

    2010-12-01

    To study potential ecological impacts of CO(2) leakage to shallow groundwater and soil/sediments from geologic CO(2) sequestration (GCS) sites, this work investigated the viability and metal reduction of Shewanella oneidensis MR-1 under CO(2) stress. While MR-1 could grow under high-pressure nitrogen gas (500 psi), the mix of 1% CO(2) with N(2) at total pressures of 15 or 150 psi significantly suppressed the growth of MR-1, compared to the N(2) control. When CO(2) partial pressures were over 15 psi, the growth of MR-1 stopped. The reduced bacterial viability was consistent with the pH decrease and cellular membrane damage under high pressure CO(2). After exposure to 150 psi CO(2) for 5 h, no viable cells survived, the cellular contents were released, and microscopy images confirmed significant cell structure deformation. However, after a relatively short exposure (25 min) to 150 psi CO(2), MR-1 could fully recover their growth within 24 h after the stress was removed, and the reduction of MnO(2) by MR-1 was observed right after the stress was removed. Furthermore, MR-1 survived better if the cells were aggregated rather than suspended, or if pH buffering minerals, such as calcite, were present. To predict the cell viability under different CO(2) pressures and exposure times, a two-parameter mathematical model was developed.

  3. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    NASA Astrophysics Data System (ADS)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  4. CO2 Solubility in Natural Rhyolitic Melts at High Pressures - Implications for Carbon Flux in Subduction Zones by Sediment Partial Melts

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2011-12-01

    Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.

    Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less

  6. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  7. Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*♦

    PubMed Central

    Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.

    2011-01-01

    The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane (C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed. PMID:21454640

  8. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  9. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  10. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  11. Predicting Effects of Coastal Acidification on Marine Bivalve Populations

    EPA Science Inventory

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survi...

  12. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation.

    PubMed

    Esquivel-Elizondo, Sofia; Miceli, Joseph; Torres, Cesar I; Krajmalnik-Brown, Rosa

    2018-02-01

    Medium-chain fatty acids (MCFA) are important biofuel precursors. Carbon monoxide (CO) is a sustainable electron and carbon donor for fatty acid elongation, since it is metabolized to MCFA precursors, it is toxic to most methanogens, and it is a waste product generated in the gasification of waste biomass. The main objective of this work was to determine if the inhibition of methanogenesis through the continuous addition of CO would lead to increased acetate or MCFA production during fermentation of ethanol. The effects of CO partial pressures (P CO ; 0.08-0.3 atm) on methanogenesis, fatty acids production, and the associated microbial communities were studied in batch cultures fed with CO and ethanol. Methanogenesis was partially inhibited at P CO  ≥ 0.11 atm. This inhibition led to increased acetate production during the first phase of fermentation (0-19 days). However, a second addition of ethanol (day 19) triggered MCFA production only at P CO  ≥ 0.11 atm, which probably occurred through the elongation of acetate with CO-derived ethanol and H 2 :CO 2 . Accordingly, during the second phase of fermentation (days 20-36), the distribution of electrons to acetate decreased at higher P CO , while electrons channeled to MCFA increased. Most probably, Acetobacterium, Clostridium, Pleomorphomonas, Oscillospira, and Blautia metabolized CO to H 2 :CO 2 , ethanol and/or fatty acids, while Peptostreptococcaceae, Lachnospiraceae, and other Clostridiales utilized these metabolites, along with the provided ethanol, for MCFA production. These results are important for biotechnological systems where fatty acids production are preferred over methanogenesis, such as in chain elongation systems and microbial fuel cells. © 2017 Wiley Periodicals, Inc.

  13. Alloy catalysts with monolith supports for methanation of coal-derived gases. Quarterly technical progress report, September 21-December 20, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomew, C.H.

    1980-01-05

    Tests for catalyst deactivation by carbon deposition in a Berty reactor showed that CO partial pressure exerted a greater influence on deactivation than H/sub 2/ partial pressure. In kinetic studies in which H/sub 2/O vapor was added to the reactant gases, H/sub 2/O was found to inhibit the methanation reaction. H/sub 2/O inhibition was found to increase with temperature and loss of activity was observed at H/sub 2/O/CO ratios greater than one. The order of methanation with respect to H/sub 2/ and CO varies over the range of temperature from 498 to 598/sup 0/K. Rate data indicate a change inmore » mechanism or rate determining step at higher temperatures. Our experience with a quartz CFSTR has shown that this reactor is very delicate and needs near constant attention to maintain proper working order.« less

  14. A blackbody-pumped CO2-N2 transfer laser

    NASA Astrophysics Data System (ADS)

    Deyoung, R. J.; Higdon, N. S.

    1984-08-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  15. A blackbody-pumped CO2-N2 transfer laser

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Higdon, N. S.

    1984-01-01

    A compact blackbody-pumped CO2-N2 transfer laser was constructed and the significant operating parameters were investigated. Lasing was achieved at 10.6 microns by passing preheated N2 through a 1.5-mm-diameter nozzle to a laser cavity where the N2 was mixed with CO2 and He. An intrinsic efficiency of 0.7 percent was achieved for an oven temperature of 1473 K and N2 oven pressure of 440 torr. The optimum laser cavity consisted of a back mirror with maximum reflectivity and an output mirror with 97.5-percent reflectivity. The optimum gas mixture was 1CO2/.5He/6N2. The variation of laser output was measured as a function of oven temperature, nozzle diameter, N2 oven pressure, He and CO2 partial pressures, nozzle-to-oven separation, laser cell temperature, and output laser mirror reflectivity. With these parameters optimized, outputs approaching 1.4 watts were achieved.

  16. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  17. Corrosion due to use of carbon dioxide for enhanced oil recovery. Final report. SumX No. 78-003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBerry, D.W.; Clark, W.S.

    1979-09-01

    This study documents the specific effects of CO/sub 2/ on corrosion and identifies promising methods for controlling corrosion in fields using CO/sub 2/ injection. Information has been assembled on: CO/sub 2/ corrosion problems in general, surface and downhole corrosion problems specifically associated with CO/sub 2/ enhanced oil recovery, and methods to reduce corrosion problems in CO/sub 2/ environments. Corrosion mechanisms, kinetic behavior, and the effects of various parameters on corrosion by CO/sub 2/ are presented in this study. Engineering metals are not attacked by CO/sub 2/ under oil field environments unless liquid water is also present. Plain and low alloymore » steels are attacked by mixtures of CO/sub 2/ and liquid water. Attack on these bare metals may become serious at a CO/sub 2/ partial pressure as low as 4 psi and it increases with CO/sub 2/ partial pressure although not in direct proportion. Fluid flow rate is an important factor in CO/sub 2//water corrosion. Practically all stainless steels and similar resistant alloys are not particularly subject to corrosion by CO/sub 2//water mixtures alone, even at high CO/sub 2/ pressures. Elevated levels of CO/sub 2/ can aggravate the corrosive effects of other species such as hydrogen sulfide, oxygen, and chloride. Mixtures of CO/sub 2/, carbon monoxide (CO), and water can cause stress corrosion cracking of plain steels. Corrosion problems in CO/sub 2/ systems should be circumvented when possible by avoiding combination of the corrosive components. Although water cannot be excluded throughout the CO/sub 2/ injection-oil production-CO/sub 2/ and water reinjection chain, air in-leakage can be minimized and oxygen scavengers used to remove any residual. Exclusion of oxygen is important to the successful use of other corrosion control measures. A discussion is given of the main control methods including metal selection, protective coatings and nonmetallic materials, and chemical inhibition. (DLC)« less

  18. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    PubMed Central

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-01-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8–2.1 GPa and 1,280–1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile–peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption. PMID:28148927

  19. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  20. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    DOEpatents

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  1. Six-man, self-contained carbon dioxide concentrator system

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Marshall, R. D.; Shumar, J. W.

    1974-01-01

    A six man, self contained electrochemical carbon dioxide concentrating subsystem was successfully designed and fabricated. It was a preprototype engineering model designed to nominally remove 6.0 kg (13.2 lb) CO2/day with an inlet air CO2 partial pressure of 400 N/sq m (3 mm Hg) and an overcapacity removal capability of 12.0 kg (26.4 lb) CO2/day. The design specifications were later expanded to allow operation at space station prototype CO2 collection subsystem operating conditions.

  2. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools.

    PubMed

    Truchot, J P; Duhamel-Jouve, A

    1980-03-01

    Water oxygen partial pressure (PO2), pH, titration alkalinity (TA), temperature and salinity were measured hourly in rockpools during emersion periods occuring at various times of the diurnal cycle. Measurements allowed calculation of oxygen concentration (CO2), CO2 partial pressure (PCO2) and concentrations of bicarbonate, carbonate and total CO2 (CCO2). During night emersion periods, water PO2 decreased to almost zero in a few hours, pH fell, TA rose and PCO2 increased up to 1-3 Torr. During day emersion periods, water PO2 rose to 400-600 Torr, pH increased to more than 10, TA decreased substantially and PCO2 fell as low as 10(-4) Torr. The direction of the observed changes depended essentially on the illumination, indicating that respiratory and photosynthetic activities were the main processes involved. The large variations of the components of the carbonate system imply considerable changes of the CO2 capacitance coefficient in water, mainly during the day-time emersion. These changes are discussed in relation to the respiratory and acid-base physiology of the animals living in these biotopes.

  3. Can plants grow in quasi-vacuum?

    NASA Technical Reports Server (NTRS)

    Andre, M.; Richaud, C.

    1986-01-01

    It was found that the growth of plants is possible under absolute pressure 14 times lower than the atmospheric pressure. In first approximation, plants ignore the absence of nitrogen and only react to the partial pressure of O2. Hence the growth of plantlets was delayed under low pressures of O2 in both cases with and without nitrogen. The CO2 availability being limited by the carbon content of the seed, the final results after 20 days were very similar.

  4. Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb

    NASA Astrophysics Data System (ADS)

    Wang, Daya; Yan, Baijun; Sichen, Du

    2015-04-01

    The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:

  5. Effects of changing body position on oxygenation and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.

    PubMed

    Braun, Christina; Trim, Cynthia M; Eggleston, Randy B

    2009-01-01

    To investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine. Prospective, randomized experimental study. Twelve Quarter Horse foals, age of 5.4 +/-0.9 months and weighing 222 +/- 48 kg. Foals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute(-1) was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (f(R)), inspired fraction of oxygen (FIO(2)), and end-tidal carbon dioxide (PE'CO(2)) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO(2)), arterial partial pressure of carbon dioxide (PaCO(2))] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO(2)/FIO(2) were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was alpha = 0.05. All values are presented as least square means +/- SE. Values at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 +/- 14.4 mmHg before hoisting to 92 +/- 11.6 mmHg after hoisting (p = 0.0013). The PaO(2)/FIO(2) ratio decreased from 275 +/- 30 to 175 +/- 24 (p = 0.0055). End-tidal carbon dioxide decreased significantly from 48.7 +/- 1.6 to 44.5 +/- 1.2 mmHg (p = 0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting. Hoisting decreased PaO(2) in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO(2) measurement is necessary to detect early changes.

  6. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    EPA Science Inventory

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  7. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone

    Treesearch

    N.J. Karberg; K.S. Pregitzer; J.S. King; A.L. Friend; J.R. Wood

    2004-01-01

    Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earth's forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects...

  8. CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite

    NASA Astrophysics Data System (ADS)

    Eguchi, James; Dasgupta, Rajdeep

    2017-03-01

    We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.

  9. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  10. Sleep Transcutaneous vs. End-Tidal CO2 Monitoring for Patients with Neuromuscular Disease.

    PubMed

    Won, Yu Hui; Choi, Won Ah; Lee, Jang Woo; Bach, John Robert; Park, Jinyoung; Kang, Seong-Woong

    2016-02-01

    This study compared transcutaneous carbon dioxide partial pressure (PtcCO2) and end-tidal carbon dioxide partial pressure (PetCO2) monitoring during sleep for patients with neuromuscular disease. This is a retrospective study of patients whose PtcCO2 and PetCO2 were monitored before they began using noninvasive mechanical ventilation. The outcomes were divided into four groupings: group 1, both PtcCO2 and PetCO2 are greater than or equal to 49 mm Hg; group 2, PtcCO2 is greater than or equal to 49 mm Hg but PetCO2 is less than 49 mm Hg; group 3, PtcCO2 is less than 49 mm Hg but PetCO2 is greater than or equal to 49 mm Hg; and group 4, both PtcCO2 and PetCO2 are less than 49 mm Hg. A total of 39 subjects (mean [SD] age, 27.7 [19.3] yrs) were enrolled. PtcCO2 values were significantly higher than PetCO2 values (P < 0.001). The intraclass correlation coefficient between maximal and mean values of PtcCO2 and PetCO2 was 0.612 and 0.718, respectively. Bias and limits of agreement between PtcCO2 and PetCO2 were -7.5 mm Hg and -21.3 to 6.3 mm Hg for maximal values and -4.8 mm Hg and -14.8 to 5.3 mm Hg for mean values. Group 2 included 19 (48.7%) and group 3 included 3 (7.6%) patients who showed discrepancy of hypercapnia between two methods. Maximum PtcCO2 was significantly greater than maximum PetCO2 for both groups and, therefore, tends to be higher than PetCO2 in this population. This should be taken into consideration when assessing patients for sleep hypoventilation.

  11. Control of end-tidal PCO2 reduces middle cerebral artery blood velocity variability: implications for physiological neuroimaging.

    PubMed

    Harris, Ashley D; Ide, Kojiro; Poulin, Marc J; Frayne, Richard

    2006-02-15

    Breath-by-breath variability of the end-tidal partial pressure of CO2 (Pet(CO2)) has been shown to be associated with cerebral blood flow (CBF) fluctuations. These fluctuations can impact neuroimaging techniques that depend on cerebrovascular blood flow. We hypothesized that controlling Pet(CO2) would reduce CBF variability. Dynamic end-tidal forcing was used to control Pet(CO2) at 1.5 mm Hg above the resting level and to hold the end-tidal partial pressure of oxygen (Pet(O2)) at the resting level. Peak blood velocity in the middle cerebral artery (MCA) was measured by transcranial Doppler ultrasound (TCD) as an index of CBF. Blood velocity parameters and timing features were determined on each waveform and the variance of these parameters was compared between Normal (air breathing) and Forcing (end-tidal gas control) sessions. The variability of all velocity parameters was significantly reduced in the Forcing session. In particular, the variability of the average velocity over the cardiac cycle was decreased by 18.2% (P < 0.001). For the most part, the variability of the timing parameters was unchanged. Thus, we conclude that controlling Pet(CO2) is effective in reducing CBF variability, which would have important implications for physiologic neuroimaging.

  12. High pressure solubility of carbon dioxide (CO2) in aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) solvent for CO2 capture

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Nawaz; Hailegiorgis, Sintayehu Mekuria; Man, Zakaria; Shariff, Azmi Mohd

    2017-10-01

    In this study, the solubility of carbon dioxide (CO2) in the aqueous solution of piperazine (PZ) activated N-methyldiethanolamine (MDEA) was investigated. In the aqueous solution the concentrations of the N-methyldiethanolamine (MDEA) and piperazine (PZ) were kept constant at 30 wt. % and 3 wt. %, respectively. The solubility experiments were carried out between the temperatures ranges of 303.15 to 333.15 K. The pressure range was selected as 2-50 bar for solubility of carbon dioxide in the aqueous solution. The solubility of the CO2 is reported in terms of CO2 loading capacity of the solvent. The loading capacity of the solvent is the ratio between the numbers of moles of CO2 absorbed to the numbers of moles of solvent used. The experimental data showed that the CO2 loading increased with increase in CO2 partial pressure, while it decreased with increase in system's temperature. It was also observed from the experimental data that the higher pressure favors the absorption process while the increased temperature hinders the absorption process of CO2 capture. The loading capacity of the investigated solvent was compared with the loading capacity of the solvents reported in the literature. The investigated solvent showed better solubility in terms of loading capacity.

  13. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  14. Effects of oxygen inhalation on cardiac output, coronary blood flow and oxygen delivery in healthy individuals, assessed with MRI.

    PubMed

    Bodetoft, Stefan; Carlsson, Marcus; Arheden, Håkan; Ekelund, Ulf

    2011-02-01

    Oxygen (O2) is a cornerstone in the treatment of critically ill patients, and the guidelines prescribe 10-15 l of O2/min even to those who are initially normoxic. Studies using indirect or invasive methods suggest, however, that supplemental O2 may have negative cardiovascular effects. The aim of this study was to test the hypothesis, using noninvasive cardiac magnetic resonance imaging, that inhaled supplemental O2 decreases cardiac output (CO) and coronary blood flow in healthy individuals. Sixteen healthy individuals inhaled O2 at 1, 8 and 15 l/min through a standard reservoir bag mask. A 1.5 T magnetic resonance imaging scanner was used to measure stroke volume, CO and coronary sinus blood flow. Left ventricular (LV) perfusion was calculated as coronary sinus blood flow/LV mass. The O2 response was dose-dependent. At 15 l of O2/min, blood partial pressure of O2 increased from an average 11.7 to 51.0 kPa with no significant changes in blood partial pressure of CO2 or arterial blood pressure. At the same dose, LV perfusion decreased by 23% (P=0.005) and CO decreased by 10% (P=0.003) owing to a decrease in heart rate (by 9%, P<0.002), with no significant changes in stroke volume or LV dimensions. Owing to the decreased CO and LV perfusion, systemic and coronary O2 delivery fell by 4 and 11% at 8 l of O2/min, despite the increased blood oxygen content. Our data indicate that O2 administration decreases CO, LV perfusion and systemic and coronary O2 delivery in healthy individuals. Further research should address the effects of O2 therapy in normoxic patients.

  15. Simulation of gas bubbles in hypobaric decompressions: roles of O2, CO2, and H2O.

    PubMed

    Van Liew, H D; Burkard, M E

    1995-01-01

    To gain insight into the special features of bubbles that may form in aviators and astronauts, we simulated the growth and decay of bubbles in two hypobaric decompressions and a hyperbaric one, all with the same tissue ratio (TR), where TR is defined as tissue PN2 before decompression divided by barometric pressure after. We used an equation system which is solved by numerical methods and accounts for simultaneous diffusion of any number of gases as well as other major determinants of bubble growth and absorption. We also considered two extremes of the number of bubbles which form per unit of tissue. A) Because physiological mechanisms keep the partial pressures of the "metabolic" gases (O2, CO2, and H2O) nearly constant over a range of hypobaric pressures, their fractions in bubbles are inversely proportional to pressure and their large volumes at low pressure add to bubble size. B) In addition, the large fractions facilitate the entry of N2 into bubbles, and when bubble density is low, enhance an autocatalytic feedback on bubble growth due to increasing surface area. C) The TR is not closely related to bubble size; that is when two different decompressions have the same TR, metabolic gases cause bubbles to grow larger at lower hypobaric pressures. We conclude that the constancy of partial pressures of metabolic gases, unimportant in hyperbaric decompressions, affects bubble size in hypobaric decompressions in inverse relation to the exposure pressure.

  16. Understanding the carbon dioxide gaps.

    PubMed

    Scheeren, Thomas W L; Wicke, Jannis N; Teboul, Jean-Louis

    2018-06-01

    The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid resuscitation and also as predictor for outcome. Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for outcome. CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts to increase CO should be made. Considering the potential of the several forms of CO2 measurements and its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical practice.

  17. CO/sub 2/ fluxes in the tropical Atlantic during FOCAL cruises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrie, C.; Oudot, C.; Genthon, C.

    1986-10-15

    CO/sub 2/ partial pressures in the atmosphere and in surface seawater have been measured in the equatorial Atlantic Ocean during Programme Francais Ocean-Climat en Atlantique Equatorial cruises extending from July 1982 to August 1984 along the 4/degree/W, 22/degree/W, and 35/degree/W meridians. Gas transfer coefficients based on recently reported field data combined with information deduced from wind tunnel experiments are used to compute the CO/sub 2/ fluxes. The global mean net flux between 5/degree/N and 5/degree/S is equal to 1.05 mmol m/sup /minus/2/ d/sup /minus/1/ and is from the ocean to the atmosphere. The escape of CO/sub 2/ increases strongly frommore » the east to the west and is always lower in the north than in the south. The importance of wind speed, pCO/sub 2/ in atmosphere, PCO/sub 2/ in surface seawater, and temperature on the flux variability is discussed. The relative influence of the equatorial upwelling on one hand and of the advection and warming of surface waters on the other hand is studied in order to explain high partial pressure in seawater. 59 refs., 15 figs., 5 tabs.« less

  18. Photosynthetic responses to altitude: an explanation based on optimality principles

    DOE PAGES

    Wang, Han; Prentice, I. Colin; Davis, Tyler W.; ...

    2016-11-18

    Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less

  19. Photosynthetic responses to altitude: an explanation based on optimality principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Prentice, I. Colin; Davis, Tyler W.

    Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less

  20. Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos.

    PubMed

    Watkins, Avery L; Landis, Clark R

    2010-08-04

    Gas pressure influences the regioselectivity and enantioselectivity of aryl alkene hydroformylation as catalyzed by rhodium complexes of the BisDiazaphos ligand. Deuterioformylation of styrene at 80 degrees C results in extensive deuterium incorporation into the terminal position of the recovered styrene. This result establishes that rhodium hydride addition to form a branched alkyl rhodium occurs reversibly. The independent effect of carbon monoxide and hydrogen partial pressures on regioselectivity and enantioselectivity were measured. From 40 to 120 psi, both regioisomer (b:l) and enantiomer (R:S) ratios are proportional to the carbon monoxide partial pressure but approximately independent of the hydrogen pressure. The absolute rate for linear aldehyde formation was found to be inhibited by carbon monoxide pressure, whereas the rate for branched aldehyde formation is independent of CO pressure up to 80 psi; above 80 psi one observes the onset of inhibition. The carbon monoxide dependence of the rate and enantioselectivity for branched aldehyde indicates that the rate of production of (S)-2-phenyl propanal is inhibited by CO pressure, while the formation rate of the major enantiomer, (R)-2-phenyl propanal, is approximately independent of CO pressure. Hydroformylation of alpha-deuteriostyrene at 80 degrees C followed by conversion to (S)-2-benzyl-4-nitrobutanal reveals that 83% of the 2-phenylpropanal resulted from rhodium hydride addition to the re face of styrene, and 83% of the 3-phenylpropanal resulted from rhodium hydride addition to the si face of styrene. On the basis of these results, kinetic and steric/electronic models for the determination of regioselectivity and enantioselectivity are proposed.

  1. [Correlation between end-tidal carbon dioxide and partial pressure of arterial carbon dioxide in ventilated newborns].

    PubMed

    Feng, Jin-Xing; Liu, Xiao-Hong; Huang, Hui-Jun; Yu, Zhen-Zhu; Yang, Hui; He, Liu-Fang

    2014-05-01

    To study the correlation between end-tidal carbon dioxide (PetCO2) and partial pressure of arterial carbon dioxide (PaCO2) in ventilated newborns. Thirty-one ventilated newborn underwent mainstream PetCO2 monitoring; meanwhile, arterial blood gas analysis was performed. The correlation and consistency between PetCO2 and PaCO2 were assessed. A total of 85 end-tidal and arterial CO2 pairs were obtained from 31 ventilated newborns. The mean PetCO2 (41±10 mm Hg) was significantly lower than the corresponding mean PaCO2 (46±11 mm Hg) (P<0.01). There was a significant positive correlation between PetCO2 and PaCO2 (r=0.92, P<0.01). The overall PetCO2 bias was 5.1±4.3 mm Hg (95% limits of consistency, -3.3 to 13.6 mmHg), and 5% (4/85) of the points were beyond the 95%CI. When the oxygenation index (OI) was less than 300 mm Hg (n=48), there was a significant positive correlation between PetCO2 and PaCO2 (r=0.85, P<0.01); the PetCO2 bias was 5.9±4.3 mm Hg (95% limits of consistency, -2.6 to 14.5 mm Hg), and 4.2% (2/48) of the points were beyond the 95%CI. When the OI was more than 300 mm Hg (n=37), there was also a significant positive correlation between PetCO2 and PaCO2 (r=0.91, P<0.01); the PetCO2 bias was 4.1±4.1 mm Hg (95% limits of consistency, -3.9 to 12.1 mm Hg), and 5% (2/37) of the points were beyond the 95%CI. There is a good correlation and consistency between PetCO2 and PaCO2 in ventilated newborns.

  2. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618

    PubMed Central

    2011-01-01

    Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346

  3. Ru nucleation and thin film smoothness improvement with ammonia during chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Wen; Ekerdt, John G., E-mail: ekerdt@utexas.edu

    This study reports the use of ammonia to inhibit the growth of previously nucleated ruthenium islands and force the nucleation of additional islands such that thinner films form as the islands coalesce with continued growth. Ruthenium films are grown at 448 K in a chemical vapor deposition process on SiO{sub 2}/Si(001) using triruthenium dodecacarbonyl, Ru{sub 3}(CO){sub 12}, with and without a constant partial pressure of ammonia. Film growth was performed at a Ru{sub 3}(CO){sub 12}/Ar pressure of 47.2 mTorr. The ammonia partial pressure varied from 0 to 27.8 mTorr. X-ray photoelectron spectroscopy was used to analyze the samples in situ. Exmore » situ characterization included scanning electron microscopy, atomic force microscopy, and x-ray diffraction and x-ray reflectivity. Nucleation studies limited to the first 10 min of growth revealed the maximum nanoparticle (island) density of 8.1 × 10{sup 11 }cm{sup −2} occurred at an intermediate ammonia pressure (5.25 mTorr) compared to a density of 3.1 × 10{sup 11 }cm{sup −2} for no ammonia addition. Extending film growth to 120 min and varying the ammonia partial pressure during the first 10 min followed by 5.25 mTorr ammonia pressure for the final 110 min reveals the importance of nucleation on film smoothness. A model describing the inhibition effects of ammonia during nucleation and growth is presented.« less

  4. Agreement between arterial partial pressure of carbon dioxide and saturation of hemoglobin with oxygen values obtained by direct arterial blood measurements versus noninvasive methods in conscious healthy and ill foals.

    PubMed

    Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A

    2011-11-15

    To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.

  5. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates.

    PubMed

    Jin, Ziying; Yang, Maoying; Lin, Ru; Huang, Wenfang; Wang, Jiangmei; Hu, Zhiyong; Shu, Qiang

    2017-08-01

    Previous research has suggested correlations between the end-tidal partial pressure of carbon dioxide (P ET CO 2 ) and the partial pressure of arterial carbon dioxide (PaCO 2 ) in mechanically ventilated patients, but both the relationship between P ET CO 2 and PaCO 2 and whether P ET CO 2 accurately reflects PaCO 2 in neonates and infants are still controversial. This study evaluated remote sampling of P ET CO 2 via an epidural catheter within an endotracheal tube to determine the procedure's clinical safety and efficacy in the perioperative management of neonates. Abdominal surgery was performed under general anesthesia in 86 full-term newborns (age 1-30 days, weight 2.55-4.0 kg, American Society of Anesthesiologists class I or II). The infants were divided into 2 groups (n = 43 each), and carbon dioxide (CO 2 ) gas samples were collected either from the conventional position (the proximal end) or a modified position (the distal end) of the epidural catheter. The P ET CO 2 measured with the new method was significantly higher than that measured with the traditional method, and the difference between P ET CO 2 and PaCO 2 was also reduced. The accuracy of P ET CO 2 measured increased from 78.7% to 91.5% when the modified sampling method was used. The moderate correlation between P ET CO 2 and PaCO 2 by traditional measurement was 0.596, which significantly increased to 0.960 in the modified sampling group. Thus, the P ET CO 2 value was closer to that of PaCO 2 . P ET CO 2 detected via modified carbon dioxide monitoring had a better accuracy and correlation with PaCO 2 in neonates. Copyright © 2017. Published by Elsevier B.V.

  6. Measurements of the broadening and shift parameters of the water vapor spectral lines in the 10,100-10,800 cm-1 region induced by pressure of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Petrova, T. M.; Solodov, A. M.; Solodov, A. A.

    2018-02-01

    The absorption spectra of a mixture of H2O with CO2 at different partial pressures of CO2 have been recorded at room temperature in the 10,100-10,800 cm-1 region using a Bruker IFS 125 HR FTIR spectrometer. The multispectrum fitting procedure has been applied to these spectra to recover the broadening and shift parameters of the water vapor spectral lines. To obtain the spectral lines parameters two models of the line shape were used: the Voigt profile and the quadratic speed-dependent Voigt profile. The CO2 pressure induced broadening and shift coefficients for 168 spectral lines with rather large values of the signal to noise ratio have been measured.

  7. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  8. Impact of saline aquifer water on surface and shallow pit corrosion of martensitic stainless steels during exposure to CO2 environment (CCS)

    NASA Astrophysics Data System (ADS)

    Pfennig, Anja; Kranzmann, Axel

    2018-05-01

    Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.

  9. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    PubMed Central

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  10. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    PubMed

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  11. Raman Line Imaging of Poly(ε-caprolactone)/Carbon Dioxide Solutions at High Pressures: A Combined Experimental and Computational Study for Interpreting Intermolecular Interactions and Free-Volume Effects.

    PubMed

    Pastore Carbone, Maria Giovanna; Musto, Pellegrino; Pannico, Marianna; Braeuer, Andreas; Scherillo, Giuseppe; Mensitieri, Giuseppe; Di Maio, Ernesto

    2016-09-01

    In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy.

  12. Effect of Six Days of Staging on Physiologic Adjustments and Acute Mountain Sickness During Ascent to 4300 Meters

    DTIC Science & Technology

    2009-01-01

    respiratory alkalosis due to hyperventilation that was partially compensated for by increased excretion of HCO3 to maintain a normal pH following...carbon dioxide; RER, respiratory exchange quotient; Sao2, arterial oxygen saturation; Paco2, partial pressure of capillary-arterialized carbon dioxide...dioxide production; E=O2, ventilatory equivalent for oxygen; E=CO2, ventilatory equivalent for carbon dioxide; RER, respiratory exchange quotient

  13. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  14. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    USDA-ARS?s Scientific Manuscript database

    Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...

  15. Hurricane Arthur and its effect on the short-term variability of pCO2 on the Scotian Shelf, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.

    2018-04-01

    The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.

  16. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  17. Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens

    NASA Astrophysics Data System (ADS)

    Penning, Holger; Conrad, Ralf

    2006-05-01

    In anoxic environments, microbial fermentation is the first metabolic process in the path of organic matter degradation. Since little is known about carbon isotope fractionation during microbial fermentation, we studied mixed-acid fermentation of different saccharides (glucose, cellobiose, and cellulose) in Clostridium papyrosolvens. The bacterium was grown anaerobically in batch under different growth conditions, both in pure culture and in co-culture with Methanobacterium bryantii utilizing H 2/CO 2 or Methanospirillum hungatei utilizing both H 2/CO 2 and formate. Fermentation products were acetate, lactate, ethanol, formate, H 2, and CO 2 (and CH 4 in methanogenic co-culture), with acetate becoming dominant at low H 2 partial pressures. After complete conversion of the saccharides, acetate was 13C-enriched ( αsacc/ac = 0.991-0.997), whereas lactate ( αsacc/lac = 1.001-1.006), ethanol ( αsacc/etoh = 1.007-1.013), and formate ( αsacc/form = 1.007-1.011) were 13C-depleted. The total inorganic carbon produced was only slightly enriched in 13C, but was more enriched, when formate was produced in large amounts, as 12CO 2 was preferentially converted with H 2 to formate. During biomass formation, 12C was slightly preferred ( αsacc/biom ≈ 1.002). The observations in batch culture were confirmed in glucose-limited chemostat culture at growth rates of 0.02-0.15 h -1 at both low and high hydrogen partial pressures. Our experiments showed that the carbon flow at metabolic branch points in the fermentation path governed carbon isotope fractionation to the accumulated products. During production of pyruvate, C isotopes were not fractionated when using cellulose, but were fractionated to different extents depending on growth conditions when using cellobiose or glucose. At the first catabolic branch point (pyruvate), the produced lactate was depleted in 13C, whereas the alternative product acetyl-CoA was 13C enriched. At the second branch point (acetyl-CoA), the ethanol formed was 15.6-18.6‰ depleted in 13C compared to the alternative product acetate. At low hydrogen partial pressures, as normally observed under environmental conditions, fermentation of saccharides should mainly result in the production of acetate that is only slightly enriched in 13C (<3‰).

  18. CO2 insufflation versus air insufflation for endoscopic submucosal dissection: A meta-analysis of randomized controlled trials.

    PubMed

    Li, Xuan; Dong, Hao; Zhang, Yifeng; Zhang, Guoxin

    2017-01-01

    Carbon dioxide (CO2) insufflation is increasingly used for endoscopic submucosal dissection (ESD) owing to the faster absorption of CO2 as compared to that of air. Studies comparing CO2 insufflation and air insufflation have reported conflicting results. This meta-analysis is aimed to assess the efficacy and safety of use of CO2 insufflation for ESD. Clinical trials of CO2 insufflation versus air insufflation for ESD were searched in PubMed, Embase, the Cochrane Library and Chinese Biomedical Literature Database. We performed a meta-analysis of all randomized controlled trials (RCTs). Eleven studies which compared the use of CO2 insufflation and air insufflation, with a combined study population of 1026 patients, were included in the meta-analysis (n = 506 for CO2 insufflation; n = 522 for air insufflation). Abdominal pain and VAS scores at 6h and 24h post-procedure in the CO2 insufflation group were significantly lower than those in the air insufflation group, but not at 1h and 3h after ESD. The percentage of patients who experienced pain 1h and 24h post-procedure was obviously decreased. Use of CO2 insufflation was associated with lower VAS scores for abdominal distention at 1h after ESD, but not at 24h after ESD. However, no significant differences were observed with respect to postoperative transcutaneous partial pressure carbon dioxide (PtcCO2), arterial blood carbon dioxide partial pressure (PaCO2), oxygen saturation (SpO2%), abdominal circumference, hospital stay, white blood cell (WBC) counts, C-Reactive protein (CRP) level, dosage of sedatives used, incidence of dysphagia and other complications. Use of CO2 insufflation for ESD was safe and effective with regard to abdominal discomfort, procedure time, and the residual gas volume. However, there appeared no significant differences with respect to other parameters namely, PtcCO2, PaCO2, SpO2%, abdominal circumference, hospital stay, sedation dosage, complications, WBC, CRP, and dysphagia.

  19. Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard

    1994-01-01

    The Martian regolith is the most substantial volatile reservoir on the planet; it holds CO2 as adsorbate, and can exchange that CO2 with the atmosphere-cap system over timescales of 10(exp 5) to 10(exp 6) years. The climatic response to insolation changes caused by obliquity and eccentricity variations depends in part on the total reservoir of adsorbed CO2. Previous estimates of the adsorbate inventory have been made by measuring the adsorptive behavior of one or more Mars-analyog materials, and deriving an empirical equation that described that adsorption as a function of the partial pressure of CO2 and the temperature of the regolith. The current CO2 inventory is that which satisfies adsorptive equilibrium, observed atmospheric pressure, and no permanent CO2 caps. There is laboratory evidence that H2O poisons the CO2 adsorptive capacity of most materials. No consideration of CO2 - H2O co-adsorption was given in previous estimates of the Martian CO2 inventory, although H2O is present in the vapor phase, and so as adsorbate, throughout the regolith.

  20. Simutaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.

    1995-01-01

    The Martian regolith is the most substantial volatile reservoir on the planet; estimates of its adsorbed inventory have been based on simple measurements of the adsorption of either water or CO2 in isolation. Under some conditions, H2O can poison adsorbate surfaces, such that CO2 uptake is greatly reduced. We have made the first measurements of the simultaneous adsorption of CO2 and H2O under conditions appropriate to the Martian regolith and have found that at H2O monolayer coverage above about 0.5, CO2 begins to be displaced into the gas phase. We have developed an empirical expression that describes our co-adsorption data and have applied it to standard models of the Martian regolith. We find that currently, H2O does not substantially displace CO2, implying that the adsorbate inventories previously derived may be accurate, not more than 3-4 kPa (30-40 mbar). No substantial increase in atmospheric pressure is predicted at higher obliquities because high-latitude ground ice buffers the partial pressure of H2O in the pores, preventing high monolayer coverages of H2O from displacing CO2. The peak atmospheric pressure at high obliquity does increase as the total inventory of exchangeable CO2 increases.

  1. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Siegriest, L. M.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1993-01-01

    In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa > 200 Pa > 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.

  2. Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate

    NASA Technical Reports Server (NTRS)

    Zent, Aaron, P.; Quinn, Richard C.

    1995-01-01

    The Martian regolith is the most substantial volatile reservoir on the planet; estimates of its adsorbed inventory have been based on simple measurements of the adsorption of either water or CO2 in isolation. Under some conditions, H2O can poison adsorbate surfaces, such that CO2 uptake is greatly reduced. We have made the first measurements of the simultaneous adsorption of CO2 and H2O under conditions appropriate to the Martian regolith and have found that at H2O monolayer coverage above about 0.5, CO2 begins to be displaced into the gas phase. We have developed an empirical expression that describes our co-adsorption data and have applied it to standard models of the Martian regolith. We find that currently, H2O does not substantially displace CO, implying that the adsorbate inventories previously derived may be accurate, not more than 3-4 kPa (30-40 mbar). No substantial increase in atmospheric pressure is predicted at higher obliquities because high-latitude ground ice buffers the partial pressure of H2O in the pores, preventing high monolayer coverages of H2O from displacing CO2. The peak atmospheric pressure at high obliquity does increase as the total inventory of exchangeable CO2 increases.

  3. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    PubMed

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  4. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    PubMed Central

    Karrasch, Nicole M.; Hubbell, John A.E.; Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia. PMID:25829559

  5. Use of a new generation of adaptive servo ventilation for sleep-disordered breathing in patients with multiple system atrophy.

    PubMed

    Hamada, Satoshi; Takahashi, Ryosuke; Mishima, Michiaki; Chin, Kazuo

    2015-11-06

    A 70-year-old man (case 1) and a 64-year-old woman (case 2) with multiple system atrophy (MSA) and snoring were admitted for polysomnography. Their awake PaCO2 indicated normocapnia. Apnoea-hypopnoea index (AHI), max transcutaneous carbon dioxide partial pressure (PtcCO2) and ΔPtcCO2 (max PtcCO2 (during sleep)-baseline PtcCO2 (while awake)) were 11.4/h, 63 mm Hg and 18 mm Hg, respectively, in case 1 and 53.1/h, 59 mm Hg and 13 mm Hg, respectively, in case 2. Their sleep-disordered breathing (SDB) was diagnosed as obstructive sleep apnoea with hypoventilation. We thought that variable expiratory positive airway pressure and pressure support ventilation (advanced-adaptive servo ventilation (ASV)) might be favourable for their SDB. Polysomnography after introducing advanced-ASV revealed that AHI, max PtcCO2 and ΔPtcCO2 were 0.2/h, 53 mm Hg and 5 mm Hg, respectively, in case 1 and 1.5/h, 56 mm Hg and 9 mm Hg, respectively, in case 2. Advanced-ASV for treating Cheyne-Stokes breathing may be helpful in SDB in patients with MSA. 2015 BMJ Publishing Group Ltd.

  6. On the habitability of a stagnant-lid Earth

    NASA Astrophysics Data System (ADS)

    Tosi, Nicola; Stracke, Barbara; Godolt, Mareike; Ruedas, Thomas; Grenfell, John Lee; Höning, Dennis; Nikolaou, Athanasia; Plesa, Ana-Catalina; Breuer, Doris; Spohn, Tilman

    2016-04-01

    Whether plate tectonics is a recurrent feature of terrestrial bodies orbiting other stars or is unique to the Earth is unknown. The stagnant-lid may rather be the most common tectonic mode through which terrestrial bodies operate. Here we model the thermal history of the mantle, the outgassing evolution of H2O and CO2, and the resulting climate of a hypothetical planet with the same mass, radius, and composition as the Earth, but lacking plate tectonics. We employ a 1-D model of parameterized stagnant-lid convection to simulate the evolution of melt generation, crust production, and volatile extraction over a timespan of 4.5 Gyr, focusing on the effects of three key mantle parameters: the initial temperature, which controls the overall volume of partial melt produced; the initial water content, which affects the mantle rheology and solidus temperature; and the oxygen fugacity, which is employed in a model of redox melting to determine the amount of carbon stored in partial melts. We assume that the planet lost its primordial atmosphere and use the H2O and CO2 outgassed from the interior to build up a secondary atmosphere over time. Furthermore, we assume that the planet may possess an Earth-like ocean. We calculate the atmospheric pressure based on the solubility of H2O and CO2 in basaltic magmas at the evolving surface pressure conditions. We then employ a 1-D radiative-convective, cloud-free stationary atmospheric model to calculate the resulting atmospheric temperature, pressure and water content, and the corresponding boundaries of the habitable zone (HZ) accounting for the evolution of the Sun's luminosity with time but neglecting escape processes. The interior evolution is characterized by a large initial production of partial melt accompanied by the formation of crust that rapidly grows until its thickness matches that of the stagnant lid so that the convecting sublithospheric mantle prevents further crustal growth. Even for initial water concentrations in excess of thousands of ppm, the high solubility of water in surface magmas limits the maximal partial pressure of atmospheric H2O to a few tens of bars, which places de facto an upper bound on the amount of water that can be delivered to the surface and atmosphere from the interior. The relatively low solubility of CO2 causes instead most of the carbon contained in surface melts to be outgassed. As a consequence, the partial pressure of atmospheric CO2 is largely controlled by the redox state of the mantle, with values that range from a few up to tens of bars for oxygen fugacities between the iron-wüstite buffer and one log-unit above it. At 1 AU and for most cases, liquid water on the surface is possible, hence the planets considered would be regarded as habitable although the atmospheric temperature may be well above the temperature limits for terrestrial life. The inner edge of the HZ depends on the amount of outgassed H2O and is located further away from the star if no initial water ocean is assumed. The outer edge of the HZ is controlled by the amount of outgassed CO2, hence by the assumed redox state of the mantle and its initial temperature.

  7. Theory of low transitions in CO discharge lasers

    NASA Technical Reports Server (NTRS)

    Sidney, B. D.; Mcinuille, R. M.; Smith, N. S.; Hassan, H. A.

    1976-01-01

    A self consistent theoretical model which couples the electron and heavy particle finite rate kinetics with the optical and fluid dynamic processes has been employed to identify the various parameters and explain the mechanism responsible for producing low lying transitions in slow flowing CO lasers. It is found that lasing on low lying transitions can be achieved at low temperatures for low pressures (or low flow rates) together with high partial pressures of the He and N2. The role of N2 has been identified as an additive responsible for reducing the electron temperature to a range where the transfer of electrical power to the lower vibrational modes of CO is optimum.

  8. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; hide

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  9. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE PAGES

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...

    2016-10-13

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  10. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  11. Precipitation chemistry of Lhasa and other remote towns, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, David D.; Peart, Mervyn; Jim, C. Y.; He, Y. Q.; Li, B. S.; Chen, J. A.

    Precipitation event samples during 1987-1988 field expedition periods and 1997, 1998, 1999 and 2000 have been collected at Lhasa, Dingri, Dangxiong and Amdo, Tibet. The sampling and analysis were based on WMO recommendations for a background network with some modifications according to local conditions and environmental characteristics. The following precipitation constituents and related parameters were measured: pH, conductivity, CO 2 partial pressure, total suspended particles, and the content of K +, Na +, Ca 2+, Mg 2+, Fe, Mn, NH 4+, Cl -, NO 2-, NO 3-, SO42- Br-, HCO 3- and HPO 42-. Some atmospheric dust samples have also been collected. Over 300 precipitation events have been measured for pH and conductivity. Among these, 60 have been analysed for their chemical components. The results show that Lhasa's precipitation events were constantly alkaline with weighted averages of pH 8.36 in the 1987-1988 period, and 7.5 for 1997 to 1999. Only one event was weakly acidic during 1997-1999. Although CO 2 partial pressure, a major producer of acidity in natural water on the Plateau, falls with increasing elevation, the lowest measured CO 2 partial pressure can only raise pH value by 0.1 units in the sampling areas. Chemical analysis indicates that the major contributor to alkaline precipitation is the continental dust, which is rich in calcium. The analysis also shows that Tibet is still one of the cleanest areas in the world with little air pollution. However, the decline of pH from the 1980s to 1990s, which was reflected by an increase of NO 3- and SO 42- in precipitation, alerts us to the urgency of environmental protection in this fragile paradise.

  12. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  13. Some limitations on the possible composition of the ore-forming fluid

    USGS Publications Warehouse

    Barton, Paul B.

    1956-01-01

    The activity rations of various important anions (S, CO3, SO4, OH, F, and Cl) in hydrothermal solutions at the time of deposition are evaluated using a simple thermodynamic technique. The rations are interpreted in the light of the mineralogy of ore deposits and limites are placed on the variability of each ratio in hydrothermal solutions. All of the calculations are made for 25°C and cautious extrapolation to higher temperatures seems justified; however, additional data for elevated temperatures and pressures are needed before more than approximate values may be assigned to these ratios in the ore-forming fluid. The calculated partial pressure of CO2 in the ore fluid is generally less than one atmosphere, which suggests that a dense CO2 phase cannot be considered an importatn ore fluid for most deposits. The partial pressure of H2S is usually less than 10-4 atmospheres which makes it extremely difficult to defend the heory that metals (other than the easily complexible mercury, arsenic, antimony, and perhaps fols and silver) are transported in quantity as complex sulfide and hydrosulfides. The sulfate to sulfide ration is such that the oxidation potential at the time of deposition is defined by the following equation: Eh (in volts) = 0.22 ± 0.04 - 0.059 pH.

  14. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  15. Carbon dioxide: Global warning for nephrologists.

    PubMed

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  16. The efficiency of CO2 elimination during high-frequency jet ventilation for laryngeal microsurgery.

    PubMed

    Biro, P; Eyrich, G; Rohling, R G

    1998-07-01

    For adequate and safe use of high-frequency jet ventilation (HFJV), reliable monitoring of the PCO2 status and course is necessary. Because of improved handling and performance, recently available transcutaneous PCO2 monitoring devices such as MicroGas 7650 (Kontron Instruments Medical Sensors, Basel, Switzerland) should enable more effective surveillance of CO2 elimination and, subsequently, better control of subglottic HFJV. Adult patients (n = 164) undergoing laryngeal microsurgery during total i.v. anesthesia were assessed. The resulting transcutaneous PCO2 values, as well as the necessary driving pressure settings, were analyzed to define the CO2 elimination capacity of each patient. Therefore, an individual CO2 elimination coefficient (ECCO2) was calculated. The frequency distribution of the obtained ECCO2 values showed a normal distribution with a median at 0.79 and a range between 0.30 and 2.17. A significant difference in the frequency of obstructive lung disease was found between two patient subpopulations separated by the 25th percentile at an ECCO2 value of 0.63. Other co-factors of CO2 elimination during HFJV were age, gender, and body weight, whereas height and ventilation duration were not involved. We conclude that the individual assessment of ECCO2 enables one to find adequate ventilator settings, resulting in lower airway pressure and less cooling and drying of the tracheobronchial mucosa. CO2 elimination during high-frequency jet ventilation can be assessed by calculating the CO2 elimination coefficient (ECCO2) of each patient from the required driving pressure and the resulting transcutaneous CO2 partial pressure. The frequency distribution of ECCO2 in a typical laryngological patient population was analyzed, and a value of 0.63 was found to be a characteristic limit between sufficient and difficult CO2 elimination. The individual assessment of ECCO2 enables one to find adequate ventilator settings, resulting in lower airway pressure and less cooling and drying of the tracheobronchial mucosa.

  17. Organic-inorganic interactions at oil-water contacts: quantitative retracing of processes controlling the CO2 occurrence in Norwegian oil reservoirs

    NASA Astrophysics Data System (ADS)

    van Berk, Wolfgang; Schulz, Hans-Martin

    2010-05-01

    Crude oil quality in reservoirs can be modified by degradation processes at oil-water contacts (OWC). Mineral phase assemblages, composition of coexisting pore water, and type and amount of hydrocarbon degradation products (HDP) are controlling factors in complex hydrogeochemical processes in hydrocarbon-bearing siliciclastic reservoirs, which have undergone different degrees of biodegradation. Moreover, the composition of coexisting gas (particularly CO2 partial pressure) results from different pathways of hydrogeochemical equilibration. In a first step we analysed recent and palaeo-OWCs in the Heidrun field. Anaerobic decomposition of oil components at the OWC resulted in the release of methane and carbon dioxide and subsequent dissolution of feldspars (anorthite and adularia) leading to the formation of secondary kaolinite and carbonate phases. Less intensively degraded hydrocarbons co-occur with calcite, whereas strongly degraded hydrocarbons co-occur with solid solution carbonate phase (siderite, magnesite, calcite) enriched in δ13C. To test such processes quantitatively in a second step, CO2 equilibria and mass transfers induced by organic-inorganic interactions have been hydrogeochemically modelled in different semi-generic scenarios with data from the Norwegian continental shelf (acc. Smith & Ehrenberg 1989). The model is based on chemical thermodynamics and includes irreversible reactions representing hydrolytic disproportionation of hydrocarbons according to Seewald's (2006) overall reaction (1a) which is additionally applied in our modelling work in an extended form including acetic acid (1b): (1) R-CH2-CH2-CH3 + 4H2O -> R + 2CO2 + CH4 + 5H2, (2) R-CH2-CH2-CH3 + 4H2O -> R + 1.9CO2 + 0.1CH3COOH + 0.9CH4 + 5H2. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the observed primary reservoir composition at 72 °C. Modelled equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of HDP. Modelled CO2 partial pressure values in a multicomponent gas phase equilibrated with K-feldspar, quartz, kaolinite, and calcite resemble measured data. Similar CO2 contents result from acetic acid addition (eq. 1b). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K-feldspar (van Berk et al., 2009). Third and based on data by Ehrenberg & Jakobsen (2001), the effects of organic-inorganic interactions at OWCs in Brent Group reservoir sandstones from the Gullfaks Oilfield (offshore Norway) have been hydrogeochemically modelled. Observed local changes in mineral phase assemblage compositions (content of different feldspar types, kaolinite, carbonate) and CO2 partial pressures are attributed to varying degrees of oil-biodegradation (up to more than 10 %; Horstadt et al. 1992). Modelling results are congruent with observations and indicate that (i) intense dissolution of anorthite, (ii) less intense dissolution of albite, (iii) minor dissolution of K-feldspar, (iv) intense precipitation of kaolinite and quartz, (v) less intense precipitation of carbonate, and (vi) formation of CO2 partial pressures are driven by the release of HDP. References Ehrenberg SN & Jakobsen KG (2001) Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks Field, northern North Sea. Sedimentology, 48, 703-721. Smith JT & Ehrenberg SN (1989) Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium. Marine and Petroleum Geology, 6, 129-135. Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426, 327-333. van Berk, W, Schulz, H-M & Fu, Y (2009) Hydrogeochemical modelling of CO2 equilibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, 253-262.

  18. Phytoplankton-Environmental Interactions in Reservoirs. Volume I. Papers Presented at Workshop, 10-12 April 1979, Monterey, California.

    DTIC Science & Technology

    1981-09-01

    Antarctic waters. Symp. Antarctic Oceanography. Santiago , Chile . Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70:1063...photorespiration is largely dependent on the partial pressure of car- bon dioxide and oxygen concentrations . When CO2 limits photosynthesis and oxygen...hardness and alkalinity concentrations (> 200 mg/i as CaCO 3). As CO2 is removed from the alkalinity _ystem, pH increases and most alkalinity is

  19. Effect of Partial Pressure of Oxygen and Activity of Carbon on the Corrosion of High Temperature Alloys in s-CO2 Environments

    NASA Astrophysics Data System (ADS)

    Mahaffey, Jacob Thomas

    Over the course of the past couple decades, increased concern has grown on the topics of climate change and energy consumption, focusing primarily on carbon emissions. With modernization of countries like India and China, there are no signs of slowing of global carbon emissions and energy usage. To combat this, new more efficient power conversion cycles must be utilized. The Supercritical Carbon Dioxide (s-CO2) Brayton cycle promises increased efficiency and smaller component sizes. These cycles will push the limits of current high temperature materials, and must be studied before implementation is made possible. A large collection of high temperature CO2 corrosion research has been reported over the last thirty years. While many of the studies in the past have focused on corrosion in research grade (RG) (99.999%) and industrial grade (IG) (99.5%) CO2, very few have focused on studying the specific effects that impurities can have on the corrosion rates and mechanisms. The work described in this document will lay the foundation for advancement of s-CO2 corrosion studies. A testing facility has been constructed and was designed as an open flow s-CO2 loop with a fluid residence time of 2 hours. This facility is capable of heating up to 750°C at pressures up to 20 MPa. Instrumentation for monitoring oxygen and carbon monoxide concentration were added to make measurements both before and after sample exposure, for the duration of testing. Testing of both model and commercial alloys was conducted for temperatures ranging from 450-750°C at 20MPa for 1,000 hours. The effect of the partial pressure of oxygen (pO2) was studied by adding 100ppm of O2 to RG CO2 during testing. The activity of carbon (aC) was studied by adding 1%CO to RG CO2. Each environment greatly altered the mechanisms and rates of oxidation and carburization on each material exposed to the environment.

  20. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3]more » partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.« less

  1. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.

    PubMed

    Brechbühl, Yves; Christl, Iso; Elzinga, Evert J; Kretzschmar, Ruben

    2012-07-01

    The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance.

    PubMed

    Gill, Matthew; Natoli, Michael J; Vacchiano, Charles; MacLeod, David B; Ikeda, Keita; Qin, Michael; Pollock, Neal W; Moon, Richard E; Pieper, Carl; Vann, Richard D

    2014-08-15

    Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subject's maximum tolerable inspired CO2 (PiO2 = 0.055-0.085 atm). Measurements included end-tidal CO2 partial pressure (PetCO2 ), rating of perceived discomfort (RPD), expired minute ventilation (V̇e), and cognitive function assessed by auditory n-back test. The most prominent finding was, irrespective of PetCO2 , that minute ventilation was 8-9 l/min greater for rest or exercise with a PiO2 of 1.3 atm compared with 0.21 atm (P < 0.0001). For hyperoxic gases, PetCO2 was consistently less than for normoxic gases (P < 0.01). For hyperoxic hypercapnic gases, n-back scores were higher than for normoxic gases (P < 0.01), and RPD was lower for exercise but not rest (P < 0.02). Subjects completed 66 hyperoxic hypercapnic trials without incident, but five stopped prematurely because of serious symptoms (tunnel vision, vision loss, dizziness, panic, exhaustion, or near syncope) during 69 normoxic hypercapnic trials (P = 0.0582). Serious symptoms during hypercapnic trials occurred only during normoxia. We conclude serious symptoms with hyperoxic hypercapnia were absent because of decreased PetCO2 consequent to increased ventilation. Copyright © 2014 the American Physiological Society.

  3. Influence of periodically changing oxidizing and reducing environment on sulfur capture under PFBC conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yrjas, P.; Hupa, M.

    1997-12-31

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less

  4. Partially collapsed cristobalite structure in the non molecular phase V in CO2

    PubMed Central

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Haines, Julien; Cambon, Olivier; Levelut, Claire; Montoya, Javier A.; Scandolo, Sandro

    2012-01-01

    Non molecular CO2 has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO2 includes several non molecular phases above 30 GPa. Among these, the first discovered was CO2-V which appeared silica-like. Theoretical studies suggested that the structure of CO2-V is related to that of β-cristobalite with tetrahedral carbon coordination similar to silicon in SiO2, but reported experimental structural studies have been controversial. We have investigated CO2-V obtained from molecular CO2 at 40–50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO2 β-cristobalite, space group , in which the CO4 tetrahedra are tilted by 38.4° about the c-axis. The existence of CO4 tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO2 and potential implications for Earth and planetary interiors. PMID:22431594

  5. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine.

    PubMed

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-05-01

    Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide.

  6. A study of partial pressure of arterial carbon dioxide and end-tidal carbon dioxide correlation in intraoperative and postoperative period in neurosurgical patients.

    PubMed

    Gaur, Pallavi; Harde, Minal; Gujjar, Pinakin; Deosarkar, Devanand; Bhadade, Rakesh

    2017-01-01

    Monitoring carbon dioxide (CO 2 ) is of utmost importance in neurosurgical patients. It is measured by partial pressure of arterial CO 2 (PaCO 2 ) and end-tidal CO 2 (ETCO 2 ). We aimed to study the correlation between PaCO 2 and ETCO 2 in neurosurgical patients in the intraoperative and postoperative period on mechanical ventilation in Postanesthesia Care Unit (PACU). This was prospective observational study done at tertiary care teaching public hospital over a period of 1 year. We studied 30 patients undergoing elective craniotomy intraoperatively and in the postoperative period on mechanical ventilation for 24 h. Serial measurement of ETCO 2 and PaCO 2 at baseline, hourly intraoperatively and every 6 hourly in the PACU were studied. Data analysis was done using SPSS software version 20. The mean PaCO 2 -ETCO 2 gradient intraoperatively over 4 h is 3.331 ± 2.856 and postoperatively over 24 h is 2.779 ± 2.932 and lies in 95% confidence interval. There was statistically significant correlation between PaCO 2 and ETCO 2 intraoperatively baseline, 1 h, 2 h, 3 h, and 4 h with Pearson's correlation coefficients of 0.799, 0.522, 0582, 0.439, and 0.547, respectively ( P < 0.05). In PACU at baseline, 6 h, 12 h, 18 h, and 24 h Pearson's correlation coefficients were. 534, -0.032, 0.522, 0.242, 0.592, and 0.547, respectively, which are highly significant at three instances ( P < 0.01). ETCO 2 correlates PaCO 2 with acceptable accuracy in neurosurgical patients in the intraoperative and postoperative period on mechanical ventilation in Intensive Care Unit. Thus, continuous and noninvasive ETCO 2 can be used as a reliable guide to estimate arterial PCO 2 during neurosurgical procedures and in PACU.

  7. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218

  8. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  9. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.

  10. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N-2, and H2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, JA; McDonald, TM; Bae, TH

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N-2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporousmore » silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N-2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg-2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 +/- 0.2 mmol/g (16 wt %) at 0.1 bar and 40 degrees C in the presence of a high partial pressure of H2O.« less

  11. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O.

    PubMed

    Mason, Jarad A; McDonald, Thomas M; Bae, Tae-Hyun; Bachman, Jonathan E; Sumida, Kenji; Dutton, Justin J; Kaye, Steven S; Long, Jeffrey R

    2015-04-15

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 ± 0.2 mmol/g (16 wt %) at 0.1 bar and 40 °C in the presence of a high partial pressure of H2O.

  12. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  13. Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qing; Li, Jun; Liu, Ying, E-mail: liuying5536@163.com

    2014-05-07

    In the present investigation, we take advantage of the ultrafine grain size of NdFeCoB partially hydrogen-disproportionated phases, and prepare anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Our results suggest that the pressure could properly promote an occurrence of desorption-recombination reaction due to a shorter-range rearrangement of the atoms, and the newly recombined Nd{sub 2}Fe{sub 14}B grains with fine grain size could undergo deformation immediately after the phase transformation, and then an obvious anisotropy and uniform alignment would be obtained. The maximum magnetic properties, (BH){sub max} = 25.8 MGOe, Br = 11.8 kG, H{sub cj} = 5.5more » kOe, were obtained after being treated for 5 min at 820 °C in vacuum. The present study highlights the feasibility to prepare anisotropic nanocrystalline magnets with homogeneous microstructure and a strong (00l) texture of uniform grain size under low pressure.« less

  14. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Process for analyzing CO.sub.2 in seawater

    DOEpatents

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1997-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  16. Cardiopulmonary and arterial baroreceptor unloading during passive hyperthermia does not contribute to hyperthermia-induced hyperventilation

    PubMed Central

    Lucas, Rebekah A. I.; Pearson, James; Schlader, Zachary J.; Crandall, Craig G.

    2016-01-01

    This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (PET,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ~1.8°C) to cause a sustained increase in ventilation and reduction in PET,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg−1) of warm (~38°C) isotonic saline was rapidly (5–10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60–120 μg min−1) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min−1, P < 0.01), while reducing PET,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7l min−1, P <0.01) and reduced PET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. PMID:26299270

  17. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  18. Effects of elevated artificial pneumoperitoneum pressure on invasive blood pressure and levels of blood gases.

    PubMed

    Hypolito, Octavio; Azevedo, João Luiz; Gama, Fernanda; Azevedo, Otavio; Miyahira, Susana Abe; Pires, Oscar César; Caldeira, Fabiana Alvarenga; Silva, Thamiris

    2014-01-01

    to evaluate the clinical, hemodynamic, gas analysis and metabolic repercussions of high transient pressures of pneumoperitoneum for a short period of time to ensure greater security for introduction of the first trocar. sixty-seven patients undergoing laparoscopic procedures were studied and randomly distributed in P12 group: n=30 (intraperitoneal pressure [IPP] 12mmHg) and P20 group: n=37 (IPP of 20mmHg). Mean arterial pressure (MAP) was evaluated by catheterization of the radial artery; and through gas analysis, pH, partial pressure of oxygen (PaO2), partial pressure of CO2 (PaCO2), bicarbonate (HCO3) and alkalinity (BE) were evaluated. These parameters were measured in both groups at time zero before pneumoperitoneum (TP0); at time 1 (TP1) when IPP reaches 12mmHg in both groups; at time 2 (TP2) after five min with IPP=12mmHg in P12 and after 5min with IPP=20mmHg at P20; and at time 3 (TP3) after 10min with IPP=12mmHg in P12 and with return of IPP from 20 to 12mmHg, starting 10min after TP1 in P20. Different values from those considered normal for all parameters assessed, or the appearance of atypical organic phenomena, were considered as clinical changes. there were statistically significant differences in P20 group in MAP, pH, HCO3 and BE, but within normal limits. No clinical and pathological changes were observed. high and transient intra-abdominal pressure causes changes in MAP, pH, HCO3 and BE, but without any clinical impact on the patient. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. CO2-broadening and shift coefficients in the ν3 and ν2 + (ν4 +ν5)+0 bands of acetylene

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Perevalov, V. I.

    2018-03-01

    The absorption spectra of the mixture of C2H2 and CO2 at different partial pressures of both gases have been recorded at room temperature in the 3 μm region using the Bruker IFS 125 HR FTIR spectrometer. The multispectrum fitting procedure has been applied to these spectra to recover the broadening and shift parameters of the acetylene spectral lines. The CO2 broadening and pressure induced shift coefficients for 119 lines of the ν3 and ν2 + (ν4 +ν5)+0 bands of acetylene have been derived. The rotational dependence of the values of these coefficients is discussed. The comparison of the obtained coefficients to those published by other authors for the ν1 + ν3 and (ν4 +ν5)+0 bands is performed.

  20. Quantification of CO2 generation in sedimentary basins through carbonate/clays reactions with uncertain thermodynamic parameters

    NASA Astrophysics Data System (ADS)

    Ceriotti, G.; Porta, G. M.; Geloni, C.; Dalla Rosa, M.; Guadagnini, A.

    2017-09-01

    We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2 generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2 resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2 generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2 in sedimentary systems, (ii) the order of magnitude of the CO2 generation rate that can be associated with CCR processes.

  1. Targeted Pressure Management During CO 2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO 2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO 2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement andmore » injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO 2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO 2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  2. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  3. The use of high pressure CO2 -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-11-01

    Through the use of high partial pressures of CO2 (pCO2 ) to facilitate temporary pH reductions in two-phase partitioning bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid by Clostridium tyrobutyricum (ATCC 25755). Through high pressure pCO2 studies, media buffering effects were shown to be substantially overcome at 60 bar pCO2 , resulting in effective extraction of the organic acid by the absorptive polymer Pebax® 2533, yielding a distribution coefficient (D) of 2.4 ± 0.1 after 1 h of contact at this pressure. Importantly, it was also found that C. tyrobutyricum cultures were able to withstand 60 bar pCO2 for 1 h with no decrease in growth ability when returned to atmospheric pressure in batch reactors after several extraction cycles. A fed-batch reactor with cyclic high pCO2 polymer extraction recovered 92 g of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery reduced EPI in the TPPB, resulting in both higher productivity (0.65 vs. 0.33 g L(-1)  h(-1) ) and yield (0.54 vs. 0.40). Fortuitously, it was also found that repeated high pCO2 -facilitated polymer extractions of butyric acid during batch growth of C. tyrobutyricum lessened the need for pH control, and reduced base requirements by approximately 50%. Thus, high pCO2 -mediated absorptive polymer extraction presents a novel method for improving process performance in butyric acid fermentation, and this technique could be applied to the bioproduction of other organic acids as well. © 2014 Wiley Periodicals, Inc.

  4. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions.

    PubMed

    Pasquier, Louis-César; Mercier, Guy; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra

    2014-05-06

    Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.

  5. NO—CO—O2 Reaction on a Metal Catalytic Surface using Eley—Rideal Mechanism

    NASA Astrophysics Data System (ADS)

    Waqar, Ahmad

    2008-10-01

    Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2 O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.

  6. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 < 0.209 at or near sea level pressure to match the ambient O2 partial pressure (iso-pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  7. Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 During Part of the Tertiary

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Wing, Scott L.; Beerling, David J.; Jolley, David W.; Koch, Paul L.; Hickey, Leo J.; Berner, Robert A.

    2001-06-01

    Understanding the link between the greenhouse gas carbon dioxide (CO2) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO2 in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO2 reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO2 remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO2 are required to explain these past intervals of global warmth.

  8. Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary.

    PubMed

    Royer, D L; Wing, S L; Beerling, D J; Jolley, D W; Koch, P L; Hickey, L J; Berner, R A

    2001-06-22

    Understanding the link between the greenhouse gas carbon dioxide (CO(2)) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO(2) in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO(2) reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO(2) remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO(2) are required to explain these past intervals of global warmth.

  9. An advanced analytical solution for pressure build-up during CO2 injection into infinite saline aquifers: The role of compressibility

    NASA Astrophysics Data System (ADS)

    Wu, Haiqing; Bai, Bing; Li, Xiaochun

    2018-02-01

    Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.

  10. Autonomous observing platform CO2 data shed new light on the Southern Ocean carbon cycle

    NASA Astrophysics Data System (ADS)

    Olsen, Are

    2017-06-01

    While the number of surface ocean CO2 partial pressure (pCO2) measurements has soared the recent decades, the Southern Ocean remains undersampled. Williams et al. (2017, https://doi.org/10.1002/2016GB005541) now present pCO2 estimates based on data from pH-sensor equipped Bio-Argo floats, which have been measuring in the Southern Ocean since 2014. The authors demonstrate the utility of these data for understanding the carbon cycle in this region, which has a large influence on the distribution of CO2 between the ocean and atmosphere. Biogeochemical sensors deployed on autonomous platforms hold the potential to shape our view of the ocean carbon cycle in the coming decades.

  11. Flight prototype CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Rudy, K. M.

    1979-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on shuttle as an alternative to the baseline lithium hydroxide system. The system utilizes a sorbent material (designated HS-C) to adsorb CO2 and the latent heat load from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum, thus reducing the overall vehicle heat rejection load. Continuous operation is achieved by utilizing two beds which are alternatively cycled between adsorption and desorption. The HS-C material process was verified. Design concepts for the auxiliary components for the HS-C prototype system were generated. Performance testing verified system effectiveness in controlling CO2 partial pressure and humidity.

  12. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine, C.L.; Key, R.M.; Hall, M.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen,more » phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.« less

  13. Krikalev at work in Node 1

    NASA Image and Video Library

    2001-02-07

    STS098-346-0032 (7-20 February 2001) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer representing the Russian Aviation and Space Agency, carries the Vozdukh in the Unity node. Vozdukh is designed to maintain the partial pressure of carbon dioxide in the cabin air within the medically permissible range for long-duration exposure. It provides the primary means of removing CO2 from the outpost's atmosphere, and its operation is based on the use of regenerated adsorbers of CO2.

  14. Carbon dioxide sensor. [partial pressure measurement using monochromators

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analytical techniques for measuring CO2 were evaluated and rated for use with the advanced extravehicular mobility unit. An infrared absorption concept using a dual-wavelength monochromator was selected for investigation. A breadboard carbon dioxide sensor (CDS) was assembled and tested. The CDS performance showed the capability of measuring CO2 over the range of 0 to 4.0 kPa (0 to 30 mmHg) P sub (CO2). The volume and weight of a flight configured CDS should be acceptable. It is recommended that development continue to complete the design of a flight prototype.

  15. Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).

    PubMed

    Lackey, Jillian; Champagne, Pascale; Peppley, Brant

    2017-12-01

    Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH 4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NO x , SO x , and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H 2 dilutions were tested (N 2 , Ar, CO 2 ) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO 2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H 2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H 2 partial pressure in the reformate resulting from higher H 2 O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO 2 , 60 kg CH 4 and 18 kg N 2 O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H 2 , 16.1% CO, 16.5% CO 2 , 0.7% N 2 , humidified to 2.3 or 20 mol% H 2 O). Higher humidification yielded better performance as the WGS reaction produced more H 2 with additional H 2 O. It was concluded that AD-derived biogas, when cleaned to remove H 2 S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.

    PubMed

    Joos, Lennart; Swisher, Joseph A; Smit, Berend

    2013-12-23

    The presence of H2O in postcombustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Because of its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/CO2 mixtures in 13X, a popular zeolite for CO2 capture processes that is commercially available. The simulations show that H2O reduces the capacity of these materials for adsorbing CO2 by an order of magnitude and that at the partial pressures of H2O relevant for postcombustion capture, 13X will be essentially saturated with H2O .

  17. Best friends' interactions and substance use: The role of friend pressure and unsupervised co-deviancy.

    PubMed

    Tsakpinoglou, Florence; Poulin, François

    2017-10-01

    Best friends exert a substantial influence on rising alcohol and marijuana use during adolescence. Two mechanisms occurring within friendship - friend pressure and unsupervised co-deviancy - may partially capture the way friends influence one another. The current study aims to: (1) examine the psychometric properties of a new instrument designed to assess pressure from a youth's best friend and unsupervised co-deviancy; (2) investigate the relative contribution of these processes to alcohol and marijuana use; and (3) determine whether gender moderates these associations. Data were collected through self-report questionnaires completed by 294 Canadian youths (62% female) across two time points (ages 15-16). Principal component analysis yielded a two-factor solution corresponding to friend pressure and unsupervised co-deviancy. Logistic regressions subsequently showed that unsupervised co-deviancy was predictive of an increase in marijuana use one year later. Neither process predicted an increase in alcohol use. Results did not differ as a function of gender. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Cyclic catalytic upgrading of chemical species using metal oxide materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2010-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  19. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H.; Schutte, Erick J.; Rolfe, Sara L.

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  20. Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Wanninkhof, R.; Sabine, C. L.; Feely, R. A.; Cronin, M. F.; Weller, R. A.

    2017-06-01

    Variability and change in the ocean sink of anthropogenic carbon dioxide (CO2) have implications for future climate and ocean acidification. Measurements of surface seawater CO2 partial pressure (pCO2) and wind speed from moored platforms are used to calculate high-resolution CO2 flux time series. Here we use the moored CO2 fluxes to examine variability and its drivers over a range of time scales at four locations in the Pacific Ocean. There are significant surface seawater pCO2, salinity, and wind speed trends in the North Pacific subtropical gyre, especially during winter and spring, which reduce CO2 uptake over the 10 year record of this study. Starting in late 2013, elevated seawater pCO2 values driven by warm anomalies cause this region to be a net annual CO2 source for the first time in the observational record, demonstrating how climate forcing can influence the timing of an ocean region shift from CO2 sink to source.

  1. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    PubMed

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed <50 microm from the optic disc. PO(2) was measured continuously during 10 minutes under normoxia, hyperoxia (100% O(2)), carbogen breathing (95% O(2), 5% CO(2)), and hypercapnia (increased inhaled CO(2)). Measurements were repeated after intravenous injection of N(omega)-nitro-L-arginine methyl ester (L-NAME) 100 mg/kg. Intravenous L-arginine 100 mg/kg was subsequently given to three animals. Before L-NAME injection, an increase was observed in optic disc PO(2) during hypercapnia (DeltaPO(2) = 3.2 +/- 1.7 mm Hg; 18%; P = 0.001) and carbogen breathing (DeltaPO(2) = 12.8 +/- 5.1 mm Hg; 69%; P < 0.001). Optic disc PO(2) in normoxia remained stable for 30 minutes after L-NAME injection (4% decrease from baseline; P > 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  2. Recovery of [CO2]T from Aqueous Bicarbonate using a Gas Permeable Membrane

    DTIC Science & Technology

    2008-06-25

    pores as a function of differential partial gas pressures. Therefore it has been assumed for gas/ liquid systems that only the dissolved carbon dioxide...and pressure [10]. Gas permeable membranes are available commercially for the removal or addition of gases to liquids . Most of these applications...measurements were conducted with a standardized Fisher combination glass electrode. A microporous polypropylene membrane commercially designated as 2400

  3. Surface modification of a low cost bentonite for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2013-10-01

    A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.

  4. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  5. Ocean acidification accelerates reef bioerosion.

    PubMed

    Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André

    2012-01-01

    In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2)) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2) world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2) confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2) under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  6. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries

    PubMed Central

    Sato, Kohei; Sadamoto, Tomoko; Hirasawa, Ai; Oue, Anna; Subudhi, Andrew W; Miyazawa, Taiki; Ogoh, Shigehiko

    2012-01-01

    Arterial CO2 serves as a mediator of cerebral blood flow (CBF), and its relative influence on the regulation of CBF is defined as cerebral CO2 reactivity. Our previous studies have demonstrated that there are differences in CBF responses to physiological stimuli (i.e. dynamic exercise and orthostatic stress) between arteries in humans. These findings suggest that dynamic CBF regulation and cerebral CO2 reactivity may be different in the anterior and posterior cerebral circulation. The aim of this study was to identify cerebral CO2 reactivity by measuring blood flow and examine potential differences in CO2 reactivity between the internal carotid artery (ICA), external carotid artery (ECA) and vertebral artery (VA). In 10 healthy young subjects, we evaluated the ICA, ECA, and VA blood flow responses by duplex ultrasonography (Vivid-e, GE Healthcare), and mean blood flow velocity in middle cerebral artery (MCA) and basilar artery (BA) by transcranial Doppler (Vivid-7, GE healthcare) during two levels of hypercapnia (3% and 6% CO2), normocapnia and hypocapnia to estimate CO2 reactivity. To characterize cerebrovascular reactivity to CO2, we used both exponential and linear regression analysis between CBF and estimated partial pressure of arterial CO2, calculated by end-tidal partial pressure of CO2. CO2 reactivity in VA was significantly lower than in ICA (coefficient of exponential regression 0.021 ± 0.008 vs. 0.030 ± 0.008; slope of linear regression 2.11 ± 0.84 vs. 3.18 ± 1.09% mmHg−1: VA vs. ICA, P < 0.01). Lower CO2 reactivity in the posterior cerebral circulation was persistent in distal intracranial arteries (exponent 0.023 ± 0.006 vs. 0.037 ± 0.009; linear 2.29 ± 0.56 vs. 3.31 ± 0.87% mmHg−1: BA vs. MCA). In contrast, CO2 reactivity in ECA was markedly lower than in the intra-cerebral circulation (exponent 0.006 ± 0.007; linear 0.63 ± 0.64% mmHg−1, P < 0.01). These findings indicate that vertebro-basilar circulation has lower CO2 reactivity than internal carotid circulation, and that CO2 reactivity of the external carotid circulation is markedly diminished compared to that of the cerebral circulation, which may explain different CBF responses to physiological stress. PMID:22526884

  7. Effects of dopamine and dobutamine on isoflurane-induced hypotension in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Schnellbacher, Rodney W; da Cunha, Anderson F; Beaufrère, Hugues; Queiroz, Patricia; Nevarez, Javier G; Tully, Thomas N

    2012-07-01

    To assess the effects of dopamine and dobutamine on the blood pressure of isoflurane-anesthetized Hispaniolan Amazon parrots (Amazona ventralis). 8 Hispaniolan Amazon parrots. A randomized crossover study was conducted. Each bird was anesthetized (anesthesia maintained by administration of 2.5% isoflurane in oxygen) and received 3 doses of each drug during a treatment period of 20 min/dose. Treatments were constant rate infusions (CRIs) of dobutamine (5, 10, and 15 μg/kg/min) and dopamine (5, 7, and 10 μg/kg/min). Direct systolic, diastolic, and mean arterial pressure measurements, heart rate, esophageal temperature, and end-tidal partial pressure of CO(2) were recorded throughout the treatment periods. Mean ± SD of the systolic, mean, and diastolic arterial blood pressures at time 0 (initiation of a CRI) were 132.9 ± 22.1 mm Hg, 116.9 ± 20.5 mm Hg, and 101.9 ± 22.0 mm Hg, respectively. Dopamine resulted in significantly higher values than did dobutamine for the measured variables, except for end-tidal partial pressure of CO(2). Post hoc multiple comparisons revealed that the changes in arterial blood pressure were significantly different 4 to 7 minutes after initiation of a CRI. Overall, dopamine at rates of 7 and 10 μg/kg/min and dobutamine at a rate of 15 μg/kg/min caused the greatest increases in arterial blood pressure. Dobutamine CRI at 5, 10, and 15 μg/kg/min and dopamine CRI at 5, 7, and 10 μg/kg/min may be useful in correcting severe hypotension in Hispaniolan Amazon parrots caused by anesthesia maintained with 2.5% isoflurane.

  8. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  9. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE PAGES

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    2017-05-26

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  10. Brucite [Mg(OH2)] Carbonation in Wet Supercritical CO2: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Windisch, Charles F.; McGrail, B. Peter

    2011-11-01

    Understanding mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO2) in geologic formations is crucial to accurately predicting long-term storage risks. Most attention so far has been focused on reactions occurring between silicate minerals and rocks in the aqueous dominated CO2-bearing fluid. However, water-bearing scCO2 also comprises a reactive fluid, and in this situation mineral carbonation mechanisms are poorly understood. Using in situ high-pressure x-ray diffraction, the carbonation of brucite [Mg(OH)2] in wet scCO2 was examined at pressure (82 bar) as a function of water concentration and temperature (50 C and 75more » C). Exposing brucite to anhydrous scCO2 at either temperature resulted in little or no detectable reaction over three days. However, addition of trace amounts of water resulted in partial carbonation of brucite into nesquehonite [MgCO3 3H2O] within a few hours at 50 C. By increasing water content to well above the saturation level of the scCO2, complete conversion of brucite into nesquehonite was observed. Tests conducted at 75 C resulted in the conversion of brucite into magnesite [MgCO3] instead, apparently through an intermediate nesquehonite step. Raman spectroscopy applied to brucite reacted with 18O-labeled water in scCO2 show it was incorporated into carbonate at relatively high concentration. This supports a carbonation mechanism with at least one step involving a direct reaction between the mineral and water molecules without mediation by a condensed aqueous layer.« less

  11. Process for analyzing CO[sub 2] in air and in water

    DOEpatents

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1999-06-08

    The process of this invention comprises providing a membrane for separating CO[sub 2] into a first CO[sub 2] sample phase and a second CO[sub 2] analyte phase. CO[sub 2] is then transported through the membrane thereby separating the CO[sub 2] with the membrane into a first CO[sub 2] sample phase and a second CO[sub 2] analyte liquid phase including an ionized, conductive, dissociated CO[sub 2] species. Next, the concentration of the ionized, conductive, dissociated CO[sub 2] species in the second CO[sub 2] analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO[sub 2] to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO[sub 2] in the first CO[sub 2] sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO[sub 2] species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO[sub 2] species are detected using the conductivity measuring instrument. 43 figs.

  12. Process for analyzing CO.sub.2 in air and in water

    DOEpatents

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1999-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  13. Process for analyzing CO{sub 2} in seawater

    DOEpatents

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1997-07-01

    The process of this invention comprises providing a membrane for separating CO{sub 2} into a first CO{sub 2} sample phase and a second CO{sub 2} analyte phase. CO{sub 2} is then transported through the membrane thereby separating the CO{sub 2} with the membrane into a first CO{sub 2} sample phase and a second CO{sub 2} analyte liquid phase including an ionized, conductive, dissociated CO{sub 2} species. Next, the concentration of the ionized, conductive, dissociated CO{sub 2} species in the second CO{sub 2} analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO{sub 2} to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO{sub 2} in the first CO{sub 2} sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO{sub 2} species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO{sub 2} species are detected using the conductivity measuring instrument. 43 figs.

  14. SGLT2 inhibitors: their potential reduction in blood pressure.

    PubMed

    Maliha, George; Townsend, Raymond R

    2015-01-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitors represent a promising treatment option for diabetes and its common comorbidity, hypertension. Emerging data suggests that the SGLT2 inhibitors provide a meaningful reduction in blood pressure, although the precise mechanism of the blood pressure drop remains incompletely elucidated. Based on current data, the blood pressure reduction is partially due to a combination of diuresis, nephron remodeling, reduction in arterial stiffness, and weight loss. While current trials are underway focusing on cardiovascular endpoints, the SGLT2 inhibitors present a novel treatment modality for diabetes and its associated hypertension as well as an opportunity to elucidate the pathophysiology of hypertension in diabetes. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  15. Satellite Evidence that E. huxleyi Phytoplankton Blooms Weaken Marine Carbon Sinks

    NASA Astrophysics Data System (ADS)

    Kondrik, D. V.; Pozdnyakov, D. V.; Johannessen, O. M.

    2018-01-01

    Phytoplankton blooms of the coccolithophore Emiliania huxleyi are known to produce CO2, causing less uptake of atmospheric CO2 by the ocean, but a global assessment of this phenomenon has so far not been quantified. Therefore, here we quantify the increase in CO2 partial pressure (ΔpCO2) at the ocean surface within E. huxleyi blooms for polar and subpolar seas using an 18 year ocean color time series (1998-2015). When normalized to pCO2 in the absence of bloom, the mean and maximum ΔpCO2 values within the bloom areas varied between 21.0%-43.3% and 31.6%-62.5%, respectively. These results might have appreciable implications for climatology, marine chemistry, and ecology.

  16. Comparison of the characteristics of small commercial NDIR CO2 sensor models and development of a portable CO2 measurement device.

    PubMed

    Yasuda, Tomomi; Yonemura, Seiichiro; Tani, Akira

    2012-01-01

    Many sensors have to be used simultaneously for multipoint carbon dioxide (CO(2)) observation. All the sensors should be calibrated in advance, but this is a time-consuming process. To seek a simplified calibration method, we used four commercial CO(2) sensor models and characterized their output tendencies against ambient temperature and length of use, in addition to offset characteristics. We used four samples of standard gas with different CO(2) concentrations (0, 407, 1,110, and 1,810 ppm). The outputs of K30 and AN100 models showed linear relationships with temperature and length of use. Calibration coefficients for sensor models were determined using the data from three individual sensors of the same model to minimize the relative RMS error. When the correction was applied to the sensors, the accuracy of measurements improved significantly in the case of the K30 and AN100 units. In particular, in the case of K30 the relative RMS error decreased from 24% to 4%. Hence, we have chosen K30 for developing a portable CO(2) measurement device (10 × 10 × 15 cm, 900 g). Data of CO(2) concentration, measurement time and location, temperature, humidity, and atmospheric pressure can be recorded onto a Secure Digital (SD) memory card. The CO(2) concentration in a high-school lecture room was monitored with this device. The CO(2) data, when corrected for simultaneously measured temperature, water vapor partial pressure, and atmospheric pressure, showed a good agreement with the data measured by a highly accurate CO(2) analyzer, LI-6262. This indicates that acceptable accuracy can be realized using the calibration method developed in this study.

  17. Comparison of the Characteristics of Small Commercial NDIR CO2 Sensor Models and Development of a Portable CO2 Measurement Device

    PubMed Central

    Yasuda, Tomomi; Yonemura, Seiichiro; Tani, Akira

    2012-01-01

    Many sensors have to be used simultaneously for multipoint carbon dioxide (CO2) observation. All the sensors should be calibrated in advance, but this is a time-consuming process. To seek a simplified calibration method, we used four commercial CO2 sensor models and characterized their output tendencies against ambient temperature and length of use, in addition to offset characteristics. We used four samples of standard gas with different CO2 concentrations (0, 407, 1,110, and 1,810 ppm). The outputs of K30 and AN100 models showed linear relationships with temperature and length of use. Calibration coefficients for sensor models were determined using the data from three individual sensors of the same model to minimize the relative RMS error. When the correction was applied to the sensors, the accuracy of measurements improved significantly in the case of the K30 and AN100 units. In particular, in the case of K30 the relative RMS error decreased from 24% to 4%. Hence, we have chosen K30 for developing a portable CO2 measurement device (10 × 10 × 15 cm, 900 g). Data of CO2 concentration, measurement time and location, temperature, humidity, and atmospheric pressure can be recorded onto a Secure Digital (SD) memory card. The CO2 concentration in a high-school lecture room was monitored with this device. The CO2 data, when corrected for simultaneously measured temperature, water vapor partial pressure, and atmospheric pressure, showed a good agreement with the data measured by a highly accurate CO2 analyzer, LI-6262. This indicates that acceptable accuracy can be realized using the calibration method developed in this study. PMID:22737029

  18. Effects of pumpless extracorporeal lung assist on hemodynamics, gas exchange and inflammatory cascade response during experimental lung injury

    PubMed Central

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2018-01-01

    Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfusion require further study to be determined. After induction of acute lung injury (ALI) by oleic acid injection, pECLA was implemented in 12 anaesthetized and mechanically ventilated dogs for 48 h. Improved oxygenation [partial oxygen pressure (PaO2) and oxygen saturation (SaO2) was measured by arterial blood gas analysis, and increased by 29 and 18%, respectively] and CO2 elimination (partial CO2 pressure decreased by 43.35%) were obtained after pECLA implementation. A maximum arterio-venous shunt flow of up to 25% of the foundational CO resulted in stable hemodynamics. The pECLA procedure did not elicit any further increase in the concentration of tumor necrosis factor-α, interleukin (IL)-6, IL-8 and endothelin-1 compared with that in the group subjected to oleic acid injection only. In addition, the pECLA procedure had no effect on lactate levels and urine production. In conclusion, pECLA is an efficient and promising strategy for providing a mild to moderate oxygenation and adequate decarboxylation, while avoiding excessive inflammatory cascade response and tissue hypoperfusion in an experimental ALI model. PMID:29434789

  19. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  20. Characterization of commercial off-the shelf regenerable sorbent to scrub carbon dioxide in a portable life support system

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuya; Fricker, John

    2018-06-01

    A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.

  1. Supercritical CO2 uptake by nonswelling phyllosilicates

    PubMed Central

    Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.

    2018-01-01

    Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499

  2. Supercritical CO2 uptake by nonswelling phyllosilicates.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  3. Supercritical CO 2 uptake by nonswelling phyllosilicates

    DOE PAGES

    Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...

    2018-01-16

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less

  4. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation.

    PubMed

    Koelkebeck, K W; Odom, T W

    1994-04-01

    Exposure to heat stress lowered partial pressure of arterial blood carbon dioxide (paCO2), arterial blood bicarbonate ion (HCO3-), but increased arterial blood pH (pHa) and plasma lactate (LA). Increasing ambient carbon dioxide (CO2) to 1.5% increased paCO2 from hypocapnic levels to normocapnic levels, raised HCO3-, lowered pHa and plasma LA to pre-heat stress levels. Following CO2 treatment, respiratory alkalosis conditions returned. It was evident in this study that increasing ambient chamber CO2 to 1.5% was effective in ameliorating acid-base disturbances and reducing elevated levels of plasma LA which normally develops when laying hens are subjected to an acute heat stress exposure.

  5. Method of Synthesizing a Novel Absorbent Titanosilicate Material (UPRM-5)

    NASA Technical Reports Server (NTRS)

    Hernandez-Maldonado, Arturo (Inventor); Primera-Pedrozo, Jose N (Inventor)

    2013-01-01

    A titanium silicate variant named UPRM-5 was prepared using tetraethylammonium hydroxide as a structure-directing agent (SDA). Successful detemplation was achieved via ion exchange with NH4Cl. Effective functionalization was obtained after ion exchanging the detemplated material using SrCl2 and BaCl2. Adsorption of CO2 at 25 deg C in Sr(-) and Ba-UPRM-5 materials activated at different temperatures. For low partial pressures, the observed CO2 adsorption capacities increased as follows: NH4-UPRM-5 less than Sr-UPRM-5 less than Ba-UPRM-5. Both the Sr(-) and Ba-UPRM-5 materials exhibited outstanding selectivity for CO2 over CH4, N2 and O2.

  6. Human respiration at rest in rapid compression and at high pressures and gas densities

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.

    1983-01-01

    The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.

  7. Effects of respiratory alkalosis and acidosis on myocardial blood flow and metabolism in patients with coronary artery disease.

    PubMed

    Kazmaier, S; Weyland, A; Buhre, W; Stephan, H; Rieke, H; Filoda, K; Sonntag, H

    1998-10-01

    Variation of the arterial carbon dioxide partial pressure (PaCO2) is not uncommon in anesthetic practice. However, little is known about the myocardial consequences of respiratory alkalosis and acidosis, particularly in patients with coronary artery disease. The aim of the current study was to investigate the effects of variation in PaCO2 on myocardial blood flow (MBF), metabolism, and systemic hemodynamics in patients before elective coronary artery bypass graft surgery. In 10 male anesthetized patients, measurements of MBF, myocardial contractility, metabolism, and systemic hemodynamics were made in a randomized sequence at PaCO2 levels of 30, 40, and 50 mmHg, respectively. The MBF was measured using the Kety-Schmidt technique with argon as a tracer. End-diastolic left ventricular pressure and the maximal increase of left ventricular pressure were assessed using a manometer-tipped catheter. The cardiac index significantly changed with varying PaCO2 levels (hypocapnia, - 9%; hypercapnia, 13%). This reaction was associated with inverse changes in systemic vascular resistance index levels. The MBF significantly increased by 15% during hypercapnia, whereas no change was found during hypocapnia. Myocardial oxygen and glucose uptake and the maximal increase of left ventricular pressure were not affected by varying PaCO2 levels. In anesthetized patients with coronary artery disease, short-term variations in PaCO2 have significant effects on MBF but do not influence global myocardial oxygen and glucose uptake. Changes in systemic hemodynamics associated with respiratory alkalosis and acidosis are caused by changes in systemic vascular resistance rather than by alterations in myocardial contractility.

  8. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  9. Mineralogical changes of a well cement in various H2S-CO2(-brine) fluids at high pressure and temperature.

    PubMed

    Jacquemet, Nicolas; Pironon, Jacques; Saint-Marc, Jérémie

    2008-01-01

    The reactivity of a crushed well cement in contact with (1) a brine with dissolved H2S-CO2; (2) a dry H2S-CO2 supercritical phase; (3) a two-phase fluid associating a brine with dissolved H2S-CO2 and a H2S-CO2 supercritical phase was investigated in batch experiments at 500 bar and 120, 200 degrees C. All of the experiments showed that following 15-60 days cement carbonation occurred. The H2S reactivity with cement is limited since it only transformed the ferrites (minor phases) by sulfidation. It appeared that the primary parameter controlling the degree of carbonation (i.e., the rate of calcium carbonates precipitation and CSH (Calcium Silicate Hydrates) decalcification) is the physical state of the fluid phase contacting the minerals. The carbonation degree is complete when the minerals contact at least the dry H2S-CO2 supercritical phase and partial when they contactthe brine with dissolved H2S-CO2. Aragonite (calcium carbonate polymorph) precipitated specifically within the dry H2S-CO2 supercritical phase. CSH cristallinity is improved by partial carbonation while CSH are amorphized by complete carbonation. However, the features evidenced in this study cannot be directly related to effective features of cement as a monolith. Further studies involving cement as a monolith are necessary to ascertain textural, petrophysical, and mechanical evolution of cement.

  10. Simultaneous laboratory measurements of CO2 and H2O adsorption on palagonite: Implications for the Martian climate and volatile reservoir

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Quinn, R.

    1993-01-01

    We are measuring the simultaneous adsorption of H2O and CO2 on palagonite materials in order to improve the formulation of climate models for Mars. We report on the initial co-adsorption data. Models of the Martian climate and volatile inventory indicate that the regolith serves as one of the primary reservoirs of outgassed volatiles and that it exchanges H2O and CO2 with the atmosphere in response to changes in insolation associated with astronomical cycles. Physical adsorbate must exist on the surfaces of the cold particulates that constitute the regolith, and the size of that reservoir can be assessed through laboratory measurements of adsorption on terrestrial analogs. Many studies of the independent adsorption of H2O and CO2 on Mars analog were made and appear in the literature. Empirical expressions that relate the adsorptive coverage of each gas to the temperature of the soil and partial pressure have been derived based on the laboratory data. Numerical models incorporate these adsorption isotherms into climatic models, which predict how the adsorptive coverage of the regolith and hence, the pressure of each gas in the atmosphere will vary as the planet moves through its orbit. These models suggest that the regolith holds several tens to hundreds of millibars of CO2 and that during periods of high obliquity warming of the high-latitude regolith will result in desorption of the CO2, and a consequent increase in atmospheric pressure. At lower obliquities, the caps cool and the equator warms forcing the desorption of several tens of millibars of CO2, which is trapped into quasipermanent CO2 caps.

  11. Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter

    NASA Astrophysics Data System (ADS)

    Vesper, Dorothy J.; Edenborn, Harry M.

    2012-05-01

    SummaryDissolved CO2 in groundwater is frequently supersaturated relative to its equilibrium with atmospheric partial pressure and will degas when it is conveyed to the surface. Estimates of dissolved CO2 concentrations can vary widely between different hydrochemical facies because they have different sources of error (e.g., rapid degassing, low alkalinity, non-carbonate alkalinity). We sampled 60 natural spring and mine waters using a beverage industry carbonation meter, which measures dissolved CO2 based on temperature and pressure changes as the sample volume is expanded. Using a modified field protocol, the meter was found to be highly accurate in the range 0.2-35 mM CO2. The meter provided rapid, accurate and precise measurements of dissolved CO2 in natural waters for a range of hydrochemical facies. Dissolved CO2 concentrations measured in the field with the carbonation meter were similar to CO2 determined using the pH-alkalinity approach, but provided immediate results and avoided errors from alkalinity and pH determination. The portability and ease of use of the carbonation meter in the field made it well-suited to sampling in difficult terrain. The carbonation meter has proven useful in the study of aquatic systems where CO2 degassing drives geochemical changes that result in surficial mineral precipitation and deposition, such as tufa, travertine and mine drainage deposits.

  12. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  13. Effects of Mild Hypercapnia During Head-Down Bed Rest on Ocular Structures, Cerebral Blood Flow, aud Visual Acuity in Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Taibbi, G.; Lee, S. M. C.; Martin, D. S.; Zanello, S.; Ploutz-Snyder, R.; Hu, X.; Stenger, M. B.; Vizzeri, G.

    2014-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to cause an elevation in intracranial pressure (ICP) and contribute to the development of the Visual Impairment/Intracranial Pressure (VIIP) syndrome, as experienced by some astronauts during long-duration space flight. Elevated ambient partial pressure of carbon dioxide (PCO2) on ISS may also raise ICP and contribute to VIIP development. We seek to determine if the combination of mild CO2 exposure, similar to that occurring on the International Space Station, with the cephalad fluid shift induced by head-down tilt, will induce ophthalmic and cerebral blood flow changes similar to those described in the VIIP syndrome. We hypothesize that mild hypercapnia in the head-down tilt position will increase choroidal blood volume and cerebral blood flow, raise intraocular pressure (IOP), and transiently reduce visual acuity as compared to the seated or the head-down tilt position without elevated CO2, respectively.

  14. Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy

    DOE PAGES

    Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.; ...

    2017-08-28

    Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less

  15. Experimental study of catalytic hydrogenation by using an in-situ hydrogen measuring technique. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.

    1984-12-01

    An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less

  16. [Blood acid-base changes produced by variations of water oxygenation in the crab Carcinus maenas (author's transl)].

    PubMed

    Truchot, J P

    1975-12-01

    10 Blood acid-base changes were studied at 17 degrees C in immersed crabs (Carcinus maenas) exposed to hypoxic and hyperoxic conditions, by measuring the pH and the CO2 partial pressure, PbCO2, and by calculating the bicarbonate concentration. 20 Hyperoxia first induces a marked respiratory acidosis with a rise of PbCO2. This acidosis is compensated thereafter by a non-ventilatory increase of the blood buffer base concentration. These results are discussed in relation to the general problems concerning the control of the blood acid-base balance in aquatic animals.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less

  18. Application of dead space fraction to titrate optimal positive end-expiratory pressure in an ARDS swine model.

    PubMed

    Bian, Weishuai; Chen, Wei; Chao, Yangong; Wang, Lan; Li, Liming; Guan, Jian; Zang, Xuefeng; Zhen, Jie; Sheng, Bo; Zhu, Xi

    2017-04-01

    This study aimed to apply the dead space fraction [ratio of dead space to tidal volume (VD/VT)] to titrate the optimal positive end-expiratory pressure (PEEP) in a swine model of acute respiratory distress syndrome (ARDS). Twelve swine models of ARDS were constructed. A lung recruitment maneuver was then conducted and the PEEP was set at 20 cm H 2 O. The PEEP was reduced by 2 cm H 2 O every 10 min until 0 cm H 2 O was reached, and VD/VT was measured after each decrement step. VD/VT was measured using single-breath analysis of CO 2 , and calculated from arterial CO 2 partial pressure (PaCO 2 ) and mixed expired CO 2 (PeCO 2 ) using the following formula: VD/VT = (PaCO 2 - PeCO 2 )/PaCO 2 . The optimal PEEP was identified by the lowest VD/VT method. Respiration and hemodynamic parameters were recorded during the periods of pre-injury and injury, and at 4 and 2 cm H 2 O below and above the optimal PEEP (Po). The optimal PEEP in this study was found to be 13.25±1.36 cm H 2 O. During the Po period, VD/VT decreased to a lower value (0.44±0.08) compared with that during the injury period (0.68±0.10) (P<0.05), while the intrapulmonary shunt fraction reached its lowest value. In addition, a significant change of dynamic tidal respiratory compliance and oxygenation index was induced by PEEP titration. These results indicate that minimal VD/VT can be used for PEEP titration in ARDS.

  19. Development of a six-man, self-contained carbon dioxide collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Quattrone, P. D.

    1974-01-01

    Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.

  20. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju

    2013-08-01

    Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.

  2. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.; Knutti, Reto

    2016-06-01

    The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.

  3. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    PubMed

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.

  4. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

    PubMed Central

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R.

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas. PMID:27536280

  5. An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1989-06-01

    Literature density data for binary and common ion ternary solutions in the Na-K-Ca-Mg-Cl-SO 4-HCO 3-CO3-H 2O system at 25°C have been analysed with Pitzer's ion interaction model, which provides an adequate representation of the experimental data for binary and common ion ternary solutions up to high concentration. This analysis yields Pitzer's interaction parameters for the apparent and partial molal volumes, which are the first derivatives with respect to pressure of the interaction parameters for the free energy. From this information, densities of natural waters as well as partial molal volumes of their solutes can be predicted with good accuracy, as shown by several comparisons of calculated and measured values. It is shown that V¯MX - V¯0mx, the excess partial molal volume of the salt MX, depends more on the type of salt than on the electrolyte itself and that it increases with the charges of the salt components. The influence of concentration and composition on the variation of activity coefficients with pressure and on the partial molal volumes of the salts is discussed, using as an example the partial molal volume of CaSO 4(aq) in solutions of various compositions. The increase of V¯CaSO 4, with ionic strength is very large but is not very different for a NaCl-dominated natural water like the Red Sea lower brine than for a simple NaCl solution. Although the variation of activity coefficients with pressure is usually ignored for moderate pressures, like those found in hydrothermal environments, the present example shows that it can be as large as 30% for a 2-2 salt for a pressure increase from 1 to 500 bars at high ionic strength.

  6. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  7. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  8. Fixation of CO 2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations

    NASA Astrophysics Data System (ADS)

    Larachi, Faïçal; Daldoul, Insaf; Beaudoin, Georges

    2010-06-01

    A detailed study of low-pressure gas-solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300-1200 °C), humidity (0-10 mol %) and CO 2 partial pressure (20-67 mol %), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO 2 van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N 2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH) 2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted magnesium. The presence of cesium traces (3 Cs atoms per 100 Mg atoms) was found to boost chrysotile carbonation capacity by a factor 2.7.

  9. New constraints on Precambrian ocean composition

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Kasting, J. F.

    1993-01-01

    The Precambrian record of carbonate and evaporite sedimentation is equivocal. In contrast to most previous interpretations, it is possible that Archean, Paleoproterozoic, and to a lesser extent, Meso to Neoproterozoic seawater favored surplus abiotic carbonate precipitation, as aragonite and (hi-Mg?) calcite, in comparison to younger times. Furthermore, gypsum/anhydrite may have been only rarely precipitated prior to halite precipitation during evaporation prior to about 1.8 Ga. Two effects may have contributed to these relationships. First, sulfate concentration of seawater may have been critically low prior to about 1.9 Ga so the product mCa++ x mSO4-- would not have produced gypsum before halite, as in the Mesoproterozoic to modern ocean. Second, the bicarbonate to calcium ratio was sufficiently high so that during progressive evaporation of seawater, calcium would have been exhausted before the gypsum field was reached. The pH of the Archean and Paleoproterozoic ocean need not have been significantly different from the modern value of 8.1, even at CO2 partial pressures of a tenth of an atmosphere. Higher CO2 partial pressures require somewhat lower pH values.

  10. Hyperventilation with and without maintenance of isocapnia: a comparison of selected gasometric and respiratory parameters.

    PubMed

    Sein Anand, Jacek; Wiśniewski, Marek; Waldman, Wojciech

    2014-09-15

    The aims of this study were to examine selected respiratory and gasometric parameters during hyperventilation with and without isocapnia and to identify the possible mechanism by which isocapnic hyperventilation might be useful in the elimination of volatile substances, including CO. Ten healthy non-smoking volunteers were studied, and each underwent two procedures. During one session, CO2 was added to the respiratory circuit, and during the other session, only 100% O2 was used. The volunteers were coached to hyperventilate until the appearance of side effects. Isocapnic hyperventilation significantly increased alveolar minute ventilation and partial pressure of oxygen in arterialized capillary blood (paO2); to the best of our knowledge, these findings have not previously been reported. Isocapnic hyperventilation was associated with only mild side effects, such as dyspnea, increased respiratory effort and headache, in 30% of subjects. Side effects, including vertigo, paresthesias and muscle tremor, were present in 70% of the volunteers during hyperventilation with 100% O2, and these side effects forced them to limit their respiratory rates and tidal volumes. These increases in alveolar ventilation and the partial pressure of oxygen in the blood may play crucial roles in decreasing the half-time of carboxyhemoglobin, which is the primary goal of the treatment of CO poisoning. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Correction to the gas phase pressure term in the continuum model for partially saturated granular media presented by Pietruszczak and co-workers

    NASA Astrophysics Data System (ADS)

    Iveson, Simon M.

    2003-06-01

    Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.

  12. Hybrid air revitalization system for a closed ecosystem

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Brown, Mariann F.

    1990-01-01

    An air-revitalization concept is presented with experimental results to assess the practicality and applicability of the proposed system to extended-duration manned missions. The Hybrid Air Revitalization System (HARS) uses plants in a habitat to remove metabolic CO2 and moisture and produce oxygen and food. CO2 and O2 partial pressures, temperature, and humidity are regulated by means of electrochemical CO2 and O2 chemical separators and a moisture condenser separator. A cell-test facility is described in which the electrochemical CO2 removal processes are investigated with and without using H2. Performance is optimized by using 25-30 percent Teflon in the gas-diffusion-type electrode, employing a thin electrolyte matrix, operating at higher temperatures and lower dew points. The HARS concept is found to be a feasible approach to the electrochemical separation of CO2 and O2.

  13. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less

  14. Growing wheat to maturity in reduced gas pressures

    NASA Technical Reports Server (NTRS)

    Rykiel, Edward J., Jr.; Drew, Malcolm C.; Etter, Brad D.

    1993-01-01

    The main objective of this project was to determine assimilation of CO2 and efficiency of water use in wheat grown to maturity in a low pressure total gas pressure environment. A functional test of the low pressure plant growth chamber system was accomplished in February and March of 1993 wherein this objective was partially achieved. Plants were grown to maturity in the chambers. Data were actively collected during the first 29 days. The plants were allowed to maintain themselves at the CO2 compensation point until day 45 of the study at which point active atmospheric regulation was resumed. This provided data at the vegetative and reproductive stages of the life cycle of the plants. However, this information may not be representative of the performance of the plants due to the loss of low pressure on a number of days during the study, which affected the plants by changing the pressure potential of the tissues. The performance of the system will be discussed on a component by component basis. The maintenance of the plants at the CO2 compensation point was driven by the failure of the computer program operating the system. The software problems that arose during the functional test have since been corrected. Results from the functional test also indicated that the plants were not receiving adequate light and nutrients. The growth chambers have been relocated and the growth room modified to compensate for these deficiencies.

  15. Neutron and X-ray investigations of the Jahn–Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.

    2017-01-31

    The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.

  16. Field ion microscopic studies of the CO oxidation on platinum: Bistability and oscillations

    NASA Astrophysics Data System (ADS)

    Gorodetskii, V.; Drachsel, W.; Ehsasi, M.; Block, J. H.

    1994-05-01

    The oscillating CO oxidation is investigated on a Pt-field emitter tip by using the field ion mode of surface imaging of Oad sites with O2 as imaging gas. Based on data of the titration reactions [V. Gorodetskii, W. Drachsel, and J. H. Block, J. Chem. Phys. 100, C. E. UPDATE (1994)], external control parameters for the regions of bistability and of self-sustained isothermal oscillations could be found. On a field emitter tip, oscillations can be generated in a rather large parameter space. The anticlockwise hysteresis of O+2 ion currents in temperature cycles occurs in agreement with results on single crystal planes. Unexpected regular oscillation sequences could occasionally be obtained on the small surface areas of a field emitter tip and measured as function of the CO partial pressure and of the temperature. Different stages within oscillating cycles were documented by field ion images. Oscillations of total ion currents are correlated with variations in the spatial brightness of field ion images. In the manifold of single crystal planes of a field emitter {331} planes around the {011} regions are starting points for oscillations which mainly proceed along [100] vicinals. This excludes the {111} regions from autonomous oscillations. With slightly increased CO partial pressures fast local oscillations at a few hundred surface sites of the Pt(001) plane display short-living CO islands of 40 to 50 Å diameter. Temporal oscillations of the total O+2 ion current are mainly caused by surface plane specific spatial oscillations. The synchronization is achieved by diffusion reaction fronts rather than by gas phase synchronization.

  17. Microwave plasma torches used for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dias, F. M.; Bundaleska, N.; Henriques, J.; Tatarova, E.; Ferreira, C. M.

    2014-06-01

    A microwave plasma torch operating at 2.45 GHz and atmospheric pressure has been used as a medium and a tool for decomposition of alcohol in order to produce molecular hydrogen. Plasma in a gas mixture of argon and ethanol/methanol, with or without water, has been created using a waveguide surfatron launcher and a microwave generator delivering a power in the range 0.2-2.0 kW. Mass, Fourier Transform Infrared, and optical emission spectrometry have been applied as diagnostic tools. The decomposition yield of methanol was nearly 100 % with H2, CO, CO2, H2O, and solid carbon as the main reaction products. The influence of the fraction of Ar flow through the liquid ethanol/methanol on H2, CO, and CO2 partial pressures has been investigated, as well as the dependence of the produced H2 flow on the total flow and power. The optical emission spectrum in the range 250-700 nm has also been detected. There is a decrease of the OH(A-X) band intensity with the increase of methanol in the mixture. The emission of carbon atoms in the near UV range (240-300 nm) exhibits a significant increase as the amount of alcohol in the mixture grows. The obtained results clearly show that this microwave plasma torch at atmospheric pressure provides an efficient plasma environment for hydrogen production.

  18. Stability of iron-bearing carbonates in the deep Earth’s interior

    DOE PAGES

    Cerantola, Valerio; Bykova, Elena; Kupenko, Ilya; ...

    2017-07-19

    The presence of carbonates in inclusions in diamonds coming from depths exceeding 670 km are obvious evidence that carbonates exist in the Earth’s lower mantle. However, their range of stability, crystal structures and the thermodynamic conditions of the decarbonation processes remain poorly constrained. We investigate the behaviour of pure iron carbonate at pressures over 100 GPa and temperatures over 2,500 K using single-crystal X-ray diffraction and Mossbauer spectroscopy in laser-heated diamond anvil cells. On heating to temperatures of the Earth’s geotherm at pressures to B 50 GPa FeCO 3 partially dissociates to form various iron oxides. Furthermore, at higher pressures FeCO 3 forms two new structures— tetrairon(III) orthocarbonate Femore » $$3+\\atop{4}$$C 3O 12 and diiron(II) diiron(III) tetracarbonate Fe$$2+\\atop{2}$$ Fe$$3+\\atop{2}$$C 4 O 13, both phases containing CO 4 tetrahedra. Fe 4 C 4 O 13 is stable at conditions along the entire geotherm to depths of at least 2,500 km, thus demonstrating that self-oxidation-reduction reactions can preserve carbonates in the Earth’s lower mantle.« less

  19. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less

  20. Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.

    2017-12-01

    Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.

  1. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear regression to generate this compositional relationship. Our revised general model provides a new framework to interpret volcanic data, yielding greater depths for melt inclusion entrapment than previously calculated using other models, and it can be applied to mafic magma compositions for which no experimental data is available.

  2. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Merkel, Alexej; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • Uncertainties in reservoir characterisation (Gensterblum et al., 2010; Gensterblum et al., 2009) • Sorption uptake kinetic as a function of surface coverage and the influence of moisture on the kinetic Busch, A. and Gensterblum, Y., 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology, 87: 49-71. Gensterblum, Y. et al., 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2): 115-124. Gensterblum, Y. et al., 2009. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13): 2958-2969.

  3. Comparison of biochemical stress indicators in juvenile captive estuarine crocodiles (Crocodylus porosus) following physical restraint or chemical restraint by midazolam injection.

    PubMed

    Olsson, Annabelle; Phalen, David

    2013-07-01

    Using a prospective, randomized study design we demonstrate that midazolam sedation minimizes acidosis compared with physical restraint in captive juvenile estuarine crocodiles during handling or noninvasive procedures at preferred body temperature. A dose of midazolam (5.0 mg/kg) was administered intramuscularly into the forelimb of 20 male estuarine crocodiles weighing 2-3.5 kg. Their heart and respiratory rate and degree of sedation were monitored until recovery and then daily for 7 subsequent days. Blood samples were taken at 30, 60, 90, 180, and 360 min. We recorded lactate, partial pressure of carbon dioxide (CO2), hematocrit, glucose, and blood pH. A second group (1.9-2.6 kg) was physically restrained for 5 min and the same parameters recorded. Physically restrained animals demonstrated elevated heart rate, respiratory rate, glucose, lactate, and anion gap compared with the midazolam-treated group. Physically restrained animals had lower pH, bicarbonate, and partial pressure of CO2 compared with the midazolam-treated group. Behavior in the physically restrained group in the days following the study was disrupted, with reluctance to feed and bask, compared with midazolam-treated animals whose behavior was normal. We conclude that midazolam administered in the forelimb of captive estuarine crocodiles of 2-3.5 kg provides predictable onset and duration of sedation enabling physical examination, sample collection, and translocation of the animals with minimal disturbance to lactate, pH, and CO2. Behavior following recovery appears normal.

  4. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  5. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  6. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  7. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  8. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level.

    PubMed

    Richier, Sophie; Fiorini, Sarah; Kerros, Marie-Emmanuelle; von Dassow, Peter; Gattuso, Jean-Pierre

    2011-01-01

    The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in gene expression induced by variations in pH/pCO 2 in the widespread and abundant coccolithophore Emiliania huxleyi . Batch cultures were subjected to increased partial pressure of CO 2 (pCO 2 ; i.e. decreased pH), and the changes in expression of four functional gene classes directly or indirectly related to calcification were investigated. Increased pCO 2 did not affect the calcification rate and only carbonic anhydrase transcripts exhibited a significant down-regulation. Our observation that elevated pCO 2 induces only limited changes in the transcription of several transporters of calcium and bicarbonate gives new significant elements to understand cellular mechanisms underlying the early response of E. huxleyi to CO 2 -driven ocean acidification.

  9. In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Ilton, Eugene S.; Qafoku, Odeta

    2012-01-09

    Reactions involving scCO2 and a calcium saturated dioctahedral smectite (Ca-STX-1) were examined by in situ high-pressure x-ray diffraction over a range of temperatures (50° to 100°C) and pressures (90, 125, and 180 bar) relevant to long term geologic storage of CO2. Exposure of Ca-STX-1 containing one water of hydration (1W) to anhydrous scCO2 at 50°C and 90 bar produced an immediate increase of ~0.8 Å in the d001 basal reflection that was sustained for the length of the experiment (~44 hours). Higher ordered basal reflections displayed similar shifts. Following depressurization, positions of basal reflections and FWHM values (d001) returned tomore » initial values, with no measurable modification to the clay structure or water content. Similar results were obtained for tests conducted at 50°C and higher pressures (125 and 180 bar). Exposure of Ca-STX-1 containing two waters of hydration (2W) to scCO2 resulted in a decrease in the d001 reflection from 14.48 Å to 12.52 Å, after pressurization, indicating a partial loss of interlayer water. In addition, the hydration state of the clay became more homogeneous during contact with anhydrous scCO2 and after depressurization. In the presence of scCO2 and water, the clay achieved a 3W hydration state, based on a d001 spacing of 18.8 Å. In contrast to scCO2, comparable testing with N2 gas indicated trivial changes in the d001 series regardless of hydration state (1W or 2W). In the presence of free water and N2, the basal spacing for the Ca-STX-1 expanded slightly, but remained in the 2W hydration state. These experiments indicate that scCO2 can intercalate hydrated clays, where the 1W hydrate state is stable when exposed to anhydrous scCO2 under conditions proposed for geologic storage of CO2. Consequently, clays can act as secondary CO2 traps where potential collapse or expansion of the interlayer spacing depends on the initial hydration state of the clay and scCO2.« less

  10. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called "explosion peninsula" as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.

  11. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    PubMed

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A limited role for carbonic anhydrase in C 4 photosynthesis as revealed by a ca1ca2 double mutant in maize.

    DOE PAGES

    Studer, Anthony J.; Gandin, Anthony; Kolbe, Allison R.; ...

    2014-04-04

    Carbonic anhydrase (CA) catalyzes the first biochemical step of the carbon concentrating mechanism of C 4 plants, and in C 4 monocots, it has been suggested that CA activity is near limiting for photosynthesis. Here, we test this hypothesis through the characterization of transposon induced mutant alleles of Ca1 and Ca2 in Zea mays. In addition, these two isoforms account for more than 85% of the CA transcript pool. A significant change in isotopic discrimination is observed in mutant plants, which have as little as 3% of wild-type CA activity, but surprisingly, photosynthesis is not reduced under current or elevatedmore » pCO 2. However, growth and rates of photosynthesis under sub-ambient pCO 2 are significantly impaired in the mutants. These findings suggest, that while CA is not limiting for C 4 photosynthesis in Z. mays at current pCO 2, it likely maintains high rates of photosynthesis when CO 2 availability is reduced. Current atmospheric CO 2 levels now exceed 400 ppm (~40.53 Pa) and contrast the low CO 2 partial pressure (pCO 2) conditions under which C 4 plants expanded their range ~10 million years ago when the global atmospheric CO 2 was below 300 ppm (~30.40 Pa). Thus, as CO 2 levels continue to rise, selective pressures for high levels of CA may be limited to arid climates where stomatal closure reduces CO 2 availability to the leaf.« less

  13. Hydrogen sulfide capture by limestone and dolomite at elevated pressure. 2: Sorbent particle conversion modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.

    1996-03-01

    The physical structure of a limestone or dolomite to be used in in-bed sulfur capture in fluidized bed gasifiers has a great impact on the efficiency of sulfur capture and sorbent use. In this study an unreacted shrinking core model with variable effective diffusivity is applied to sulfidation test data from a pressurized thermogravimetric apparatus (P-TGA) for a set of physically and chemically different limestone and dolomite samples. The particle size was 250--300 {micro}m for all sorbents, which were characterized by chemical composition analysis, particle density measurement, mercury porosimetry, and BET internal surface measurement. Tests were done under typical conditionsmore » for a pressurized fluidized-bed gasifier, i.e., 20% CO{sub 2}, 950 C, 20 bar. At these conditions the limestone remains uncalcined, while the dolomite is half-calcined. Additional tests were done at low CO{sub 2} partial pressures, yielding calcined limestone and fully calcined dolomite. The generalized model allows for determination of values for the initial reaction rate and product layer diffusivity.« less

  14. Use of mineral/solution equilibrium calculations to assess the potential for carnotite precipitation from groundwater in the Texas Panhandle, USA

    USGS Publications Warehouse

    Ranalli, Anthony J.; Yager, Douglas B.

    2016-01-01

    This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3− + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.

  15. Branchial CO(2) receptors and cardiorespiratory adjustments during hypercarbia in Pacific spiny dogfish (Squalus acanthias).

    PubMed

    McKendry, J E; Milsom, W K; Perry, S F

    2001-04-01

    Adult Pacific spiny dogfish (Squalus acanthias) were exposed to acute (approximately 20 min) hypercarbia while we monitored arterial blood pressure, systemic vascular resistance (R(S)), cardiac output (V(b)) and frequency (fh) as well as ventilatory amplitude (V(AMP)) and frequency (f(V)). Separate series of experiments were conducted on control, atropinized (100 nmol kg(-1)) and branchially denervated fish to investigate putative CO(2)-chemoreceptive sites on the gills and their link to the autonomic nervous system and cardiorespiratory reflexes.In untreated fish, moderate hypercarbia (water CO(2 )partial pressure; Pw(CO2)=6.4+/-0.1 mmHg) (1 mmHg=0.133 kPa) elicited significant increases in V(AMP) (of approximately 92 %) and f(V) (of approximately 18 %) as well as decreases in fh (of approximately 64 %), V.(b) (approximately 29 %) and arterial blood pressure (of approximately 11 %); R(S) did not change significantly. Denervation of the branchial branches of cranial nerves IX and X to the pseudobranch and each gill arch eliminated all cardiorespiratory responses to hypercarbia. Prior administration of the muscarinic receptor antagonist atropine also abolished the hypercarbia-induced ventilatory responses and virtually eliminated all CO(2)-elicited cardiovascular adjustments. Although the atropinized dogfish displayed a hypercarbic bradycardia, the magnitude of the response was significantly attenuated (36+/-6 % decrease in fh in controls versus 9+/-2 % decrease in atropinized fish; means +/- s.e.m.).Thus, the results of the present study reveal the presence of gill CO(2) chemoreceptors in dogfish that are linked to numerous cardiorespiratory reflexes. In addition, because all cardiorespiratory responses to hypercarbia were abolished or attenuated by atropine, the CO(2) chemoreception process and/or one or more downstream elements probably involve cholinergic (muscarinic) neurotransmission.

  16. Effects of asphyxia and potassium on canine and feline electrocardiograms.

    PubMed Central

    Coulter, D B; Duncan, R J; Sander, P D

    1975-01-01

    The effects of asphyxia and potassium on the electrocardiogram (ECG), lead II, were recorded from dogs and cats anesthetized with sodium pentobarbital and halothane. Electrocardiographic recordings were made during control periods, during asphyxia (occluded endotracheal tube), during infusion of an isotonic KCl solution and during infusion of an isotonic NaCl solution. Arterial and venous blood gas partial pressures (PaCO2, PvCO2, PaO2 and and PvO2), plasma Na+ and K+ concentrations, heart rate and mean arterial blood pressure were measured during control periods, asphyxia and during the periods of infusion. The vagi were severed to assess the effect of vagal tone on the ECG changes. The characteristic ECG changes during asphyxia and the electrolyte imbalances resulting from infusion of isotonic KCl and NaCl were determined during sodium pentobarbital and halothane anesthesia in both dogs and cats. The combination of halothane and high PCO2 caused cardiac arrhythmias. Spontaneous recovery from ventricular fibrillation, as a result of hyperkalemia, was recorded from cats. Disappearance of the P waves, which is characteristic of hyperkalemia, was infrequent in this study and the U waves associated with hypokalemia were not found. Severing the vagi did not alter the ECG changes characteristic of asphyxia, hyperkalemia and hypokalemia. It was found that asphyxia and infusion of fluids high or low in potassium can produce ECG changes in both dogs and cats that can be correlated with blood gas partial pressure changes or plasma potassium concentrations. PMID:1175078

  17. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  18. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  19. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  20. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  1. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  2. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE PAGES

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.; ...

    2016-08-02

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  3. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost significantly. The validation criteria of the reduced order model ensured accuracy in the dynamic modeling results. The prediction outcome suggested robustness and reliability of the genetic algorithm for optimizing both oil recovery and CO 2 storage. The reservoir modeling approach used in this study illustrates an improved approach to optimizing oil production and CO 2 storage within partially depleted oil reservoirs such as FWU. Lastly, this study may serve as a benchmark for potential CO 2–EOR projects in the Anadarko basin and/or geologically similar basins throughout the world.« less

  4. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  5. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.

    PubMed

    Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin

    2015-01-01

    The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation factors. Laboratory experiments with original reservoir fluids from CO2 storage reservoirs in Canada using supercritical fluid extraction reactors are being conducted at temperatures of up to 200 °C and CO2 pressures of up to 20 MPa. Preliminary results show that equilibration times for δ18O in high saline waters increase by an order of magnitude compared to fresh water, with exact times depending on CO2 partial pressure, stirring and the contact area between the phases. References Becker, V. et al., 2011. Predicting δ13CDIC dynamics in CCS: A scheme based on a review of inorganic carbon chemistry under elevated pressures and temperatures. International Journal of Greenhouse Gas Control, 5, pp.1250-1258. Johnson, G. et al., 2011. Using oxygen isotope ratios to quantitatively assess trapping mechanisms during CO2 injection into geological reservoirs: The Pembina case study. Chemical Geology, 283(3-4), pp.185-193.

  7. Coadsorption of H2O and CO2 on the Martian surface

    NASA Technical Reports Server (NTRS)

    Zent, A. P.

    1987-01-01

    The adsorption of both CO2 and H2O was measured, under conditions of temperature and partial pressure similar to Mars, for a variety of absorbents. Both adsorb at coverages that exceed a monolayer at their respective Martian abundances. Clearly, their simultaneous presence in the Martian atmosphere will result in coadsorption of both at concentrations that may differ greatly from those measured during separate measurements. To the best of our knowledge, no data exists on the coadsorption of both gases. Co-adsorption experiments were begun and pertinent results will be reported. In the meantime the predicted behavior of such a system was mathematically explored as a compliment to the data, and to aid in its eventual interpretation.

  8. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology.

    PubMed

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-09-17

    Syngas is produced by thermal gasification of both nonrenewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2, and H2. In this paper we aim to bioconvert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high-throughput sequencing analysis showed clear differences of the microbial community structures between the samples from liquid and biofilm on the HFM in the reactor with CO addition. Species close to Methanosarcina barkeri and Methanothermobacter thermautotrophicus were the two main archaeal species involved in CO biomethanation. However, the two species were distributed differently in the liquid phase and in the biofilm. Although the carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown.

  9. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  10. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain

    NASA Astrophysics Data System (ADS)

    Li, Yunxiao; Yang, Xufeng; Han, Ping; Xue, Liang; Zhang, Longjun

    2017-09-01

    Due to the combined effects of natural processes and human activities, carbon source/sink processes and mechanisms in the coastal ocean are becoming more and more important in current ocean carbon cycle research. Based on differences in the ratio of total alkalinity (TA) to dissolved inorganic carbon (DIC) associated with terrestrial input, biological process (production and respiration), calcium carbonate (CaCO3) process (precipitation and dissolution) and CO2 evasion/invasion, we discuss the mechanisms controlling the surface partial pressure of CO2 (pCO2) in Jiaozhou Bay (JZB) during summer and the influence of heavy rain, via three cruises performed in mid-June, early July and late July of 2014. In mid-June and in early July, without heavy rain or obvious river input, sea surface pCO2 ranged from 521 to 1080 μatm and from 547 to 998 μatm, respectively. The direct input of DIC from sewage and the intense respiration produced large DIC additions and the highest pCO2 values in the northeast of the bay near the downtown of Qingdao. However, in the west of the bay, significant CaCO3 precipitation led to DIC removal but no obvious increase in pCO2, which was just close to that in the central area. Due to the shallow depth and longer water residence time in this region, this pattern may be related to the sustained release of CO2 into the atmosphere. In late July, heavy rain promoted river input in the western and eastern portions of JZB. Strong primary production led to a significant decrease in pCO2 in the western area, with the lowest pCO2 value of 252 μatm. However, in the northeastern area, the intense respiration remained, and the highest pCO2 value was 1149 μatm. The average air-sea CO2 flux in mid-June and early July was 20.23 mmol m- 2 d- 1 and 23.56 mmol m- 2 d- 1, respectively. In contrast, in late July, sources became sinks for atmospheric CO2 in the western and central areas of the bay, halving the average air-sea CO2 flux to a value of 10.58 mmol m- 2 d- 1. Therefore, without considering the impact of heavy rains, the estimated air-sea CO2 flux is likely inaccurate in coastal waters. Our study implies that more studies in the coastal ocean are needed to determine the duration and intensity of the CO2 sink after the occurrence of heavy rain as well as the magnitudes of the CO2 sink associated with varying rainfall intensities.

  11. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.« less

  12. [Predictive value of central venous-to-arterial carbon dioxide partial pressure difference for fluid responsiveness in septic shock patients: a prospective clinical study].

    PubMed

    Liu, Guangyun; Huang, Huibin; Qin, Hanyu; Du, Bin

    2018-05-01

    To evaluate the accuracy of central venous-to-arterial carbon dioxide partial pressure difference (Pcv-aCO 2 ) before and after rapid rehydration test (fluid challenge) in predicting the fluid responsiveness in patients with septic shock. A prospective observation was conducted. Forty septic shock patients admitted to medical intensive care unit (ICU) of Peking Union Medical College Hospital from October 2015 to June 2017 were enrolled. All of the patients received fluid challenge in the presence of invasive hemodynamic monitoring. Heart rate (HR), blood pressure, cardiac index (CI), Pcv-aCO 2 and other physiological variables were recorded at 10 minutes before and immediately after fluid challenge. Fluid responsiveness was defined as an increase in CI greater than 10% after fluid challenge, whereas fluid non-responsiveness was defined as no increase or increase in CI less than 10%. The correlation between Pcv-aCO 2 and CI was explored by Pearson correlation analysis. Receiver operating characteristic (ROC) curves were established to evaluate the discriminatory abilities of baseline and the changes after fluid challenge in Pcv-aCO 2 and other physiological variables to define the fluid responsiveness. The patients were separated into two groups according to the initial value of Pcv-aCO 2 . The cut-off value of 6 mmHg (1 mmHg = 0.133 kPa) was chosen according to previous studies. The discriminatory abilities of baseline and the change in Pcv-aCO 2 (ΔPcv-aCO 2 ) were assessed in each group. A total of 40 patients were finally included in this study. Twenty-two patients responded to the fluid challenge (responders). Eighteen patients were fluid non-responders. There was no significant difference in baseline physiological variable between the two groups. Fluid challenge could increase CI and blood pressure significantly, decrease HR notably and had no effect on Pcv-aCO 2 in fluid responders. In non-responders, blood pressure was increased significantly and CI, HR, Pcv-aCO 2 showed no change after fluid challenge. Pcv-aCO 2 was comparable in responders and non-responders. In 40 patients, CI and Pcv-aCO 2 was inversely correlated before fluid challenge (r = -0.391, P = 0.012) and the correlation between them weakened after fluid challenge (r = -0.301, P = 0.059). There was no significant correlation between the changes in CI and Pcv-aCO 2 after fluid challenge (r = -0.164, P = 0.312). The baseline Pcv-aCO 2 and ΔPcv-aCO 2 could not discriminate between responders and non-responders, with the area under ROC curve (AUC) of 0.50 [95% confidence interval (95%CI) = 0.32-0.69] and 0.51 (95%CI = 0.33-0.70), respectively. HR and blood pressure before fluid challenge and their changes after fluid challenge showed very poor discriminative performances. Before fluid challenge, 16 patients had a Pcv-aCO 2 > 6 mmHg. Their mean CI was significantly lower and Pcv-aCO 2 was significantly higher than that in 24 patients whose Pcv-aCO 2 ≤ 6 mmHg [n = 24; CI (mL×s -1 ×m -2 ): 48.3±11.7 vs. 65.0±18.3, P < 0.01; Pcv-aCO 2 (mmHg): 8.4±1.9 vs. 2.9±2.8, P < 0.01]. Pcv-aCO 2 was decreased significantly after fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg and their ΔPcv-aCO 2 was notably different as compared with the patients whose baseline Pcv-aCO 2 ≤ 6 mmHg (mmHg: -3.8±3.4 vs. 0.9±2.9, P < 0.01). 68.8% (11/16) patients responded to the fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg. The AUC of the baseline Pcv-aCO 2 and ΔPcv-aCO 2 to define fluid responsiveness was 0.85 (95%CI = 0.66-1.00) and 0.84 (95%CI = 0.63-1.00), respectively, and the positive predictive value was 1 when the cut-off value was 8.0 mmHg and -4.2 mmHg, respectively. 45.8% (11/24) patients responded to the fluid challenge in patients whose baseline Pcv-aCO 2 ≤ 6 mmHg. There was no predictive value of baseline Pcv-aCO 2 and ΔPcv-aCO 2 on fluid responsiveness. Pcv-aCO 2 and its change cannot serve as a surrogate of the change in cardiac output to define the response to fluid challenge in septic shock patients whose baseline Pcv-aCO 2 ≤ 6 mmHg, while the predictive values of baseline Pcv-aCO 2 and the change in Pcv-aCO 2 are presented in patients with the initial value of Pcv-aCO 2 > 6 mmHg. Clinical Trials, NCT01941472.

  13. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  14. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  15. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P < 0.05) reduced BW, pH, partial pressure of O2, saturated O2, Na(+), K(+), Ca(2+), Cl(-), osmolality, triiodothyronine (T3), and total protein along with significantly (P < 0.05) elevated partial pressure of CO2, hematocrit, hemoglobin, and lactate concentrations. In addition, there were no effects of photoperiod on HCO3(-), glucose, anion gap, and thyroxine (T4). Plasma corticosterone was not affected by photoperiod, light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  16. Effects of different pressure levels of CO2 pneumoperitoneum on liver regeneration after liver resection in a rat model.

    PubMed

    Komori, Yoko; Iwashita, Yukio; Ohta, Masayuki; Kawano, Yuichiro; Inomata, Masafumi; Kitano, Seigo

    2014-08-01

    A recent study demonstrated that high pressure of carbon dioxide (CO2) pneumoperitoneum before liver resection impairs postoperative liver regeneration. This study was aimed to investigate effects of varying insufflation pressures of CO2 pneumoperitoneum on liver regeneration using a rat model. 180 male Wistar rats were randomly divided into three groups: control group (without preoperative pneumoperitoneum), low-pressure group (with preoperative pneumoperitoneum at 5 mmHg), and high-pressure group (with preoperative pneumoperitoneum at 10 mmHg). After pneumoperitoneum, all rats were subjected to 70% partial hepatic resection and then euthanized at 0 min, 12 h, and on postoperative days (PODs) 1, 2, 4, and 7. Following outcome parameters were used: liver regeneration (liver regeneration rate, mitotic count, Ki-67 labeling index), hepatocellular damage (serum aminotransferases), oxidative stress [serum malondialdehyde (MDA)], interleukin-6 (IL-6), and hepatocyte growth factor (HGF) expression in the liver tissue. No significant differences were observed for all parameters between control and low-pressure groups. The liver regeneration rate and mitotic count were significantly decreased in the high-pressure group than in control and low-pressure groups on PODs 2 and 4. Postoperative hepatocellular damage was significantly greater in the high-pressure group on PODs 1, 2, 4, and 7 compared with control and/or low-pressure groups. Serum MDA levels were significantly higher in the high-pressure group on PODs 1 and 2, and serum IL-6 levels were significantly higher in the high-pressure group at 12 h and on POD 1, compared with control and/or low-pressure groups. The HGF tissue expression was significantly lower in the high-pressure group at 12 h and on PODs 1 and 4, compared with that in control and/or low-pressure groups. High-pressure pneumoperitoneum before 70% liver resection impairs postoperative liver regeneration, but low-pressure pneumoperitoneum has no adverse effects. This study suggests that following laparoscopic liver resection using appropriate pneumoperitoneum pressure, no impairment of liver regeneration occurs.

  17. Visualization and prediction of supercritical CO 2 distribution in sandstones during drainage: An in situ synchrotron X-ray micro-computed tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voltolini, Marco; Kwon, Tae-Hyuk; Ajo-Franklin, Jonathan

    Pore-scale distribution of supercritical CO 2 (scCO 2) exerts significant control on a variety of key hydrologic as well as geochemical processes, including residual trapping and dissolution. Despite such importance, only a small number of experiments have directly characterized the three-dimensional distribution of scCO 2 in geologic materials during the invasion (drainage) process. Here, we present a study which couples dynamic high-resolution synchrotron X-ray micro-computed tomography imaging of a scCO 2/brine system at in situ pressure/temperature conditions with quantitative pore-scale modeling to allow direct validation of a pore-scale description of scCO2 distribution. The experiment combines high-speed synchrotron radiography with tomographymore » to characterize the brine saturated sample, the scCO 2 breakthrough process, and the partially saturated state of a sandstone sample from the Domengine Formation, a regionally extensive unit within the Sacramento Basin (California, USA). The availability of a 3D dataset allowed us to examine correlations between grains and pores morphometric parameters and the actual distribution of scCO 2 in the sample, including the examination of the role of small-scale sedimentary structure on CO2 distribution. The segmented scCO 2/brine volume was also used to validate a simple computational model based on the local thickness concept, able to accurately simulate the distribution of scCO 2 after drainage. The same method was also used to simulate Hg capillary pressure curves with satisfactory results when compared to the measured ones. Finally, this predictive approach, requiring only a tomographic scan of the dry sample, proved to be an effective route for studying processes related to CO 2 invasion structure in geological samples at the pore scale.« less

  18. Visualization and prediction of supercritical CO 2 distribution in sandstones during drainage: An in situ synchrotron X-ray micro-computed tomography study

    DOE PAGES

    Voltolini, Marco; Kwon, Tae-Hyuk; Ajo-Franklin, Jonathan

    2017-10-21

    Pore-scale distribution of supercritical CO 2 (scCO 2) exerts significant control on a variety of key hydrologic as well as geochemical processes, including residual trapping and dissolution. Despite such importance, only a small number of experiments have directly characterized the three-dimensional distribution of scCO 2 in geologic materials during the invasion (drainage) process. Here, we present a study which couples dynamic high-resolution synchrotron X-ray micro-computed tomography imaging of a scCO 2/brine system at in situ pressure/temperature conditions with quantitative pore-scale modeling to allow direct validation of a pore-scale description of scCO2 distribution. The experiment combines high-speed synchrotron radiography with tomographymore » to characterize the brine saturated sample, the scCO 2 breakthrough process, and the partially saturated state of a sandstone sample from the Domengine Formation, a regionally extensive unit within the Sacramento Basin (California, USA). The availability of a 3D dataset allowed us to examine correlations between grains and pores morphometric parameters and the actual distribution of scCO 2 in the sample, including the examination of the role of small-scale sedimentary structure on CO2 distribution. The segmented scCO 2/brine volume was also used to validate a simple computational model based on the local thickness concept, able to accurately simulate the distribution of scCO 2 after drainage. The same method was also used to simulate Hg capillary pressure curves with satisfactory results when compared to the measured ones. Finally, this predictive approach, requiring only a tomographic scan of the dry sample, proved to be an effective route for studying processes related to CO 2 invasion structure in geological samples at the pore scale.« less

  19. Modeling a CO2 mineralization experiment of fractured peridotite from the Semail ophiolite/ Oman

    NASA Astrophysics Data System (ADS)

    Muller, Nadja; Zhang, Guoxiang; van Noort, Reinier; Spiers, Chris; Ten Grotenhuis, Saskia; Hoedeman, Gerco

    2010-05-01

    Most geologic CO2 sequestration technologies focus on sedimentary rocks, where the carbon dioxide is stored in a fluid phase. A possible alternative is to trap it as a mineral in the subsurface (in-situ) in basaltic or even (ultra)mafic rocks. Carbon dioxide in aqueous solution reacts with Mg-, Ca-, and Fe-bearing silicate minerals, precipitates as (MgCa,Fe)CO3 (carbonate), and can thus be permanently sequestered. The cation donors are silicate minerals such as olivine and pyroxene which are abundant in (ultra)mafic rocks, such as peridotite. Investigations are underway to evaluate the sequestration potential of the Semail Ophiolite in Oman, utilizing the large volumes of partially serpentinized peridotite that are present. Key factors are the rate of mineralization due to dissolution of the peridotite and precipitation of carbonate, the extent of the natural and hydraulic fracture network and the accessibility of the rock to reactive fluids. To quantify the influence of dissolution rates on the overall CO2 mineralization process, small, fractured peridotite samples were exposed to supercritical CO2 and water in laboratory experiments. The samples are cored from a large rock sample in the dimension of small cylinders with 1 cm in height and diameter, with a mass of ~2g. Several experimental conditions were tested with different equipment, from large volume autoclave to small volume cold seal vessel. The 650 ml autoclave contained 400-500g of water and a sample under 10 MPa of partial CO2 pressure up to 150. The small capsules in the cold seal vessel held 1-1.5g of water and the sample under CO2 partial pressure from 15MPa to 70 MPa and temperature from 60 to 200°C. The samples remained for two weeks in the reaction vessels. In addition, bench acid bath experiments in 150 ml vials were performed open to the atmosphere at 50-80°C and pH of ~3. The main observation was that the peridotite dissolved two orders of magnitude slower in the high pressure and temperature cell of the cold seal vessel than comparative experiments in large volume autoclaves and bench acid bath vials under lower and atmospheric pressure conditions. We attributed this observation to the limited water availability in the cold seal vessel, limiting the aqueous reaction of bi-carbonate formation and magnesite precipitation. To test this hypothesis, one of the cold seal vessel experiments at 20 MPa and 100°C was simulated with a reactive transport model, using TOUGHREACT. To simulate the actual experimental conditions, the model used a grid on mm and 100's of μm scale and a fractured peridotite medium with serpentine filling the fractures. The simulation produced dissolution comparable to the experiment and showed an effective shut down of the bi-carbonation reaction within one day after the start of the experiment. If the conditions of limited water supply seen in our experiments are applicable in a field setting, we could expect dissolution may be limited by the buffering of the pH and shut down of the bi-carbonate formation. Under field conditions water and CO2 will only flow in hydraulic induced fractures and the natural fracture network that is filled with serpentine and some carbonate. The simulation result and potential implication for the field application will require further experimental investigation in the lab or field in the future.

  20. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requiresmore » additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.« less

  1. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  2. Sulfur capture under periodically changing oxidizing and reducing conditions in PFBC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Yrjas, P.; Hupa, M.

    1999-07-01

    During in situ sulfur capture with a calcium-based sorbent in fluidized bed combustion (FBC), a temperature optimum is found, at atmospheric pressure, at {approximately}850 C. The repeated decomposition of sulfated limestone during stages where the gas atmosphere surrounding the sorbent particle is not oxidizing but reducing has been identified to explain this maximum. Under pressurized (PFBC) conditions, an additional aspect is the direct conversion of calcium carbonate (CaCO{sub 3}) without the intermediate calcium oxide (CaO) due to the partial pressure of carbon dioxide (CO{sub 2}). In this work it was evaluated how stable calcium sulfate (CaSO{sub 4}) is in amore » gas atmosphere that periodically changes from oxidizing to reducing and vice versa. Atmospheric as well as elevated pressures are considered. CaO or CaCO{sub 3}, and/or calcium sulfide (CaS) are formed during the reducing stage. Using a pressurized thermogravimetric reactor (PTGR) a limestone was periodically sulfated under oxidizing conditions and decomposed under reducing conditions with carbon monoxide (CO), or with CO + H{sub 2} (hydrogen). Experiments at 1 bar and 15 bar were carried out, at temperatures from 850 C to 950 C, at C O and CO + H{sub 2} concentrations up to 4%-vol. The experimental data were modeled using simple first order (parallel) reaction schemes that allowed for sorbent structure changes. This gave rate parameters for the sulfation and the decomposition reactions, and identified the decomposition products. It was found that 1 bar, CO + H{sub 2} gives a higher reduction of CaSO{sub 4} than CO, at the same total concentration. The rate of decomposition increases faster with temperature than the sulfation, explaining the sulfation efficiency maximum mentioned above. At 15 bar, a different picture is seen. The reductive decomposition rate as well as the sulfation rate are slower, with CO as well as CO with small amounts of H{sub 2} as the reducing species. There is a significant effect of the water which is present in the gas at higher concentrations than H{sub 2}. Thermodynamics indicate that this leads to the decomposition of CaS, releasing H{sub 2}S.« less

  3. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Merkel, A.; Busch, A.; Krooss, B. M.

    2012-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • N2, CH4, CO2 displacement experiments and the volumetric response of the coal on the present gas type (sorbing or inert) in the pore system • Uncertainties in reservoir characterisation (Gensterblum et al., 2010; Gensterblum et al., 2009) • Sorption uptake kinetic as a function of surface coverage and the influence of moisture on the kinetic Busch, A. and Gensterblum, Y., 2011. CBM and CO2-ECBM related sorption processes in coal: A review. International Journal of Coal Geology, 87: 49-71. Gensterblum, Y. et al., 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2): 115-124. Gensterblum, Y. et al., 2009. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13): 2958-2969.

  4. Instability and breakdown of the coral-algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the "missing" Earth-System feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wooldridge, Scott A.

    2017-12-01

    Changes in the atmospheric partial pressure of CO2 ( pCO2) leads to predictable impacts on the surface ocean carbonate system. Here, the importance of atmospheric pCO2 <260 ppmv is established for the optimum performance (and stability) of the algal endosymbiosis employed by a key suite of tropical reef-building coral species. Violation of this symbiotic threshold is revealed as a prerequisite for major historical reef extinction events, glacial-interglacial feedback climate cycles, and the modern decline of coral reef ecosystems. Indeed, it is concluded that this symbiotic threshold enacts a fundamental feedback mechanism needed to explain the characteristic dynamics (and drivers) of the coupled land-ocean-atmosphere carbon cycle of the Earth System since the mid-Miocene, some 25 million yr ago.

  5. Dynamics and mass transport of solutal convection in a closed porous media system

    NASA Astrophysics Data System (ADS)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  6. LiNixCo1-xO2 Cell Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Ravindranadh, K.; Begum, Sk. Muntaz; Nirmala, G.

    2011-07-01

    Thin films of LiNixCo1-xO2 were prepared by pulsed laser deposition technique. Two important deposition parameters such as substrate temperature and oxygen partial pressure during the thin film deposition were controlled. The electrochemical measurements were carried out on Li//LiNixCo1-xO2 cells with a lithium metal foil as anode and LiNixCo1-xO2 film as cathode of 1.5 cm2 active area using a Teflon home-made cell hardware. Electrochemical titration was made by charging and discharging the cells using the galvanostatic mode of a Mac-Pile single 608 electrochemical analyzer system in the potential range between 2.0 and 4.1 V. Specific capacity as high as 220 mC/cm2 μm was measured for the film grown at 700 °C.

  7. Kinetics of the Absorption of CO{sub 2} in Aqueous Solutions of N-Methyldiethanolamine plus Triethylene Tetramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, J.M.G.; Bouallou, C.

    2009-04-15

    This work focuses on the development of a new solvent for CO{sub 2} capture. This new solvent is an aqueous solution with a blend of N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA), an amine with four amino groups. CO{sub 2} absorption was investigated between 298 and 333 K using a Lewis cell with a constant interfacial area. Several concentrations of MDEA (17.5 and 40 wt %) and TETA (3 and 6 wt %) were assessed. The influence of the CO{sub 2} partial pressure on the absorption rate was pointed out. The addition of small amount of TETA leads to a highmore » increase in the CO{sub 2} absorption rates. A numerical model based on the film theory was used to determine the rate coefficients between CO{sub 2} and TETA for the different solvents. The physicochemical parameters have a huge influence on the determination of the rate coefficients.« less

  8. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    PubMed

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  9. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide.

    PubMed

    Laruelle, Goulven G; Cai, Wei-Jun; Hu, Xinping; Gruber, Nicolas; Mackenzie, Fred T; Regnier, Pierre

    2018-01-31

    It has been speculated that the partial pressure of carbon dioxide (pCO 2 ) in shelf waters may lag the rise in atmospheric CO 2 . Here, we show that this is the case across many shelf regions, implying a tendency for enhanced shelf uptake of atmospheric CO 2 . This result is based on analysis of long-term trends in the air-sea pCO 2 gradient (ΔpCO 2 ) using a global surface ocean pCO 2 database spanning a period of up to 35 years. Using wintertime data only, we find that ΔpCO 2 increased in 653 of the 825 0.5° cells for which a trend could be calculated, with 325 of these cells showing a significant increase in excess of +0.5 μatm yr -1 (p < 0.05). Although noisier, the deseasonalized annual data suggest similar results. If this were a global trend, it would support the idea that shelves might have switched from a source to a sink of CO 2 during the last century.

  10. Modeling of termokinetic oscillations at partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving with time, but as well lead to significant increase of its mole fraction simultaneously twice decreasing the mole fraction of CO.

  11. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  12. Growth optimization and electronic structure of ultrathin CoO films on Ag(001): A LEED and photoemission study

    NASA Astrophysics Data System (ADS)

    Barman, Sukanta; Menon, Krishnakumar S. R.

    2018-04-01

    We present here a detailed growth optimization of CoO thin film on Ag(001) involving the effects of different growth parameters on the electronic structure. A well-ordered stoichiometric growth of 5 ML CoO film has been observed at 473 K substrate temperature and 1 × 10-6 mbar oxygen partial pressure. The growth at lower substrate temperature and oxygen partial pressure show non-stoichiometric impurity phases which have been investigated further to correlate the growth parameters with surface electronic structure. The coverage dependent valence band electronic structure of the films grown at optimized condition reveals the presence of interfacial states near the Fermi edge (EF) for lower film coverages. Presence of interfacial states in the stoichiometric films rules out their defect-induced origin. We argue that this is an intrinsic feature of transition metal monoxides like NiO, CoO, MnO in the low coverage regime.

  13. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  14. Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol?

    PubMed

    de Oliveira, Tiago E; Netz, Paulo A; Mukherji, Debashish; Kremer, Kurt

    2015-11-28

    It is well known that poly(N-isopropylacrylamide) (PNIPAm) exhibits an interesting, yet puzzling, phenomenon of co-non-solvency. Co-non-solvency occurs when two competing good solvents for PNIPAm, such as water and alcohol, are mixed together. As a result, the same PNIPAm collapses within intermediate mixing ratios. This complex conformational transition is driven by preferential binding of methanol with PNIPAm. Interestingly, co-non-solvency can be destroyed when applying high hydrostatic pressures. In this work, using a large scale molecular dynamics simulation employing high pressures, we propose a microscopic picture behind the suppression of the co-non-solvency phenomenon. Based on thermodynamic and structural analysis, our results suggest that the preferential binding of methanol with PNIPAm gets partially lost at high pressures, making the background fluid reasonably homogeneous for the polymer. This is consistent with the hypothesis that the co-non-solvency phenomenon is driven by preferential binding and is not based on depletion effects.

  15. Continental-scale variation in controls of summer CO2 in United States lakes

    NASA Astrophysics Data System (ADS)

    Lapierre, Jean-Francois; Seekell, David A.; Filstrup, Christopher T.; Collins, Sarah M.; Emi Fergus, C.; Soranno, Patricia A.; Cheruvelil, Kendra S.

    2017-04-01

    Understanding the broad-scale response of lake CO2 dynamics to global change is challenging because the relative importance of different controls of surface water CO2 is not known across broad geographic extents. Using geostatistical analyses of 1080 lakes in the conterminous United States, we found that lake partial pressure of CO2 (pCO2) was controlled by different chemical and biological factors related to inputs and losses of CO2 along climate, topography, geomorphology, and land use gradients. Despite weak spatial patterns in pCO2 across the study extent, there were strong regional patterns in the pCO2 driver-response relationships, i.e., in pCO2 "regulation." Because relationships between lake CO2 and its predictors varied spatially, global models performed poorly in explaining the variability in CO2 for U.S. lakes. The geographically varying driver-response relationships of lake pCO2 reflected major landscape gradients across the study extent and pointed to the importance of regional-scale variation in pCO2 regulation. These results indicate a higher level of organization for these physically disconnected systems than previously thought and suggest that changes in climate and land use could induce shifts in the main pathways that determine the role of lakes as sources and sinks of atmospheric CO2.

  16. Chemistry of the surface and lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Treiman, A.

    1992-01-01

    A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.

  17. Comparative evolution of oxygen, carbon dioxide, nitrogen, and sulfites during storage of a rosé wine bottled in PET and glass.

    PubMed

    Toussaint, Marie; Vidal, Jean-Claude; Salmon, Jean-Michel

    2014-04-02

    The management of dissolved and headspace gases during bottling and the choice of packaging are both key factors for the shelf life of wine. Two kinds of 75 cL polyethylene terephthalate (PET) bottles (with or without recycled PET) were compared to glass bottles filled with a rosé wine, closed with the same screwcaps and stored upright at 20 °C in light or in the dark. Analytical monitoring (aphrometric pressure, headspace volume, O2, N2, CO2, and SO2) was carried out for 372 days. After the consumption of O2 trapped during bottling, the total O2 content in glass bottles remained stable. A substantial decrease of CO2 and SO2 concentration and an increase of O2 concentration were observed in the PET bottles after 6 months because of the considerable gas permeability of monolayer PET. Light accelerated O2 consumption during the early months. Finally, the kinetic monitoring of partial pressures in gas and liquid phases in bottles showed contrasting behavior of O2 and N2 in comparison with CO2.

  18. Neonatal oxidative stress depends on oxygen blood pressure in umbilical artery.

    PubMed

    Proietti, F; De Bernardo, G; Longini, M; Sordino, D; Scaramuzzini, G; Tataranno, M L; Belvisi, E; Bazzini, F; Perrone, S; Buonocore, G

    2016-01-01

    With advancing gestation, partial pressure of oxygen (pO2) and pH fall significantly. Hypoxia is a main factor inducing free radical generation and thereby oxidative stress (OS). Placental and fetal tissue response when oxygen becomes restricted is complex and partially known. We tested the hypothesis that changes in umbilical artery and vein blood gas concentrations modulate OS occurrence in the newborn. Seventy umbilical artery and vein plasma samples were collected from healthy term newborns immediately after delivery. F2 Isoprostanes (F2-Isop) were measured in all samples as reliable markers of lipid peroxidation. Significantly lower pCO2 and higher pO2 and pH were found in umbilical vein than in artery, as expected. A positive correlation was detected between pH and pO2 only in umbilical artery (p=0.019). F2-Isop levels were no different between artery and vein in cord blood. Significant correlations were found between F2-Isop and pCO2 (p=0.025) as well as between F2-Isop and pH in umbilical vein (p=0.027). F2-Isop correlated with pCO2 (p=0.007) as well as with pO2 values (p=0.005) in umbilical artery blood. Oxidative stress (OS) in newborns depends on oxygen concentrations in umbilical artery. OS biomarkers significantly correlate with pO2 and in umbilical artery but not in umbilical vein. In normoxic conditions fetal-maternal gas exchanges occurring in placenta re-establish normal higher oxygen levels in umbilical vein than artery, with a normal production of free radicals without any deleterious effects.

  19. CO2-dominated Atmosphere in Equilibrium with NH3-H2O Ocean: Application to Early Titan and Ocean Planets

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.

    2015-12-01

    During the accretion of Titan, impact heating may have been sufficient to allow the global melting of water ice (Monteux et al. 2014) and the release of volatile compounds, with CO2 and NH3 as main constituents (Tobie et al. 2012). Thus, on primitive Titan, it is thought that a massive atmosphere was in contact with a global water ocean. Similar configurations may occur on temperate water-rich planets called ocean planets (Léger et al. 2004, Kitzmann et al. 2015).Due to its rather low solubility in liquid water, carbon dioxide is expected to be one of the major components in the atmosphere. The atmospheric amount of CO2 is a key parameter for assessing the thermal evolution of the planetary surface because of its strong greenhouse effect. However, ammonia significantly affects the solubility of CO2 in water and hence the atmosphere-ocean thermo-chemical equilibrium. For primitive Titan, estimating the mass, temperature and composition of the primitive atmosphere is important to determine mechanisms that led to the present-day N2-CH4 dominated atmosphere. Similarly, for ocean planets, the influence of ammonia on the atmospheric abundance in CO2 has consequences for the definition of the habitable zone.To investigate the atmospheric composition of the water-rich worlds for a wide range of initial compositions, we have developed a vapor-liquid equilibrium model of the NH3-CO2-H2O system, where we account for the non-ideal comportment of both vapor and liquid phases and the ion speciation of volatiles dissolved in the aqueous phase. We show that adding NH3 to the CO2-H2O binary system induces an efficient absorption of the CO2 in the liquid phase and thus a lower CO2 partial pressure in the vapor phase. Indeed, the CO2 partial pressure remains low for the CO2/NH3 ratio of liquid concentrations lower than 0.5.Assuming various initial compositions of Titan's global water ocean, we explore the thermal and compositional evolution of a massive primitive atmosphere using the thermodynamical model. We are currently investigating how a massive atmosphere may be generated during the satellite growth and how it may then evolve toward a composition dominated by N2. Applications to ocean planets will also be presented at the conference.

  20. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro

    2010-07-13

    We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.

  1. Energy requirements for CO2 capture from ambient air (DAC) competitive with capture from flue-gas (PCC)

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph

    2015-03-01

    Capture of CO2, whether from a flue gas source (PCC) or from distributed sources via ambient air (DAC), is a key enabling technology to provide carbon for sustainable synthetic energy carriers such as solar fuels. Based on thermodynamic minimum considerations, DAC is often expected to require about 3 times more energy (per ton CO2 captured) than PCC because CO2 in ambient air is more dilute. Here, we calculate the energy required for a humidity swing-based DAC installation that uses an anionic exchange resin as sorbent. The calculation uses recently measured equilibrium CO2 loadings of the sorbent as function of partial CO2 pressure, temperature, and humidity. We calculate the installation's electricity consumption to be about 45 kJ per mole of pure CO2 at 1 bar (scenario-dependent). Furthermore, we estimate the amount of heat provided by ambient air and thus provide context of the overall energy and entropy balance and thermodynamic minimum views. The electricity consumption is competitive with typical parasitic loads of PCC-equipped coal-fired power plants (40-50 kJ per mole at same pressure) and significantly lower than predicted for other DAC installations such as Na(OH) sorbent-based systems. Our analyses elucidate why DAC is not always more energy-intensive that PCC, thus alleviating often cited concerns of significant cost impediments. Financial support by ABB for research presented herein is gratefully acknowledged.

  2. Exploring for the safer ventilation method in laparoscopic urologic patients? Conventional or low tidal?

    PubMed

    Ela, Yüksel; Bakı, Elif Doğan; Ateş, Mutlu; Kokulu, Serdar; Keleş, İbrahim; Karalar, Mustafa; Şenay, Hasan; Sıvacı, Remziye Gül

    2014-11-01

    To study the effects of low tidal volume with positive end-expiratory pressure (PEEP) on arterial blood gases of patients undergoing laparoscopic urologic surgeries. Eighty-six laparoscopic urologic patients were enrolled in this study. Patients were randomized into two groups according to the ventilatory settings. In the conventional group (Group C) (n=43), the tidal volume was 10 mL/kg, and the PEEP was set at 0 cm of H2O. In the low tidal volume with PEEP group (Group LP), the tidal volume was 6 mL/kg, with PEEP of 5 cm of H2O. In both groups total minute volume was 6 L/kg. Peak and plateau airway pressure (PPEAK and PPLAT, respectively) and arterial blood gases were recorded before pneumoperitoneum (PNP) (T1) and the first and third hour (T3) after PNP induction and also after extubation in the intensive care unit. Additionally, heart rate, mean arterial pressure, and peripheral O2 saturation of hemoglobin were recorded. Heart rate, PPEAK, and PPLAT values were similar in both groups. Partial arterial O2 pressure values measured postoperatively were significantly higher in Group LP, whereas those measured before PNP induction were similar (P=.014 and P=.056, respectively). Compared with the baseline, partial arterial CO2 pressure values measured at T1 and at T3 after PNP induction were significantly higher in Group C than in Group LP (P<.001). The pH values of Group C at T1 and at T3 postoperatively were significantly lower than the values of Group LP (P<.001). Extubation times were significantly lower in Group LP. The results of the present study suggest that low tidal volume with PEEP application may be a good alternative for preventing high CO2 levels and yielding better oxygenation and lower extubation times in patients undergoing prolonged laparoscopic urology.

  3. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.

    2002-01-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  4. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Hui Li; Keh Perng Shen

    1993-01-01

    Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57more » kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.« less

  5. CO.sub.2 Pretreatment prevents calcium carbonate formation

    DOEpatents

    Neavel, Richard C.; Brunson, Roy J.; Chaback, Joseph J.

    1980-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with carbon dioxide. The carbon dioxide pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 14 to about 68 atmospheres and a carbon dioxide partial pressure within the range from about 14 to about 34 atmospheres. Temperature during pretreatment will generally be within the range from about 100.degree. to about 200.degree. C.

  6. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lili; Yao, Siyu; Liu, Zongyuan

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  7. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE PAGES

    Lin, Lili; Yao, Siyu; Liu, Zongyuan; ...

    2018-05-28

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  8. Three-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    DTIC Science & Technology

    2007-10-01

    after the breath hold. Adjustments were made for carboxyhemoglobin and hemoglobin concentrations,9 and the samples were chosen to ensure that the...CO and 0.3% methane. A CO oximeter (Instrumentation Laboratory; Lexington, MA) determined the pretest carboxyhemoglobin and hemoglobin concentrations

  9. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop growouts. Schedules of experimental events for lettuce and wheat are outlined and include replications in time of diurnal routines, pressure transients, variable pO2, pO2/pCO2 ratio, and light intensity responses.

  10. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice.

    PubMed

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.

  11. Unusual Small Subunit That Is Not Expressed in Photosynthetic Cells Alters the Catalytic Properties of Rubisco in Rice1[C][W][OPEN

    PubMed Central

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity. PMID:24254313

  12. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure

    PubMed Central

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    Background COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. Objective We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Patients and methods Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation – volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2–4 hours and 48 hours. Results Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2–4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both); after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05). Vital signs during 2–4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2–4 hours and 48 hours was significantly lower than that in the control group (P<0.05), while other variables were not significantly different between groups (P>0.05). Conclusion Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining a low peak inspiratory pressure. PRVC can reduce pulmonary barotrauma risk, making it a safer protective ventilation mode than synchronized intermittent mandatory ventilation – volume control. PMID:27274223

  13. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure.

    PubMed

    Chang, Suchi; Shi, Jindong; Fu, Cuiping; Wu, Xu; Li, Shanqun

    2016-01-01

    COPD is the third leading cause of death worldwide. Acute exacerbations of COPD may cause respiratory failure, requiring intensive care unit admission and mechanical ventilation. Intensive care unit patients with acute exacerbations of COPD requiring mechanical ventilation have higher mortality rates than other hospitalized patients. Although mechanical ventilation is the most effective intervention for these conditions, invasive ventilation techniques have yielded variable effects. We evaluated pressure-regulated volume control (PRVC) ventilation treatment efficacy and preventive effects on pulmonary barotrauma in elderly COPD patients with respiratory failure. Thirty-nine intubated patients were divided into experimental and control groups and treated with the PRVC and synchronized intermittent mandatory ventilation - volume control methods, respectively. Vital signs, respiratory mechanics, and arterial blood gas analyses were monitored for 2-4 hours and 48 hours. Both groups showed rapidly improved pH, partial pressure of oxygen (PaO2), and PaO2 per fraction of inspired O2 levels and lower partial pressure of carbon dioxide (PaCO2) levels. The pH and PaCO2 levels at 2-4 hours were lower and higher, respectively, in the test group than those in the control group (P<0.05 for both); after 48 hours, blood gas analyses showed no statistical difference in any marker (P>0.05). Vital signs during 2-4 hours and 48 hours of treatment showed no statistical difference in either group (P>0.05). The level of peak inspiratory pressure in the experimental group after mechanical ventilation for 2-4 hours and 48 hours was significantly lower than that in the control group (P<0.05), while other variables were not significantly different between groups (P>0.05). Among elderly COPD patients with respiratory failure, application of PRVC resulted in rapid improvement in arterial blood gas analyses while maintaining a low peak inspiratory pressure. PRVC can reduce pulmonary barotrauma risk, making it a safer protective ventilation mode than synchronized intermittent mandatory ventilation - volume control.

  14. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  15. Altitude controls carbon dioxide in boreal lakes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Organic matter present in lakes, derived either from land-based sources—such as plants, soil, and sediments—or from in situ processes—such as degrading detritus in the water—could be important in the global carbon cycle, and possibly a significant source of the atmospheric carbon dioxide (CO2) budget. The partial pressure of CO2 in surface waters (pCO2) drives the escape of CO2 to the atmosphere. Hence, scientists have long suspected that the relationship between pCO2 and the dissolved organic matter (DOC) in lake waters refects the relative contribution of the environment and in situ processes to the high-latitude carbon budget. Combining measurements of DOC and pCO2 from nearly 200 lakes across Quebec, Canada, with an additional 13 lake-based studies from temperate regions across the northern hemisphere, Lapierre and del Giorgio suggest that on a regional scale the A variety of lakes dominate the boreal landscape of Quebec, Canada. elevation of lakes is one of the strongest controls on the relationship between DOC and pCO2 in boreal lakes.

  16. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  17. Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers.

    PubMed

    Borges, Alberto V; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R; Deborde, Jonathan; Vidal, Luciana O; Lambert, Thibault; Bouillon, Steven

    2015-10-23

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

  18. High-pressure behavior of iron-nickel-cobalt phosphides and its implications for meteorites and planetary cores

    NASA Astrophysics Data System (ADS)

    Dera, P.; Lavina, B.; Borkowski, L. A.; Downs, R. T.; Prewitt, C. T.; Prakapenka, V.; Rivers, M. L.; Sutton, S.; Boctor, N.

    2008-12-01

    Minerals with composition (Fe,Ni)xP, are rare, but important accessory phases present in iron and chondrite meteorites. The occurrence of these minerals in meteoritic samples is believed to originate either from the equilibrium condensation of protoplanetary materials taking place in solar nebulae or from crystallization processes in the cores of parent bodies. Fe-Ni phosphides are considered an important candidate for a minor phase present in Earth's core, and at least partially responsible for the observed core density deficit with respect to pure Fe. We report results of high-pressure high-temperature single-crystal X- ray diffraction experiments with end-members belonging to the (Fe,Ni,Co)2P family, including Fe2P, Ni2P and Co2P. A new phase transition to the Co2Si-type structure (allabogdanite) has been found in Fe2P barringerite at 8.0 GPa, upon heating. The high-pressure phase can be quenched metastably to ambient conditions and then, if heated again, it transforms back to barringerite. Ni2P barringerite does not undergo transformation to allabogdanite structure up to 50 GPa, but instead exhibits incongruent melting with formation of pyrite-type NiP2 and Ni-P glass. Our results indicate that the presence of allabogdanite in meteoritic samples places two important constraints on the thermodynamic history of the meteorite. First, it imposes a minimum pressure and temperature for the formation of the Fe2P, and additionally rules out any higher temperature low pressure alterations. If present in the Earth's core, Fe2P will have the allabogdanite rather than the barringerite structure. Crystal chemical trends in the compressibility of (Fe,Ni,Co)2P minerals, as well as polymorphic transition paths are analyzed in the context of Earth and planetary core composition and properties.

  19. Circulatory, respiratory and metabolic responses in Thoroughbred horses during the first 400 meters of exercise.

    PubMed

    Littlejohn, A; Snow, D H

    1988-01-01

    These studies investigated circulatory, respiratory and metabolic responses in four Thoroughbred geldings during the first 400 metres of galloping (mean speed 14.4 +/- 0.38 m.s-1), cantering (mean speed 10.0 +/- 0.61 m.s-1) and walking (mean speed 1.58 +/- 0.05 m.s-1) from a standing start. A radio-controlled device which collected blood samples anaerobically during each 100 m section of the exercise track allowed analyses of changes in and functional relationships of the variables measured. During the 400 m gallop, the mean heart rate (HR) increased from 125 to 201 beats.min-1 and the haematocrit (Hct) from 0.513 to 0.589 l/l-1. The haemoglobin [Hb], lactate [LA] and potassium [K+] concentrations increased significantly, while the pH and the partial pressure of oxygen (PaO2) decreased significantly. The arterial partial pressure of carbon dioxide (PaCO2) and the plasma bicarbonate concentration did not change significantly. There were significant correlations between HR and Hct, HR and [Hb], HR and PaO2, HR and pH, HR and PvCO2, HR and [LA], HR and [K+], pH and [K+], Hct and PaO2, [Hb] and PaO2, PaCO2 and PaO2, [LA] and PaO2, pH and PaO2, [K+] and PaO2, stride frequency and PaO2. With the exception of the PvCO2 which increased significantly, changes in venous blood during the gallop were in the same direction as those of arterial blood. Thirty seconds before the start of the gallop, both HR and [Hb] were significantly higher than at rest, providing an approximate three-fold increase in oxygen delivery compared to that of the resting state.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  1. Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O

    NASA Technical Reports Server (NTRS)

    Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.

    1996-01-01

    Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.

  2. Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study

    NASA Astrophysics Data System (ADS)

    Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong

    2018-05-01

    This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.

  3. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  4. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H/sub 2/-CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.J.; Zinder, S.H.

    1988-01-01

    The authors previously described a thermophilic (60/sup 0/C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H/sub 2/ and CO/sub 2/. While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shape bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When themore » axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH/sub 4/. The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H/sub 2/-CO/sub 2/ as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H/sub 2/-CO/sub 2/, demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H/sub 2/, was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.« less

  5. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  6. CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits

    PubMed Central

    Meigh, Louise; Greenhalgh, Sophie A; Rodgers, Thomas L; Cann, Martin J; Roper, David I; Dale, Nicholas

    2013-01-01

    Homeostatic regulation of the partial pressure of CO2 (PCO2) is vital for life. Sensing of pH has been proposed as a sufficient proxy for determination of PCO2 and direct CO2-sensing largely discounted. Here we show that connexin 26 (Cx26) hemichannels, causally linked to respiratory chemosensitivity, are directly modulated by CO2. A ‘carbamylation motif’, present in CO2-sensitive connexins (Cx26, Cx30, Cx32) but absent from a CO2-insensitive connexin (Cx31), comprises Lys125 and four further amino acids that orient Lys125 towards Arg104 of the adjacent subunit of the connexin hexamer. Introducing the carbamylation motif into Cx31 created a mutant hemichannel (mCx31) that was opened by increases in PCO2. Mutation of the carbamylation motif in Cx26 and mCx31 destroyed CO2 sensitivity. Course-grained computational modelling of Cx26 demonstrated that the proposed carbamate bridge between Lys125 and Arg104 biases the hemichannel to the open state. Carbamylation of Cx26 introduces a new transduction principle for physiological sensing of CO2. DOI: http://dx.doi.org/10.7554/eLife.01213.001 PMID:24220509

  7. Blood gas and serum biochemical RIs for healthy newborn Murrah buffaloes (Bubalus bubalis).

    PubMed

    Santana, André M; Silva, Daniela G; Clemente, Virna; Pizauro, Lucas J L; Bernardes, Priscila A; Santana, Clarissa H; Eckersall, Peter D; Fagliari, José J

    2018-03-01

    There is a lack of published work on RIs for newborn buffaloes. Establishing blood gas and serum biochemical RIs for newborn buffaloes is important for monitoring health. This study establishes blood gas and serum biochemical RIs of newborn buffaloes. Twenty-eight newborn buffaloes, 10-30 days old, were selected. Thirty blood biochemical variables were analyzed. The Anderson-Darling test was used to assess the normality of the distribution. The Dixon test and the Tukey test were used to identify outliers. The RI and 90% CI were determined using standard and robust methods and the Box-Cox transformation. A total of 30 RIs for healthy buffalo calves have been reported in this study. RIs for blood gas variables were reported for pH, partial pressure of oxygen (pO 2 ), partial pressure of carbon dioxide (pCO 2 ), saturation of O 2 (SO 2 ), bicarbonate (cHCO 3 - ), base excess (BE), total carbon dioxide (ctCO 2 ), and anion gap (AG). RIs for serum biochemical variables were reported for glucose (GLU), direct bilirubin (DB), total bilirubin (TB), AST, ALP, GGT, CK, LDH, creatinine (CREA), urea, cholesterol (CHOL), triglycerides (TG), Ca, P, Mg, Na, K, iCa, Cl, iron, total protein (TP), and albumin (ALB). This is the first reported study covering complete serum chemistry and blood gas RIs for healthy 1-month-old Murrah buffaloes. © 2018 American Society for Veterinary Clinical Pathology.

  8. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  9. The carbon cycle implications of chemical weathering in retrogressive thaw slump-impacted streams

    NASA Astrophysics Data System (ADS)

    Zolkos, S.; Tank, S. E.; Kokelj, S. V.

    2016-12-01

    Permafrost thaw is "unlocking" and exposing significant amounts of sediment, solutes and organic carbon previously maintained in frozen soils to biochemical processing and fluvial transport. While microbial respiration of permafrost organic carbon contributes significantly to CO2 in Arctic headwater streams, chemical weathering of minerals unearthed by thawing permafrost may fix CO2 as bicarbonate (HCO3), thus removing it from the active carbon cycle. However, the degree to which mineral weathering acts to temper CO2 generated during permafrost thaw is largely unknown. During summer 2015, we investigated these dynamics in eight streams (orders 1-3) impacted by retrogressive thaw slumps across the Peel Plateau (NT, Canada), where thaw slumps expose permafrost that is comprised of abundant glacial tills, and glaciofluvial and glaciolacustrine sediments. Thaw slump activity had a discernible signature in all streams: conductivity, pH, dissolved inorgnaic carbon (DIC), and solute concentrations (Ca, Mg, Na, K, SO4, Cl) increased in the downstream (thaw slump-impacted) reach, relative to upstream, while CO2 decreased. This corresponded with an isotopically-enriched DIC pool in impacted streams (mean δ13CDIC = -9.80‰), perhaps indicating the dissolution of carbonate minerals following exposure by thaw slump activity. Despite a general decrease downstream of thaw slumps, CO2 remained supersaturated in impacted streams (mean pCO2 = 915 µatm). However, the highest partial pressures of CO2 were found in thaw slump runoff (mean pCO2 = 4,600 µatm), above the point where runoff entered downstream systems. High pCO2 levels in slump runoff may be derived from microbial respiration of slump-released dissolved organic carbon or, for some slumps, carbonate dissolution (range δ13CDIC = 0.67 - -23.37‰). While this work suggests thaw slumps in the Western Canadian Arctic may act to partially temper CO2 in headwater streams, these stream networks will likely persist as significant sources of CO2 to the atmosphere.

  10. A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert

    USGS Publications Warehouse

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.

    1989-01-01

    Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes. ?? 1989 Springer-Verlag.

  11. Fetal blood gas values during fetoscopic myelomeningocele repair performed under carbon dioxide insufflation.

    PubMed

    Baschat, Ahmet A; Ahn, Edward S; Murphy, Jamie; Miller, Jena L

    2018-05-10

    Fetoscopic myelomeningocele (MMC) repair is performed with intrauterine carbon dioxide (CO 2 ) insufflation. While lamb experiments have shown significant fetal acidemia following CO 2 insufflation corresponding information for human pregnancies is not available. We performed umbilical venous cord blood sampling in three patients during fetoscopic MMC repair at 25+1, 25+3 and 24+1 weeks gestation. Fetal venous pH at the beginning of CO 2 insufflation were 7.36, 7.46 and 7.37; repeat values were 7.28, 7.35, 7.36 after 181, 159 and 149 minutes respectively. The partial pressure of oxygen and carbon dioxide was maintained in the normal range at these times and pH decrease was less in patient 3 receiving humidified CO2 insufflation. Our observations suggest that in contrast to sheep experiments, CO2 insufflation during fetoscopic myelomeningocele repair does not cause fetal acidemia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Nonuniform ocean acidification and attenuation of the ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Fassbender, Andrea J.; Sabine, Christopher L.; Palevsky, Hilary I.

    2017-08-01

    Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

  13. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  14. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure

    PubMed Central

    Griffin, Kevin L.; Anderson, O. Roger; Gastrich, Mary D.; Lewis, James D.; Lin, Guanghui; Schuster, William; Seemann, Jeffrey R.; Tissue, David T.; Turnbull, Matthew H.; Whitehead, David

    2001-01-01

    With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations. PMID:11226263

  15. Tuning Micellar Structures in Supercritical CO2 Using Surfactant and Amphiphile Mixtures.

    PubMed

    Peach, Jocelyn; Czajka, Adam; Hazell, Gavin; Hill, Christopher; Mohamed, Azmi; Pegg, Jonathan C; Rogers, Sarah E; Eastoe, Julian

    2017-03-14

    For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO 2 (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO 2 -philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g., 100-400 bar). A range of novel w/c microemulsions, stabilized by new custom-synthesized CO 2 -phillic, partially fluorinated surfactants, were formulated with hydrotropes and cosurfactant. The effects of water content (w = [water]/[surfactant]), surfactant structure, and hydrotrope tail length were all investigated. Dispersed water domains were probed using high pressure small-angle neutron scattering (HP-SANS), which provided evidence for elongated reversed micelles in supercritical CO 2 . These new micelles have significantly lower fluorination levels than previously reported (6-29 wt % cf. 14-52 wt %), and furthermore, they support higher water dispersion levels than other related systems (w = 15 cf. w = 5). The intrinsic viscosities of these w/c microemulsions were estimated based on micelle aspect ratio; from this value a relative viscosity value can be estimated through combination with the micellar volume fraction (ϕ). Combining these new results with those for all other reported systems, it has been possible to "map" predicted viscosity increases in CO 2 arising from elongated reversed micelles, as a function of surfactant fluorination and micellar aspect ratio.

  16. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    NASA Astrophysics Data System (ADS)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2-saturated water, revealing a suppressing effect of CO2. Both extractions had higher yields than those reported for soxhlet extraction [2]. LMWOAs found in the extraction fluid may not just result from hydrolysis but also from different secondary reactions. It was suggested that oxalate in aqueous extracts of coals is a result of the decomposition of 1,2-dihydroxy-carboxylic acids [3]. We assume that for oxalate (and maybe for other LMWOAs as well) the extraction yield is not only affected by hydrolysis but also by secondary reactions, which may be inhibited or suppressed in the presence of CO2 in the extraction medium. During soxhlet extraction the sample only gets into contact with freshly distilled water, not with an acidic fluid. This may explain the lower yields.

  17. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  18. Physiological effects on fishes in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun

    2005-09-01

    Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.

  19. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport mechanisms. The Membrane Test Facility (MTF) has been developed to measure membrane permeance over a wide range of temperature and pressure. The facility uses two volume compartments separated by the membrane that are instrumented to measure temperature, delta pressure across the membrane, and gas composition. A thermal shroud supports and encloses the membrane, and provides temperature control. Methods were developed to determine membrane permeance using the first order decay of the pressure difference between the sealed compartments, using the total pressure for pure gases, and partial pressure of each species in gas mixtures. The technique provides an end-to-end measurement of gas permeance that includes concentration polarization effects. Experiments have shown that in addition to membrane permeance properties, the geometry and design of associated structures play an important role in how membrane systems will function on Mars.

  20. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Li, Jie; Lange, Rebecca; Liu, Jiachao; Militzer, Burkhard

    2017-01-01

    Melting of carbonated eclogite or peridotite in the mantle influences the Earth's deep volatile cycles and bears on the long-term evolution of the atmosphere. Existing data on the melting curves of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) are limited to 7 GPa and therefore do not allow a full understanding of carbon storage and cycling in deep Earth. We determined the melting curves of CaCO3 and Na2CO3 to the pressures of Earth's transition zone using a multi-anvil apparatus. Melting was detected in situ by monitoring a steep and large increase in ionic conductivity, or inferred from sunken platinum markers in recovered samples. The melting point of CaCO3 rises from 1870 K at 3 GPa to ∼2000 K at 6 GPa and then stays within 50 K of 2000 K between 6 and 21 GPa. In contrast, the melting point of Na2CO3 increases continuously from ∼1123 K at 3 GPa to ∼1950 K at 17 GPa. A pre-melting peak in the alternating current through solid CaCO3 is attributed to the transition from aragonite to calcite V. Accordingly the calcite V-aragonite-liquid invariant point is placed at 13 ± 1 GPa and 1970 ± 40 K, with the Clapeyron slope of the calcite V to aragonite transition constrained at ∼70 K/GPa. The experiments on CaCO3 suggest a slight decrease in the melting temperature from 8 to 13 GPa, followed by a slight increase from 14 to 21 GPa. The negative melting slope is consistent with the prediction from our ab initio simulations that the liquid may be more compressible and become denser than calcite V at sufficiently high pressure. The positive melting slope at higher pressures is supported by the ab initio prediction that aragonite is denser than the liquid at pressures up to 30 GPa. At transition zone pressures the melting points of CaCO3 are comparable to that of Na2CO3 but nearly 400 K and 500 K lower than that of MgCO3. The fusible nature of compressed CaCO3 may be partially responsible for the majority of carbonatitic melts found on Earth's surface being highly calcic. It also provides a plausible explanation for low-degree melts of carbonated silicate rocks being particularly calcic at these depths. The melting curves of CaCO3 and Na2CO3 overlap with the estimated ocean-island geotherm at transition zone pressures, indicating that carbonatitic melt is readily generated from multi-component carbonate systems in the transition zone. The occurrence of such melt between the 410 and 660 km depths may facilitate the formation of ultradeep diamonds, produce low-velocity regions within the transition zone, and create a barrier to carbonate subduction into the lower mantle.

  1. The optical method for determining the thermodynamic parameters of hot gases

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.; Tsvyk, R. Sh.; Sazanovich, V. M.; Sherstobitov, M. V.

    2014-11-01

    The research conducted on the thermodynamic parameters of a flame was based on its experimental transmission spectra in the 2.7 μm and 4.3 μm ranges. To produce the flame, alcohol was burned under atmospheric conditions. The hot gases resulting from the burning of ethanol (H2O, CO, and CO2) were accelerated and spun by the rotation of an impeller. The optical method developed by the authors was employed for predicting the temperature and partial pressure of the hot gases. The results demonstrate the practical significance of the method suggested. The spectroscopic database HITEMP 2010 was used for all line-by-line calculations presented in the article.

  2. Analytical and pre-analytical performance characteristics of a novel cartridge-type blood gas analyzer for point-of-care and laboratory testing.

    PubMed

    Oyaert, Matthijs; Van Maerken, Tom; Bridts, Silke; Van Loon, Silvi; Laverge, Heleen; Stove, Veronique

    2018-03-01

    Point-of-care blood gas test results may benefit therapeutic decision making by their immediate impact on patient care. We evaluated the (pre-)analytical performance of a novel cartridge-type blood gas analyzer, the GEM Premier 5000 (Werfen), for the determination of pH, partial carbon dioxide pressure (pCO 2 ), partial oxygen pressure (pO 2 ), sodium (Na + ), potassium (K + ), chloride (Cl - ), ionized calcium ( i Ca 2+ ), glucose, lactate, and total hemoglobin (tHb). Total imprecision was estimated according to the CLSI EP5-A2 protocol. The estimated total error was calculated based on the mean of the range claimed by the manufacturer. Based on the CLSI EP9-A2 evaluation protocol, a method comparison with the Siemens RapidPoint 500 and Abbott i-STAT CG8+ was performed. Obtained data were compared against preset quality specifications. Interference of potential pre-analytical confounders on co-oximetry and electrolyte concentrations were studied. The analytical performance was acceptable for all parameters tested. Method comparison demonstrated good agreement to the RapidPoint 500 and i-STAT CG8+, except for some parameters (RapidPoint 500: pCO 2 , K + , lactate and tHb; i-STAT CG8+: pO 2 , Na + , i Ca 2+ and tHb) for which significant differences between analyzers were recorded. No interference of lipemia or methylene blue on CO-oximetry results was found. On the contrary, significant interference for benzalkonium and hemolysis on electrolyte measurements were found, for which the user is notified by an interferent specific flag. Identification of sample errors from pre-analytical sources, such as interferences and automatic corrective actions, along with the analytical performance, ease of use and low maintenance time of the instrument, makes the evaluated instrument a suitable blood gas analyzer for both POCT and laboratory use. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for heterogeneous catalysis in GCS systems.

  4. Experimental assessment of oxygen homeostasis during acute hemodilution: the integrated role of hemoglobin concentration and blood pressure.

    PubMed

    Kei, Tiffanie; Mistry, Nikhil; Tsui, Albert K Y; Liu, Elaine; Rogers, Stephen; Doctor, Allan; Wilson, David F; Desjardins, Jean-Francois; Connelly, Kim; Mazer, C David; Hare, Gregory M T

    2017-12-01

    Low hemoglobin concentration (Hb) and low mean arterial blood pressure (MAP) impact outcomes in critically ill patients. We utilized an experimental model of "normotensive" vs. "hypotensive" acute hemodilutional anemia to test whether optimal tissue perfusion is dependent on both Hb and MAP during acute blood loss and fluid resuscitation, and to assess the value of direct measurements of the partial pressure of oxygen in tissue (P t O 2 ). Twenty-nine anesthetized rats underwent 40% isovolemic hemodilution (1:1) (or sham-hemodilution control, n = 4) with either hydroxyethyl starch (HES) (n = 14, normotensive anemia) or saline (n = 11, hypotensive anemia) to reach a target Hb value near 70 g/L. The partial pressure of oxygen in the brain and skeletal muscle tissue (P t O 2 ) were measured by phosphorescence quenching of oxygen using G4 Oxyphor. Mean arterial pressure (MAP), heart rate, temperature, arterial and venous co-oximetry, blood gases, and lactate were assessed at baseline and for 60 min after hemodilution. Cardiac output (CO) was measured at baseline and immediately after hemodilution. Data were analyzed by repeated measures two-way ANOVA. Following "normotensive" hemodilution with HES, Hb was reduced to 66 ± 6 g/L, CO increased (p < 0.05), and MAP was maintained. These conditions resulted in a reduction in brain P t O 2 (22.1 ± 5.6 mmHg to 17.5 ± 4.4 mmHg, p < 0.05), unchanged muscle PO 2 , and an increase in venous oxygen extraction. Following "hypotensive" hemodilution with saline, Hb was reduced to 79 ± 5 g/L and both CO and MAP were decreased (P < 0.05). These conditions resulted in a more severe reduction in brain P t O 2 (23.2 ± 8.2 to 10.7 ± 3.6 mmHg (p < 0.05), a reduction in muscle P t O 2 (44.5 ± 11.0 to 19.9 ± 12.4 mmHg, p < 0.05), a further increase in venous oxygen extraction, and a threefold increase in systemic lactate levels (p < 0.05). Acute normotensive anemia (HES hemodilution) was associated with a subtle decrease in brain tissue P t O 2 without clear evidence of global tissue hypoperfusion. By contrast, acute hypotensive anemia (saline hemodilution) resulted in a profound decrease in both brain and muscle tissue P t O 2 and evidence of inadequate global perfusion (lactic acidosis). These data emphasize the importance of maintaining CO and MAP to ensure adequacy of vital organ oxygen delivery during acute anemia. Improved methods of assessing P t O 2 may provide an earlier warning signal of vital organ hypoperfusion.

  5. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    NASA Astrophysics Data System (ADS)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  6. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  7. Carbon and oxygen isotope study of carbonates from highly shocked clasts of the polymict breccia of the Haughton Crater (Canada)

    NASA Technical Reports Server (NTRS)

    Agrinier, P.; Martinez, I.; Javoy, M.; Schaerer, U.

    1992-01-01

    It is known that the release of volatiles on impact is an important controlling factor in cratering processes in carbonate terranes and in the mobility of chemical elements. In order to assess the nature and the role of carbon- and oxygen-bearing volatiles during impact-induced metamorphism of sedimentary rocks, the C-13/C-12 and O-18/O-16 ratios and carbonate contents were determined for 30 shocked clasts from the Haughton Crater polymict breccia as well as for some unshocked carbonates from the sedimentary cover adjacent to the crater. Shock-induced CO2 loss during decarbonation of calcite is known to be a function of peak pressure and ambient partial pressure of the volatile species. In our clast samples, shocked from 20 to 60 GPa, we expect about 20 to 100 percent CO2 loss and preferential depletion in C-13 and O-18 in the residual carbonate. Rayleigh model (progressive loss of CO2) and batch model (single-step loss of CO2) curves for this depletion are shown. The magnitudes of the C-13 and O-18 depletions increase with the increase of the CO2 loss. In addition, the isotopic depletions should be correlated with an enrichment in CaO and MgO in the residual solid.

  8. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  9. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  10. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor.

  11. Superconductivity in the presence of disorder in skutterudite-related La 3Co 4Sn 13 and La 3Ru 4Sn 13 compounds: Electrical transport and magnetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slebarski, A.; Maska, M. M.; Fijalkowski, M.

    2015-06-25

    La 3Co 4Sn 13 and La 3Ru 4Sn 13 were categorized as BCS superconductors. In a plot of the critical field H c2 vs T, La 3Ru 4Sn 13 displays a second superconducting phase at the higher critical temperature T c*, characteristic of inhomogeneous superconductors, while La 3Co 4Sn 13 shows bulk superconductivity below T c. We observe a decrease in critical temperatures with external pressure and magnetic field for both compounds. Additionally, for La 3Ru 4Sn 13 we find that T c*/dP>dT c/dP. The pressure dependences of T c are interpreted according to the McMillan theory and understood tomore » be a consequence of lattice stiffening. The investigation of the superconducting state of La 3Co xRu 4–xSn 13 shows a T c* that is larger then T c for x < 4. Furthermore, this unique and unexpected observation is discussed as a result of the local disorder and/or the effect of chemical pressure when Ru atoms are partially replaced by smaller Co atoms.« less

  12. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2013-03-19

    This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.

  13. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  14. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    PubMed

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  15. [Daytime hypercapnia in patients with obstructive sleep apnea hypopnea syndrome in Han and Uygur nationality].

    PubMed

    He, Z M; Jiang, X L; Da, Piliqing; Ye, Z; Li, J P; Zhang, Q L; Chen, Y; Shi, J; Li, M; Han, F

    2016-11-29

    Objective: To evaluate the incidence and factors related to daytime hypercapnia in Han and Uygur patients with obstructive sleep apnea hypopnea syndrome (OSAHS). Methods: There were 221 patients with OSAHS (include 179 Han patients and 42 Uygur patients) in Sleep Center of Department of Respiratory and Critical Care Medicine of Karamay Central Hospital from 2015, Jan to Dec. All the patients underwent polysomnography (PSG), nocturnal oximetry, daytime blood gas analysis, pulmonary function test and Mouth occlusion pressure (P 0.1 ) results were recorded. The features of hypercapnia was analyzed for patients with OSAHS, and linear regression analysis was used to evaluate the arterial carbon dioxide partial pressure (PaCO 2 ) levels and related factors. Results: Daytime hypercapnia occurred in 16.7% (37/221) of the 221 patients with OSAHS. Compare with no hypercapnia groups, the body mass [(31.6±5.6) vs (27.9±1.7) kg/m 2 ], sleep apnea index (AHI) [(40.9±26.3) vs (32.2±20.1) times/h], the percentage of time spent at oxygen saturation below 90 (SIT 90 ) [(38.6±31.9)% vs (23.9±23.6)%], P 0.1 [(3.08±2.86) vs (2.03±1.20) mmHg, 1 mmHg=0.133 kPa] were higher in hypercapnia groups, but the mean nocturnal arterial oxygen saturation (MSaO 2 ) [(86.0±15.5)% vs (92.0±3.0)%], the nadir arterial oxygen saturation (LSaO 2 ) [(68.9±13.0)% vs (75.3±9.9)%] and arterial partial pressure of oxygen (PaO 2 ) [(74.5±23.0) vs (86.1±14.8) were lower in hypercapnia groups (all P <0.05). Compare with Han patients with OSAHS, MSaO 2 and LSaO 2 was lower, PaCO 2 and P 0.1 was higher in Uygur patients (all P <0.05). Conclusions: Uygur OSAHS patients with hypercapnia have a higher daytime PaCO 2 than the Han counterparts. BMI, AHI, MSaO 2 , P 0.1 level are all related with daytime hypercapnia in OSAHS.

  16. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  17. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  18. Equations for O2 and CO2 solubilities in saline and plasma: combining temperature and density dependences.

    PubMed

    Christmas, Kevin M; Bassingthwaighte, James B

    2017-05-01

    Solubilities of respiratory gasses in water, saline, and plasma decrease with rising temperatures and solute concentrations. Henry's Law, C = α·P, states that the equilibrium concentration of a dissolved gas is solubility times partial pressure. Solubilities in the water of a solution depend on temperature and the content of other solutes. Blood temperatures may differ more than 20°C between skin and heart, and an erythrocyte will undergo that range as blood circulates. The concentrations of O 2 and CO 2 are the driving forces for diffusion, exchanges, and for reactions. We provide an equation for O 2 and CO 2 solubilities, α, that allows for continuous changes in temperature, T, and solution density, ρ, in dynamically changing states:[Formula: see text]This two-exponential expression with a density scalar γ, and a density exponent β, accounts for solubility changes due to density changes of an aqueous solution. It fits experimental data on solubilities in water, saline, and plasma over temperatures from 20 to 40°C, and for plasma densities, ρ sol up to 1.020 g/ml with ~0.3% error. The amounts of additional bound O 2 (to Hb) and CO 2 (bicarbonate and carbamino) depend on the concentrations in the local water space and the reaction parameters. During exercise, solubility changes are large; both ρ sol and T change rapidly with spatial position and with time. In exercise hemoconcentration plasma, ρ sol exceeds 1.02, whereas T may range over 20°C. The six parameters for O 2 and the six for CO 2 are constants, so solubilities are calculable continuously as T and ρ sol change. NEW & NOTEWORTHY Solubilities for oxygen and carbon dioxide are dependent on the density of the solution, on temperature, and on the partial pressure. We provide a brief equation suitable for hand calculators or mathematical modeling, accounting for these factors over a wide range of temperatures and solution densities for use in rapidly changing conditions, such as extreme exercise or osmotic transients, with better than 0.5% accuracy. Copyright © 2017 the American Physiological Society.

  19. Understanding the Oxygen Evolution Reaction Mechanism on CoO x using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less

  20. Understanding the Oxygen Evolution Reaction Mechanism on CoO x using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    DOE PAGES

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...

    2017-06-09

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3O 4/Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that themore » catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less

  1. The role of respiratory measures to assess mental load in pilot selection.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer

    2016-06-01

    While cardiovascular measures have a long tradition of being used to determine operator load, responsiveness of the respiratory system to mental load has rarely been investigated. In this study, we assessed basic and variability measures of respiration rate (RR), partial pressure of end-tidal carbon dioxide (petCO2) as well as performance measures in 63 male pilot candidates during completion of a complex cognitive task and subsequent recovery. Mental load was associated with an increase in RR and a decrease in respiratory variability. A significant decrease was also found for petCO2. RR and respiratory variability showed partial and complete effects of recovery, respectively, whereas petCO2 did not return to baseline level. Overall, a good performance was related to a stronger reactivity in RR. Our findings suggest that respiratory parameters would be a useful supplement to common measures for the assessment of mental load in pilot selection. Practitioner Summary: Respiratory measures are a promising yet poorly investigated approach to monitor operator load. For pilot selection, we assessed respiration in response to multitasking in 63 candidates. Task-related changes as well as covariation with performance strongly support the consideration of respiratory parameters when evaluating reactivity to mental load.

  2. Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Landschützer, Peter; Gruber, Nicolas; Bakker, Dorothee C. E.; Stemmler, Irene; Six, Katharina D.

    2018-01-01

    The increase of atmospheric CO2 (ref. 1) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean2,3, yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (pCO2) covering the past 34 years, we find that the winter-to-summer difference of the pCO2 has increased on average by 2.2 ± 0.4 μatm per decade from 1982 to 2015 poleward of 10° latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic pCO2 caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries4. Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions.

  3. Changes in the partial pressure of carbon dioxide in the Mauritanian-Cap Vert upwelling region between 2005 and 2012

    NASA Astrophysics Data System (ADS)

    González-Dávila, Melchor; Magdalena Santana Casiano, J.; Machín, Francisco

    2017-08-01

    Coastal upwellings along the eastern margins of major ocean basins represent regions of large ecological and economic importance due to the high biological productivity. The role of these regions for the global carbon cycle makes them essential in addressing climate change. The physical forcing of upwelling processes that favor production in these areas are already being affected by global warming, which will modify the intensity of upwelling and, consequently, the carbon dioxide cycle. Here, we present monthly high-resolution surface experimental data for temperature and partial pressure of carbon dioxide in one of the four most important upwelling regions of the planet, the Mauritanian-Cap Vert upwelling region, from 2005 to 2012. This data set provides direct evidence of seasonal and interannual changes in the physical and biochemical processes. Specifically, we show an upwelling intensification and an increase of 0.6 Tg yr-1 in CO2 outgassing due to increased wind speed, despite increased primary productivity. This increase in CO2 outgassing together with the observed decrease in sea surface temperature at the location of the Mauritanian Cap Blanc, 21° N, produced a pH rate decrease of -0.003 ± 0.001 yr-1.

  4. High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial.

    PubMed

    Kamennaya, Nina A; Zemla, Marcin; Mahoney, Laura; Chen, Liang; Holman, Elizabeth; Holman, Hoi-Ying; Auer, Manfred; Ajo-Franklin, Caroline M; Jansson, Christer

    2018-05-29

    The contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22-2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure (pCO 2 ) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellular polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.

  5. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  6. Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Sarmiento, J. L.; Talley, L. D.; Dickson, A. G.; Gray, A. R.; Wanninkhof, R.; Russell, J. L.; Riser, S. C.; Takeshita, Y.

    2017-03-01

    More than 74 biogeochemical profiling floats that measure water column pH, oxygen, nitrate, fluorescence, and backscattering at 10 day intervals have been deployed throughout the Southern Ocean. Calculating the surface ocean partial pressure of carbon dioxide (pCO2sw) from float pH has uncertainty contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium constants, resulting in a relative standard uncertainty in pCO2sw of 2.7% (or 11 µatm at pCO2sw of 400 µatm). The calculated pCO2sw from several floats spanning a range of oceanographic regimes are compared to existing climatologies. In some locations, such as the subantarctic zone, the float data closely match the climatologies, but in the polar Antarctic zone significantly higher pCO2sw are calculated in the wintertime implying a greater air-sea CO2 efflux estimate. Our results based on four representative floats suggest that despite their uncertainty relative to direct measurements, the float data can be used to improve estimates for air-sea carbon flux, as well as to increase knowledge of spatial, seasonal, and interannual variability in this flux.

  7. Reversible capture of SO2 through functionalized ionic liquids.

    PubMed

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Ma, Jun; Kang, Xinchen; Zhang, Jianling; Han, Buxing

    2013-07-01

    Emission of SO2 in flue gas from the combustion of fossil fuels leads to severe environmental problems. Exploration of green and efficient methods to capture SO2 is an interesting topic, especially at lower SO2 partial pressures. In this work, ionic liquids (ILs) 1-(2-diethylaminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Et2 NEMim][Tf2 N]) and 1-(2-diethylaminoethyl)-3-methylimidazolium tetrazolate ([Et2 NEMim][Tetz]) were synthesized. The performances of the two ILs to capture SO2 were studied under different conditions. It was demonstrated that the ILs were very efficient for SO2 absorption. The [Et2 NEMim][Tetz] IL designed in this work could absorb 0.47 g(SO2)g(IL)(-1) at 0.0101 MPa SO2 partial pressure, which is the highest capacity reported to date under the same conditions. The main reason for the large capacity was that both the cation and the anion could capture SO2 chemically. In addition, the IL could easily be regenerated, and the very high absorption capacity and rapid absorption/desorption rates were not changed over five repeated cycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide.

    PubMed

    Hasler, Caleb T; Hannan, Kelly D; Jeffrey, Jennifer D; Suski, Cory D

    2017-06-01

    Freshwater mussels are at-risk taxa and may be exposed to high levels of carbon dioxide (CO 2 ) because of the potential use of CO 2 to control the movement of invasive aquatic fish species. One potential behavioral response to a change in the partial pressure of CO 2 (pCO 2 ) may be altered valve movement. In this study, three species of mussels were fitted with modified sensors and exposed to two regimes of pCO 2 to define thresholds of impaired valve movement. The first experiment demonstrated that Pyganodon grandis were much more tolerant to rising pCO 2 relative to Lampsilis siliquoidea (acute closure at ∼200,000 μatm in comparison to ∼80,000 μatm). The second experiment consisted of monitoring mussels for 6 days and exposing them to elevated pCO 2 (∼70,000 μatm) over a 2-day period. During exposure to high pCO 2 , Lampsilis cardium were open for nearly the entire high pCO 2 period. Conversely, P. grandis were closed for most of the period following exposure to high pCO 2 . For L. siliquoidea, the number of closures decreased nearly 40-fold during high pCO 2 . The valve movement responses observed suggest species differences, and exposure to elevated pCO 2 requires a reactive response.

  9. Clinical characteristics and risk factors of pulmonary hypertension associated with chronic respiratory diseases: a retrospective study.

    PubMed

    Chen, Yonghua; Liu, Chunli; Lu, Wenju; Li, Mengxi; Hadadi, Cyrus; Wang, Elizabeth Wenqian; Yang, Kai; Lai, Ning; Huang, Junyi; Li, Shiyue; Zhong, Nanshan; Zhang, Nuofu; Wang, Jian

    2016-03-01

    Chronic respiratory disease-associated pulmonary hypertension (PH) is an important subtype of PH, which lacks clinical epidemiological data in China. Six hundred and ninety three patients hospitalized from 2010 to 2013 were classified by echocardiography according to pulmonary arterial systolic pressure (PASP): mild (36≤ PASP <50 mmHg); moderate (50≤ PASP <70 mmHg) and severe (PASP ≥70 mmHg). Dyspnea (93.51%) was the most common symptom. Hemoptysis observed in the severe group (6.42%) was significantly higher than the other two groups (P<0.05). COPD (78.35%), lung bullae (44.16%), tuberculosis (including obsolete pulmonary tuberculosis) (38.82%), and bronchiectasis (30.45%) were frequently present. Mild group occupied the highest proportion (84.7%) in COPD, while severe group occupied the highest proportion (19.3%) in pulmonary embolism (P<0.01). Age, partial pressure of oxygen (PaO2), hematocrit (HCT), partial pressure of carbon dioxide (PaCO2), increase of N-terminal pro brain natriuretic peptide (NT-proBNP) and right ventricular (RV) diameter (>20 mm) were associated with moderate-to-severe PH, while RV [odds ratio (OR) =3.53, 95% CI, 2.17-5.74], NT-proBNP (OR=2.44, 95% CI, 1.51-3.95), HCT (OR=1.03, 95% CI, 1.00-1.07) and PaCO2 (OR=1.01, 95% CI, 1.00-1.03) were independent risk factors. PH related to respiratory diseases is mostly mild to moderate, and the severity is associated with the category of respiratory disease. Increased HCT can be an independent risk factor for PH related to chronic respiratory diseases.

  10. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  11. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  12. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury.

    PubMed

    Marion, D W; Bouma, G J

    1991-12-01

    Previous studies using the xenon-133 cerebral blood flow (CBF) method have documented the impairment of CO2 vasoresponsivity after a severe head injury, but only global values can be obtained reliably with this technique. We studied CO2 vasoresponsivity using the stable xenon-enhanced computed tomographic CBF method, which provided information about well-defined cortical regions and deep brain structures not available with the xenon-133 method. In 17 patients with admission Glasgow Coma Scale scores of 8 or less, hemispheric CO2 vasoresponsivity ranged from 1.3 to 8.5% per mm Hg change in partial CO2 pressure. Lobar, cerebellar, basal ganglia, and brain stem CO2 vasoresponsivity frequently varied from the mean global value by more than 25%. In all but one patient, local CO2 vasoresponsivity in one or more of these areas differed from the mean global value by more than 50%. The greatest variability occurred in patients with acute subdural hematomas and diffuse (bihemispheric) injuries. This variability in CO2 vasoresponsivity has important implications for the effective and safe management of intracranial hypertension that frequently accompanies severe head injury.

  13. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers

    PubMed Central

    Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven

    2015-01-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107

  14. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation.

    PubMed

    Nualsri, Chatchawin; Kongjan, Prawit; Reungsang, Alissara; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased.

  15. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation

    PubMed Central

    Nualsri, Chatchawin; Kongjan, Prawit; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased. PMID:28207755

  16. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  17. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  18. CO2 time series patterns in contrasting headwater streams of North America

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Dornblaser, Mark M.; Striegl, Robert G.

    2017-01-01

    We explored the underlying patterns of temporal stream CO2 partial pressure (pCO2) variability using highfrequency sensors in seven disparate headwater streams distributed across the northern hemisphere. We also compared this dataset of [40,000 pCO2 records with other published records from lotic systems. Individual stream sites exhibited relatively distinct pCO2 patterns over time with few consistent traits across sites. Some sites showed strong diel variability, some exhibited increasing pCO2 with increasing discharge, whereas other streams had reduced pCO2 with increasing discharge or no clear response to changes in flow. The only ‘‘universal’’ signature observed in headwater streams was a late summer pCO2 maxima that was likely driven by greatest rates of organic matter respiration due to highest annual temperatures. However, we did not observe this seasonal pattern in a southern hardwood forest site, likely because the region was transitioning from a severe drought. This work clearly illustrates the heterogeneous nature of headwater streams, and highlights the idiosyncratic nature of a non-conservative solute that is jointly influenced by physics, hydrology, and biology. We suggest that future researchers carefully select sensor locations (within and among streams) and provide additional contextual information when attempting to explain pCO2 patterns.

  19. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.

    PubMed

    Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert

    2018-09-15

    The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  1. Results of two years of a mooring over a Posidonia Oceanica seagrass meadow (Corsica, France)

    NASA Astrophysics Data System (ADS)

    Champenois, W.; Delille, B.; Beckers, J.-M.; Grégoire, M.; Borges, A. V.

    2009-04-01

    We report the first two year of results from a 10m deep mooring over a Posidonia Oceanica seagrass meadow (Corsica, France) where we deployed from August 2006 to August 2008 an array of 3 optodes, a fluorometer and a sensor for measurements of the partial pressure of CO2 (pCO2). The oxygen data are used to compute by mass balance ecosystem metabolic performance rates (gross primary production, community respiration, net community production). The comparison with rates derived from discrete benthic incubations (every 2 months) is very satisfactory. The pCO2 data are used to assess the sink or source of atmospheric CO2 of the Posidonia Oceanica seagrass meadow. An application of such a mooring is to detect changes in the productivity of the Posidonia meadow that can be used as indicators of overall ecosystem "health" or degradation by human activities. Such a mooring can be used as an affordable and simple tool for management and sustainable development of coastal areas in the Mediterranean.

  2. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    PubMed

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.

    Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less

  4. Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis.

    PubMed

    Miyake, C; Yokota, A

    2000-03-01

    A study was performed to determine how the electron fluxes for the photosynthetic carbon reduction (PCR) and the photorespiratory carbon oxidation (PCO) cycles affect the photoreduction of O2 at PSI, which is the limiting step in the water-water cycle. Simultaneous measurements were made of CO2-gas exchange, transpiration and quantum yield of PSII [phi(PSII)] using leaves of watermelon (Citrullus lanatus). The total electron flux in PSII[Je(PSII)], as estimated from phi(PSII), was always larger than the total electron flux required for the PCR and PCO cycles at various partial pressures of CO2 and O2 and 1,100 micromol photons m(-2)s(-1). This observation suggested the existence of an alternative electron flux (Ja). Ja was divided into O2-dependent [Ja(O2-depend)] and O2-independent [Ja(O2-independ)] components. The magnitude of half Ja(O2-depend), 7.5 to 9.5 micromol e- m(-2)s(-1), and its apparent Km for O2, about 8.0 kPa, could be accounted for by the photoreduction of O2 at PSI either mediated by ferredoxin or catalyzed by monodehydroascorbate reductase. The results indicated that Ja(O2-depend) was driven by the water-water cycle. A decrease in the intercellular partial pressure of CO2 from 23 to 5.0 Pa at 21 kPa O2 enhanced Ja(O2-depend) by a factor of 1.3. Saturation of the activities of both the PCR and PCO cycles by increasing the photon flux density induced Ja. These results indicate the electron flux in PSII that exceeds the flux required for the PCR and PCO cycles induces the photoreduction of O2 in the water-water cycle.

  5. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  6. Near Net-Shape, Ultra High Melting, Erosion Resistant Carbide/Metal Composites with Tailored Fibrillar Microstructures via the Displacive Compensation of Porosity Process

    DTIC Science & Technology

    2006-11-26

    vapor species, formed over tungsten trioxide powder, is 1.25xl0Ŗ atm at 1400°C and 1 atm total pressure (assuming an oxygen partial pressure greater...with CO(g). ■19- These hollow tungsten fibers were then carburized via reaction with CO(g) to generate the polycrystalline WC-based fibers shown in...of tungsten carbide via reaction with a hafnium-copper melt," Ada Mater., 57(13), 3924-3931 (2009).) The kinetic mechanism of incongruent reduction

  7. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  8. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  9. Comparison of Sea-Air CO2 Flux Estimates Using Satellite-Based Versus Mooring Wind Speed Data

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Wanninkhof, R. H.

    2016-12-01

    The global ocean is a major sink of anthropogenic CO2, absorbing approximately 27% of CO2 emissions since the beginning of the industrial revolution. Any variation or change in the ocean CO2 sink has implications for future climate. Observations of sea-air CO2 flux have relied primarily on ship-based underway measurements of partial pressure of CO2 (pCO2) combined with satellite, model, or multi-platform wind products. Direct measurements of ΔpCO2 (seawater - air pCO2) and wind speed from moored platforms now allow for high-resolution CO2 flux time series. Here we present a comparison of CO2 flux calculated from moored ΔpCO2 measured on four moorings in different biomes of the Pacific Ocean in combination with: 1) Cross-Calibrated Multi-Platform (CCMP) winds or 2) wind speed measurements made on ocean reference moorings excluded from the CCMP dataset. Preliminary results show using CCMP winds overestimates CO2 flux on average by 5% at the Kuroshio Extension Observatory, Ocean Station Papa, WHOI Hawaii Ocean Timeseries Station, and Stratus. In general, CO2 flux seasonality follows patterns of seawater pCO2 and SST with periods of CO2 outgassing during summer and CO2 uptake during winter at these locations. Any offsets or seasonal biases in CCMP winds could impact global ocean sink estimates using this data product. Here we present patterns and trends between the two CO2 flux estimates and discuss the potential implications for tracking variability and change in global ocean CO2 uptake.

  10. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  11. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  12. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  13. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However, interestingly, ETCO2 during left-lung ventilation was comparable to that during two-lung ventilation.

  14. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties.

    PubMed

    Botas, Juan A; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Orcajo, M Gisela

    2010-04-20

    Partial isomorphic substitution of Zn in IRMOF metal clusters by cobalt ions is described for the first time. Specifically, different numbers of Co(2+) ions have been incorporated during solvothermal crystallization into the Zn-based MOF-5 (IRMOF-1) framework, which is one of the most studied MOF materials. The amount of Zn that can be substituted seems to be limited, being no more than 25% of total metal content, that is, no more than one Co atom inside every metal cluster formed by four transition-metal ions, on average. Several characterization techniques, including X-ray diffraction, DR UV-visible spectroscopy, N(2) adsorption isotherms, and thermogravimetrical analysis, strongly support the effective incorporation of Co into the material framework. As-synthesized CoMOF-5 has cobalt ions in octahedral coordination, changing to tetrahedral by simple evacuation, presumably by the removal of two diethylformamide molecules per Co ion. Moreover, the H(2), CH(4), and CO(2) uptake of MOF-5 materials systematically increases with the Co content, particularly at high pressure. Such an increase is moderate anyway, considering that Co is incorporated into unexposed metal sites that are less accessible to gas molecules.

  15. CO2 adhesion on hydrated mineral surfaces.

    PubMed

    Wang, Shibo; Tao, Zhiyuan; Persily, Sara M; Clarens, Andres F

    2013-10-15

    Hydrated mineral surfaces in the environment are generally hydrophilic but in certain cases can strongly adhere CO2, which is largely nonpolar. This adhesion can significantly alter the wettability characteristics of the mineral surface and consequently influence capillary/residual trapping and other multiphase flow processes in porous media. Here, the conditions influencing adhesion between CO2 and homogeneous mineral surfaces were studied using static pendant contact angle measurements and captive advancing/receding tests. The prevalence of adhesion was sensitive to both surface roughness and aqueous chemistry. Adhesion was most widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nm. The incidence of adhesion increased with ionic strength and CO2 partial pressure. Adhesion was very rarely observed on surfaces equilibrated with brines containing strong acid or base. In advancing/receding contact angle measurements, adhesion could increase the contact angle by a factor of 3. These results support an emerging understanding of adhesion of, nonpolar nonaqueous phase fluids on mineral surfaces influenced by the properties of the electrical double layer in the aqueous phase film and surface functional groups between the mineral and CO2.

  16. Deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2014-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  17. A kinetic model for the synthesis of high-molecular-weight alcohols over a sulfided Co-K-Mo/C catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunturu, A.K.; Kugler, E.L.; Cropley, J.B.

    A statistically designed set of experiments was run in a recycle reactor to evaluate the kinetics of the formation of higher-molecular-weight alcohols (higher alcohols) and total hydrocarbon byproducts from synthesis gas (hydrogen and carbon monoxide) in a range of experimental conditions that mirrors the limits of commercial production. The alkali-promoted, C-supported Co-Mo sulfide catalyst that was employed in this study is well known for its sulfur resistance. The reaction was carried out in a gradientless Berty-type recycle reactor. A two-level fractional-factorial set consisting of 16 experiments was performed. Five independent variables were selected for this study, namely, temperature, partial pressuremore » of carbon monoxide, partial pressure of hydrogen, partial pressure of inerts, and methanol concentration in the feed. The major oxygenated products were linear alcohols up to n-butanol, but alcohols of higher carbon number were also detected, and analysis of the liquid product revealed the presence of trace amounts of ethers also. Yields of hydrocarbons were non-negligible. The alcohol product followed an Anderson-Schultz-Flory distribution. From the results of the factorial experiments, a preliminary power-law model was developed, and the statistically significant variables in the rate expression for the production of each alcohol were found. Based on the results of the power-law models, rate expressions of the Langmuir-Hinshelwood type were fitted. The observed kinetics are consistent with the rate-limiting step for the production of each higher alcohol being a surface reaction of the alcohol of next-lower carbon number. All other steps, including CO-insertion, H{sub 2}-cleavage, and hydrogenation steps, do not appear to affect the rate correlations.« less

  18. Predation of freshwater fish in environments with elevated carbon dioxide

    USGS Publications Warehouse

    Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.

    2017-01-01

    Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.

  19. Warming and pCO2 effects on Florida stone crab larvae

    NASA Astrophysics Data System (ADS)

    Gravinese, Philip M.; Enochs, Ian C.; Manzello, Derek P.; van Woesik, Robert

    2018-05-01

    Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 (pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.

  20. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Rolfe, Sara L. (Inventor); Schutte, Erick J. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01

  1. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01

  2. Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes

    NASA Astrophysics Data System (ADS)

    Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.

    2017-11-01

    Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.

  3. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions section of this paper.

  4. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  5. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  6. A unique noninvasive approach to monitoring dissolved O2 and CO2 in cell culture.

    PubMed

    Chatterjee, Madhubanti; Ge, Xudong; Uplekar, Shaunak; Kostov, Yordan; Croucher, Leah; Pilli, Manohar; Rao, Govind

    2015-01-01

    Although online monitoring of dissolved oxygen (DO) and carbon dioxide (DCO2 ) is highly desirable in bioprocesses, small-scale bioreactors are usually not monitored due to the lack of suitable sensors. Traditional electrochemical sensors are usually not used because they are bulky and invasive. Disposable optical sensors are small and only partially invasive, but there are concerns regarding the toxicity of the patch and the phototoxicity of the illuminating light. Here we present a novel, noninvasive, rate-based technique for monitoring DO and DCO2 in cell cultures. A silicone sampling loop which allowed the diffusion of O2 and CO2 through its wall was inserted inside a bioreactor, and then flushed with N2 until the CO2 and O2 inside the loop were completely removed. The gas inside the loop was then allowed to recirculate through gas impermeable tubing to the O2 and CO2 sensors. We have shown that by measuring the initial diffusion rate we were able to determine the partial pressures of the two gases in the culture. The technique could be readily automated and measurements could be made in minutes. It was tested in demonstration experiments by growing murine hybridoma cells in a T-flask and a spinner-flask at 37°C. The results were comparable to those measured with commercially available fluorescence-based patch sensors. These results show that the rate-based method is an effective way to monitor small-scale cell cultures. This measurement mechanism can be easily built into disposable cell culture vessels for facile use. © 2014 Wiley Periodicals, Inc.

  7. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an increase in peak width of [4]Si with pressure. 17O NMR spectrum shows that the fraction of Na⋯Osbnd [5]Si in carbon-bearing NS3 glasses is less than that of carbon-free NS3 glasses at 6 GPa potentially due to the formation of bridging carbonate species. While its presence is not evident from the 17O NMR spectrum primarily due to low carbon concentration, 13C MAS NMR results imply the formation of bridging carbonates, [4]Si(CO3)[4]Si, above 6 GPa. The spin-lattice relaxation time (T1) of CO2 in albite melts increases with increasing pressure from 42 s (at 1.5 GPa) to 149 s (at 6 GPa). Taking the pressure-induced change in T1 of carbon species into consideration, total carbon content in carbon-bearing albite melts increases with pressure from ∼1 wt% at 1.5 GPa to ∼4.1 wt% at 6 GPa. The results also reveal a noticeable drop in the peak intensity of free carbonates in carbon-bearing NS3 melts at 6 GPa, implying a potential non-linear change in the carbon solubility with pressure. The current results of carbon speciation in the silicate melts above 4 GPa provide an improved link among the atomic configurations around carbon species, their carbon contents, and isotope composition of carbon-bearing melts in the upper mantle.

  8. Detection techniques for tenuous planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.

    1974-01-01

    The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.

  9. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m.

    PubMed

    Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L

    2015-11-01

    What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2)  = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  10. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future ground testing in the REI-suit and EM-ACES.

  11. [The clinical significance of microcirculation and oxygen metabolism evaluation in acute kidney injury assessment in patients with septic shock after resuscitation].

    PubMed

    Yu, C; Liu, D W; Wang, X T; He, H W; Pan, P; Xing, Z Q

    2018-02-01

    Objective: To evaluate the value of microcirculation and oxygen metabolism evaluation (MicrOME) in acute kidney injury(AKI) evaluation in patients with septic shock after resuscitation. Methods: Consecutive patients with septic shock after resuscitation and mechanical ventilation were enrolled from October 2016 to February 2017 in ICU at Peking Union Medical College Hospital.Patients were divided into 3 groups based on 10 min transcutaneous oxygen challenge test transcutaneous partial pressure of oxygen(PtcO(2))and venoarterial pressure of carbon dioxide difference (Pv-aCO(2)) /arteriovenous O(2) content difference (Ca-vO(2)) by blood gas analysis, i.e. group A [ΔPtcO(2)>66 mmHg(1 mmHg=0.133 kPa) and Pv-aCO(2)/Ca-vO(2)≤1.23], group B (ΔPtcO(2)≤66 mmHg), group C (ΔPtcO(2)>66 mmHg and Pv-aCO(2)/Ca-vO(2)>1.23). Heart rate,mean arterial pressure,central venous pressure,noradrenaline dose,lactate,Pv-aCO(2),Ca-vO(2), lactate clearance, central venous oxygen saturation(ScvO(2)) and liquid equilibrium were assessed after resuscitation.AKI staging based on Kidney Disease Global Improving Outcomes (KDIGO) clinical practice guideline was analyzed. The predictive value of lactate, ScvO(2), Pv-aCO(2)/Ca-vO(2) to progression of AKI after resuscitation was determined using receiver operating characteristic(ROC)curve analysis. Results: A total of 49 septic shock patients were enrolled including 30 males and 19 females with mean age of (61.10±17.10)years old.There were 19 patients in group A,21 patients in group B, and 9 patients in group C. Acute physiology and chronic health evaluation Ⅱ score was 20.92±7.19 and sequential organ failure assessment score 12.02±3.28. There were 4 patients with AKI and 1 progressed in group A, 11 patients with AKI and 2 progressed in group B, 6 patients with AKI and 4 progressed in group C. The cutoff value of Pv-aCO(2)/Ca-vO(2) was equal or more than 2.20 for predicting progression of AKI, resulting in a sensitivity of 85.7% and a specificity of 73.8%. Conclusion: MicrOME is a significant parameter to predict the progression of AKI in patients with septic shock after resuscitation. Pv-aCO(2)/Ca-vO(2) is also a good predictive factor.

  12. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.

    PubMed

    Smirl, Jonathan D; Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N

    2015-09-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. Copyright © 2015 the American Physiological Society.

  13. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships

    PubMed Central

    Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N.

    2015-01-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07–0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. PMID:26183476

  14. Forsterite [Mg 2 SiO 4 )] Carbonation in Wet Supercritical CO 2 : An in Situ High-Pressure X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd Schaef, Herbert; McGrail, Bernard P.; Loring, John L.

    2013-01-02

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring with forsterite (Mg2SiO4) exposed to wet supercritical CO2. Forsterite was selected as it is an important olivine group mineral present in igneous and mafic rocks and has been the subject of a large number of aqueous dissolutionmore » studies that can be compared with non-aqueous fluid tests in this study. Transformation reactions were examined by in situ high pressure x-ray diffraction in the presence of supercritical carbon dioxide (scCO2) containing dissolved water at conditions relevant to carbon sequestration. Under modest pressures (90 bar) and temperatures (50°C), scCO2 saturated with water was found to convert >70 wt% forsterite to a hydrated magnesium carbonate, nesquehonite (MgCO3 •3H2O) and magnesite (MgCO3), after 72 hours of reaction. However, comparable tests with scCO2 at only partial water saturation (82%) showed a significantly slower carbonation rate with only ~30-39 wt% conversion to nesquehonite and no evidence of the anhydrous form (MgCO3). Further decreases in water content of the scCO2 continued to reduce the extent of carbonation, until a critical moisture threshold (~30%) was crossed where forsterite no longer reacted in the presence of the wet scCO2 to form crystalline carbonates. Increasing the temperature to 75°C produced anhydrous magnesium carbonate, magnesite (MgCO3), preceded by the intermediate phase, hydromagnesite [Mg(CO3)4(OH)2 •4H2O]. Measurements conducted during in situ IR experiments at 50°C and 30% saturation identified the presence of an amorphous carbonate phase as well as the formation of a thin liquid-like water layer on the forsterite surface. The presence of this water film appears to be critical for the mineral carbonation of forsterite exposed to water bearing scCO2. In contrast, our prior studies with the mineral brucite [Mg(OH)2] showed extensive carbonation in the absence of a condensed water layer on the mineral surface. The contrasts in reaction rate and products formed demonstrated by temperature and water-content dependence highlights the importance of these kinds of studies to help enable better predictions of the long term fate of geologically stored CO2.« less

  15. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  16. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  17. Oxygen partial pressure influenced structural and optical properties of DC magnetron sputtered ZrO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondaiah, P.; Madhavi, V.; Uthanna, S.

    2013-02-05

    Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase.more » The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.« less

  18. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens.

    PubMed

    Couvert, Olivier; Guégan, Stéphanie; Hézard, Bernard; Huchet, Véronique; Lintz, Adrienne; Thuault, Dominique; Stahl, Valérie

    2017-12-01

    The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO 2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO 2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO 2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO 2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO 2 is sparingly soluble at acid pH. However, the CO 2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO 3 - form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO 2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO 2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Earth's partial pressure of CO2 over the past 120 Ma; evidence from Ce anomalies in the deep (greater than 600 m) Pacific Ocean, 1

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G; Schmitt, R. A.

    1993-01-01

    It was found that Ce serves as a chemical tracer of paleo-oceanic redox conditions. It was shown that the unoxidized and soluble Ce(3+) in modern seawater exhibits a negative anomaly relative to the other soluble REE(3+). An expression of soluble Ce(3+) in seawater that was approximately 1900X greater than the average observed in Ce in 600-5000 m Pacific seawater was derived. Since Ce(CO3)(+) and Ce(CO3)2(-) complexes greatly exceed the Ce(PO4) complexes in seawater, the formulations of using carbonate complexes were followed and it was found that the calculated Ce and observed concentrations in the deep 600-5000 m Pacific Ocean agree within the uncertainties of the thermodynamic data. As expected, the calculated Ce concentrations are a strong function of pH and found to be lesser functions of CO3(2-) activities.

  20. An experimental study of the influence of stress history on fault slip during injection of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.

    2018-04-01

    The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.

  1. Influence of total face, facial and nasal masks on short-term adverse effects during noninvasive ventilation.

    PubMed

    Holanda, Marcelo Alcantara; Reis, Ricardo Coelho; Winkeler, Georgia Freire Paiva; Fortaleza, Simone Castelo Branco; Lima, José Wellington de Oliveira; Pereira, Eanes Delgado Barros

    2009-02-01

    Failure of noninvasive ventilation (NIV) has been associated with short-term adverse effects related to the use of masks. The aim of this study was to compare the incidence, type and intensity of adverse effects, as well as the comfort, of total face masks (TFMs), facial masks (FMs) and nasal masks (NMs) during NIV. This was a randomized crossover trial involving 24 healthy volunteers submitted to six sessions of NIV in bilevel positive airway pressure mode using the TFM, FM and NM masks at low and moderate-to-high pressure levels. A written questionnaire was applied in order to evaluate eleven specific adverse effects related to the use of the masks. Comfort was assessed using a visual analog scale. The CO2 exhaled into the ventilator circuit was measured between the mask and the exhalation port. The performance of the TFM was similar to that of the NM and FM in terms of comfort scores. Higher pressure levels reduced comfort and increased adverse effects, regardless of the mask type. When the TFM was used, there were fewer air leaks and less pain at the nose bridge, although there was greater oronasal dryness and claustrophobia. Air leaks were most pronounced when the FM was used. The partial pressure of exhaled CO2 entering the ventilator circuit was zero for the TFM. The short-term adverse effects caused by NIV interfaces are related to mask type and pressure settings. The TFM is a reliable alternative to the NM and FM. Rebreathing of CO2 from the circuit is less likely to occur when a TFM is used.

  2. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    PubMed

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  3. Combined Low Temperature-High Light Effects on Gas Exchange Properties of Jojoba Leaves 1

    PubMed Central

    Loreto, Francesco; Bongi, Guido

    1989-01-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO2 were measured on jojoba leaves recovering from chilling temperature (4°C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO2 was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO2 concentration may constitute an ecological advantage of jojoba as a crop in the future. PMID:16667220

  4. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 384

    DTIC Science & Technology

    1976-11-15

    been solemnly turned over to astronomers by its creators, representatives of the Leningrad Op- tical- Mechanical Combine, whose chief designer is B. K...purposeful regulation of climate. By learning how to evaluate precisely the dependence of climate on different factors it will be possible to exert a...bination with standard measurements of temperature and salinity , make it possible to compute the partial pressure of CO2 at the ocean surface. The computed

  5. Transport of thermal water from well to thermal baths

    NASA Astrophysics Data System (ADS)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2.5 bar) to avoid uncontrolled calcite precipitation, and accordingly the pipeline path was designed. Non-linear phenomena that may originate calcite precipitation, such as phase separation and pressure waves, were discussed. The pipeline and the thermal bath are planned to be built next year.

  6. Manufacture of dense sintered bodies containing silicon nitride

    NASA Technical Reports Server (NTRS)

    Hirota, K.; Hasegawa, Y.; Ogura, K.; Yashima, Y.

    1985-01-01

    Sintered bodies containing 1-32.5 Si oxide and 1.5 wt.% SiC (Si oxide/SiC wt. ratio 3/2) are prepared and kept in a 10-3000 kg/2 sq. cm. N (g) atmosphere at 1500-2300 degrees, while simultaneously maintaining the CO (g) partial pressure around the body lower than the nitrogenation equil. pressure to give a dense sintered body. The prepared dense sintered body has high strength at high temperatures. Thus, SiC 40, oxide 30 and Si3N4 30 wt% were fired to a body which was kept in 1500 kg/sq. cm. N (g) for 20 h at 2000 degrees to give a dense sintered body having high bending strength at high temperatures.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshkov, V.G.; Makarieva, A.M.

    The oceanic phytoplancton productivity may essentially influence the total rate of the atmospheric CO{sub 2} absorption by the ocean - that is, a considerable amount of CO{sub 2} will be taken-up in the 50 micrometers thick layer near the air-sea interface. Even if phytoplancton production constitutes only 5% of the total oceanic biota production, this will increase the rate of CO{sub 2} absorption more than twice compared with the present estimates. The reason is that metabolic activity of phytoplancton leads to the emergence in a thin scin (50 micrometers, the average size of phytoplancton cells) layer near the water surfacemore » of an additional minimum in the CO{sub 2} partial pressure profile and of an additional maximum of {Delta} {sup 13}C in the same area. These two extremums cannot be detected if the corresponding characteristics are averaged over any microscopic area in the well mixing layer that is more than 1 meter deep, which is usually the case when the oceanic concentrations of CO{sub 2} are measured. This effect may account for the observed contradiction between the existing estimates of the rate of CO{sub 2} absorption, that are based either on measuring gradient of the concentrations of the dissolved organic and inorganic carbon or on measuring of the physical flux of CO{sub 2} through the air-sea interface.« less

  8. Integrated CO 2 Storage and Brine Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Kelsey; Bielicki, Jeffrey M.; Middleton, Richard

    Carbon dioxide (CO 2) capture, utilization, and storage (CCUS) can reduce CO 2 emissions from fossil fuel power plants by injecting CO 2 into deep saline aquifers for storage. CCUS typically increases reservoir pressure which increases costs, because less CO 2 can be injected, and risks such as induced seismicity. Extracting brine with enhanced water recovery (EWR) from the CO 2 storage reservoir can manage and reduce pressure in the formation, decrease the risks linked to reservoir overpressure (e.g., induced seismicity), increase CO 2 storage capacity, and enable CO 2 plume management. We modeled scenarios of CO 2 injection withmore » EWR into the Rock Springs Uplift (RSU) formation in southwest Wyoming. The Finite Element Heat and Mass Transfer Code (FEHM) was used to model CO 2 injection with brine extraction and the corresponding increase in pressure within the RSU. We analyzed the model for pressure management, CO 2 storage, CO 2 saturation, and brine extraction due to the quantity and location of brine extraction wells. The model limited CO 2 injection to a constant pressure increase of two MPa at the injection well with and without extracting brine at hydrostatic pressure. Finally, we found that brine extraction can be used as a technical and cost-effective pressure management strategy to limit reservoir pressure buildup and increase CO 2 storage associated with a single injection well.« less

  9. Integrated CO 2 Storage and Brine Extraction

    DOE PAGES

    Hunter, Kelsey; Bielicki, Jeffrey M.; Middleton, Richard; ...

    2017-08-18

    Carbon dioxide (CO 2) capture, utilization, and storage (CCUS) can reduce CO 2 emissions from fossil fuel power plants by injecting CO 2 into deep saline aquifers for storage. CCUS typically increases reservoir pressure which increases costs, because less CO 2 can be injected, and risks such as induced seismicity. Extracting brine with enhanced water recovery (EWR) from the CO 2 storage reservoir can manage and reduce pressure in the formation, decrease the risks linked to reservoir overpressure (e.g., induced seismicity), increase CO 2 storage capacity, and enable CO 2 plume management. We modeled scenarios of CO 2 injection withmore » EWR into the Rock Springs Uplift (RSU) formation in southwest Wyoming. The Finite Element Heat and Mass Transfer Code (FEHM) was used to model CO 2 injection with brine extraction and the corresponding increase in pressure within the RSU. We analyzed the model for pressure management, CO 2 storage, CO 2 saturation, and brine extraction due to the quantity and location of brine extraction wells. The model limited CO 2 injection to a constant pressure increase of two MPa at the injection well with and without extracting brine at hydrostatic pressure. Finally, we found that brine extraction can be used as a technical and cost-effective pressure management strategy to limit reservoir pressure buildup and increase CO 2 storage associated with a single injection well.« less

  10. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  11. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE PAGES

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura; ...

    2018-05-29

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  12. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  13. Data-based estimates of the ocean carbon sink variability - first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)

    NASA Astrophysics Data System (ADS)

    Rödenbeck, C.; Bakker, D. C. E.; Gruber, N.; Iida, Y.; Jacobson, A. R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.; Olsen, A.; Park, G.-H.; Peylin, P.; Rodgers, K. B.; Sasse, T. P.; Schuster, U.; Shutler, J. D.; Valsala, V.; Wanninkhof, R.; Zeng, J.

    2015-08-01

    Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea-air CO2 fluxes have been investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the Eastern equatorial Pacific. Despite considerable spead in the detailed variations, mapping methods with closer match to the data also tend to be more consistent with each other. Encouragingly, this includes mapping methods belonging to complementary types - taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea-air CO2 flux of 0.31 PgC yr-1 (standard deviation over 1992-2009), which is larger than simulated by biogeochemical process models. On a decadal perspective, the global CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to 2000. The weighted mean total ocean CO2 sink estimated by the SOCOM ensemble is consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.

  14. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  15. [Study of setting of ventilator volume tidal and airway pressure alarm threshold with continuous extra-sternum heart compression in cardiopulmonary resuscitation].

    PubMed

    Luo, Jian-yu; Wang, Xiao-yuan; Cai, Tian-bin; Jiang, Wen-fang

    2013-02-01

    To investigate the setting of ventilator volume tidal (VT) and airway pressure alarm threshold during cardiopulmonary resuscitation (CPR) by continuous extra-sternum heart compression. Forty cases with respiration and cardiac arrest in the department of critical care medicine were randomly divided into low VT ventilation group and conventional VT group. Both groups were given the volume control mode. In the low VT ventilation group, VT was set on 6 - 7 ml/kg, and high pressure alarm threshold was adjusted to 60 cm H2O by the conventional 40 cm H2O during CPR. In the conventional VT group, VT and high pressure alarm threshold were set at 8 - 12 ml/kg and 40 cm H2O, respectively. Real-time actual VT, peak inspiratory pressure (PIP), and arterial blood gas test, blood lactic acid at 10 minutes and 30 minutes after CPR were observed. At 10 minutes after CPR, in the low VT ventilation group, arterial blood pH, arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), HCO3(-), arterial oxygen saturation (SaO2) and blood lactic acid were better as compared with those in the conventional VT ventilation group (pH: 7.21±0.09 vs. 7.13±0.07, PaO2: 45.35±5.92 mm Hg vs. 40.70±4.70 mm Hg, PaCO2: 57.10±7.59 mm Hg vs. 61.60±5.47 mm Hg, HCO3(-): 18.50±3.50 mmol/L vs. 14.75±2.65 mmol/L, SaO2: 0.796±0.069 vs. 0.699±0.066, blood lactic acid: 7.07±1.60 mmol/L vs. 8.13±1.56 mmol/L, all P<0.05). The success rate of resuscitation in the low VT ventilation group was higher than that of the conventional VT ventilation group (45% vs. 15%, P<0.05), and PIP (cm H2O) of low VT ventilation group was lower than that of the conventional VT group (37.25±7.99 cm H2O vs. 42.70±7.40 cm H2O, P<0.05). In all the patients in both groups barotrauma did not occur. The strategy of low ventilator VT (6 - 7 ml/kg) with appropriate elevation of airway pressure alarm threshold was better than that of conventional ventilation setting, with no increase in incidence of barotraumas during CPR.

  16. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    PubMed

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayanne, Hajime; Suzuki, Atsushi; Saito, Hiroshi

    Coral reefs are considered to be a source of atmospheric carbon dioxide because of their high calcium carbonate production and low net primary production. This was tested by direct measurement of diurnal changes in the partial pressure of carbon dioxide (P{sub CO2}) in reef waters during two 3-day periods, one in March 1993 and one in March 1994, on Shiraho reef of the Ryukyu Islands, Japan. Although the P{sub CO2} values in reef waters exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate that the reef flat area is a net sink for atmospheric carbon dioxide. Thismore » suggests that the net organic production rate of the reef community exceeded its calcium carbonate production rate during the observation periods. 16 refs., 2 figs., 1 tab.« less

  18. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  19. Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels.

    PubMed

    Dash, Ranjan K; Bassingthwaighte, James B

    2010-04-01

    New mathematical model equations for O(2) and CO(2) saturations of hemoglobin (S(HbO)(2) and S(HbCO)(2) are developed here from the equilibrium binding of O(2) and CO(2) with hemoglobin inside RBCs. They are in the form of an invertible Hill-type equation with the apparent Hill coefficients KHbO(2) and KHbCO(2) in the expressions for SHbO(2) and SHbCO(2) dependent on the levels of O(2) and CO(2) partial pressures (P(O)(2) and P(CO)(2)), pH, 2,3-DPG concentration, and temperature in blood. The invertibility of these new equations allows PO(2) and PCO(2) to be computed efficiently from S(HbO)(2) and S(HbCO)(2) and vice versa. The oxyhemoglobin (HbO(2)) and carbamino-hemoglobin (HbCO(2)) dissociation curves computed from these equations are in good agreement with the published experimental and theoretical curves in the literature. The model solutions describe that, at standard physiological conditions, the hemoglobin is about 97.2% saturated by O(2) and the amino group of hemoglobin is about 13.1% saturated by CO(2). The O(2) and CO(2) content in whole blood are also calculated here from the gas solubilities, hematocrits, and the new formulas for S(HbO)(2) and S(HbCO)(2). Because of the mathematical simplicity and invertibility, these new formulas can be conveniently used in the modeling of simultaneous transport and exchange of O(2) and CO(2) in the alveoli-blood and blood-tissue exchange systems.

  20. Carbon Dioxide Collection and Purification System for Mars

    NASA Technical Reports Server (NTRS)

    Clark, D. Larry; Trevathan, Joseph R.

    2001-01-01

    One of the most abundant resources available on Mars is the atmosphere. The primary constituent, carbon dioxide, can be used to produce a wide variety of consumables including propellants and breathing air. The residual gases can be used for additional pressurization tasks including supplementing the oxygen partial pressure in human habitats. A system is presented that supplies pure, high-pressure carbon dioxide and a separate stream of residual gases ready for further processing. This power-efficient method freezes the carbon dioxide directly from the atmosphere using a pulse-tube cryocooler. The resulting CO2 mass is later thawed in a closed pressure vessel, resulting in a compact source of liquefied gas at the vapor pressure of the bulk fluid. Results from a demonstration system are presented along with analysis and system scaling factors for implementation at larger scales. Trace gases in the Martian atmosphere challenge the system designer for all carbon dioxide acquisitions concepts. The approximately five percent of other gases build up as local concentrations of CO2 are removed, resulting in diminished performance of the collection process. The presented system takes advantage of this fact and draws the concentrated residual gases away as a useful byproduct. The presented system represents an excelient volume and mass solution for collecting and compressing this valuable Martian resource. Recent advances in pulse-tube cryocooler technology have enabled this concept to be realized in a reliable, low power implementation.

  1. Cardiopulmonary and arterial baroreceptor unloading during passive hyperthermia does not contribute to hyperthermia-induced hyperventilation.

    PubMed

    Lucas, Rebekah A I; Pearson, James; Schlader, Zachary J; Crandall, Craig G

    2015-11-01

    What is the central question of this study? Does baroreceptor unloading during passive hyperthermia contribute to increases in ventilation and decreases in end-tidal carbon dioxide during that exposure? What is the main finding and its importance? Hyperthermic hyperventilation is not mitigated by expanding central blood volume and reloading the cardiopulmonary baroreceptors via rapid saline infusion or by reloading the arterial baroreceptors via phenylephrine administration. The absence of a reduction in ventilation upon reloading the baroreceptors to pre-hyperthermic levels indicates that cardiopulmonary and arterial baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (P ET ,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ∼1.8°C) to cause a sustained increase in ventilation and reduction in P ET ,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg(-1) ) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60-120 μg min(-1) ) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min(-1) , P < 0.01), while reducing P ET ,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7 l min(-1) , P <0.01) and reduced P ET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  2. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    PubMed Central

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words: Atmospheric compositions—Extrasolar terrestrial planets—Snowball Earth—Planetary atmospheres—Radiative transfer. Astrobiology 13, 899–909. PMID:24111995

  3. H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization.

    PubMed

    Sipma, Jan; Osuna, M Begoña; Parshina, Sofiya N; Lettinga, Gatze; Stams, Alfons J M; Lens, Piet N L

    2007-08-01

    Desulfotomaculum carboxydivorans, recently isolated from a full-scale anaerobic wastewater treatment facility, is a sulfate reducer capable of hydrogenogenic growth on carbon monoxide (CO). In the presence of sulfate, the hydrogen formed is used for sulfate reduction. The organism grows rapidly at 200 kPa CO, pH 7.0, and 55 degrees C, with a generation time of 100 min, producing nearly equimolar amounts of H(2) and CO(2) from CO and H(2)O. The high specific CO conversion rates, exceeding 0.8 mol CO (g protein)(-1) h(-1), makes this bacterium an interesting candidate for a biological alternative of the currently employed chemical catalytic water-gas shift reaction to purify synthesis gas (contains mainly H(2), CO, and CO(2)). Furthermore, as D. carboxydivorans is capable of hydrogenotrophic sulfate reduction at partial CO pressures exceeding 100 kPa, it is also a good candidate for biodesulfurization processes using synthesis gas as electron donor at elevated temperatures, e.g., in biological flue gas desulfurization. Although high maximal specific sulfate reduction rates (32 mmol (g protein)(-1) h(-1)) can be obtained, its sulfide tolerance is rather low and pH dependent, i.e., maximally 9 and 5 mM sulfide at pH 7.2 and pH 6.5, respectively.

  4. Coral Reefs on the Edge? Carbon Chemistry on Inshore Reefs of the Great Barrier Reef

    PubMed Central

    Uthicke, Sven; Furnas, Miles; Lønborg, Christian

    2014-01-01

    While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff. PMID:25295864

  5. Infrared spectroscopic characterization of molybdenum carbonyl species formed by ultraviolet photoreduction of silica-supported Mo(VI) in carbon monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.C.; Ekerdt, J.G.

    1993-07-01

    The molybdenum carbonyl species formed by ultraviolet photoreduction of Mo[sup 6+]SiO[sub 2] in CO were characterized with Fourier transform infrared spectroscopy and temperature-programmed decomposition (TPDE). Mo[sup 6+]SiO[sub 2] samples containing 0.07-6.4% Mo were prepared from MoCl[sub 5], Mo[sub 2]([eta][sup 3]-C[sub 3]H[sub 5])[sub 4], and (NH[sub 4])[sub 6]Mo[sub 7]O[sub 24][center dot]4H[sub 2]O. Four molybdenum carbonyl species have been identified: mer-Mo[sup 4+](CO)[sub 3], cis-Mo[sup 4+](CO)[sub 2], linear Mo[sup 4+](CO), and Mo(CO)[sub 6]. The stoichiometry of photoreduction, decomposition, and reoxidation supports the +4 oxidation state for the mono-, di-, and tricarbonyls. The C[sub 2v] symmetry of mer-Mo(CO)[sub 3] resulted in an IR spectrummore » consisting of a weak (A[sub 1])[sub 1] symmetric trans C-O stretch at 2181 cm[sup [minus]1], a strong B[sub 2] antisymmetric trans C-O stretch at 2141 cm[sup [minus]1], and a strong (A[sub 1])[sub 2] cis C-O stretch at 2108 cm[sup [minus]1]. The mer-Mo(CO)[sub 3] structure successfully predicted the observed frequencies and intensities of partially substituted Mo([sup 12]C[sup 16]O)[sub x]([sup 13]C[sup 16]O)[sub 3[minus]x] and Mo([sup 12]C[sup 16]O)[sub x]([sup 13]C[sup 18]O)[sub 3[minus]x] (x = 1, 2). Mo(CO)[sub 3] was stable at 300 K with CO partial pressures above 60 Torr. At 193 K, this species was stable under vacuum. Evacuation of mer-Mo(CO)[sub 3] at 300 K led to CO ligand loss, resulting in the sequential formation of cis-Mo(CO)[sub 2], linear Mo(CO), and finally, CO-free Mo[sup 4+]. The tricarbonyl assignment is supported by the TPDE pattern, in which two CO ligands were released near 350 K, followed by desorption of the final CO group near 440 K. The stable species are photoformed in the sequence mer-Mo[sup 4+](CO)[sub 3], cis-Mo[sup 4+](CO)[sub 2], and Mo(CO)[sub 6]. 31 refs., 9 figs., 4 tabs.« less

  6. FirefOx Design Reference fO2 Sensor for Hot, Deep Atmospheres

    NASA Astrophysics Data System (ADS)

    Izenberg, N.; Papadakis, S.; Deglau, D.; Francomacaro, A. S.

    2016-12-01

    Understanding the composition of the lowest portion of Venus' atmosphere is critical to knowing the stable mineralogy of the rocks there. Oxygen gas is a critical trace component, with fugacity, or partial pressure, estimated in the range of 10-19 to 10-22 from early probe measurements down to 22km altitude (Pioneer Venus, Venera), chemical equilibrium measurements, and other modeling. "FirefOx" is a simple oxygen fugacity sensor with the express purpose of determining the partial pressure of oxygen in the lowest scale heights of the Venus atmosphere, and especially the lowest hundreds of meters; the surface atmosphere interface, where the atmosphere and surface move to thermodynamic equilibrium. Knowledge of the fO2 at the surface atmosphere interface is crucial to determining the stable mineralogy of surface materials (e.g. magnetite vs. hematite) and gas chemistry in the near-surface atmosphere FirefOx is a Metal/Metal Oxide oxygen fugacity sensor intended to be mounted on the outside of a Venus descent probe, with electronics housed inside a thermally controlled environment. The sole sensor capability is the precise, accurate detection of the partial pressure of oxygen gas (fO2) in the near-surface environment of Venus, at up to 95-bar pressure (predominantly CO2. Surface temperatures at mean planetary elevation are near 735 K, thus a required operational temperature range of 710-740 K covers a range of near-surface elevations. FirefOx system requirements are low ( 100-200 grams, mass, milliwatt power, several kilobytes total science data). A design reference sensor, composed of custom, Yittria-ZrO ceramic electrolyte, with an encapsulated Pd/PdO standard and patterned Pt electrodes has demonstrated scientifically useful signal-to-noise millivolt level potential at temperatures as low as 620 K, relatable to fO2 by a Nernst equation E = RT/4F ln(PO2/PrefO2) where E = open circuit potential across the sensor electrolyte, R = universal gas constant, T = temperature, F = Faraday constant, PrefO2 = reference oxygen pressure, and PO2 = unknown oxygen pressure of the outside environment. The FirefOx sensor shows promise for direct fO2 measurement on potential upcoming Venus in situ and other deep atmosphere probes.

  7. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China.

    PubMed

    Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing

    2014-05-01

    Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the dominant processes that regulated pCO2 in the water column. We conclude that pCO2 values in the surface water of Pengxi River could be regarded as potential sources of CO2 to the atmosphere were smaller or similar to those that have been reported for many other reservoirs to date.

  8. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation showed that Ni was sulfided faster than Mo and CoMo, and that Mo was sulfided faster when promoted with Ni. Extended X-ray absorption fine structure (EXAFS) results showed the presence of MoS 2 in all sulfided catalysts. Lastly, sulfided CoMo was present as a mixture of CoMoS and Co 9S 8, whereas sulfided NiMo was present as NiMoS.« less

  9. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation showed that Ni was sulfided faster than Mo and CoMo, and that Mo was sulfided faster when promoted with Ni. Extended X-ray absorption fine structure (EXAFS) results showed the presence of MoS 2 in all sulfided catalysts. Lastly, sulfided CoMo was present as a mixture of CoMoS and Co 9S 8, whereas sulfided NiMo was present as NiMoS.« less

  10. Brine production strategy modeling for active and integrated management of water resources in CCS

    NASA Astrophysics Data System (ADS)

    Court, B.; Celia, M. A.; Nordbotten, J. M.; Buscheck, T. A.; Elliot, T. J.; Bandilla, K.; Dobossy, M.

    2010-12-01

    Our society is at present highly dependent on coal, which will continue to play a major role in baseload electricity production in the coming decades. Most projected climate change mitigation strategies require CO2 Capture and Sequestration (CCS) as a vital element to stabilize CO2 atmospheric emissions. In these strategies, CCS will have to expand in the next two decades by several orders of magnitude compared to current worldwide implementation. At present the interactions among freshwater extraction, CO2 injection, and brine management are being considered too narrowly across CCS operations, and in the case of freshwater almost completely overlooked. Following the authors’ recently published overview of these challenges, an active and integrated management of water resources throughout CCS operations was proposed to avoid overlooking critical challenges that may become major obstacles to CCS implementation. Water resources management is vital for several reasons including that a coal-fired power plant retrofitted for CCS requires twice as much cooling water as the original plant. However this increased demand may be accommodated by brine extraction and treatment, which would concurrently function as large-scale pressure management and a potential source of freshwater. Synergistic advantages of such proactive integration that were identified led the authors to concluded that: Active management of CCS operations through an integrated approach -including brine production, treatment, use for cooling, and partial reinjection- can address challenges simultaneously with several synergistic advantages; and, that freshwater and brine must be linked to CO2 and pressure as key decision making parameters throughout CCS operations while recognizing scalability and potential pore space competition challenges. This work presents a detailed modeling investigation of a potential integration opportunity resulting from brine production. Technical results will focus solely on the conjunctive use of saline aquifers for CO2 sequestration and water supply for power plants. The impact of CO2 injection-brine withdrawal coupling on (i) the CO2 injection plume, (ii) the pressure field, and (iii) CO2 and brine leakage risk will be quantified using a range of simulation codes from Schlumberger’s full numerical ECLIPSE model to a simplified analytical model, in an effort to complement useful work initiated at Lawrence Livermore National Laboratory. In particular the impact of different relative permeability and capillary pressure curves on these three components will be presented and put in context of current modeling risk analysis approach in the CCS scientific community.

  11. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs

    PubMed Central

    Adamczyk, Emily M.; Shurin, Jonathan B.

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m-2 day-1. pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton. PMID:26473601

  12. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  13. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation.

    PubMed

    Alaslai, Nasser; Ma, Xiaohua; Ghanem, Bader; Wang, Yingge; Alghunaimi, Fahd; Pinnau, Ingo

    2017-09-01

    An intrinsically microporous polyimide is synthesized in m-cresol by a one-pot high-temperature condensation reaction of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and newly designed 2,6 (7)-dihydroxy-3,7(6)-diaminotriptycene (DAT1-OH). The 6FDA-DAT1-OH polyimide is thermally stable up to 440 °C, shows excellent solubility in polar solvents, and has moderately high Brunauer-Teller-Emmett (BET) surface area of 160 m 2 g -1 , as determined by nitrogen adsorption at -196 °C. Hydroxyl functionalization applied to the rigid 3D triptycene-based diamine building block results in a polyimide that exhibits moderate pure-gas CO 2 permeability of 70 Barrer combined with high CO 2 /CH 4 selectivity of 50. Mixed-gas permeation studies demonstrate excellent plasticization resistance of 6FDA-DAT1-OH with impressive performance as potential membrane material for natural gas sweetening with a CO 2 permeability of 50 Barrer and CO 2 /CH 4 selectivity of 40 at a typical natural gas well partial pressure of 10 atm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis.

    PubMed

    Osborn, Hannah L; Alonso-Cantabrana, Hugo; Sharwood, Robert E; Covshoff, Sarah; Evans, John R; Furbank, Robert T; von Caemmerer, Susanne

    2017-01-01

    In C 4 species, the major β-carbonic anhydrase (β-CA) localized in the mesophyll cytosol catalyses the hydration of CO 2 to HCO 3 - , which phosphoenolpyruvate carboxylase uses in the first step of C 4 photosynthesis. To address the role of CA in C 4 photosynthesis, we generated transgenic Setaria viridis depleted in β-CA. Independent lines were identified with as little as 13% of wild-type CA. No photosynthetic defect was observed in the transformed lines at ambient CO 2 partial pressure (pCO 2 ). At low pCO 2 , a strong correlation between CO 2 assimilation rates and CA hydration rates was observed. C 18 O 16 O isotope discrimination was used to estimate the mesophyll conductance to CO 2 diffusion from the intercellular air space to the mesophyll cytosol (g m ) in control plants, which allowed us to calculate CA activities in the mesophyll cytosol (C m ). This revealed a strong relationship between the initial slope of the response of the CO 2 assimilation rate to cytosolic pCO 2 (AC m ) and cytosolic CA activity. However, the relationship between the initial slope of the response of CO 2 assimilation to intercellular pCO 2 (AC i ) and cytosolic CA activity was curvilinear. This indicated that in S. viridis, mesophyll conductance may be a contributing limiting factor alongside CA activity to CO 2 assimilation rates at low pCO 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account for the observed 5 MPa drop in pore pressures at Bravo Dome. This is consistent with geochemical observation suggesting significant dissolution of CO2 at Bravo Dome (Gilfillan 2009). The observation of sub-hydrostatic pressures in CO2 reservoirs is important because they illustrate that CO2 dissolution may mitigate problems due to injection induced overpressure in the long-term.

  16. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.

  17. Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia

    NASA Astrophysics Data System (ADS)

    Fransner, Filippa; Gustafsson, Erik; Tedesco, Letizia; Vichi, Marcello; Hordoir, Robinson; Roquet, Fabien; Spilling, Kristian; Kuznetsov, Ivan; Eilola, Kari; Mörth, Carl-Magnus; Humborg, Christoph; Nycander, Jonas

    2018-01-01

    High inputs of nutrients and organic matter make coastal seas places of intense air-sea CO2 exchange. Due to their complexity, the role of coastal seas in the global air-sea CO2 exchange is, however, still uncertain. Here, we investigate the role of phytoplankton stoichiometric flexibility and extracellular DOC production for the seasonal nutrient and CO2 partial pressure (pCO2) dynamics in the Gulf of Bothnia, Northern Baltic Sea. A 3-D ocean biogeochemical-physical model with variable phytoplankton stoichiometry is for the first time implemented in the area and validated against observations. By simulating non-Redfieldian internal phytoplankton stoichiometry, and a relatively large production of extracellular dissolved organic carbon (DOC), the model adequately reproduces observed seasonal cycles in macronutrients and pCO2. The uptake of atmospheric CO2 is underestimated by 50% if instead using the Redfield ratio to determine the carbon assimilation, as in other Baltic Sea models currently in use. The model further suggests, based on the observed drawdown of pCO2, that observational estimates of organic carbon production in the Gulf of Bothnia, derived with the 14C method, may be heavily underestimated. We conclude that stoichiometric variability and uncoupling of carbon and nutrient assimilation have to be considered in order to better understand the carbon cycle in coastal seas.

  18. Effects of Pleurotomy on Respiratory Sequelae after Internal Mammary Artery Harvesting

    PubMed Central

    Iyem, Hikmet; Islamoglu, Fatih; Yagdi, Tahir; Sargin, Murat; Berber, Ozbek; Hamulu, Ahmet; Buket, Suat; Durmaz, Isa

    2006-01-01

    The preservation of pleural integrity during mammary artery harvesting may decrease atelectasis and pleural effusion during the postoperative period. We designed this retrospective study to evaluate the effects on postoperative pulmonary function of pleural integrity versus opened pleura, in patients who receive a left internal mammary artery graft. The study group consisted of 1,141 patients who underwent elective coronary artery bypass grafting. The patients were retrospectively evaluated and divided into 2 groups: those who underwent internal mammary artery harvesting with opened pleura (n=873) or with pleural integrity (n=268). To monitor pleural effusion and atelectasis, chest radiography was performed routinely 1 day before operation and on the 2nd, 5th, and 7th postoperative days. The preoperative, after extubation, and 1st postoperative day values of partial oxygen pressure (PaO2), partial carbon dioxide pressure (PaCO2), and oxygen (O2) saturation were recorded for comparison, as was the hematocrit. The mean age of the patients was 57.4 ± 8.81 years. There were no significant differences between the groups in mean values of PaO2, PaCO2, O2 saturation, and hematocrit after extubation or on the 1st postoperative day. Atelectasis on the 5th and 7th postoperative days, pleural effusion on the 2nd, 5th, and 7th days, and postoperative bleeding were significantly less in the group with preserved pleural integrity. We showed that preservation of pleural integrity during internal mammary artery harvesting decreases postoperative bleeding, pleural effusion, and atelectasis. We conclude that preservation of pleural integrity, when possible, can decrease these postoperative complications of coronary artery bypass grafting. PMID:16878610

  19. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. Copyright © 2016 the American Physiological Society.

  20. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  1. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.

    2018-03-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.

  2. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC-MS and UHPLC-DAD-QqTOF-MS.

    PubMed

    Kuś, Piotr M; Okińczyc, Piotr; Jakovljević, Martina; Jokić, Stela; Jerković, Igor

    2018-05-25

    The supercritical CO 2 (SC-CO 2 ) extraction process of black poplar (Populus nigra L.) buds was optimized (pressure, temperature) based on the yields of major phytochemicals (volatiles and non-volatiles). The optimal settings were 30 MPa/60 °C. Major volatiles determined by GC-MS in the optimized SC-CO 2 extract (mg of benzyl salicylate equivalent (BSE) per 100 g of buds) were: pinostrobin chalcone (1574.2), β-eudesmol (640.8), α-eudesmol (581.9), 2-methyl-2-butenyl-p-coumarate (289.9), pentyl-p-coumarate (457.0), γ-eudesmol (294.4), and benzyl salicylate (289.2). Partial qualitative similarity was observed between SC-CO 2 extracts and corresponding hydrodistilled essential oil dominated by sesquiterpenes, but with lower yields. Major compounds (mg per 100 g of buds) identified by UHPLC-DAD-QqTOF-MS in the optimized SC-CO 2 extract were: pinostrobin (751.7), pinocembrin (485.6), 3-O-pinobanksin acetate and methyl-butenyl-p-coumarate (290.2; 144.9 of pinobanksin and p-coumaric acid equivalents, respectively). SC-CO 2 extraction was found useful for green, efficient and simultaneous extraction of both volatile/non-volatile, bioactive phytochemicals of poplar buds - precursors of poplar-type propolis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    In recent years, carbon capture and storage (CCS) has emerged as a key technology for limiting anthropogenic CO2 emissions while allowing the continued utilisation of fossil fuels. The most promising geological storage sites are deep saline aquifers because the capacity, integrity and injection economics are most favourable, and the environmental impact can be minimal. Many rock-fluid chemical reactions are known to occur both during and after CO2 injection in saline aquifers. The importance of rock-fluid reactions in the (CO2 + H2O) system can be understood in terms of their impact on the integrity and stability of both the formation rocks and cap rocks. The chemical interactions between CO2-acidified brines and the reservoir minerals can influence the porosity and permeability of the formations, resulting in changes in the transport processes occurring during CO2 storage. Since carbonate minerals are abundant in sedimentary rocks, one of the requirements to safely implement CO2 storage in saline aquifers is to characterise the reactivity of carbonate minerals in aqueous solutions at reservoir conditions. In this work, we reported measurements of the intrinsic rate of carbonate dissolution in CO2-saturated water under high-temperature high-pressure reservoir conditions extending up to 373 K and 14 MPa. The rate of carbonate dissolution in CO2-free HCl(aq) was also measured at ambient pressure at temperatures up to 353 K. Various pure minerals and reservoir rocks were investigated in this study, including single-crystals of calcite and magnesite, and samples of dolomite, chalks and sandstones. A specially-designed batch reactor system, implementing the rotating disc technique, was used to obtain the intrinsic reaction rate at the solid/liquid interface, free of mass transfer effects. The effective area and mineralogy of the exposed surface was determined by a combination of surface characterisation techniques including XRD, SEM, EDX and optical microscopy. The results of the study indicate that the rotating disc technique can allow accurate measurement of the carbonate dissolution rate under surface-reaction-controlled conditions, and that the carbonate dissolution rate typically increases with the increase of temperature, CO2 partial pressure and solution acidity. The study shows that the dissolution of carbonate in CO2-free acidic solutions can be described as a first order heterogeneous reaction; however, this model is not sufficient to describe the reaction kinetics of carbonate minerals in the (CO2 + H2O) system, particularly for high reactivity carbonates, such as calcite, at reservoir conditions. For these systems, both pH and the activity of CO2(aq) influence the dissolution rate. Based on the experimental results, kinetic models have been developed and parameterised to describe the dissolution of different carbonate minerals. The results of this study should facilitate more rigorous modelling of mineral dissolution in deep saline aquifers used for CO2 storage. We gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park. Keywords: Carbon Dioxide, Carbonate, High Pressure, High Temperature, Reaction Kinetics.

  4. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].

    PubMed

    Li, Xiu-man; Wang, Li-xiang; Liu, Ya-hua; Sun, Kun; Ma, Li-zhi; Guo, Xiao-dong; Li, Hui-qing

    2012-04-01

    To compare the hemodynamic and respiratory influences of chest compression- cardiopulmonary resuscitation (CC-CPR) and rhythmic abdominal lifting and compression-cardiopulmonary resuscitation (ALC-CPR) in a swine model of asphyxia cardiac arrest (CA), and evaluate the effectiveness of rhythmic abdominal lifting and compression. Thirty swines were randomly divided into two groups, with 15 swines in each group. CA model was reproduced by asphyxia as a result of clamping the trachea, and CC-CPR and ALC-CPR was conducted in two groups, respectively. Electrocardiogram (ECG), pulse oxygen saturation [SpO(2)], end-tidal partial pressure of carbon dioxide [P(ET)CO(2)], aorta systolic blood pressure (SBP), diastolic blood pressure (DBP), central venous pressure (CVP), and tidal volume (VT) were monitored continuously from 10 minutes before asphyxia to the end of experiment. The aorta mean arterial pressure (MAP), coronary perfusion pressure (CPP) and minute ventilation (MV) were calculated. Artery blood samples were collected to determine the blood gas analysis at 10 minutes before asphyxia, 10 minutes after asphyxia, and 5, 10, 20 minutes after resuscitation. The restoration of spontaneous circulation (ROSC) rate, 24-hour survival rate and 24-hour neurological function score were observed. There were no significant differences in all mentioned indexes between two groups at 10 minutes before and 10 minutes after asphyxia. At 2 minutes after the resuscitation, the MAP (mm Hg, 1 mm Hg = 0.133 kPa) and CPP (mm Hg) in CC-CPR group were significantly higher than those in ALC-CPR group (MAP: 43.60 ± 12.91 vs. 33.40 ± 6.59, P < 0.05; CPP: 21.67 ± 11.28 vs. 11.80 ± 4.16, P < 0.01), the VT (ml) and MV (L/min)in ALC-CPR group were significantly higher than those in CC-CPR group (VT: 111.67 ± 18.12 vs. 56.60 ± 7.76; MV: 11.17 ± 1.81 vs. 5.54 ± 0.79, both P < 0.01). At 5, 10, 20 minutes after resuscitation, in ALC-CPR group, pH value, arterial partial pressure of oxygen [PaO(2), mm Hg] and arterial oxygen saturation [SaO(2)] were increased, and HCO(3)(-) (mmol/L) and base excess (BE, mmol/L) were decreased, which significantly higher than those in CC-CPR group [pH at 20 minutes after resuscitation: 7.16 ± 0.16 vs. 7.01 ± 0.14; PaO(2): 82.73 ± 13.20 vs. 58.33 ± 17.77; HCO(3)(-): 27.71 ± 3.11 vs. 21.04 ± 3.62; BE: -4.78 ± 4.30 vs. -10.23 ± 2.12; SaO(2): 0.893 ± 0.088 vs. 0.764 ± 0.122], and arterial partial pressure of carbon dioxide [PaCO(2), mm Hg], K(+) (mmol/L) and lactic acid (Lac,mmol/L) were significantly lower than those in CC-CPR group [PaCO(2) at 20 minutes after resuscitation: 49.40 ± 15.60 vs. 79.80 ± 15.35; K(+): 7.18 ± 1.76 vs. 8.55 ± 1.02; Lac: 8.17 ± 1.46 vs. 10.39 ± 1.92], with statistical significant (P < 0.05 or P < 0.01). But the ROSC rate and 24-hour survival rate in ALC-CPR group were significantly higher than those in CC-CPR group (ROSC rate: 80.0% vs. 26.7%, P < 0.01; 24-hour survival rate: 60.0% vs. 13.3%, P < 0.05), and the 24-hour neurological function score was significantly lower than that in CC-CPR group (1.11 ± 0.33 vs. 3.50 ± 0.70, P < 0.01). In the incipient stage of cardiopulmonary resuscitation of the swine CA model of asphyxia, compared with CC-CPR, ALC-CPR can be more effective.

  5. Oxygen transport in the Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, B.

    The mixed-conducting Sr-Fe-Co oxide has potential use as a gas separation membrane. Its superior oxygen transport reveals the feasibility of using oxide membranes in large-scale oxygen separation. Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} (with x = 0.0, 0.3, 0.6, and 1.0) samples were made by solid state reaction. To understand the oxygen transport mechanism in this system, conductivity and thermogravimetry experiments were conducted at high temperature in various oxygen partial pressure environments. The oxygen diffusion coefficient was determined from the time relaxation transient behavior of the specimen after switching the surrounding atmosphere. Mobility of the charge carrier was derived from relativemore » conductivity and weight changes. X-ray diffraction experiments were carried out on these samples to determine their crystal structures.« less

  6. Gas processing handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-01

    Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.

  7. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a Self Organizing Map neural network technique

    NASA Astrophysics Data System (ADS)

    Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.

    2013-03-01

    This study produced maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea values were estimated by using a self-organizing map neural network technique to explain the non-linear relationships between observed pCO2sea data and four oceanic parameters: sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS). The observed pCO2sea data was obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies. The reconstructed pCO2sea values agreed rather well with the pCO2sea measurements, the root mean square error being 17.6 μatm. The pCO2sea estimates were improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several stations in the North Pacific. The distributions of pCO2sea revealed by seven-year averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology and more precisely reflected oceanic conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.

  8. Central Sleep Apnea with Cheyne-Stokes Breathing in Heart Failure - From Research to Clinical Practice and Beyond.

    PubMed

    Terziyski, K; Draganova, A

    2018-01-01

    Characterized by periodic crescendo-decrescendo pattern of breathing alternating with central apneas, Central sleep apnea (CSA) with Cheyne-Stokes Breathing represents a highly prevalent, yet underdiagnosed comorbidity in chronic heart failure (CHF). A diverse body of evidence demonstrates increased morbidity and mortality in the presence of CSB. CSB has been described in both CHF patients with preserved and reduced ejection fraction, regardless of drug treatment. Risk factors for CSB are older age, male gender, high BMI, atrial fibrillation and hypocapnia.The pathophysiology of CSB has been explained by the loop gain theory, where a controller (the respiratory center) and a plant (the lungs) are operating in a reciprocal relationship (negative feedback) to regulate a key parameter (partial pressure of carbon dioxide (pCO 2 )). The temporal interaction between these elements is dependent on the circulatory delay. Increased chemosensitivity/chemoresponsiveness of the respiratory center and/or augmented ascending non- CO 2 stimuli from the C-fibers in the lungs (interstitial pulmonary edema), overly efficient ventilation when breathing at low volumes and prolonged circulation time are involved. An alternative hypothesis of CSB being an adaptive response of the failing heart has its merits as well. The clinical manifestation of CSB is usually poor, lacking striking symptoms and complaints. Witnessed apneas and snoring are infrequently reported by the sleep partner. Sometimes patients may report poor sleep quality with frequent awakenings, paroxysmal nocturnal dyspnea and frequent urination at night. Standard instrumental and laboratory studies, performed in CHF patients, may present clues to the presence of CSB. Concentric remodeling of the left ventricle and dilated left atrium (echocardiography), high BNP and C-reactive protein levels, increased ventilation-carbon dioxide output (VEVCO 2 ) and lower end-tidal CO 2 (cardiopulmonary exercise testing), reduced diffusion capacity (pulmonary function testing) and hypocapnia (blood-gas analysis) may indicate the presence of CSB.CSB and cardiovascular disease are probably linked through bidirectional causality. Cyclic variations in heart rate, blood pressure, respiratory volume, partial pressure of arterial oxygen (pO 2 ) and pCO 2 lead to sympathetic-adrenal activation. The latter worsens ventricular energetism and survival of cardiomyocytes and exerts antiarhythmogenic effects. It causes cardiac remodeling, potentiating the progression and the lethal outcome in CHF patients. Several treatment modalities have been proposed in CSB. The most commonly used are continuous positive airway pressure (CPAP), adaptive servoventilation (ASV) and nocturnal home oxygen therapy (HOT). Novel therapies like nocturnal supplemental CO 2 and phrenic nerve stimulation are being tested recently. The current treatment recommendations (by the American Academy of Sleep Medicine) are for CPAP and HOT as standard therapies, while ASV is an option only in patients with EF > 45%. BPAP (bilevel device) remains an option only when there is no adequate response to previous modes of treatment. Acetazolamide and theophylline are options only after failing the above modalities and if accompanied by a close follow-up.

  9. Anesthetic and cardiorespiratory effects of tiletamine-zolazepam-medetomidine in cheetahs.

    PubMed

    Deem, S L; Ko, J C; Citino, S B

    1998-10-01

    To evaluate anesthetic and cardiorespiratory effects of an intramuscular injection of a tiletamine-zolazepam-medetomidine combination in cheetahs. Prospective study. 17 adult captive cheetahs. The anesthetic combination was administered intramuscularly via a dart. Induction quality, duration of lateral recumbency, duration of recovery, and quality of anesthetic reversal with atipamezole were assessed. Cardiorespiratory variables (arterial blood gas partial pressures, arterial blood pressure, heart and respiratory rates, end-tidal CO2, oxygen saturation, and rectal temperature) were measured during anesthesia. Sedation and lateral recumbency developed within 1.9 +/- 1.0 (mean +/- SD) and 4.3 +/- 2.0 minutes of drug administration, respectively. Clinically acceptable cardiorespiratory and blood gas values were recorded for at least 87 minutes after drug administration in all but 1 cheetah. Hypoxemia and arrhythmias developed in 1 cheetah breathing room air but resolved after treatment with oxygen. Hypertension developed in all cheetahs. Significant differences in heart and respiratory rates, mean arterial blood pressure, arterial pH, partial pressure of oxygen, and hemoglobin saturation were found between cheetahs that did and did not receive oxygen supplementation. After administration of atipamezole, sternal recumbency and mobility returned within 6.9 +/- 5.8 and 47.5 +/- 102.2 minutes, respectively. Postreversal sedation, which lasted approximately 4 hours, developed in 4 cheetahs. Tiletamine-zolazepam-medetomidine delivered via a dart provided an alternative method for induction and maintenance of anesthesia in cheetahs. Atipamezole at the dose used was effective for reversal of this combination in the initial phase of anesthesia.

  10. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    NASA Astrophysics Data System (ADS)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  11. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure.

    PubMed

    Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A

    2013-07-01

    Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 . © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  12. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  13. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultra-Dilute Streams.

    PubMed

    Pang, Simon H; Lively, Ryan P; Jones, Christopher W

    2018-05-29

    Aminopolymer-based solid sorbents have been widely investigated for CO2 capture from dilute streams such as flue gas or ambient air. However, the oxidative stability of the most well-studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here we demonstrate the use of linear poly(propylenimine) (PPI), synthesized via a simple cationic ring-opening polymerization, as a more oxidatively-stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites is investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the trade-off between adsorption capacity and sorption site accessibility, which may be expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites are more efficient at CO2 capture and retain 65-83% of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40% retention for linear PEI. Additionally, we demonstrate long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable, solid adsorbents in commercial applications for CO2 capture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Monitoring of interstitial buffer systems using micro-dialysis and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Cocchieri, L.; Vahlsing, T.; Ihrig, D.; Elm, J.

    2017-02-01

    Nowadays, continuous sensing systems are important point-of-care devices for the hospital and personalized patient technology. FTIR-spectrometers have been successfully employed for the development of bed-side systems. In-vivo applications for critically ill patients can be envisaged for analytes and parameters, which are of interest for intensive care such as lactate, urea, pCO2 and pH. The human body maintains the blood pH around 7.4, but for severe pH level changes acidosis or alkalosis can lead to serious health problems. Three different buffer systems exist based on bicarbonate, phosphate and proteins; for the most important bicarbonate and phosphate systems infrared transmission spectra were recorded. By using the CO2 and HCO3 - bands of the bicarbonate spectra, the pH of the harvested biofluid can be predicted using the Henderson-Hasselbalch equation. Furthermore, we studied the solubility of CO2 in aqueous solutions using gas mixtures of N2 and CO2 with known composition within partial pressures of CO2 as relevant for invivo conditions. Thus, values of pCO2 up to 150 mm Hg (200 hPa) with distilled water and a Ringer solution, which is an isotonic electrolyte solution used for medical infusion, were measured at 25 °C and 37 °C (normal body temperature).

  15. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    PubMed

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C-500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.

  17. Advanced ETC/LSS computerized analytical models, CO2 concentration. Volume 1: Summary document

    NASA Technical Reports Server (NTRS)

    Taylor, B. N.; Loscutoff, A. V.

    1972-01-01

    Computer simulations have been prepared for the concepts of C02 concentration which have the potential for maintaining a C02 partial pressure of 3.0 mmHg, or less, in a spacecraft environment. The simulations were performed using the G-189A Generalized Environmental Control computer program. In preparing the simulations, new subroutines to model the principal functional components for each concept were prepared and integrated into the existing program. Sample problems were run to demonstrate the methods of simulation and performance characteristics of the individual concepts. Comparison runs for each concept can be made for parametric values of cabin pressure, crew size, cabin air dry and wet bulb temperatures, and mission duration.

  18. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods.

    PubMed

    Watson, Sue-Ann; Fabricius, Katharina E; Munday, Philip L

    2017-01-01

    Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

  19. Variability of pCO2 in surface waters and development of prediction model.

    PubMed

    Chung, Sewoong; Park, Hyungseok; Yoo, Jisu

    2018-05-01

    Inland waters are substantial sources of atmospheric carbon, but relevant data are rare in Asian monsoon regions including Korea. Emissions of CO 2 to the atmosphere depend largely on the partial pressure of CO 2 (pCO 2 ) in water; however, measured pCO 2 data are scarce and calculated pCO 2 can show large uncertainty. This study had three objectives: 1) to examine the spatial variability of pCO 2 in diverse surface water systems in Korea; 2) to compare pCO 2 calculated using pH-total alkalinity (Alk) and pH-dissolved inorganic carbon (DIC) with pCO 2 measured by an in situ submersible nondispersive infrared detector; and 3) to characterize the major environmental variables determining the variation of pCO 2 based on physical, chemical, and biological data collected concomitantly. Of 30 samples, 80% were found supersaturated in CO 2 with respect to the overlying atmosphere. Calculated pCO 2 using pH-Alk and pH-DIC showed weak prediction capability and large variations with respect to measured pCO 2 . Error analysis indicated that calculated pCO 2 is highly sensitive to the accuracy of pH measurements, particularly at low pH. Stepwise multiple linear regression (MLR) and random forest (RF) techniques were implemented to develop the most parsimonious model based on 10 potential predictor variables (pH, Alk, DIC, Uw, Cond, Turb, COD, DOC, TOC, Chla) by optimizing model performance. The RF model showed better performance than the MLR model, and the most parsimonious RF model (pH, Turb, Uw, Chla) improved pCO 2 prediction capability considerably compared with the simple calculation approach, reducing the RMSE from 527-544 to 105μatm at the study sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods

    PubMed Central

    Fabricius, Katharina E.; Munday, Philip L.

    2017-01-01

    Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5–4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use. PMID:28957378

Top