Yi, Yuan-Rong; Han, Min-Fang
2012-07-01
The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.
Biofilm Removal Using Carbon Dioxide Aerosols without Nitrogen Purge.
Hong, Seongkyeol; Jang, Jaesung
2016-11-06
Biofilms can cause serious concerns in many applications. Not only can they cause economic losses, but they can also present a public health hazard. Therefore, it is highly desirable to remove biofilms from surfaces. Many studies on CO2 aerosol cleaning have employed nitrogen purges to increase biofilm removal efficiency by reducing the moisture condensation generated during the cleaning. However, in this study, periodic jets of CO2 aerosols without nitrogen purges were used to remove Pseudomonas putida biofilms from polished stainless steel surfaces. CO2 aerosols are mixtures of solid and gaseous CO2 and are generated when high-pressure CO2 gas is adiabatically expanded through a nozzle. These high-speed aerosols were applied to a biofilm that had been grown for 24 hr. The removal efficiency ranged from 90.36% to 98.29% and was evaluated by measuring the fluorescence intensity of the biofilm as the treatment time was varied from 16 sec to 88 sec. We also performed experiments to compare the removal efficiencies with and without nitrogen purges; the measured biofilm removal efficiencies were not significantly different from each other (t-test, p > 0.55). Therefore, this technique can be used to clean various bio-contaminated surfaces within one minute.
Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J
2015-10-01
The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Technology advancement of the electrochemical CO2 concentrating process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.
1978-01-01
The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.
NASA Technical Reports Server (NTRS)
Davis, S. H.; Kissinger, L. D.
1978-01-01
The effect of humidity on the CO2 removal efficiency of small beds of anhydrous LiOH has been studied. Experimental data taken in this small bed system clearly show that there is an optimum humidity for beds loaded with LiOH from a single lot. The CO2 efficiency falls rapidly under dry conditions, but this behavior is approximately the same in all samples. The behavior of the bed under wet conditions is quite dependent on material size distribution. The presence of large particles in a sample can lead to rapid fall off in the CO2 efficiency as the humidity increases.
Zhang, Xiang; Ma, Jun; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing
2015-12-30
Comparatively investigated the different effects of Fe2(SO4)3 coagulation-filtration and FeCl3 coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl3, Fe2(SO4)3 showed a higher Mo (VI) removal efficiency at pH 4.00-5.00, but an equal removal efficiency at pH 6.00-9.00. (2) The optimum Mo (VI) removal by Fe2(SO4)3 was achieved at pH 5.00-6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs. Copyright © 2015 Elsevier B.V. All rights reserved.
CO2 clearance by membrane lungs.
Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H
2018-05-01
Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.
Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang
2015-07-07
Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.
NASA Astrophysics Data System (ADS)
Du, Song; Jin, Wenbiao; Duan, Feng
2018-06-01
In this paper, the circulating cooling wastewater was treated by chemical coagulation process through adding NaOH/Na2CO3.The effect of NaOH and Na2CO3 dose on removal of scale ions, such as Ca2+, Mg2+, Ba2+, Sr2+, SiO2, was studied and the removal mechanism was discussed. The results showed that the increase of NaOH dose was beneficial to the removal of above-mentioned scale ions. When NaOH was only added, the removal efficiency of Ca2+, Mg2+, Ba2+, Sr2+, SiO2 was 86.3%, 91.6%, 86.5%, 58.1%, 84.2%, respectively. When 680 mg/L of NaOH and 300 mg/L of Na2CO3 were added, and the effluent pH was above 11.2, the removal efficiency of Ca2+, Mg2+ was 95.8% and 89.4%, respectively, and the concentration of Ca2+and Mg2+ was below 20 mg/L, which met the target of wastewater treatment. Finally the possible removal mechanism of Ca2+, Mg2+, Ba2+, Sr2+and SiO2 was discussed.
Zadaka, Dikla; Nir, Shlomo; Radian, Adi; Mishael, Yael G
2009-02-01
Atrazine removal from water by two polycations pre-adsorbed on montmorillonite was studied. Batch experiments demonstrated that the most suitable composite poly (4-vinylpyridine-co-styrene)-montmorillonite (PVP-co-S90%-mont.) removed 90-99% of atrazine (0.5-28 ppm) within 20-40 min at 0.367% w/w. Calculations employing Langmuir's equation could simulate and predict the kinetics and final extents of atrazine adsorption. Column filter experiments (columns 20x1.6 cm) which included 2g of the PVP-co-S90%-mont. composite mixed with excess sand removed 93-96% of atrazine (800 ppb) for the first 800 pore volumes, whereas the same amount of granular activated carbon (GAC) removed 83-75%. In the presence of dissolved organic matter (DOM; 3.7 ppm) the efficiency of the GAC filter to remove atrazine decreased significantly (68-52% removal), whereas the corresponding efficiency of the PVP-co-S90%-mont. filter was only slightly influenced by DOM. At lower atrazine concentration (7 ppb) the PVP-co-S90%-mont. filter reduced even after 3000 pore volumes the emerging atrazine concentration below 3 ppb (USEPA standard). In the case of the GAC filter the emerging atrazine concentration was between 2.4 and 5.3 microg/L even for the first 100 pore volumes. Thus, the PVP-co-S90%-mont. composite is a new efficient material for the removal of atrazine from water.
Immobilized Carbonic Anhydrase on Hollow Fiber Membranes Accelerates CO2 Removal from Blood
Arazawa, David T.; Oh, Heung-Il; Ye, Sang-Ho; Johnson, Carl A.; Woolley, Joshua R.; Wagner, William R.; Federspiel, William J.
2012-01-01
Current artificial lungs and respiratory assist devices designed for carbon dioxide removal (CO2R) are limited in their efficiency due to the relatively small partial pressure difference across gas exchange membranes. To offset this underlying diffusional challenge, bioactive hollow fiber membranes (HFMs) increase the carbon dioxide diffusional gradient through the immobilized enzyme carbonic anhydrase (CA), which converts bicarbonate to CO2 directly at the HFM surface. In this study, we tested the impact of CA-immobilization on HFM CO2 removal efficiency and thromboresistance in blood. Fiber surface modification with radio frequency glow discharge (RFGD) introduced hydroxyl groups, which were activated by 1M CNBr while 1.5M TEA was added drop wise over the activation time course, then incubation with a CA solution covalently linked the enzyme to the surface. The bioactive HFMs were then potted in a model gas exchange device (0.0084 m2) and tested in a recirculation loop with a CO2 inlet of 50mmHg under steady blood flow. Using an esterase activity assay, CNBr chemistry with TEA resulted in 0.99U of enzyme activity, a 3.3 fold increase in immobilized CA activity compared to our previous method. These bioactive HFMs demonstrated 108 ml/min/m2 CO2 removal rate, marking a 36% increase compared to unmodified HFMs (p < 0.001). Thromboresistance of CA-modified HFMs was assessed in terms of adherent platelets on surfaces by using lactate dehydrogenase (LDH) assay as well as scanning electron microscopy (SEM) analysis. Results indicated HFMs with CA modification had 95% less platelet deposition compared to unmodified HFM (p < 0.01). Overall these findings revealed increased CO2 removal can be realized through bioactive HFMs, enabling a next generation of more efficient CO2 removal intravascular and paracorporeal respiratory assist devices. PMID:22962517
Nguyen, Diem-Mai Kim; Imai, Tsuyoshi; Dang, Thanh-Loc Thi; Kanno, Ariyo; Higuchi, Takaya; Yamamoto, Koichi; Sekine, Masahiko
2018-03-01
This paper presents the results from using a physical absorption process to absorb gaseous CO 2 mixed with N 2 using water by producing tiny bubbles via a liquid-film-forming device (LFFD) that improves the solubility of CO 2 in water. The influence of various parameters-pressure, initial CO 2 concentration, gas-to-liquid ratios, and temperature-on the CO 2 removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method (RSM) with a central composite design (CCD). Based on the analysis, a high efficiency of CO 2 capture can be reached in conditions such as low pressure, high CO 2 concentration at the inlet, low gas/liquid ratio, and low temperature. For instance, the highest removal efficiency in the RSM-CCD experimental matrix of nearly 80% occurred for run number 20, which was conducted at 0.30MPa, CO 2 concentration of 35%, gas/liquid ratio of 0.71, and temperature of 15°C. Furthermore, the coefficients of determination, R 2 , were 0.996 for the removal rate and 0.982 for the absorption rate, implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values. The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO 2 capture in air pollution treatment. Copyright © 2017. Published by Elsevier B.V.
Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2014-12-16
To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.
Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard
2016-06-01
The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitric oxide removal by combined urea and FeIIEDTA reaction systems.
He, Feiqiang; Deng, Xianhe; Chen, Min
2017-02-01
(NH 2 ) 2 CO as well as Fe II EDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of Fe II EDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH 2 ) 2 CO and Fe II EDTA was employed. The effects of various operating parameters (urea and Fe II EDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of Fe II EDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH 2 ) 2 CO and Fe II EDTA on NO removal was investigated. Results showed that urea could react with Fe II EDTA-NO to produce Fe II EDTA, N 2 , and CO 2 , and hinder oxidation of Fe II EDTA. Finally, to evaluate the effect of SO 3 2- on NO removal, a mixed absorbent containing Fe II EDTA, urea, and Na 2 SO 3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH 2 ) 2 CO concentration of 5 wt%, Fe II EDTA concentration of 0.02 M, O 2 concentration of 7% (v/v), and Na 2 SO 3 concentration of 0.2 M. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coiled tubing drilling with supercritical carbon dioxide
Kolle , Jack J.
2002-01-01
A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang
2012-11-30
A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan
2017-09-01
Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.
Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi
2012-09-01
Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO 2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO 2 concentrations. Adsorption capacity of SO 2 declines with the increasing of O 2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO 2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO 2 increases and removal efficiencies of NO and SO 2 would be relatively stable. Adsorption capacities of both NO and SO 2 decrease with the increasing of CO 2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO 2 content exceeds 12.4%. The mechanisms of this process are also discussed. [Box: see text].
Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei
2014-01-01
Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439
Inefficient power generation as an optimal route to negative emissions via BECCS?
NASA Astrophysics Data System (ADS)
Mac Dowell, Niall; Fajardy, Mathilde
2017-04-01
Current ambitions to limit climate change to no more than 1.5 °C-2 °C by the end of the 21st century rely heavily on the availability of negative emissions technologies (NETs)—bioenergy with CO2 capture and storage (BECCS) and direct air capture in particular. In this context, these NETs are providing a specific service by removing CO2 from the atmosphere, and therefore investors would expect an appropriate risk-adjusted rate of return, varying as a function of the quantity of public money involved. Uniquely, BECCS facilities have the possibility to generate both low carbon power and remove CO2 from the atmosphere, but in an energy system characterised by high penetration of intermittent renewable energy such as wind and solar power plants, the dispatch load factor of such BECCS facilities may be small relative to their capacity. This has the potential to significantly under utilise these assets for their primary purpose of removing CO2 from the atmosphere. In this study, we present a techno-economic environmental evaluation of BECCS plants with a range of operating efficiencies, considering their full- and part-load operation relative to a national-scale annual CO2 removal target. We find that in all cases, a lower capital cost, lower efficiency BECCS plant is superior to a higher cost, higher efficiency facility from both environmental and economic perspectives. We show that it may be preferable to operate the BECCS facility in base-load fashion, constantly removing CO2 from the atmosphere and dispatching electricity on an as-needed basis. We show that the use of this ‘spare capacity’ to produce hydrogen for, e.g. injection to a natural gas system for the provision of low carbon heating can add to the overall environmental and economic benefit of such a system. The only point where this hypothesis appears to break down is where the CO2 emissions associated with the biomass supply chain are sufficiently large so as to eliminate the service of CO2 removal.
Elevated pCO2 enhances bacterioplankton removal of organic carbon
James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.
2017-01-01
Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422
Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking
NASA Astrophysics Data System (ADS)
Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao
2018-06-01
In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.
Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking
NASA Astrophysics Data System (ADS)
Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao
2018-03-01
In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.
Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C
2016-07-28
To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.
NASA Technical Reports Server (NTRS)
Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.
2005-01-01
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.
Terada, Akihiko; Lackner, Susanne; Tsuneda, Satoshi; Smets, Barth F
2007-05-01
A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms. (c) 2006 Wiley Periodicals, Inc.
CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew
2010-01-01
Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.
Choix, Francisco J; Snell-Castro, Raúl; Arreola-Vargas, Jorge; Carbajal-López, Alberto; Méndez-Acosta, Hugo O
2017-12-01
In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO 2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO 2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO 2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO 2 and CH 4 , 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO 2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO 2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.
Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui
2017-12-01
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Alimohammadi, Iraj; Yarahmadi, Rassuol; Jaleh, Babak; Gandomi, Mastaneh; Ebrahimi, Hossein; Ad-Din Abedi, Kamal
2017-02-15
The non-thermal plasma (NTP) technique, which suffers from low selectivity in complete oxidation of volatile organic compounds to CO 2 and H 2 O, creates unwanted and harmful byproducts. NTP in concert with photocatalyst can resolve this limitation due to additional oxidation. TiO 2 and ZnO nanoparticles were coated on the surface of the expanded graphite and placed downstream of the NTP reactor under UV light. In this study, to compare the performance of NTP and the combined system, chlorobenzene removal, selectivity of CO 2 and byproducts formation were investigated. The results showed that the combined system enhanced both the removal efficiency and CO 2 selectivity. The output gas of the NTP reactor contained chlorobenzene, phosgene, O 3 , NO, NO 2 , CO, CO 2 , HCL and CL. The bulk of these byproducts was oxidized on the surface of the nanocomposite; as a result, the content of the byproducts in the output gas of the combined system decreased dramatically. The removal efficiency and CO 2 selectivity increased by rising the applied voltage and residence time because the collision between active species and pollutant molecules increases. Based on these results, the combined system is preferred due to a higher performance and lower formation of harmful byproducts. Copyright © 2016 Elsevier B.V. All rights reserved.
Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles.
Kim, Inho; Hwang, Kwangseok; Lee, Jinwon
2012-04-11
Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.
Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.
Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E
2016-02-29
The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO 3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO 3(S) ; however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca 2+ onto the cell surface which provides nucleation sites for CaCO 3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO 3(S) . Removal of algae in the presence of Ca 2+ and Mg 2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca 2+ concentration can be optimized for algae removal via coagulation-sedimentation.
Bioelectro-Claus processes using MFC technology: Influence of co-substrate.
Raschitor, A; Soreanu, G; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Cretescu, I; Rodrigo, M A
2015-01-01
This work is focused on the removal of sulphide from wastewater using a two chamber microbial fuel cell, seeded with activated sludge and operated in semi-continuous mode. Two co-substrates were used in order to provide the system for carbon and nutrient source: actual urban wastewater and synthetic wastewater. Results show that sulphide is efficiency depleted (removals over 94%) and that electricity is efficiently produced (maximum power density is 150 mW m(-2)) meanwhile COD is also oxidised (removals higher than 60%). Sulphur and sulphate are obtained as the final products of the oxidation and final speciation depends on the type of co-substrate used. The start-up of the system is very rapid and production of electricity and polarisation curves do not depend on the co-substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrochemical carbon dioxide concentrator subsystem development
NASA Technical Reports Server (NTRS)
Koszenski, E. P.; Heppner, D. B.; Bunnell, C. T.
1986-01-01
The most promising concept for a regenerative CO2 removal system for long duration manned space flight is the Electrochemical CO2 Concentrator (EDC), which allows for the continuous, efficient removal of CO2 from the spacecraft cabin. This study addresses the advancement of the EDC system by generating subsystem and ancillary component reliability data through extensive endurance testing and developing related hardware components such as electrochemical module lightweight end plates, electrochemical module improved isolation valves, an improved air/liquid heat exchanger and a triple redundant relative humidity sensor. Efforts included fabrication and testing the EDC with a Sabatier CO2 Reduction Reactor and generation of data necessary for integration of the EDC into a space station air revitalization system. The results verified the high level of performance, reliability and durability of the EDC subsystem and ancillary hardware, verified the high efficiency of the Sabatier CO2 Reduction Reactor, and increased the overall EDC technology engineering data base. The study concluded that the EDC system is approaching the hardware maturity levels required for space station deployment.
Krischan, J; Makaruk, A; Harasek, M
2012-05-15
Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. Copyright © 2012 Elsevier B.V. All rights reserved.
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
Sharma, Ajit; Lee, Byeong-Kyu
2016-01-01
The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effect of CO2 on the plasma remediation of NxOy
NASA Astrophysics Data System (ADS)
Gentile, Ann C.; Kushner, Mark J.
1996-04-01
Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.
Koné, Doulaye; Cofie, Olufunke; Zurbrügg, Christian; Gallizzi, Katharina; Moser, Daya; Drescher, Silke; Strauss, Martin
2007-11-01
This study investigates helminth eggs removal and inactivation efficiency in a treatment process combining faecal sludge (FS) dewatering and subsequent co-composting with organic solid waste as a function of windrow turning frequency. Fresh public toilet sludge and septage mixed at a 1:2 ratio were dewatered on a drying bed. Biosolids with initial loads of 25-83 helminth eggs/g total solids (TS) were mixed with solid waste as bulking material for co-composting at a 1:2 volume ratio. Two replicate sets of compost heaps were mounted in parallel and turned at different frequencies during the active composting period: (i) once every 3 days and (ii) once every 10 days. Turning frequency had no effect on helminth eggs removal efficiency. In both setups, helminth eggs were reduced to <1 viable egg/g TS, thereby complying with the WHO guidelines 2006 for the safe reuse of FS.
Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Bush, Richard
2016-01-01
Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.
Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran.
Zhao, Hongxia; Zhang, Feifang; Qu, Baocheng; Xue, Xingya; Liang, Xinmiao
2009-09-30
The wet air co-oxidation (WACO) of a major commercial polybrominated diphenyl ether flame retardant congener, decabromodiphenyl ether (BDE209), was investigated using tetrahydrofuran (THF) as an initiator in a stainless autoclave at temperature range of 120-170 degrees C and 0.5MPa oxygen pressure. Compared to the single oxidation of BDE209 under the same conditions, the addition of THF in the reaction system greatly improved the removal efficiency of BDE209. The effect of temperature on the reaction was studied. The removals of BDE209 and Br increased with increasing temperature. In addition, the effect of NaNO(2) as the catalyst on the WACO was also investigated and the results showed that the addition of NaNO(2) could improve the Br removal efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jong-Ho; Seol, Yongkoo
We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydratemore » turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.« less
Decomposition of mixed malodorants in a wire-plate pulse corona reactor.
Shi, Y; Ruan, J; Wang, X; Li, W; Tan, T
2005-09-01
Decomposition characteristics of two groups of representative mixed malodorants (1, ethanethiol + hydrogen sulfide; 2, ethanethiol + ammonia) in air were investigated employing a wire-plate pulse corona reactor. A new type of high-voltage pulse generator with a thyratron switch and a Blumlein pulse-forming network (BPFN) was used in our experiments. The experiments were conducted at a gas-flow rate of 13 m3/h. Important parameters, including peak voltage, chemical structures of malodorants, pulse frequency, and initial concentration, which influenced the removal efficiency, were investigated. The results showed that the mixed malodorants could be treated effectively by pulse corona. The removal efficiencies of 200 mg/m3 C2H5SH and 200 mg/m3 H2S for group 1 were 95.6% and 100%, respectively, which were almost equal to those of the two pollutants separately. The energy cost was about 65.1-81.4 J/L, which was 31.5-45.2% lower than for treating pollutants alone. The removal efficiencies of 105 mg/m3 C2HsSH and 40 mg/m3 NH3 for group 2 were 93.1% and almost 100%, and the energy cost was 65.1 J/L, 55.6% lower than that which was treated separately. In the case of two groups of mixed malodorants removal, NOx, 03, SO2, CO2, and CO were all observed. Moreover, some sulfur and white crystal ammonium nitrates were discovered adhering to the corona wires in the removal of groups 1 and 2, respectively. A dynamics model was developed to describe the relation of the removal efficiency with specific energy density and initial concentration. In the case of group 1 removal,the decomposition rate constants decreased as compared to the single treating. As for group 2 removal, the decomposition rate constants increased, especially for NH3. According to the results, the optimization design for the reactor and the matching of high pulse voltage source can be reckoned.
Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek
2015-02-17
The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.
NASA Astrophysics Data System (ADS)
Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao
2018-03-01
Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.
Huang, Kuo-Jong; Wu, Jia-Jiuan; Chiu, Yung-Ho; Lai, Cheng-Yung; Chang, Chieh-Ming J
2007-10-31
This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi
2015-11-15
Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Quattrone, P. D.
1974-01-01
Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Lu, Haijun; Zhang, Yun; He, Fu; Jing, Lingyun; He, Xinghua
2016-12-01
A simple and efficient method for production of magnetic composites by decorating CoFe2O4 with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe2O4-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe2O4-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe2O4-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe2O4-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0-9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe2O4-PDA beads as effective adsorbent for removal of organic dyes from wastewater.
Concentration of carbon dioxide by a high-temperature electrochemical membrane cell
NASA Technical Reports Server (NTRS)
Kang, M. P.; Winnick, J.
1985-01-01
The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yoshitomo; Hall, D.O.; Nouee, J. De La
1995-07-20
The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 gmore » dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.« less
The role of artificial atmospheric CO2 removal in stabilizing Earth's climate
NASA Astrophysics Data System (ADS)
Zickfeld, K.; Tokarska, K.
2014-12-01
The current CO2 emission trend entails a risk that the 2°C target will be missed, potentially causing "dangerous" changes in Earth's climate system. This research explores the role of artificial atmospheric CO2 removal (also referred to as "negative emissions") in stabilizing Earth's climate after overshoot. We designed a range of plausible CO2 emission scenarios, which follow a gradual transition from a fossil fuel driven economy to a zero-emission energy system, followed by a period of negative emissions. The scenarios differ in peak emissions rate and, accordingly, the amount of negative emissions, to reach the same cumulative emissions compatible with the 2°C temperature stabilization target. The climate system components' responses are computed using the University of Victoria Earth System Climate Model of intermediate complexity. Results suggest that negative emissions are effective in reversing the global mean temperature and stabilizing it at a desired level (2°C above pre-industrial) after overshoot. Also, changes in the meridional overturning circulation and sea ice are reversible with the artificial removal of CO2 from the atmosphere. However, sea level continues to rise and is not reversible for several centuries, even under assumption of large amounts of negative emissions. For sea level to decline, atmospheric CO2 needs to be reduced to pre-industrial levels in our simulations. During the negative emission phase, outgassing of CO2 from terrestrial and marine carbon sinks offsets the artificial removal of atmospheric CO2, thereby reducing its effectiveness. On land, the largest CO2 outgassing occurs in the Tropics and is partially compensated by CO2 uptake at northern high latitudes. In the ocean, outgassing occurs mostly in the Southern Ocean, North Atlantic and tropical Pacific. The strongest outgassing occurs for pathways entailing greatest amounts of negative emissions, such that the efficiency of CO2 removal - here defined as the change in atmospheric CO2 per unit negative emission - decreases with increasing amounts of negative emissions.
Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang
2008-12-15
Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.
Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria
NASA Astrophysics Data System (ADS)
Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya
2013-03-01
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.
Strand, Stuart E; Benford, Gregory
2009-02-15
For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.
Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli
2018-08-01
This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Xue; Bao, Keting; Cao, Weixing; Zhao, Yongjun; Hu, Chang Wei
2017-07-14
The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co-cultivation were used for biogas upgrading. Optimum biogas slurry nutrient reduction could be achieved by co-cultivating microalgae (Chlorella vulgaris, Scenedesmus obliquus, and Nitzschia palea) with fungi using the pelletization technology. In addition, the effects of different ratio of mixed LED light wavelengths applying mixed light-emitting diode during algae strains and fungi co-cultivation on CO 2 and biogas slurry nutrient removal efficiency were also investigated. The results showed that the COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) removal efficiency were 85.82 ± 5.37%, 83.31 ± 4.72%, and 84.26 ± 5.58%, respectively at red: blue = 5:5 under the co-cultivation of S. obliquus and fungi. In terms of biogas upgrading, CH 4 contents were higher than 90% (v/v) for all strains, except the co-cultivation with S. obliquus and fungi at red: blue = 3:7. The results indicated that co-cultivation of microalgae with fungi under mixed light wavelengths treatments was most successful in nutrient removal from wastewater and biogas upgrading.
Concurrent CO2 Control and O2 Generation for Advanced Life Support
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.
2007-01-01
The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then integrated into a single CO2 removal system. This paper describes our progress to date on these tasks.
[Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing
2013-04-01
Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.
Production of activated carbons from waste tyres for low temperature NOx control.
Al-Rahbi, Amal S; Williams, Paul T
2016-03-01
Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, Xiaoyong; Li, You; Yan, Xiulan
2016-03-01
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. Copyright © 2015. Published by Elsevier B.V.
Development status of regenerable solid amine CO2 control systems
NASA Technical Reports Server (NTRS)
Colling, A. K., Jr.; Nalette, T. A.; Cusick, R. J.; Reysa, R. P.
1985-01-01
The development history of solid amine/water desorbed (SAWD) CO2 control systems is reviewed. The design of the preprototype SAWD I CO2 system on the basis of a three-man metabolic load at the 3.8 mm Hg ambient CO2 level, and the functions of the CO2 removal, CO2 storage/delivery, controller, and life test laboratory support packages are described. The development of a full-scale multiple canister SAWD II preprototype system, which is capable of conducting the CO2 removal/concentration function in a closed-loop atmosphere revitalization system during zero-gravity operation, is examined. The operation of the SAWD II system, including the absorption and desorption cycles, is analyzed. A reduction in the thermal mass of the canister and the system's energy transfer technique result in efficient energy use. The polyether foam, nylon felt, nickel foam, spring retained, and metal bellows bed tests performed to determine the design of the zero-gravity canister are studied; metal bellows are selected for the canister's configuration.
Dry anaerobic co-digestion of cow dung with pig manure for methane production.
Li, Jianzheng; Jha, Ajay Kumar; Bajracharya, Tri Ratna
2014-07-01
The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35 ± 1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10-18.01 % higher methane yields, 2.03-12.95 % greater VS removals, 2.98-12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls.
Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun
2018-01-01
Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S
2016-07-02
The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.
Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi
2012-09-01
Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO2), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO2 concentrations. Adsorption capacity of SO2 declines with the increasing of O2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO2 increases and removal efficiencies of NO and SO2 would be relatively stable. Adsorption capacities of both NO and SO2 decrease with the increasing of CO2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO2 content exceeds 12.4%. The mechanisms of this process are also discussed. The prominent SO2 and NOx treatment techniques in power plants are wet flue gas desulfurization (FGD) and the catalytic decomposition method like selective catalytic reduction (SCR) or nonselective catalytic reduction (NSCR). However, these processes would have some difficulties in commercial application due to their high investment, requirement of expensive catalysts and large-scale equipment, and so on. A simple SO2 and NOx reduction utilizing decomposition by microwave energy method can be used. The pollutants control of flue gas in the power plants by the method of microwave-induced decomposition using adsorption of activated carbon/microwave desorption can meet the requirements of environmental protection, which will be stricter in the future.
Using carbon dioxide in fisheries and aquatic invasive species management
Treanor, Hilary B.; Ray, Andrew M.; Layhee, Megan J.; Watten, Barnaby J.; Gross, Jason A.; Gresswell, Robert E.; Webb, Molly A. H.
2017-01-01
To restore native fish populations, fisheries programs often depend on active removal of aquatic invasive species. Chemical removal can be an effective method of eliminating aquatic invasive species, but chemicals can induce mortality in nontarget organisms and persist in the environment. Carbon dioxide (CO2) is an emerging alternative to traditional chemical control agents because it has been demonstrated to be toxic to fish, but is naturally occurring and readily neutralized. In addition, CO2 is a commercially available gas, is highly soluble, and has high absorption efficiency. When these characteristics are paired with advances in modern, large-scale gas delivery technologies, opportunities to use CO2 in natural or artificial (e.g., canals) waters to manage fish become increasingly feasible. Our objective is to describe the history of CO2 use in fisheries and outline potential future applications of CO2 to suppress and manipulate aquatic species in field and aquaculture settings.
NASA Astrophysics Data System (ADS)
Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.
2018-06-01
The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.
Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen
2013-11-15
The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker
2018-02-01
In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.
Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun
2018-01-01
Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784
Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.
Fontseré Obis, Marta; Germain, Patrick; Troesch, Olivier; Spillemaecker, Michel; Benbelkacem, Hassen
2017-02-01
In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H 2 S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H 2 S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH 4 , CO 2 , O 2 , H 2 S and H 2 O in raw and treated biogas. The H 2 S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24g water /m 3 . The biogas water content was found to greatly affect bottom ash efficiency regarding H 2 S removal. With humid inlet biogas the H 2 S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH 2 S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H 2 S retention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Asiabi, Hamid; Yamini, Yadollah; Shamsayei, Maryam; Molaei, Karam; Shamsipur, Mojtaba
2018-05-28
A facile composite was fabricated via direct assembly of nitrogen and sulfur co-decorated carbon dots with abundant oxygen-containing functional groups on the surface of the positively charged layered double hydroxide (N,S-CDs-LDH). The novel N,S-CDs-LDH demonstrates highly selective bindings (M-S) and an extremely efficient removal capacity for soft metal ions such as Ag + and Hg 2+ ions. N,S-CDs-LDH displayed a selectivity order of Ag + > Hg 2+ > Cu 2+ > Pb 2+ > Zn 2+ > Cd 2+ for their adsorption. The enormous capacities for Hg 2+ (625.0 mg g -1 ) and Ag + (714.3 mg g -1 ) and very high distribution coefficients (K d ) of 9.9 × 10 6 mL g -1 (C 0 = 20 mg L -1 ) and 2.0 × 10 7 mL g -1 (C 0 = 20 mg L -1 ) for Hg 2+ and Ag + , respectively, place the N,S-CDs-LDH at the top of LDH based materials known for such removal. The adsorption kinetic curves for Hg 2+ and Ag + fitted well with the pseudo-second order model. For Hg 2+ and Ag + , an exceptionally rapid capture with removal ∼100% within 80 min was observed (C ions = 30 mg L -1 and V/m ratio of 1000). The adsorption isotherms were well described using Langmuir isotherm. The N,S-CDs-LDH was successfully applied to highly efficient removal of Hg 2+ and Ag + from aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.
CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor.
Sadeghizadeh, Aziz; Farhad Dad, Farid; Moghaddasi, Leila; Rahimi, Rahbar
2017-11-01
In this work, hydrodynamics and CO 2 biofixation study was conducted in an airlift bioreactor at the temperature of 30±2°C. The main objective of this work was to investigate the effect of high gas superficial velocity on CO 2 biofixation using Chlorella vulgaris microalgae and its growth. The study showed that Chlorella vulgaris in high input gas superficial velocity also had the ability to grow and remove the CO 2 by less than 80% efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Meijuan; Huang, Yu; Yao, Jie; Cao, Jun-ji; Liu, Yuan
2018-02-01
N-doped (BiO)2CO3 (NBOC)/graphene oxide (GO) composite obtained from three-dimensional hierarchical microspheres is successfully synthesized by one-pot hydrothermal method for the first time. In this synthesis, citrate ion plays a critical role in N doping. The obtained samples are used to degrade gaseous nitrogen oxides (NOx) at parts-per-billion (ppb) level under visible-light irradiation. NBOC-GO composite with 1.0 wt% graphene oxide (GO) displays the highest photocatalytic NO removal efficiency, which is 4.3 times higher than that of pristine (BiO)2CO3. Moreover, NBOC-GO composite significantly inhibits toxic NO2 intermediate production, indicating its high selectivity for NO conversion. Compared with regular GO, N doping considerably improves the catalytic performance of NBOC-GO composite, which increases NO removal by 74.6% and fully inhibits NO2 generation. The improved photocatalytic activity is mainly ascribed to extended optical absorption ability and enhanced separation efficiency of photogenerated charge carriers over NBOC-GO composite. Both results of electron spin resonance and theoretical analysis of band structure indicate that NO removal is dominated by oxidation with rad OH and rad O2- radicals. The photocatalytic activity improvement mechanism over the NBOC-GO composite is proposed accordingly based on systematic characterizations. This study demonstrates a feasible route to fabricating Bi-containing composites with high selectivity and stability for air pollution control and provides a new insight into the associated photocatalytic mechanisms.
Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption.
Lee, Seung Yeop; Jung, Kwang-Hwan; Lee, Ju Eun; Lee, Keon Ah; Lee, Sang-Hyo; Lee, Ji Young; Lee, Jae Kwang; Jeong, Jong Tae; Lee, Seung-Yop
2014-11-01
Water-soluble radiostrontium ((90)Sr) was efficiently removed as a carbonate form through microalgal photosynthetic process. The immobilization of soluble (90)Sr radionuclide and production of highly-precipitable radio-strontianite ((90)SrCO3) biomineral are achieved by using Chlorella vulgaris, and the biologically induced mineralization drastically decreased the (90)Sr radioactivity in water to make the highest (90)Sr removal ever reported. The high-resolution microscopy revealed that the short-term removal of soluble (90)Sr by C. vulgaris was attributable to the rapid and selective carbonation of (90)Sr together with the consumption of dissolved CO2 during photosynthesis. A small amount of carbonate in water could act as Sr(2+) sinks through the particular ability of the microalga to make the carbonate mineral of Sr stabilized firmly at the surface site. Copyright © 2014 Elsevier Ltd. All rights reserved.
The removal efficiency of heavy metal ions (cadmium(II) – Cd(II), cobalt(II) – Co(II), nickel(II) – Ni(II), and copper(II) – Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)), was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective r...
Near-Zero Emissions Oxy-Combustion Flue Gas Purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minish Shah; Nich Degenstein; Monica Zanfir
2012-06-30
The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plantsmore » burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions, produce high purity CO{sub 2} relatively free of trace impurities and achieve ~99% CO{sub 2} capture rate while lowering the CO{sub 2} capture costs.« less
Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...
2016-08-08
Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less
Ventura, Jey-R S; Yang, Benqin; Lee, Yong-Woo; Lee, Kisay; Jahng, Deokjin
2013-06-01
With a target production of 1000 ton of dry algae/yr, lipid content of 30 wt.%, and productivity of 30 g/m(2)-d in a 340-day annual operation, four common scenarios of microalgae bioenergy routes were assessed in terms of cost, energy, and CO2 inputs and outputs. Scenario 1 (biodiesel production), Scenario 2 (Scenario 1 with integrated anaerobic digestion system), Scenario 3 (biogas production), and Scenario 4 (supercritical gasification) were evaluated. Scenario 4 outperformed other scenarios in terms of net energy production (1282.42 kWh/ton algae) and CO2 removal (1.32 ton CO2/ton algae) while Scenario 2 surpassed the other three scenarios in terms of net cost. Scenario 1 produced the lowest energy while Scenario 3 was the most expensive bioenergy system. This study evaluated critical parameters that could direct the proper design of the microalgae bioenergy system with an efficient energy production, CO2 removal, and economic feasibility. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Huddleston, J. D.; Aylward, J. R.
1973-01-01
The investigations and testing associated with the CO2 removal efficiency and voltage degradation of a hydrogen depolarized carbon oxide concentrator are reported. Also discussed is the vibration testing of a water vapor electrolysis cell pair. Performance testing of various HDC cell pairs with Cs2CO3 electrolyte provided sufficient parametric and endurance data to size a six man space station prototype CO2 removal system as having 36 HDC cell pairs, and to verify a life capability exceeding six moths. Testing also demonstrated that tetramethylammonium carbonate is an acceptable HDC electrolyte for operating over the relative humidity range of 30 to 90 percent and over a temperature range of 50 to 80 F.
Zhou, Xueli; Liu, Weizhen; Zhang, Jian; Wu, Can; Ou, Xinwen; Tian, Chen; Lin, Zhang; Dang, Zhi
2017-10-18
Calcium carbonate from geological sources (geo-CaCO 3 , e.g., calcite, aragonite) is used extensively in removing heavy metals from wastewater through replacement reaction. However, geo-CaCO 3 has an intrinsically compact crystalline structure that results in low efficiency in pollutant removal and thus its use may produce enormous sludge. In this work, biogenic calcium carbonate (bio-CaCO 3 ) derived from oyster shells was used to remove Pb(II) from wastewater and found to significantly outperform geo-CaCO 3 (calcite). The thermodynamics study revealed that the maximum adsorption capacity of bio-CaCO 3 for Pb(II) was three times that of geo-CaCO 3 , reaching up to 1667 mg/g. The kinetics study disclosed that the dissolution kinetics and the rate of intraparticle diffusion of bio-CaCO 3 were faster than those of geo-CaCO 3 . Extensive mechanism research through X-ray powder diffraction (XRD), scanning electron microscopy (SEM), N 2 adsorption/desorption test and mercury intrusion porosimetry showed that the hierarchical porous organic-inorganic hybrid structure of bio-CaCO 3 expedited the dissolution of CaCO 3 to provide abundant CO 3 2- active sites and facilitated the permeation and diffusion of Pb(II) into the bulk solid phases. In addition, Fourier transform infrared spectroscopy (FTIR) study, X-ray photoelectron spectroscopy (XPS) analysis, and the examination of Pb(II) removal ability of bio-CaCO 3 after calcination indicated that the organic functional groups of bio-CaCO 3 also facilitated the immobilization of Pb(II) into CaCO 3 particles, although the major contribution was from the hierarchical porous structure of bio-CaCO 3 .
Xu, Jie; Zhao, Yongjun; Zhao, Guohua; Zhang, Hui
2015-08-01
An integrated approach that combined freshwater microalgae Scenedesmus obliquus (FACHB-31) cultivation with piggery anaerobic digestate liquid treatment was investigated in this study. The characteristics of algal growth, biogas production, and nutrient removal were examined using photobioreactor bags (PBRbs) to cultivate S. obliquus (FACHB-31) in digestate with various digestate dilutions (the concentration levels of 3200, 2200, 1600, 1200, 800, and 400 mg L(-1) chemical oxygen demand (COD)) during 7-day period. The effects of the level of pollutants on nutrient removal efficiency and CO2 removal process were investigated to select the optimum system for effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. The treatment performance displayed that average removal rates of COD, total nitrogen (TN), total phosphorous (TP), and CO2 were 61.58-75.29, 58.39-74.63, 70.09-88.79, and 54.26-73.81 %, respectively. All the strains grew well under any the dilution treatments. With increased initial nutrient concentration to a certain range, the CO4 content (v/v) of raw biogas increased. Differences in the biogas enrichment of S. obliquus (FACHB-31) in all treatments mainly resulted from variations in biomass productivity and CO2 uptake. Notably, the diluted digestate sample of 1600 mg L(-1) COD provided an optimal nutrient concentration for S. obliquus (FACHB-31) cultivation, where the advantageous nutrient and CO2 removals, as well as the highest productivities of biomass and biogas upgrading, were revealed. Results showed that microalgal biomass production offered real opportunities to address issues such as CO2 sequestration, wastewater treatment, and biogas production.
de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice
2015-12-10
Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. Copyright © 2015 Elsevier B.V. All rights reserved.
Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.
Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi
2017-03-01
Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo
NASA Astrophysics Data System (ADS)
Miyakawa, T.; Takegawa, N.; Kondo, Y.
2007-07-01
Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (<30%) was affected by large point sources of SO2 (power plant and volcano). Although emission sources of CO in Tokyo are different from those of SO2, the major emission sources of CO and SO2 are colocated, indicating that CO can be used as a tracer of anthropogenic SO2 emissions in Tokyo. The ratio of SO42- to total sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.
NASA Astrophysics Data System (ADS)
Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua
2018-05-01
A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.
[Treatment of wastewater containing Cr(VI) by LDH synthesizing in situ].
Chen, Tian-hu; Feng, You-liang; Xu, Hui-fang; Peng, Shu-chuan; Huang, Chuan-hui; Tang, Shu-pei
2004-03-01
The objective of this work was to investigate the efficiency and factors impacting of removal Cr(VI) from wastewater by layer double hydroxide synthesizing in situ. Principle of the method may be described as follow: Mg2+ and Al3+ hydrolysis and forms Mg/Al-LDH by adding Mg2+, Al3+ and NaOH into wastewater containing Cr(VI), Cr(VI) anions are selectively intercalated into interlayer of LDH to balance positive structural charge. While Mg2+ and Al3+ co-precipitates and forms LDH, the Cr(VI) in wastewater is removal by settle of LDH synthesizing in situ, which are confirmed by analysis of X-ray diffraction on settle and chemical analysis on aqueous. The results indicate that factors of impacting on efficiency of removal Cr(VI) include in amount of adding Mg2+ and Al3+, Mg/Al ratio, pH and concentration of Cr(VI) in wastewater. The maximal removal efficiency of Cr(VI) can be reached when pH values are between 8.5 and 9, and Mg/Al ratios are between 1:1 and 2:1, meanwhile, Mg and Al added can be taken good use of. This technology has present extraordinary efficiency of wastewater treatment.
Removal of chloride from MSWI fly ash.
Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han
2012-10-30
The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei
2017-09-07
Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.
Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.
Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn
2011-05-30
Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.
A regenerative process for carbon dioxide removal and hydrogen production in IGCC
NASA Astrophysics Data System (ADS)
Hassanzadeh Khayyat, Armin
Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.
Economic and energetic analysis of capturing CO2 from ambient air
House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.
2011-01-01
Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760
NASA Astrophysics Data System (ADS)
Wang, Lijun; Wang, Xiaoxia; Li, Jianfa; Feng, Xiaolan; Wang, Yusen
2017-09-01
In this work, hydrozincite and Zn/Al-CO3 2- hydrotalcite supported on silica aerogel were prepared via a simple and economical process and used as adsorbents for Pb(II) removal. The supported hydrozincite and Zn/Al-CO3 2- hydrotalcite possess ultra-thin thickness, high surface area, and weak crystallinity. In the batch Pb(II) adsorption experiments, the adsorbents with higher Zn(II) contents showed higher Pb(II) adsorption capacities, and the adsorption data fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating a mechanism of surface chemisorption. The adsorption capacities calculated based Langmuir isotherm model are 684.9 mg/g and 555.6 mg/g for the supported hydrozincite and Zn/Al-CO3 2- hydrotalcite, respectively, higher than the adsorption capacities of other hydrotalcite-based adsorbents and most of other inorganic adsorbents reported previously. The XRD diffraction peaks of hydrozincite and Zn/Al-CO3 2- hydrotalcite disappeared after the adsorption, and the Pb(II) species were uniformly dispersed in the adsorbents in form of Pb3(CO3)2(OH)2 proven by TEM, EDS mapping and XRD analysis, demonstrating the nature of the adsorption is the precipitation conversion of hydrozincite or Zn/Al-CO3 2- hydrotalcite into Pb3(CO3)2(OH)2. These results demonstrate the synergic Pb(II) removal effect of the CO3 2- and OH- derived from hydrozincite and Zn/Al-CO3 2- hydrotalcite together with their ultra-thin thickness and high surface area contribute the excellent properties of the adsorbents.
NASA Astrophysics Data System (ADS)
Dai, C.; Zhang, Y.
2015-12-01
The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.
Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.
Almendariz, F J; Meraz, M; Olmos, A D; Monroy, O
2005-01-01
Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L(-1) d(-1). The mixture SC/SWco2 added to the phenol load, was step increased from 0.10 to 0.87 gCODL(-1) d(-1) maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.
CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?
Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio
2013-01-01
Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.
Deng, Yang
2007-07-19
Municipal landfill leachate, especially mature leachate, may disrupt the performance of moderately-sized municipal activated sludge wastewater treatment plants, and likewise tend to be recalcitrant to biological pretreatment. Recently, Fenton methods have been investigated for chemical treatment or pre-treatment of mature leachate. In this paper, the results of laboratory tests to determine the roles of oxidation and coagulation in reducing the organic content of mature leachate during Fenton treatment are presented. The efficiencies of chemical oxygen demand (COD) oxidation and coagulation were tested, and the ratio of COD removal by oxidation to that by coagulation was assessed, under various operating conditions. Low initial pH, appropriate relative and absolute Fenton reagent dosages, aeration, and stepwise addition of reagents increased COD removal by oxidation and the importance of oxidation relative to coagulation. Simultaneous aeration and stepwise reagent addition allowed comparable treatment without initial acidification pH, due to the generation of acidic organic intermediates and the continuous input of CO2. On the other hand, high COD oxidation efficiency and low ferrous dosage inhibited COD removal by coagulation. At significantly high oxidation efficiency, overall COD reduction decrease slightly due to low coagulation efficiency. Under the most favorable conditions (initial pH 3, molar ratio [H(2)O(2)]/[Fe2+]=3, [H2O2]=240 mM, and six dosing steps), 61% of the initial COD was removed, and the ratio of COD removal oxidation to coagulation was 0.75. Results highlighted the synergistic roles of oxidation and coagulation in Fenton treatment of mature leachate, and the role of oxidation in controlling the efficiency of removal of COD by coagulation.
Geng, Wenhui; Huang, Ting; Jin, Yongcan; Song, Junlong; Chang, Hou-Min; Jameel, Hasan
2014-06-01
Pretreatment of wheat straw with a combination of sodium carbonate (Na2CO3) or sodium hydroxide (NaOH) with oxygen (O2) 0.5MPa was evaluated for its delignification ability at relatively low temperature 110°C and for its effect on enzymatic hydrolysis efficiency. In the pretreatment, the increase of alkali charge (as Na2O) up to 12% for Na2CO3 and 6% for NaOH, respectively, resulted in enhancement of lignin removal, but did not significantly degrade cellulose and hemicellulose. When the pretreated solid was hydrolyzed with a mixture of cellulases and hemicellulases, the sugar yield increased rapidly with the lignin removal during the pretreatment. A total sugar yield based on dry matter of raw material, 63.8% for Na2CO3-O2 and 71.9% for NaOH-O2 was achieved under a cellulase loading of 20FPU/g-cellulose. The delignification efficiency and total sugar yield from enzymatic hydrolysis were comparable to the previously reported results at much higher temperature without oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.
Holey graphene frameworks for highly selective post-combustion carbon capture
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-01-01
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications. PMID:26879393
Holey graphene frameworks for highly selective post-combustion carbon capture.
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-02-16
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.
Holey graphene frameworks for highly selective post-combustion carbon capture
NASA Astrophysics Data System (ADS)
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-02-01
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.
Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota
2017-03-13
Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1 d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria
NASA Astrophysics Data System (ADS)
Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota
2017-03-01
Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
NASA Astrophysics Data System (ADS)
Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin
2016-06-01
In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.
Lee, Kwan Yin; Ng, Tsz Wai; Li, Guiying; An, Taicheng; Kwan, Ka Ki; Chan, King Ming; Huang, Guocheng; Yip, Ho Yin; Wong, Po Keung
2015-10-30
The phycoremediation process has great potential for effectively addressing environmental pollution. To explore the capabilities of simultaneous algal nutrient removal, CO2 mitigation and biofuel feedstock production from spent water resources, a Chlorogonium sp. isolated from a tilapia pond in Hong Kong was grown in non-sterile saline sewage effluent for a bioremediation study. With high removal efficiencies of NH3-N (88.35±14.39%), NO3(-)-N (85.39±14.96%), TN (93.34±6.47%) and PO4(3-)-P (91.80±17.44%), Chlorogonium sp. achieved a CO2 consumption rate of 58.96 mg L(-1) d(-1), which was optimised by the response surface methodology. Under optimised conditions, the lipid content of the algal biomass reached 24.26±2.67%. Overall, the isolated Chlorogonium sp. showed promising potential in the simultaneous purification of saline sewage effluent in terms of tertiary treatment and CO2 sequestration while delivering feedstock for potential biofuel production in a waste-recycling manner. Copyright © 2015 Elsevier B.V. All rights reserved.
Veksha, Andrei; Bhuiyan, Tazul I.; Hill, Josephine M.
2016-01-01
Several samples of activated carbon were prepared by physical (CO2) and chemical (H3PO4) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N2 adsorption isotherms at −196 °C. The activated carbon produced by CO2 activation had similar removal levels for total organic carbon from the water (up to 70%) to those samples activated with H3PO4, but lower yields, due to losses during pyrolysis and activation. A method to increase the yield when using CO2 activation was proposed and consisted of recycling bio-oil produced from previous runs to the aspen wood feed, followed by either KOH addition (0.48%) or air pretreatment (220 °C for 3 h) before pyrolysis and activation. By recycling the bio-oil, the yield of CO2 activated carbon (after air pretreatment of the mixture) was increased by a factor of 1.3. Due to the higher carbon yield, the corresponding total organic carbon removal, per mass of wood feed, increased by a factor of 1.2 thus improving the overall process efficiency. PMID:28787817
Ju, Yongming; Wang, Xiaoyan; Qiao, Junqin; Li, Guohua; Wu, You; Li, Yuan; Zhang, Xiuyu; Xu, Zhencheng; Qi, Jianying; Fang, Jiande; Dionysiou, Dionysios D
2013-12-15
In this study, we adopted the chemical co-precipitation (CP) method and sol-gel method followed by calcination at temperatures of 100-900°C for 12h to synthesize CoFe2O4 materials, which were further characterized by TEM, XRD and XPS techniques. The properties of CoFe2O4 materials were evaluated in a microwave (MW) induced catalytic oxidation (MICO) process for the elimination of brilliant green (BG). The results showed that: (1) the removal rates of BG gradually decreased over a series of CoFe2O4 materials prepared by CP method and calcinated with 100-700°C (except 900°C) for 12h within three reuse cycles; for comparison, no removal of BG was obtained over CoFe2O4 synthesized by sol-gel method and CoFe2O4-900 (CP); (2) no hydroxyl radicals were captured with salicylic acid used as molecular probe in the MICO process; (3) MW irradiation enhanced the release of residual NaOH within the microstructure of CoFe2O4 and further discolored BG, because BG is sensitive to pH; (4) granular activated carbon (GAC), an excellent MW-absorbing material possessing higher dielectric loss tangent compared to that of a series of CoFe2O4 materials, could not remove BG in suspensions at a higher efficiency, even if the loading amount was 20 g L(-1). Accordingly, MICO process over CoFe2O4 materials and GAC could not effectively eliminate BG in suspensions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sourav; Chanda, Abhra; Das, Sourav; Akhand, Anirban; Pattanaik, Suchismita; Choudhury, S. B.; Dutta, Dibyendu; Hazra, Sugata
2018-04-01
The rate of nutrient removal and changes in pCO2 (water) were compared between a lentic aquaculture pond [East Kolkata Wetlands (EKW), India] and a lotic estuarine system [Diamond Harbor (DH) in Hugli Estuary, India] during the post-monsoon season (experiencing a similar tropical climate) by means of ex situ microcosm experiment. Though the DH waters were found to be substantial source of CO2 towards atmosphere and EKW waters to be sink for CO2 (according to the initial concentration of CO2), the eight consecutive days microcosm experiment revealed that the nutrient removal and pCO2 reduction efficiency were significantly higher in DH (ΔpCO2—90%) compared to EKW (ΔpCO2—78%). Among the five nutrients studied [dissolved nitrate-nitrogen (NO3-N), dissolved ammonium nitrogen (NH4-N), silicate, phosphate and iron], dissolved NO3-N followed by NH4-N was the most utilized in both EKW and DH. Except silicate, the other nutrients reduced to 78-91% in EKW and 84-99% in DH samples of their initial concentrations. Chlorophyll-a concentration steadily depleted in EKW ( 68-26 mg m-3) during the experiment indicating intense zooplankton grazing, whereas in DH it increased rapidly ( 3.4-23 mg m-3) with decreasing pCO2 (water). The present observations further indicated that regular flushing of EKW aquaculture ponds is required to avoid stagnation of water column which would enhance the zooplankton grazing and hamper the primary production of an otherwise sink of CO2. In DH, controlled freshwater discharge from Farakka and reduction of untreated organic waste might allow the existing phytoplankton community to enhance their photosynthetic activity.
Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei
2015-09-01
An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.
Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin
2018-07-01
The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study
NASA Astrophysics Data System (ADS)
Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo
2016-08-01
Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.
Carbon dioxide efficiency of terrestrial enhanced weathering.
Moosdorf, Nils; Renforth, Phil; Hartmann, Jens
2014-05-06
Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.
Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing
2017-12-15
Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lijun; Wang, Xiaoxia; Li, Jianfa; Feng, Xiaolan; Wang, Yusen
2017-09-25
In this work, hydrozincite and Zn/Al-CO 3 2- hydrotalcite supported on silica aerogel were prepared via a simple and economical process and used as adsorbents for Pb(II) removal. The supported hydrozincite and Zn/Al-CO 3 2- hydrotalcite possess ultra-thin thickness, high surface area, and weak crystallinity. In the batch Pb(II) adsorption experiments, the adsorbents with higher Zn(II) contents showed higher Pb(II) adsorption capacities, and the adsorption data fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating a mechanism of surface chemisorption. The adsorption capacities calculated based Langmuir isotherm model are 684.9 mg/g and 555.6 mg/g for the supported hydrozincite and Zn/Al-CO 3 2- hydrotalcite, respectively, higher than the adsorption capacities of other hydrotalcite-based adsorbents and most of other inorganic adsorbents reported previously. The XRD diffraction peaks of hydrozincite and Zn/Al-CO 3 2- hydrotalcite disappeared after the adsorption, and the Pb(II) species were uniformly dispersed in the adsorbents in form of Pb 3 (CO 3 ) 2 (OH) 2 proven by TEM, EDS mapping and XRD analysis, demonstrating the nature of the adsorption is the precipitation conversion of hydrozincite or Zn/Al-CO 3 2- hydrotalcite into Pb 3 (CO 3 ) 2 (OH) 2 . These results demonstrate the synergic Pb(II) removal effect of the CO 3 2- and OH - derived from hydrozincite and Zn/Al-CO 3 2- hydrotalcite together with their ultra-thin thickness and high surface area contribute the excellent properties of the adsorbents.
Li, Yujie; He, Xiaoman; Hu, Huimin; Zhang, Tingting; Qu, Jun; Zhang, Qiwu
2018-05-21
Excessive existences of nutrients such as phosphate in the aqueous environment remain as a heavy concern although many researches have been reported for dealing with their removal. Based on the understanding toward the interactions of Fe compounds with phosphate and carbonate from many available researches, we designed a very simple and efficient approach for phosphate removal by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) as FeSO 4 on CaCO 3 . Addition and agitation of Fe(II) and CaCO 3 simultaneously to phosphate solution allowed an amorphous Fe(III)-P or Ca-Fe(III)-P precipitation, with a phosphate removal rate close to 100%, to reduce the residual phosphorus concentration less than 0.03 mg/L from 100 mg/L, reaching the discharge limit, even with the addition amounts of CaCO 3 as low as a stoichiometric ratio of CaCO 3 /PO 4 3- at 0.9 and ratio of Fe(II)/PO 4 3- at 1.5, and the percent of P 2 O 5 in the precipitate was as high as 19.4% enough as phosphate source for fertilizer production. Different from the alkaline process with enough OH - group, the slow hydrolysis of CaCO 3 resulting in low concentration of OH - group for the formation of Fe(OH) 2 , which was oxidized soon by air into trivalent Fe, achieved a continuous generation of fresh ferric composition for phosphate precipitation and could avoid its rapid formation and subsequent transformation into stable FeOOH of large particle size to lose the activity. These results based on the synergistic effect of using CaCO 3 and Fe(II) together may have applications in the treatment of eutrophic wastewater through a process with many advantages of easy operation and low-cost besides the high removal efficiency with phosphate percentage inside the precipitate high enough to serve for fertilizer production. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
Method of CO.sub.2 removal from a gasesous stream at reduced temperature
Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A
2014-11-18
A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.
Harbinson, Jeremy; Foyer, Christine H.
1991-01-01
The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO2 compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO2 had been removed. P700 was more oxidized at any measured irradiance in CO2-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO2-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO2-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO2-free air, with an activation state 50% of maximum. We conclude that, at the CO2 compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane. PMID:16668401
NASA Astrophysics Data System (ADS)
Wang, L. X.; Zhao, Y. F.; Meng, Q. M.
2018-01-01
Here, we are going to report a simple, low-cost and environmental friendly process to prepare the cobalt hybrid/graphene (Co/G) nanocomposite at room temperature. NaBH4 was used as the reducing agent. Such an approach can be extended to grow some other metal/G nanocomposites, for example, Ni/G, Co/G nanocomposite possesses narrow size-distribution and good dispersion. Because of the special appearance with large surface area, and the special synthesis process of the productions, adsorption experiments for Congo Red were carried out in synthetic wastewater. The CR removal ability of Co/G nanocomposite can reach 263.2 mg/g.
Liang, Liang; Yu, Fangke; An, Yiran; Liu, Mengmeng; Zhou, Minghua
2017-01-01
A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H 2 O 2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O 2 to H 2 O 2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that · OH played an important role in degradation of MO.
NASA Astrophysics Data System (ADS)
Powell, Tom; Lenton, Tim
2013-04-01
We assess the quantitative potential for future land management to help rebalance the global carbon cycle by actively removing carbon dioxide (CO2) from the atmosphere with simultaneous bio-energy offsets of CO2 emissions, whilst meeting global food demand, preserving natural ecosystems and minimising CO2 emissions from land use change. Four alternative future scenarios are considered out to 2050 with different combinations of high or low technology food production and high or low meat diets. Natural ecosystems are protected except when additional land is necessary to fulfil the dietary demands of the global population. Dedicated bio-energy crops can only be grown on land that is already under management but is no longer needed for food production. We find that there is only room for dedicated bio-energy crops if there is a marked increase in the efficiency of food production (sustained annual yield growth of 1%, shifts towards more efficient animals like pigs and poultry, and increased recycling of wastes and residues). If there is also a return to lower meat diets, biomass energy with carbon storage (BECS) as CO2 and biochar could remove up to 4.0 Pg C per year in 2050. With the current trend to higher meat diets there is only room for limited expansion of bio-energy crops after 2035 and instead BECS must be based largely on biomass residues, removing up to 1.5 Pg C per year in. A high-meat, low-efficiency future would be a catastrophe for natural ecosystems (and thus for the humans that depend on their services) with around 8.5 Gha under cultivation in 2050. When included in a simple earth system model with a technological mitigation CO2 emission baseline these produce atmospheric CO2 concentrations of ~ 450-525ppm in 2050. In addition we assess the potential for future biodiversity loss under the scenarios due to three interacting factors; energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. Forecasts of committed global biodiversity loss in 2050 (from 2000 levels) vary by more than a factor of two across the scenarios. The greatest biodiversity loss is forecast in the 'high meat low efficiency' scenario with roughly equal contributions from biomass harvest and climate change, and a smaller land-use change contribution. The smallest biodiversity loss is forecast in the 'high meat high efficiency' scenario and is mostly due to biomass harvest, followed by climate change. Climate change is lowest in the 'low meat high efficiency' efficiency scenario thanks to BECCS based on bio-energy crops, but the resulting withdrawal of energy from ecosystems has a greater negative impact on biodiversity than the positive effect of less climate change. This suggests that using bio-energy to tackle climate change in order to limit biodiversity loss would instead have the opposite effect.
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan
2016-09-01
The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
A NOVEL CO{sub 2} SEPARATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Copeland
2000-03-01
Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current systems which recover and concentrate CO{sub 2} from flue gases is the need to separate dilute CO{sub 2} and pressurize it to roughly 35 atm for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity. There are two fundamental reasons for the current high costs of power consumption, CO{sub 2} removal, and concentration systems: (1) most disposal, storage and sequesteringmore » systems require high pressure CO{sub 2} (at roughly 35 atm). Thus, assuming 90% removal of the CO{sub 2} from a typical atmospheric pressure flue gas that contains 10% CO{sub 2}, the CO{sub 2} is essentially being compressed from 0.01 atm to 35 atm (a pressure ratio of 3,500). This is a very energy intensive process. (2) The absorption-based (amine) separation processes that are used to remove the CO{sub 2} from the flue gas and compress it to 1 atm consume approximately 10 times as much energy as the theoretical work of compression because they are heat driven cycles working over a very low temperature difference. Thus, to avoid the problems of current systems, we need a power cycle in which the CO{sub 2} produced by the oxidation of the fuel is not diluted with a large excess of nitrogen, a power cycle which would allow us to eliminate the very inefficient thermally driven absorption/desorption step. In addition, we would want the CO{sub 2} to be naturally available at high pressure (approximately 3 to 6 atmospheres), which would allow us to greatly reduce the compression ratio between generation and storage (from roughly 3,500 to approximately 8).« less
A NOVEL CO{sub 2} SEPARATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Copeland
2000-05-01
Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current systems which recover and concentrate CO{sub 2} from flue gases is the need to separate dilute CO{sub 2} and pressurize it to roughly 35 atm for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity. There are two fundamental reasons for the current high costs of power consumption, CO{sub 2} removal, and concentration systems: (1) most disposal, storage and sequesteringmore » systems require high pressure CO{sub 2} (at roughly 35 atm). Thus, assuming 90% removal of the CO{sub 2} from a typical atmospheric pressure flue gas that contains 10% CO{sub 2}, the CO{sub 2} is essentially being compressed from 0.01 atm to 35 atm (a pressure ratio of 3,500). This is a very energy intensive process. (2) The absorption-based (amine) separation processes that are used to remove the CO{sub 2} from the flue gas and compress it to 1 atm consume approximately 10 times as much energy as the theoretical work of compression because they are heat driven cycles working over a very low temperature difference. Thus, to avoid the problems of current systems, we need a power cycle in which the CO{sub 2} produced by the oxidation of the fuel is not diluted with a large excess of nitrogen, a power cycle which would allow us to eliminate the very inefficient thermally driven absorption/desorption step. In addition, we would want the CO{sub 2} to be naturally available at high pressure (approximately 3 to 6 atmospheres), which would allow us to greatly reduce the compression ratio between generation and storage (from roughly 3,500 to approximately 8).« less
A NOVEL CO{sub 2} SEPARATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Copeland
2000-08-01
Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current systems which recover and concentrate CO{sub 2} from flue gases is the need to separate dilute CO{sub 2} and pressurize it to roughly 35 atm for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity. There are two fundamental reasons for the current high costs of power consumption, CO{sub 2} removal, and concentration systems: (1) most disposal, storage and sequesteringmore » systems require high pressure CO{sub 2} (at roughly 35 atm). Thus, assuming 90% removal of the CO{sub 2} from a typical atmospheric pressure flue gas that contains 10% CO{sub 2}, the CO{sub 2} is essentially being compressed from 0.01 atm to 35 atm (a pressure ratio of 3,500). This is a very energy intensive process. (2) The absorption-based (amine) separation processes that are used to remove the CO{sub 2} from the flue gas and compress it to 1 atm consume approximately 10 times as much energy as the theoretical work of compression because they are heat driven cycles working over a very low temperature difference. Thus, to avoid the problems of current systems, we need a power cycle in which the CO{sub 2} produced by the oxidation of the fuel is not diluted with a large excess of nitrogen, a power cycle which would allow us to eliminate the very inefficient thermally driven absorption/desorption step. In addition, we would want the CO{sub 2} to be naturally available at high pressure (approximately 3 to 6 atmospheres), which would allow us to greatly reduce the compression ratio between generation and storage (from roughly 3,500 to approximately 8).« less
Efficient TEA CO II-laser-based coating removal system
NASA Astrophysics Data System (ADS)
Prinsloo, F. J.; van Heerden, S. P.; Ronander, E.; Botha, L. R.
2007-05-01
A high power 1kW pulsed transversely excited atmospheric CO II laser that has been developed for the paint stripping of missiles was used to test paint stripping on several metallic and composite aircraft panels to determine the rate at which this laser could remove paint from aircraft.
Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal.
Dai, Lichun; Tan, Furong; Li, Hong; Zhu, Nengmin; He, Mingxiong; Zhu, Qili; Hu, Guoquan; Wang, Li; Zhao, Jie
2017-08-01
Calcium-rich biochars (CRB) prepared through pyrolysis of crab shell at various temperatures were characterized for physicochemical properties and P removal potential. Elemental analysis showed that CRB was rich in calcium (22.91%-36.14%), while poor in carbon (25.21%-9.08%). FTIR, XRD and TG analyses showed that calcite-based CRB was prepared at temperature ≤600 °C, while lime-based CRB was prepared at temperature ≥700 °C. Phosphorus removal experiment showed that P removal efficiencies in 80 mg P/L phosphate solution and biogas effluent ranged from 26% to 11%, respectively, to about 100% and 63%, respectively, depending on the pyrolysis temperature of the resulting biochar. Specifically, compared to common used CaCO 3 and Ca(OH) 2 , P removal potential of calcite-based CRB was much higher than that of CaCO 3 ; while that of lime-based CRB was close to that of Ca(OH) 2 . These results suggested that CRB was competent for P removal/recovery from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simultaneous removal of 2,4,6-tribromophenol from water and bromate ion minimization by ozonation.
Gounden, Asogan N; Singh, Sooboo; Jonnalagadda, Sreekantha B
2018-06-02
The study investigates the degradation of 2,4,6-tribromophenol (2,4,6-TBP) and the influence of solution pH, alkalinity, H 2 O 2 and O 3 dosage. Debromination efficiency of 2,4,6-TBP was the highest in basic water (pH = 10.61). The extent of TOC removal compared favourably with the amount of substrate converted, suggesting favourable mineralization of oxygenated by-products (OBPs). Ozonation in basic water favoured the formation of toxicBrO 3 - , while in acidic water (pH = 2.27) BrO 3 - yield was lowest. In acidic water the presence of CO 3 2- showed negligible effect on conversion, TOC and BrO 3 - yield compared to ozonation alone. In basic water both 2,4,6-TBP conversion and TOC removal decreased with an increase in CO 3 2- , hence minimizing BrO 3 - formation. The O 3 /H 2 O 2 process showed an improvement in the debromination efficiency and TOC data revealed that total mineralization of OBP's was achieved. However, only 10% H 2 O 2 was able to effectively decrease BrO 3 - formation. Increasing the ozone concentration from 20 to 100 ppm enhanced the conversion of 2,4,6-TBP and TOC removal. At low ozone concentrations poor mineralization of OBP's occurred, while complete mineralization was achieved at higher ozone dose. The reaction pathways for ozone degradation of 2,4,6-TBP in acidic and basic waters is proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
Spectral distortion of the CMB by the cumulative CO emission from galaxies throughout cosmic history
NASA Astrophysics Data System (ADS)
Mashian, Natalie; Loeb, Abraham; Sternberg, Amiel
2016-05-01
We show that the cumulative CO emission from galaxies throughout cosmic history distorts the spectrum of the cosmic microwave background at a level that is well above the detection limit of future instruments, such as the Primordial Inflation Explorer. The modelled CO signal has a prominent bump in the frequency interval 100-200 GHz, with a characteristic peak intensity of ˜2 × 10-23 W m-2 Hz-1 sr-1. Most of the CO foreground originates from modest redshifts, z ˜ 2-5, and needs to be efficiently removed for more subtle distortions from the earlier Universe to be detected.
Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise
Trevor F. Keenan; David Y. Hollinger; Gil Boher; Danilo Dragoni; J. William Munger; Hans Peter Schmid
2013-01-01
Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct,...
Removing CO2 and moisture from air
NASA Technical Reports Server (NTRS)
Tepper, E. H.
1977-01-01
Foamed-aluminum blocks act as passive heat exchanger to improve efficiency. Improved closed-cycle atmospheric scrubber, level of carbon dioxide, and water vapor are reduced without affecting temperature of airstream. Exchangers draw impurities from air without additional heaters of auxillary equipment.
Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy
2016-09-01
This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
Pleşa Chicinaş, Raluca; Coteţ, L Cosmin; Măicăneanu, Andrada; Vasilescu, Mihai; Vulpoi, Adriana
2017-01-01
Co-, Ce-, and Ni-doped carbon xerogels (Me-CX) synthesized by sol-gel method followed by an ion exchange process were used as catalysts for catalytic wet air oxidation (CWAO) of phenol. The prepared catalysts were characterized using TEM, SEM, BET surface area, and XRD. Me-CX catalysts were tested in mild conditions (20-60 °C, atmospheric pressure) in a semi-batch reactor in various reaction conditions (30-60 L/h, 0.05-0.2 g catalysts, 50-175 mg phenol/L). Total organic carbon (TOC) removal efficiency values obtained decrease in the following order Co-CX ≅ Ce-CX > Ni1-CX > K-CX for the catalysts obtained using the same procedure. TOC removal efficiencies of up to 72% were reached in case of Co-CX catalyst at 20 °C, 40 L/h, using 0.15 g catalyst and a solution of 100 mg phenol/L.
Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO2.
Wang, Hai-Hua; Hou, Lei; Li, Yong-Zhi; Jiang, Chen-Yu; Wang, Yao-Yu; Zhu, Zhonghua
2017-05-31
A new Co(II)-based MOF, {[Co 2 (tzpa)(OH)(H 2 O) 2 ]·DMF} n (1) (H 3 tzpa = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid), was constructed by employing a tetrazolyl-carboxyl ligand H 3 tzpa. 1 possesses 1D tubular channels that are decorated by μ 3 -OH groups, uncoordinated carboxylate O atoms, and open metal centers generated by the removal of coordinated water molecules, leading to high CO 2 adsorption capacity and significantly selective capture for CO 2 over CH 4 and CO in the temperature range of 298-333 K. Moreover, 1 shows the chemical stability in acidic and basic aqueous solutions. Grand canonical Monte Carlo simulations identified multiple CO 2 -philic sites in 1. In addition, the activated 1 as the heterogeneous Lewis and Brønsted acid bifunctional catalyst facilitates the chemical fixation of CO 2 coupling with epoxides into cyclic carbonates under ambient conditions.
Dong, Fan; Lee, S C; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo
2011-11-15
Rose-like monodisperse hierarchical (BiO)(2)CO(3) hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO)(2)CO(3) superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO)(2)CO(3) microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO)(2)CO(3). The band gap of 3.25 eV is intrinsic and the formation of smaller band gap of 2.0 eV can be ascribed to the in situ doped nitrogen in lattice. The performance of hierarchical (BiO)(2)CO(3) microspheres as efficient photocatalyst are further demonstrated in the removal of NO in indoor air under both visible light and UV irradiation. It is found that the hierarchical (BiO)(2)CO(3) microspheres not only exhibit excellent photocatalytic activity but also high photochemical stability during long term photocatalytic reaction. The special microstructure, the high charge separation efficiency due to the inductive effect, and two-band-gap structure in all contribute to the outstanding photocatalytic activities. The discovery of monodisperse hierarchical nitrogen doped (BiO)(2)CO(3) hollow structure is significant because of its potential applications in environmental pollution control, solar energy conversion, catalysis and other related areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Waste Water for Power Generation via Energy Efficient Selective Silica Separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, Tina M.; Brady, Patrick Vane; Sasan, Koroush
Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)•4H 2O)), is combined in series with high surface area active alumina (AA, (Al 2O 3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than usingmore » HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.« less
Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung
2015-12-15
This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.
Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon
NASA Astrophysics Data System (ADS)
Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang
2013-09-01
Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.
Melnikov, Sergey M; Stein, Matthias
2018-03-15
CO 2 sequestration from anthropogenic resources is a challenge to the design of environmental processes at a large scale. Reversible chemical absorption by amine-based solvents is one of the most efficient methods of CO 2 removal. Molecular simulation techniques are very useful tools to investigate CO 2 binding by aqueous alkanolamine molecules for further technological application. In the present work, we have performed detailed atomistic molecular dynamics simulations of aqueous solutions of three prototype amines: monoethanolamine (MEA) as a standard, 3-aminopropanol (MPA), 2-methylaminoethanol (MMEA), and 4-diethylamino-2-butanol (DEAB) as potential novel CO 2 absorptive solvents. Solvent densities, radial distribution functions, cluster size distributions, hydrogen-bonding statistics, and diffusion coefficients for a full range of mixture compositions have been obtained. The solvent densities and diffusion coefficients from simulations are in good agreement with those in the experiment. In aqueous solution, MEA, MPA, and MMEA molecules prefer to be fully solvated by water molecules, whereas DEAB molecules tend to self-aggregate. In a range from 30/70-50/50 (w/w) alkanolamine/water mixtures, they form a bicontinuous phase (both alkanolamine and water are organized in two mutually percolating clusters). Among the studied aqueous alkanolamine solutions, the diffusion coefficients decrease in the following order MEA > MPA = MMEA > DEAB. With an increase of water content, the diffusion coefficients increase for all studied alkanolamines. The presented results are a first step for process-scale simulation and provide important qualitative and quantitative information for the design and engineering of efficient new CO 2 removal processes.
Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang
2014-08-01
This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert
2016-10-01
Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. Themore » objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3- (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2-2 and UO2(CO3)3-4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3- and UO2(OH)4-2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.« less
Biochars made from agro-industrial by-products remove chlorine and lower water toxicity
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.
2016-04-01
Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The column experiment also showed positive results; no breakthrough has been observed after 1L of chlorine solution has passed through a column packed with 4 g of biochar made from the pyrolysis of grape seeds. Toxicity tests were also performed with the chlorine solution before and after passing through this column. The toxicity of the solution decreased after passing through the column packed with biochar suggesting that no toxic compounds are formed during the removal of chlorine by the biochar. The overall idea of this study is the sustainable use of the solid by-products of a food industry or producer to treat water or treated wastewater in order to enhance its quality and lower its toxicity. American Water Works Association (AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition.
NASA Technical Reports Server (NTRS)
Baeza, Mario; Sharma, Hemant; Borrok, David; Ren, Mingua; Pannell, Keith
2011-01-01
From data concerning the degradation of the CO2 removal system in the International Space Station (ISS) two important features were apparent: (1) The atmosphere within the International Space Station (ISS) contained many organic compounds including alcohols, halocarbons, aldehydes, esters, and ketones, inter alia. Various cyclosiloxanes Dn, hexamethylcyclotrisiloxane (D3) and its higher homologs (D4) and (D5) are also present presumably due to offgassing. (2) Screens within the zeolite-containing canisters, used for the removal of CO2, exhibited partial clogging due to zeolitic fragments (dust) along with "sticky" residues, that in toto significantly reduced the efficiency of the CO2 removal process. Samples of the ISS fresh zeolite, used zeolite, filter clogging zeolite particles and residual polymeric materials were examined using, inter alia, NMR, EM and HRSEM. These data were compared to equivalent samples obtained prior and subsequent to Dn polymerization experiments performed in our laboratories using the clean ISS zeolite samples as catalyst. Polysiloxane materials produced were essentially equivalent in the two cases and the EM images demonstrate a remarkable similarity between the ISS filter zeolite samples and the post-polymerization zeolite material from our experiments. In this regard even the changes in the Al/Si ratio from the virgin zeolite material to the filter samples and the post-polymerization laboratory samples samples is noteworthy. This research was supported by a contract from the Boeing Company
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.
García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco
2018-02-01
Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan
2018-02-01
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Buffer Gas Acquisition and Storage
NASA Technical Reports Server (NTRS)
Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)
2001-01-01
The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.
Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration
NASA Astrophysics Data System (ADS)
Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M.; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed
2017-05-01
Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.
Liu, Yongxin; Zhang, Jiali; Song, Lingxiao; Xu, Wenyuan; Guo, Zanru; Yang, Xiaomin; Wu, Xiaoxin; Chen, Xi
2016-09-07
A novel coordination replication of Cu2O redox-template strategy is reported to efficiently fabricate Au-HKUST-1 composite nanocapsule, with a HKUST-1 sandwich shell and an embedded Au nanoparticles layer. The novel synthesis procedure involves forming Au nanoparticles on the surface of Cu2O, transforming partial Cu2O into HKUST-1 shell via coordination replication, and removing the residual Cu2O by acid. The as-prepared Au-HKUST-1 composite nanocapsules displayed high catalytic activity on CO oxidation.
Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent
NASA Astrophysics Data System (ADS)
Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong
2013-05-01
In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.
2011-01-01
To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.
Chun, Jaesung; Choi, Okkyoung; Sang, Byoung-In
2018-01-01
Extractive fermentation with the removal of carboxylic acid requires low pH conditions because acids are better partitioned into the solvent phase at low pH values. However, this requirement conflicts with the optimal near-neutral pH conditions for microbial growth. CO 2 pressurization was used, instead of the addition of chemicals, to decrease pH for the extraction of butyric acid, a fermentation product of Clostridium tyrobutyricum , and butyl butyrate was selected as an extractant. CO 2 pressurization (50 bar) improved the extraction efficiency of butyric acid from a solution at pH 6, yielding a distribution coefficient ( D ) 0.42. In situ removal of butyric acid during fermentation increased the production of butyric acid by up to 4.10 g/L h, an almost twofold increase over control without the use of an extraction process. In situ extraction of butyric acid using temporal CO 2 pressurization may be applied to an integrated downstream catalytic process for upgrading butyric acid to value-added chemicals in an organic solvent.
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
Harbinson, J; Foyer, C H
1991-09-01
The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO(2) compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO(2) had been removed. P700 was more oxidized at any measured irradiance in CO(2)-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO(2)-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO(2)-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO(2)-free air, with an activation state 50% of maximum. We conclude that, at the CO(2) compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane.
Biotreatment of ammonia- and butanal-containing waste gases.
Weckhuysen, B; Vriens, L; Verachtert, H
1994-10-01
The biological removal of ammonia and butanal in contaminated air was investigated by using, respectively, a laboratory-scale filter and a scrubber-filter combination. It was shown that ammonia can be removed with an elimination efficiency of 83% at a volumetric load of 100 m3.m-2.h-1 with 4-16 ppm of ammonia. During the experiment percolates were analysed for nitrate, nitrite, ammonium and pH. It was found that the nitrification in the biofilter could deteriorate due to an inhibition of Nitrobacter species, when the free ammonia concentration was rising in the percolate. It should be easy to control such inhibition through periodic analysis of the liquid phase by using a filter-scrubber combination. Such a combination was studied for butanal removal. Butanal was removed with an elimination efficiency of 80% by a scrubber-filter combination at a volumetric load of 100 m3.m-2.h-1 and a high butanal input concentration. Mixing the filter material with CaCO3 and pH control of the liquid in the scrubber resulted in an increase of the elimination efficiency. These results, combined with previous results on the biofiltration of butanal and butyric acid, allow us to discuss the influence of odour compounds on the removal efficiency of such systems and methods for control. The results were used to construct a full-size system, which is described.
Arsenic removal from acidic solutions with biogenic ferric precipitates.
Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A
2016-04-05
Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Prediction of the new efficient permanent magnet SmCoNiFe3
NASA Astrophysics Data System (ADS)
Söderlind, P.; Landa, A.; Locht, I. L. M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P. E. A.; Antropov, V. P.; Eriksson, O.
2017-09-01
We propose a new efficient permanent magnet, SmCoNiFe3, which is a development of the well-known SmCo5 prototype. More modern neodymium magnets of the Nd-Fe-B type have an advantage over SmCo5 because of their greater maximum energy products due to their iron-rich stoichiometry. Our new magnet, however, removes most of this disadvantage of SmCo5 while preserving its superior high-temperature efficiency over the neodymium magnets. We show by means of first-principles electronic-structure calculations that SmCoNiFe3 has very favorable magnetic properties and could therefore potentially replace SmCo5 or Nd-Fe-B types in various applications.
Air ionization as a control technology for off-gas emissions of volatile organic compounds.
Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar
2017-06-01
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.
Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun
2018-03-15
Abstract : Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO₂ in biogas. The microalgae-fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO 2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulga ris - Ganoderma lucidum > Chlorella vulga ris -activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m -2 s -1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.
Deng, Lin; Shi, Zhou; Zou, Zhiyan; Zhou, Shiqing
2017-04-01
EDTA functionalized CoFe 2 O 4 nanoparticles (EDTA-CoFe 2 O 4 ) synthesized using a facile one-pot solvothermal method were employed as catalysts to activate peroxymonosulfate (PMS) with Orange G (OG) as the target pollutant. Effects of operating parameters including initial solution pH, catalyst dosage, PMS dosage, and water matrix components such as Cl - , NO 3 - , CO 3 2- , and humic acid were evaluated. A degradation efficiency of 93% was achieved in 15 min with 1 mM PMS and 0.2 g/L EDTA-CoFe 2 O 4 catalyst, while only 57% of OG was degraded within 15 min in CoFe 2 O 4 /PMS system. The degradation of OG followed pseudo-first-order kinetics, and the apparent first-order date constant (k obs ) for OG in EDTA-CoFe 2 O 4 /PMS and CoFe 2 O 4 /PMS system was determined to be 0.152 and 0.077 min -1 , respectively. OG degradation by EDTA-CoFe 2 O 4 /PMS was enhanced with the increase of catalyst and PMS doses at respective range of 0.1-2.0 g/L and 0.5-10.0 mM. Higher efficiency of OG oxidation was observed within a wide pH range (3.0-9.0), implying the possibility of applying EDTA-CoFe 2 O 4 /PMS process under environmental realistic conditions. Humic acid (HA) at low concentration accelerated the removal of OG; however, a less apparent inhibitive effect was observed at HA addition of 10 mg/L. The k obs value was found to decrease slightly from 0.1601 to 0.1274, 0.1248, and 0.1152 min -1 with the addition of NO 3 - , CO 3 2- , and Cl - , respectively, but near-complete removal of OG could still be obtained after 15 min. Both of the sulfate radicals and hydroxyl radicals were produced in the reaction, and sulfate radicals were the dominant according to the scavenging tests and electron paramagnetic resonance (EPR) tests. Finally, a degradation mechanism was proposed, and the stability and reusability of the EDTA-CoFe 2 O 4 were evaluated.
NASA Astrophysics Data System (ADS)
Anushree; Kumar, S.; Sharma, C.
2017-11-01
Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.
Kobayashi, Makoto; Akiho, Hiroyuki
2017-12-01
Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J
2012-11-15
Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate. Copyright © 2012 Elsevier Inc. All rights reserved.
Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S
2010-05-01
The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.
Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.
Bernardo, Maria; Mendes, Sandra; Lapa, Nuno; Gonçalves, Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena; Fonseca, Isabel
2013-11-01
The effectiveness of chars from the co-pyrolysis of pine, used tires and plastic wastes for the removal of lead (Pb(2+)) from aqueous medium, was investigated. The chars were predominantly of macroporous nature, but the introduction of tires in the pyrolysis feedstock enhanced their mesoporous content as well as surface area. Pb(2+) sorption with the chars was a slow and unstable process in which sorption-desorption seems to be competing. The highest Pb(2+) removal (88%) was attained by the char resulting from the pyrolysis of a mixture composed by equal mass ratios of used tires and plastics, at 48 h of contact time. This char was also the one with the overall better performance for Pb(2+) sorption, achieving almost 100% of Pb(2+) removal on the study of the effect of adsorbent dose. Mixing the three raw materials for pyrolysis had no advantage for the resulting char concerning the removal efficiency of Pb(2+). The sorption mechanisms varied according to the pyrolysis feedstock: in chars from feedstock with pine, chemisorption involving complexation with oxygenated surface functional groups followed by cation exchange was the presumable mechanism. In tire rubber derived chars, cation exchange with Ca(2+), K(+), and Zn(2+) played the major role on Pb(2+) sorption. Copyright © 2013 Elsevier Inc. All rights reserved.
Innovative Air Conditioning and Climate Control
NASA Technical Reports Server (NTRS)
Graf, John
2015-01-01
NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.
NASA Technical Reports Server (NTRS)
Mulloth, Lila; LeVan, Douglas
2002-01-01
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.
Tao, Qinqin; Zhou, Shaoqi
2014-12-01
The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523 ± 2 to 553 ± 2 mV, ∼93 to ∼96 %, and ∼80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ∼50 to ∼43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds.
Koga, Nobuhisa; Tajima, Ryosuke
2011-03-01
To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw was removed from the paddy fields in an effort to mitigate CH(4) emissions. Thus, rice straw removal avers itself a key practice with respect to lessening the impacts of greenhouse gas emissions in paddy rice-based ethanol production systems in northern Japan. More crucially, the rice straw removed is available for ethanol production and generation of heat energy with a biomass boiler, all elements required for biomass-to-ethanol transformation steps including saccharification, fermentation and distillation. This indicates opportunities for further improvement in energy efficiency and reductions in greenhouse gas emissions under whole rice plant-based bioethanol production systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...
2017-08-13
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
Dowell, N Mac; Fajardy, M
2016-10-20
In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.
Process for recovery of sulfur from acid gases
Towler, Gavin P.; Lynn, Scott
1995-01-01
Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.
Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin
2016-01-01
This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Shengxin; Chen, Zhonglin; Shen, Jimin; Kang, Jing; Qu, Yanfeng; Wang, Binyuan; Wang, Xin; Yuan, Lie
2017-11-01
The removal of Cr(Ⅵ) by chemical reduction-precipitation is widely applied in wastewater treatment plants. Nevertheless, the formation of Cr(OH) 3 with gel properties has weak settlement performance, making it necessary to add a coagulant aid to reduce the settling time and improve the settling effect. In this investigation, a high concentration of Cr(Ⅵ) was removed using Na 2 SO 3 as a reducing agent and CaO as a coagulant. An improved reduction and precipitation experiment was modeled by applying a three-factor central composite experimental design (CCD). To reveal as many mechanisms as possible for Cr T removal, other verification experiments were performed. The Cr T removal efficiency decreased, which can be explained by the following three reasons: dissolution of Cr(Ⅲ), competition for adsorption between Ca 2+ and Cr(Ⅲ) at different coagulation times, and formation of a solubility complex with Cr(Ⅲ) due to the surplus SO 3 2- in solution. The increasing Cr T removal efficiency can be explained by the following two reasons: dissolved Ca 2+ from CaO can neutralize CrO 2 - that is produced by the dissolution of Cr(OH) 3 in alkaline solution and can broaden the optimal final pH range of coagulation. Ca 2+ could also strengthen the Cr T removal through adsorption bridging and co-precipitation with CaO as the core of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Martin, K.; Hobbs, D.
2012-01-03
Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membranemore » cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.« less
[Preparation of polyelectrolyte microcapsules contained gold nanoparticles].
Sun, Ya-jie; Zhu, Jia-bi; Zheng, Chun-li
2010-03-01
In this work, polyelectrolyte microcapsules containing gold nanoparticles were prepared via layer by layer assembly. Gold nanoparticles and poly (allyamine hydrochloride) (PAH) were coated on the CaCO3 microparticles. And then EDTA was used to remove the CaCO3 core. Scanning electron microscopy (SEM) was used to characterize the surface of microcapsules. SEM images indicate that the microcapsules and the polyelectrolyte multilayer were deposited on the surface of CaCO3 microparticles. FITC-bovine serum albumin (FITC-BSA, 2 mg) was incorporated in the CaCO3 microparticles by co-precipitation. Fluorescence microscopy was used to observe the fluorescence intensity of microcapsules. The encapsulation efficiency was (34.31 +/- 2.44) %. The drug loading was (43.75 +/- 3.12) mg g(-1).
Photocatalytic degradation of E. coliform in water.
Sun, Darren Delai; Tay, Joo Hwa; Tan, Koh Min
2003-08-01
This study aims to further investigate the total mineralization of the bacteria to the extent of death and cell-mass inactivation using a TiO2-Fe2O3 membrane photocatalytic oxidation reactor. Experimental results clearly indicated that dissolved oxygen (DO), hydraulic retention time (HRT) and concentration of the model bacteria (Escherichia coliform) affected the removal efficiency. It was found that the ultimate removal efficiency was 99% at DO level of 21.34 mg/l, HRT at 60s and high concentration of E. coli at 10(9)CFU/ml. The morphologic studies also showed that E. coliform could be further mineralized into CO2 and H2O. Dissolved organic carbon, pH and gas chromatograph analysis had justified most importantly the evolution of CO2. Experimental results revealed that the photomineralization rate of E. coliform followed pseudo-first-order kinetics by the role of DO. The derived empirical models were found consistent with the proposed reaction pathways of a combined UV breakdown on mass cell and a dual-site Langmuir-Hinshelwood mechanism where the rate-controlling step is the surface interaction between the adsorbed cleavage bacterial cells and hydroxyl radicals.
Study on the effect of landfill leachate on nutrient removal from municipal wastewater.
Yuan, Qiuyan; Jia, Huijun; Poveda, Mario
2016-05-01
In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency. Copyright © 2015. Published by Elsevier B.V.
Development of spacecraft toxic gas removal agents
NASA Technical Reports Server (NTRS)
Moore, R. S.
1974-01-01
The development of agents suitable for removal of CO, NH3, NO2 SO2, and other spacecraft contaminants was approached. An extensive technology review was conducted, yielding a large number of potentially useful materials and/or concepts. Because the two toxic gases of greatest interest, CO and NH3, suggested the use of catalysis principles emphasis was placed on the intestigation of transition metals on various supports. Forty-three materials were prepared or obtained and 25 were tested. Gas chromatographic techniques were used to find seven candidates that effectively managed various combinations of the four toxic gases: none managed all. These candidates included six transition metal-containing preparations and a supported LiOH material. Three commercial charcoals showed some efficiency for the toxic gases and may constitute candidates for enhancement by doping with transition metals.
Rousseau, Anne-Françoise; Damas, Pierre; Renwart, Ludovic; Amand, Théo; Erpicum, Marie; Morimont, Philippe; Dubois, Bernard; Massion, Paul B
2014-11-01
Acute respiratory distress syndrome management is currently based on lung protective ventilation. Such strategy may lead to hypercapnic acidosis. We report a case of refractory hypercapnia in a severe burn adult, treated with simplified veno-venous extracorporeal carbon dioxide removal technique. We integrated a pediatric oxygenator in a continuous veno-venous hemofiltration circuit. This technique, used during at least 96h, was feasible, sure and efficient with carbon dioxide removal rate up to 32%. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Removal of p-xylene from an air stream in a hybrid biofilter.
Wu, Dan; Quan, Xie; Zhao, Yazhi; Chen, Shuo
2006-08-21
Biofiltration of an air stream containing p-xylene has been studied in a laboratory hybrid biofilter packed with a mixture of mature pig compost, forest soil and the packing material which was made of polyethylene (PE) and used in the moving bed biological reactor (MBBR) in wastewater treatment. Three flow rates, 9.17, 19.87 and 40.66 m(3)m(-2)h(-1), were investigated for p-xylene inlet concentration ranging from 0.1 to 3.3 g m(-3). A high elimination capacity of 80 g m(-3)h(-1) corresponding to removal efficiency of 96% was obtained at a flow rate of 9.17 m(3)m(-2)h(-1) (empty bed residence time of 132 s). At a flow rate of 40.66 m(3)m(-2)h(-1) (empty bed residence time of 30s), the maximum elimination capacity for p-xylene was 40 g m(-3)h(-1) and removal efficiencies were in the range of 47-100%. The production of carbon dioxide (P(CO(2))) is proportional to elimination capacity (EC) and the linear relation was formulated as P(CO(2))=1.65EC+15.58. Stable pH values ranging from 6.3 to 7.6 and low pressure drop values less than 0.2 cm H(2)O (19.6 Pa) of packing media in compost-based biofilter of hybrid biofilter were observed, which avoided acidification and compaction of packing media and sustained the activity of microorganism populations.
Application of CO II laser for removal of oral mucocele
NASA Astrophysics Data System (ADS)
Kato, J.; Moriya, K.; Hirai, Y.
2006-02-01
Mucocele is an oral soft tissue cyst caused by the disturbance of saliva flow. Mucocele is widely observed in child patients and recurrence is high. The objective of this study was to clarify the effect of CO II laser irradiation in the case of mucocele. A CO II laser was used on 45 subjects, aged between 0 to 15 years, having mucocele on lip, lingual, or buccal mucosa. Our procedure in using CO II laser was not to vaporize the mucocele but to remove the whole mucocele mass. The border of mucocele was firstly incised by laser following defocusly ablating the root or body of mucocele separating from sorrounding tissue. As a result, mucocele was easily and completely removed without breaking the wall of mucocele. None of the cases required suturing. The results were as follows. 1. The mucocele of lip or lingual mucosa with a rich blood supply, was efficiently removed, without bleeding, giving a clear operative field during the operation. 2. The surgery itself was simple and less time-consuming. 3. After two or three weeks the wound was completely healed without almost any discomfort in all patients 4. Wound contraction and scarring were decreased or eliminated. 5. The reoccurrence of mucocele was not seen, except only in one case of lingual mucocele. In conclusion the use of CO II laser proved to be a very safe and effective mode for the removal of mucocele, especially in small children.
Prediction of the new efficient permanent magnet SmCoNiFe 3
Soderlind, P.; Landa, A.; Locht, I. L. M.; ...
2017-09-14
Here, we propose a new efficient permanent magnet, SmCoNiFe 3, which is a development of the well-known SmCo 5 prototype. More modern neodymium magnets of the Nd-Fe-B type have an advantage over SmCo 5 because of their greater maximum energy products due to their iron-rich stoichiometry. Our new magnet, however, removes most of this disadvantage of SmCo 5 while preserving its superior high-temperature efficiency over the neodymium magnets. We show by means of first-principles electronic-structure calculations that SmCoNiFe 3 has very favorable magnetic properties and could therefore potentially replace SmCo 5 or Nd-Fe-B types in various applications.
Ali, Attarad; Gul, Ayesha; Mannan, Abdul; Zia, Muhammad
2018-05-17
This study was designed to investigate removal of toxic metals and reduction of bacterial count from Rawal Lake wastewater with novel nanocomposite sorbents. Iron, zinc and silver oxide nanoparticles (NPs) were attached on cotton. The nanocomposites (iron NPs on cotton (FeCt), zinc NPs on cotton (ZnCt) and silver NPs on cotton (AgCt)) were characterized by FTIR, XRD and SEM, which showed successful adsorption of 10-30 nm size nanoparticles. Batch experiments were performed to determine the adsorption capacity of nanocomposite for metal removal. All the three adsorbents demonstrated 100% adsorption efficiency for Ag + , Co 2+ , Fe 3+ , Zn 2+ and Cu 2+ whereas less adsorption for Cd 2+ and Cr 3+ . The maximum adsorbance (qe) was exhibited by Co 2+ on ZnCt, FeCt and AgCt as 125.0, 111.1 and 100.0 mg g -1 , respectively. The efficiency of adsorbents for metal ions sorption was found as AgCt > ZnCt > FeCt while the order of adsorption for metals was observed as Fe 3+ > Co 2+ > Zn 2+ > Cu 2+ > Ag + > Cr 3+ > Cd 2 + . The adsorption mechanism mostly follow Langmuir isotherm and pseudo-second order kinetic model. The maximum microbial reduction was exhibited by AgCt followed by ZnCt and FeCt. The microbes were further processed for staining and biochemical characteristics to evaluate resistance and sensitive microbes. The study concludes that the NPs doped on cotton can be effectively used for adsorption of heavy metals and reduction of microbial count from natural wastewater making it valuable for human consumption. In addition, the nanoparticles impregnated cotton can be efficiently used in water filtration plants. Copyright © 2018. Published by Elsevier B.V.
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
NASA Astrophysics Data System (ADS)
Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong
2017-10-01
To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.
Negative CO2 emissions via enhanced silicate weathering in coastal environments
Montserrat, Francesc
2017-01-01
Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634
Mujtaba, Ghulam; Lee, Kisay
2017-09-01
The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F
2007-01-01
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.
Su, Liwei; Xu, Yawei; Xie, Jian; Wang, Lianbang; Wang, Yuanhao
2016-12-28
The challenging problems of SnO 2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li 2 O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO 2 by introducing Co 3 Sn 2 nanoalloys which can release Co atoms to reversibly react with Li 2 O instead. According to this protocol, multi-yolk-shell SnO 2 /Co 3 Sn 2 @C nanocubes are designed and successfully prepared using hollow CoSn(OH) 6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li 2 O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g -1 after 200 cycles at 100 mA g -1 . Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO 2 for higher reversibility.
Removal of H{sub 2}S using molten carbonate at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu
2013-12-15
Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngasmore » produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.« less
Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water
Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei
2017-01-01
An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939
Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei
2014-12-01
Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robotic Laser Coating Removal System
2008-08-01
9 3.2 SELECTION OF TEST PLATFORM/FACILITY .................................. 9 3.3 TEST PLATFORM/FACILITY HISTORY...lasers are 4 efficient in converting electrical energy to coherent radiation and, thus, have widespread industrial use. In order to select an...completion of this evaluation a 6 kW CO2 laser from Rofin-Sinar was selected for use in the RLCRS. This laser provided the highest quality laser
Ghasemi, Ensieh; Sillanpää, Mika
2015-01-01
A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra
2018-05-01
This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.
NASA Astrophysics Data System (ADS)
Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita
2017-06-01
Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.
Reuse the pulp and paper industry wastewater by using fashionable technology
NASA Astrophysics Data System (ADS)
Sudarshan, K.; Maruthaiya, K.; Kotteeswaran, P.; Murugan, A.
2017-10-01
This proposed method is a promising way, which can be implemented in pulp and paper industries by effective removal of the color and chemical oxygen demand (COD) and the resulting treated water may surely reuse to the other streams. Fourier Transformer Infra Red spectra confirmed the presence of the respective functional groups in the removed pollutants from the wastewater. The efficiency of Non-ferric Alum (NF Alum) and cationic polyacrylamide (C-PAM) with and without power boiler fly ash was also studied. The reduction efficiency of color and chemical oxygen demand (COD) is evaluated at the optimum dosage of NF Alum, fly ash, and C-PAM. At the optimized pH attained from these coagulants using to treat the wastewater, the flocs formation/settling and the pollutant removal efficiency are encouraging and the resulting color of the wastewater is to 40 PtCo units from 330 PtCo units and COD to 66 mg/L from 218 mg/L. While using NF Alum alone with C-PAM for the treatment of wastewater, the highest reduction efficiency of COD is 97 mg/L from 218 mg/L and the color is 60 from 330 PtCo units at pH 4.8 was noted. From these observations, NF Alum and power boiler fly ash with C-PAM can effectively remove the pollutants from the pulp and paper mill wastewater and the water can be reused for other streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong K.; Vukmirovic M.B.; Ma C.
2011-11-01
We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O{sub 2} reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermalmore » route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications.« less
NASA Astrophysics Data System (ADS)
Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.
2012-08-01
This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.
NASA Technical Reports Server (NTRS)
Wright, I. P.; Grady, M. M.; Pillinger, C. T.
1993-01-01
The debate concerning the evolution of CO2 on Mars continues. It would appear that in order to explain the valley networks and other relict fluvial landforms it is necessary to accept that liquid water was once present at the surface of Mars. This in turn requires, at some point in the planet's history, a higher surface temperature than exists today, proposition explained traditionally by an early dense CO2, atmosphere. However, there are a number of problems with this notion: for instance, CO2 alone is not an efficient greenhouse gas because of its tendency to form clouds. Moreover, if there was an early dense CO2 atmosphere, it is necessary to explain where the elemental constituents now reside. There are two possibilities for the latter, namely loss to outer space of atmospheric CO2 or the formation of vast carbonate deposits. While some models of atmospheric loss predict that up to 0.4 bar of CO2 could be removed from the Martian surface, this is still not enough to account for the original atmospheric inventory, usually considered to have been in the range of 1-5 bar. Thus, most models of the evolution of the Martian surface require removal of CO2 from the atmosphere and into carbonate deposits. However, as yet, the evidence for the existence of carbonates on Mars is fairly scant. This is an issue that would have been resolved by results obtained from Mars Observer.
Research on catalysts for long-life closed-cycle CO2 laser oaperation
NASA Technical Reports Server (NTRS)
Sidney, Barry D.; Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.
1987-01-01
Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin-oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-Langley on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) the effects of various catalyst pretreatment techniques on catalyst efficiency; (2) development of a technique, verified in a 30-hour test, to prevent isotopic scrambling when C(O-18) and (O-18)2 are reacted in the presence of a common-isotope Pt/Sn(O-16)2 catalyst; and (3) development of a mathematical model of a laser discharge prior to catalyst introduction.
NASA Technical Reports Server (NTRS)
James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.
2011-01-01
Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO2 removal means increased resource use, with increased logistical capability to maintain necessary resources on board ISS. We must strike a balance between sufficiently low CO2 levels to maintain crew health and CO2 levels which are operationally feasible for the ISS program
Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh
2016-01-01
A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.
Hu, Huimin; Li, Xuewei; Huang, Pengwu; Zhang, Qiwu; Yuan, Wenyi
2017-12-01
Copper removal from aqueous solution is necessary from the stances of both environmental protection and copper resource recycling. It is important to develop a new chemical precipitation method suitable for removing copper particularly at low concentration as the case of waste mine water, with regards to the various problems related to the current precipitation methods by using strong alkalis or soluble sulfides. In this research, we studied a possible chemical precipitation of copper ions at concentration around 60 mg/L or lower by cogrinding copper sulfate in water with calcium carbonate (CaCO 3 ) using wet stirred ball milling. With the aid of ball milling, copper precipitation as a basic sulfate (posnjakite: Cu 4 (SO 4 ) (OH) 6 ·H 2 O) occurred at a very high copper removal rate of 99.76%, to reduce the residual copper concentration in the solution less than 0.5 mg/L, reaching the discharge limit, even with the addition amount of CaCO 3 as a stoichiometric ratio of CaCO 3 /Cu 2+ at 1:1. It is more interesting to notice that, at the same conditions, other heavy metals such as Ni, Mn, Zn and Cd do not precipitate obviously just with CaCO 3 addition at CaCO 3 /M 2+ at 1:1 so that the precipitate without the impurities can be processed as good source to recover copper. This newly proposed concept can be further developed to treat wastewaters with other metals to serve both purposes of environmental purification and resource recovery in a similar way. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levendis, Y.A.
A study was conducted to determine the efficacy of carboxylic calcium and magnesium salts (e.g., calcium magnesium acetate or CMA, CaMg{sub 2}(CH{sub 2}COOH){sub 6}) for the simultaneous removal of SO{sub 2} and NO{sub x} in oxygen-lean atmospheres. Experiments were performed in a high-temperature furnace that simulated the post-flame environment of a coal-fired boiler by providing similar temperatures and partial pressures of SO{sub 2}, NO{sub x} CO{sub 2} and O{sub 2}. When injected into a hot environment, the salts calcined and formed highly porous {open_quotes}popcorn{close_quotes}-like cenospheres. Residual MgO and/or CaCO{sub 3} and CaO reacted heterogeneously with SO{sub 2} to form MgSO{submore » 4} and/or CaCO{sub 4}. The organic components - which can be manufactured from wastes such as sewage sludge - gasified and reduced NO{sub x }to N{sub 2} efficiently if the atmosphere was moderately fuel-rich. Dry-injected CMA particles at a Ca/S ratio of 2, residence time of 1 second and bulk equivalence ratio of 1.3 removed over 90% of SO{sub 2} and NO{sub x} at gas temperatures {>=} 950{degrees}C. When the furnace isothermal zone was {<=} 950{degrees}C, Ca was essentially inert in the furnace quenching zone, while Mg continued to sorb SO{sub 2} as the gas temperature cooled at a rate of -130{degrees}C/sec. Hence, the removal of SO{sub 2} by CMA could continue for nearly the entire residence time of emissions in the exhaust stream of a power plant. Additional research is needed to improve the efficiency and reduce the cost of the relatively expensive carboxylic acid salts as dual SO{sub 2}-NO{sub x} reduction agents. For example, wet injection of the salts could be combined with less expensive hydrocarbons such as lignite or even polymers such as poly(ethylene) that could be extracted from the municipal waste stream.« less
Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan
2014-06-15
A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.
Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal.
Zhou, Changsong; Sun, Lushi; Zhang, Anchao; Wu, Xiaofeng; Ma, Chuan; Su, Sheng; Hu, Song; Xiang, Jun
2015-04-01
A series of novel spinel Fe3-xCuxO4 (0
Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.
May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J
2017-12-01
Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.
Virtual Design of a Four-Bed Molecular Sieve for Exploration
NASA Technical Reports Server (NTRS)
Giesy, T. J.; Coker, R. F.; O'Connor, B. F.; Knox, J. C.
2017-01-01
Aboard the International Space Station, CO2 is removed from the cabin atmosphere by a four-bed molecular sieve (4BMS) process called the Carbon Dioxide Removal Assembly (CDRA).1 This 4BMS process operates by passing the CO2-laden air through a desiccant bed to remove any humidity and then passing the dried air through a sorbent bed to remove the CO2. While one pair of beds is in use, the other pair is thermally regenerated to allow for continuous CO2 removal.
Bhattacharya, Amrik; Naik, S N; Khare, S K
2018-06-01
In the present study, urease positive Serratia marcescens (NCIM2919) and Enterobacter cloacae EMB19 (MTCC10649) were individually evaluated for remediation of cadmium (II) using ureolysis-induced calcium carbonate precipitation. Both the cultures were observed to efficiently remove cadmium from the media through co-precipitation of Cd (II) and Ca (II). S. marcescens and E. cloacae EMB19, respectively showed 96 and 98% removal of initial 5.0 mg L -1 soluble Cd (II) from the urea and CaCl 2 laden media at 96 h of incubation period. At higher Cd (II) concentrations of 10 and 15 mg L -1 , cadmium removal efficiency was much higher in case of E. cloacae EMB19 compared to S. marcescens. In-vitro cadmium (II) remediation study using urease containing cell-free culture supernatant of S. marcescens and E. cloacae EMB19 showed respective 98 and 53% removal of initial 50 mg L -1 Cd (II) from the reaction mixtures in co-presence of Ca (II). While in sole presence of Cd (II), only 16 and 8% removal of Cd (II) were detected for S. marcescens and E. cloacae EMB19, respectively. The elemental analysis of the co-precipitated mineral products using Energy Dispersive X-ray spectroscopy (EDX) clearly showed the prevalence of Ca and Cd ions. The morphology Cd-Ca composites formed with respect to both the cultures were observed to be of different shape and size as revealed through Scanning Electron Microscopy (SEM). Entire study hence comes out with a sustainable bioremediation option which could be effectively used to tackle Cd (II) or other heavy metal pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aditya, Gautam; Hossain, Asif
2018-05-01
Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.
Chen, Xiaochen; Fukushi, Kensuke
2016-09-15
In a previous study, a soil-plant-based natural treatment system was successfully developed for post-treatment of anaerobically digested strong wastewater full of potential nutrients (nitrogen, phosphorus, and potassium). For upgraded performance, an innovative decentralized treatment system was further developed, in which an anaerobic digestion stage and a natural treatment system stage are placed within a greenhouse. This allows the CO2 generated by the processing of wastewater and biogas consumption to be sequestrated within the greenhouse for elevating its concentration level and potentially enhance nutrient removal and recovery from the applied wastewater. To investigate the feasibility of the system, a bench-scale experiment was conducted using CO2 chambers. Valuable Kentucky bluegrass was planted in two soil types (red ball earth and black soil) at three CO2 concentrations (340 ppm, 900 ppm, and 1400 ppm). The results confirmed the positive effects of elevated CO2 concentration on the biomass production and turf quality of Kentucky bluegrass as well as the resulting higher nutrient recovery efficiencies. More importantly, it was demonstrated that the elevated CO2 concentration significantly stimulated the soil nitrifying microorganisms and thus improved the nitrogen removal efficiency (a critical issue in ecological wastewater treatment). A CO2 concentration of 1400 ppm is therefore recommended for use in the system. The mechanism underlying this phenomenon was shown to be an indirect effect, in which the higher CO2 concentration first positively influenced growing plants, which then stimulated the soil nitrifier communities. The effects of soil type (a design parameter) and hydraulic and nutrient loading rates (an operational parameter) on system performance were also examined. The results favored black soil for system establishment. Based on the findings of this study, our proposed system is thought to have the potential to be scaled up and adopted by rural communities worldwide for the reclamation and reuse of strong wastewater, addressing the agricultural non-point source pollution, and achieving the sustainable development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removal of Organic Pollutants from Water Using Superwetting Materials.
Li, Lingxiao; Zhang, Junping; Wang, Aiqin
2018-02-01
The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan
2012-06-30
Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.
The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes.
Beattie, Thomas R; Bell, Stephen D
2011-01-01
Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5'-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-ordination of DNA polymerase δ and FEN-1 (Flap Endonuclease 1) is sufficient to remove the majority of primers. Other pathways such as that involving Dna2 also operate under certain conditions, although, notably, Dna2 is not universally conserved between eukaryotes and archaea, unlike the other core factors. In addition to the catalytic components, the DNA sliding clamp, PCNA (proliferating-cell nuclear antigen), plays a pivotal role in binding and co-ordinating these enzymes at sites of lagging-strand replication. Structural studies in eukaryotic and archaeal systems have revealed that PCNA-binding proteins can adopt different conformations when binding PCNA. This conformational malleability may be key to the co-ordination of these enzymes' activities.
Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M
2017-10-18
Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.
The Role of Artificial Atmospheric CO2 Removal in Stabilizing Earth's Climate
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna; Zickfeld, Kirsten
2014-05-01
Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO2 emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO2 from the atmosphere may be necessary to decrease the atmospheric CO2 concentrations more rapidly and bring the climate system components to their previous states on human timescales. The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO2 emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO2 emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO2 emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature. Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO2 is released form the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales. We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO2 capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.
Weijin, Gong; Binbin, Li; Qingyu, Wang; Zuohua, Huang; Liang, Zhao
2018-03-01
Gasification of landfill leachate in supercritical water using batch-type reactor is investigated. Alkali such as NaOH, KOH, K 2 CO 3 , Na 2 CO 3 is used as catalyst. The effect of temperature (380-500 °C), retention time (5-25 min), landfill leachate concentration (1595 mg L -1 -15,225 mg L -1 ), catalyst adding amount (1-10 wt%) on hydrogen mole fraction, hydrogen yield, carbon gasification rate, COD, TOC, TN removal efficiency are investigated. The results showed that gaseous products mainly contained hydrogen, methane, carbon dioxide and carbon monoxide without addition of catalyst. However, the main gaseous products are hydrogen and methane with addition of NaOH, KOH, K 2 CO 3 , Na 2 CO 3 . In the absence of alkali catalyst, the effect of temperature on landfill leachate gasification is positive. Hydrogen mole fraction, hydrogen yield, carbon gasification ratio increase with temperature, which maximum value being 55.6%, 107.15 mol kg -1 , 71.96% is obtained at 500 °C, respectively. Higher raw landfill leachate concentration leads to lower hydrogen production and carbon gasification rate. The suitable retention time is suggested to be 15 min for higher hydrogen production and carbon gasification rate. COD, TOC and TN removal efficiency also increase with increase of temperature, decrease of landfill leachate concentration. In the presence of catalyst, the hydrogen production is obviously promoted by addition of alkali catalyst. the effect of catalysts on hydrogen production is in the following order: NaOH > KOH > Na 2 CO 3 > K 2 CO 3 . The maximum hydrogen mole fraction and hydrogen yield being 74.40%, 70.05 mol kg -1 is obtained with adding amount of 5 wt% NaOH at 450 °C, 28 MPa, 15 min. Copyright © 2017. Published by Elsevier Ltd.
Qu, Guangzhou; Kou, Liqing; Wang, Tiecheng; Liang, Dongli; Hu, Shibin
2017-10-01
An activated carbon fiber supported nanoscale zero-valent iron (ACF-nZVI) composite for Cr(VI) removal from groundwater was synthesized according to the liquid phase reduction method. The techniques of N 2 adsorption/desorption, FESEM, EDX, XRD and XPS were used to characterize the ACF-nZVI composite and the interaction between the ACF-nZVI composite and Cr(VI) ions. Batch experiments were conducted to evaluate the effects of several factors, including the amount of nZVI on activated carbon fiber (ACF), pH value, initial Cr(VI) concentration, and co-existing ions on Cr(VI) removal. The results indicate that presence of ACF can inhibit the aggregation of nanoscale zero-valent iron (nZVI) particles and increase its reactivity, and the Cr(VI) removal efficiency increases with increasing amounts of nZVI on ACF and a decrease in the initial Cr(VI) concentration. In acidic conditions, almost 100% of Cr(VI) in solution can be removed after 60 min of reaction, and the removal efficiency decreases with increasing initial pH values. The Cr(VI) removal is also dependent on the co-existing ions. Reusability experiments on ACF-nZVI demonstrate that the ACF-nZVI composite can keep a high reactivity after five successive reduction cycles. The removal mechanisms are proposed as a two-step interaction including the physical adsorption of Cr(VI) on the surface or inner layers of the ACF-nZVI composite and the subsequent reduction of Cr(VI) to Cr(III) by nZVI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manufacturing of novel low-cost adsorbent: Co-granulation of limestone and coffee waste.
Iakovleva, Evgenia; Sillanpää, Mika; Maydannik, Philipp; Liu, Jiang Tao; Allen, Stephen; Albadarin, Ahmad B; Mangwandi, Chirangano
2017-12-01
Limestone and coffee waste were used during the wet co-granulation process for the production of efficient adsorbents to be used in the removal of anionic and cationic dyes. The adsorbents were characterized using different analytical techniques such as XRD, SEM, FTIR, organic elemental analysis, the nitrogen adsorption method, with wettability, strength and adsorption tests. The adsorption capacity of granules was determined by removal of methylene blue (MB) and orange II (OR) from single and mixed solutions. In the mixed solution, co-granules removed 100% of MB and 85% of OR. The equilibria were established after 6 and 480 h for MB and OR, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin
2017-07-13
Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.
Hydrometallurgical Treatment for Mixed Waste Battery Material
NASA Astrophysics Data System (ADS)
Ma, L. W.; Xi, X. L.; Zhang, Z. Z.; Huang, Z. Q.; Chen, J. P.
2017-02-01
Hydrometallurgical experiments are generally required to assess the appropriate treatment process before the establishment of the industrial recovery process for waste battery materials. The effects of acid systems and oxidants in metal leaching were studied. The comprehensive leaching effects of the citric acid were superior to the sulfuric acid. The potassium permanganate inhibits the dissolution of metals. Thermodynamic calculations showed that metals precipitate more easily in sulfuric acid system than in citric acid system. The Fe precipitation efficiency in sulfuric acid system was 90% at pH 3.5, but with considerable losses of Co (30%) and Ni (40%). The proper pH and organic/aqueous (O/A) ratio for Fe and Zn removal with Di-(2-ethylhexyl) phosphoric acid extraction were 2 and 0.5, respectively; while for the removal of Cu and Mn, the best pH and O/A ratio were 3 and 0.75, respectively. Crude manganese carbonate and a cobalt-nickel enriched liquid were obtained by selective precipitation in raffinate using an ammonium bicarbonate solution. In citric acid systems, the precipitation efficiency of Co, Ni, Mn, Fe, Cu and Zn were less than 20% at pH 7. The proper pH and O/A ratio for the separation of the metals in two groups (Ni/Co/Cu and Mn/Fe/Zn) were 1.5 and 2. The cobalt-nickel-copper enriched liquid was finally obtained.
da Rosa, Gabriel Martins; Moraes, Luiza; Cardias, Bruna Barcelos; de Souza, Michele da Rosa Andrade Zimmermann; Costa, Jorge Alberto Vieira
2015-09-01
The chemical absorption of carbon dioxide (CO2) is a technique used for the mitigation of the greenhouse effect. However, this process consumes high amounts of energy to regenerate the absorbent and to separate the CO2. CO2 removal by microalgae can be obtained via the photosynthesis process. The objective of this study was to investigate the cultivation and the macromolecules production by Spirulina sp. LEB 18 with the addition of monoethanolamine (MEA) and CO2. In the cultivation with MEA, were obtained higher results of specific growth rate, biomass productivity, CO2 biofixation, CO2 use efficiency, and lower generation time. Besides this, the carbohydrate concentration obtained at the end of this assay was approximately 96.0% higher than the control assay. Therefore, Spirulina can be produced using medium recycle and the addition of MEA, thereby promoting the reduction of CO2 emissions and showing potential for areas that require higher concentrations of carbohydrates, such as in bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E
2016-03-01
An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva
2018-05-01
The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong
2016-06-29
Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.
Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke
2015-04-09
Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.
Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.
Moreira, Diana; Pires, José C M
2016-09-01
Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.
The activated iron system for phosphorus recovery in aqueous environments.
Wan, Jun; Jiang, Xiaoqing; Zhang, Tian C; Hu, Jiong; Richter-Egger, Dana; Feng, Xiaonan; Zhou, Aijiao; Tao, Tao
2018-04-01
Finding a good sorbent for phosphorus (P) recovery from the aquatic environment is critical for preventing eutrophication and providing P resources. The activated iron system (mainly consisted of zero-valent iron (ZVI), Fe 3 O 4 and Fe 2+ ) has been reported to exhibit a favorable performance towards various contaminants in wastewater, but its effect on P recovery has not been studied systematically. In this study, we used Fe 2+ -nitrate pretreatment reaction to prepare the activated iron system and then applied it to P recovery. Results show that more than 99% P was removed from water in 60 min; co-existing anions (NO 3 - , Cl - and SO 4 2- ) and natural organic matter (NOM) had little effect on P removal. The P removal capacity of activated iron system is very high compared with currently reported sorbents. Externally-supplied Fe 2+ plays an important role on P removal in the system. Regeneration study shows that the activated iron system exhibited stable P recovery ability by using 0.1 M NaOH solution. Various methods were applied to characterize the ZVI and iron corrosion, and results conclude that sorption precipitation, and co-precipitation contribute to P removal. This method will be promising and have an application potential in the field for efficient and cost-effective recovery of P with cheap microscale zero valent iron. Copyright © 2017 Elsevier Ltd. All rights reserved.
Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers
NASA Astrophysics Data System (ADS)
Kumari, Sangita
This dissertation describes the finding that dissolved carbon dioxide is a potent inhibitor of sonoluminescence and describes the implications of the finding in the development of improved megasonic cleaning formulations. Megasonic cleaning, or the removal of contaminants particles from wafer surfaces using sound-irradiated cleaning fluids, has been traditionally used in the semiconductor industry for cleaning of wafers. A critical challenge in the field is to achieve removal of small particles (22 nm to 200 nm) without causing damage to fine wafer features. The work described here addresses this challenge by identifying sonoluminescence and solution pH as two key factors affecting damage and cleaning efficiency, respectively and establishing novel means to control them using CO2(aq) release compounds in the presence of acids and bases. Sonoluminescence (SL) behavior of the major dissolved gases such as Ar, Air, N2, O2 and CO2 was determined using a newly designed Cavitation Threshold Cell (CT Cell). SL, which is the phenomenon of release of light in sound-irradiated liquids, is a sensitive indicator of cavitation, primarily transient cavitation. It was found that all the tested dissolved gases such as Ar, Air, N2 and O2, generated SL signal efficiently. However, dissolved CO2 was found to be completely incapable of generating SL signal. Based on this interesting result, gradual suppression of SL signal was demonstrated using CO2(aq). It was further demonstrated that CO2(aq) is not only incapable but is also a potent inhibitor of SL. The inhibitory role of CO2(aq) was established using a novel method of controlled in-situ release of CO 2 from NH4HCO3. ~130 ppm CO2(aq) was shown to be necessary and sufficient for complete suppression of SL generation in air saturated DI water. The method however required acidification of solution for significant release of CO2, making it unsuitable for the design of cleaning solutions at high pH. Analysis of the underlying ionic equilibria revealed that the loss of released CO2(aq) upon increase in pH can be compensated by moderate increase in added NH4HCO3. Using this method, simultaneous control of SL and solution pH was demonstrated in two systems, NH4HCO3/HCl and NH4OH/CO2, at two nominal pH values; 5.7 and 7.0. Damage studies were performed on wafer samples with line/space patterns donated by IMEC and FSI International bearing Si/metal/a-Si gate stacks of thickness ~36 nm and Si/Poly-Si gate stacks of thickness ~67 nm, respectively. A single wafer spin cleaning tool MegPieRTM was used for the generation of megasonic energy for inducing damage to the structures. It was demonstrated that CO2 dissolution in DI water suppresses damage to the gate stacks in a dose-dependent manner. Together, these studies establish a systematic and strong correlation between CO2(aq) concentration, SL suppression and damage suppression. Significant damage reduction (~50 % to ~90 %) was observed at [CO2(aq)] > ~300 ppm. It was also demonstrated that CO2(aq) suppresses damage under alkaline pH condition too. This demonstration was made possible by the successful design of two new cleaning systems NH4HCO3/NH4OH and CO2/NH 4OH that could generate CO2(aq) under alkaline conditions. Damage suppressing ability of the newly designed cleaning systems were compared to the standard cleaning system NH4OH at pH 8.2 and it was found that NH4HCO3/NH4OH and CO2/NH 4OH systems were 80 % more efficient in suppressing damage compared to the standard NH4OH cleaning system. Finally, megasonic cleaning studies were conducted in the same single wafer spin cleaning tool MegPieRTM, using SiO2 particles (size 185 nm) deposited on 200 mm oxide Si wafers, as the contaminant. It was found that the standard cleaning chemical, NH4OH, pH 8.2, was effective in achieving > 95 % particle removal for 2 min irradiation of megasonic energy at power densities > 0.7 W/cm2. Based on these results, a new system, NH4HCO3/NH4OH, was designed with an aim to release ~300 ppm CO2 at pH 8.2. It was demonstrated that newly designed system NH4HCO3/NH 4OH, allowed significant suppression of damage in comparison to NH 4OH while maintaining > 90 % cleaning efficiency that was comparable to NH4OH solution, at the same acoustic power densities. Taken together, these studies establish a potent and flexible means for the inhibition of SL generation over a wide pH range and acoustic power densities and demonstrate its use in suppression of wafer damage without compromising megasonic cleaning efficiency. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hauck, Judith; Köhler, Peter; Wolf-Gladrow, Dieter; Völker, Christoph
2016-02-01
Carbon dioxide removal (CDR) approaches are efforts to reduce the atmospheric CO2 concentration. Here we use a marine carbon cycle model to investigate the effects of one CDR technique: the open ocean dissolution of the iron-containing mineral olivine. We analyse the maximum CDR potential of an annual dissolution of 3 Pg olivine during the 21st century and focus on the role of the micro-nutrient iron for the biological carbon pump. Distributing the products of olivine dissolution (bicarbonate, silicic acid, iron) uniformly in the global surface ocean has a maximum CDR potential of 0.57 gC/g-olivine mainly due to the alkalinisation of the ocean, with a significant contribution from the fertilisation of phytoplankton with silicic acid and iron. The part of the CDR caused by ocean fertilisation is not permanent, while the CO2 sequestered by alkalinisation would be stored in the ocean as long as alkalinity is not removed from the system. For high CO2 emission scenarios the CDR potential due to the alkalinity input becomes more efficient over time with increasing ocean acidification. The alkalinity-induced CDR potential scales linearly with the amount of olivine, while the iron-induced CDR saturates at 113 PgC per century (on average ˜ 1.1 PgC yr-1) for an iron input rate of 2.3 Tg Fe yr-1 (1% of the iron contained in 3 Pg olivine). The additional iron-related CO2 uptake occurs in the Southern Ocean and in the iron-limited regions of the Pacific. Effects of this approach on surface ocean pH are small (\\lt 0.01).
High-Performance Biogas Upgrading Using a Biotrickling Filter and Hydrogenotrophic Methanogens.
Dupnock, Trisha L; Deshusses, Marc A
2017-10-01
This research reports the development of a biotrickling filter (BTF) to upgrade biogas, which is achieved by adding H 2 to reduce CO 2 . H 2 and CO 2 (80:20% vol.) were fed to a bench-scale BTF packed with polyurethane foam (PUF) and inoculated with hydrogenotrophic methanogens. Maximum CH 4 production rates recorded were as high as 38 m 3 CH4 m -3 reactor day -1 , which is 5-30 times faster than earlier reports with other kinds of bioreactors. The high rates were attributed to the efficient mass transfer and high density of methanogens in the BTF. The removal efficiencies for H 2 and CO 2 were 83 and 96%, respectively. 5-Cyano-2,3-ditolyl tetrazolium chloride/DAPI staining revealed that 67% of cells were alive near the gas entrance port, while only 8.3% were alive at the exit. Furthermore, DNA sequencing showed that only 27% of the biomass was composed of Euryarchaeota, the phylum which includes methanogens. These two observations suggest that optimizing the methanogen density and activity could possibly reach even higher biogas upgrading rates.
Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping
2014-10-07
Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.
Jin, Yaomin; Veiga, María C; Kennes, Christian
2007-06-01
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Cover, John M.
2009-01-01
The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.
Effect of impeller design and spacing on gas exchange in a percutaneous respiratory assist catheter.
Jeffries, R Garrett; Frankowski, Brian J; Burgreen, Greg W; Federspiel, William J
2014-12-01
Providing partial respiratory assistance by removing carbon dioxide (CO2 ) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2-5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m(2) (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5-10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2-13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
González-Contreras, Paula; Weijma, Jan; Buisman, Cees J N
2012-11-15
In CSTRs, ferrous iron was biologically oxidized followed by crystallization of scorodite (FeAsO(4)·2H(2)O) at pH 1.2 and 72 °C. The CSTRs were fed with 2.8 g L(-1) arsenate and 2.4 g L(-1) ferrous and operated at an HRT of 40 h, without seed addition or crystal recirculation. Both oxidation and crystallization were stable for periods up to 200 days. The arsenic removal efficiency was higher than 99% at feed Fe/As molar ratios between 1 and 2, resulting in effluents with 29 ± 18 mg As L(-1). Arsenic removal decreased to 40% at feed Fe/As molar ratios between 2 and 5. Microorganisms were not affected by arsenic concentrations up to 2.8 g As(5+) L(-1). The bioscorodite solid yield was 3.2 g/g arsenic removed. Bioscorodite crystals precipitated as aggregates, causing scaling on the glass wall of the reactor. The observed morphology through SE microscopy of the precipitates appeared amorphous but XRD analysis confirmed that these were crystalline scorodite. Arsenic leaching of bioscorodite was 0.4 mg L(-1) after 100 days under TCLP conditions, but when jarosite had been co-precipitated leaching was higher at 0.8 g L(-1). The robustness of the continuous process, the high removal efficiency and the very low arsenic leaching rates from bioscorodite sludge make the process very suitable for arsenic removal and disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shah, Amisha D; Dai, Ning; Mitch, William A
2013-03-19
Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.
Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.
Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.
Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi
2014-08-01
Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Ma, Xinrong; He, Kaize; He, Zhiming; Wang, Feng; Zhao, Hai
2015-03-01
Carriers were added to a pilot-scale duckweed-based (Lemna japonica 0223) wastewater treatment system to immobilize and enhance microorganisms. This system and another parallel duckweed system without carriers were operated for 1.5 years. The results indicated the addition of the carrier did not significantly affect the growth and composition of duckweed, the recovery of total nitrogen (TN), total phosphorus (TP) and CO2 or the removal of TP. However, it significantly improved the removal efficiency of TN and NH4(+)-N (by 19.97% and 15.02%, respectively). The use of 454 pyrosequencing revealed large differences of the microbial communities between the different components within a system and similarities within the same components between the two systems. The carrier biofilm had the highest bacterial diversity and relative abundance of nitrifying bacteria (3%) and denitrifying bacteria (24% of Rhodocyclaceae), which improved nitrogen removal of the system. An efficient N-removal duckweed system with enhanced microorganisms was established. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zickfeld, K.; Azevedo, D.
2017-12-01
The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a cooler climate, on the other hand, is largely insensitive to the level of overshoot.
Shim, Jae-Oh; Jeong, Dae-Woon; Jang, Won-Jun; Jeon, Kyung-Won; Jeon, Byong-Hun; Kim, Seong-Heon; Roh, Hyun-Seog; Na, Jeong-Geol; Han, Sang Sup; Ko, Chang Hyun
2016-05-01
Ce0.6Zr0.4O2 supported transition metal (Me = Ni, Cu, Co, and Mo) catalysts have been investigated to screen for the catalytic activity and selectivity for deoxygenation reaction of oleic acid. Me-Ce0.6Zr0.4O2 catalysts were prepared by a co-precipitation method. Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity for C9 to C17 compounds, and oxygen removal efficiency than the others. This is mainly ascribed to the presence of free Ni species, synergy effects between Ni and Ce0.6Zr0.4O2, and the highest BET surface area.
Pasukphun, N; Vinitnantharat, S; Gheewala, S
2010-04-01
The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.
Nanoscale Materials for Human Space Exploration: Regenerable CO2 Removal
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Huffman, Chad; Moloney, Padraig; Allada, Ram; Yowell, Leonard
2005-01-01
This viewgraph presentation reviews the use of Nanoscale materials in CO2 removal. It presented the background and review work on regenerable CO2 removal for spaceflight application. It demonstrated a new strategy for developing solid-supported amine absorbents based on carbon nanotube materials.
Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang
2014-02-01
A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.
Compact Water Vapor Exchanger for Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward
2012-01-01
Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.
Eller, F J; King, J W
2001-10-01
This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.
Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.
Keenan, Trevor F; Hollinger, David Y; Bohrer, Gil; Dragoni, Danilo; Munger, J William; Schmid, Hans Peter; Richardson, Andrew D
2013-07-18
Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.
Advanced CO2 Removal Technology Development
NASA Technical Reports Server (NTRS)
Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas
2001-01-01
The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.
Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping
2017-02-01
Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.
Novel Liquid Sorbent C02 Removal System for Microgravity Applications
NASA Technical Reports Server (NTRS)
Rogers, Tanya; Westover, Shayne; Graf, John
2017-01-01
Removing Carbon Dioxide (CO2) from a spacecraft environment for deep space exploration requires a robust system that is low in weight, power, and volume. Current state-of-the-art microgravity compatible CO2 removal systems, such as the carbon dioxide removal assembly (CDRA), utilize solid sorbents that demand high power usage due to high desorption temperatures and a large volume to accommodate for their comparatively low capacity for CO2. Additionally, solid sorbent systems contain several mechanical components that significantly reduce reliability and contribute to a large overall mass. A liquid sorbent based system has been evaluated as an alternative is proposed to consume 65% less power, weight, and volume than solid based CO2 scrubbers. This paper presents the design of a liquid sorbent CO2 removal system for microgravity applications.
Equatorial convergence of India and early Cenozoic climate trends
Kent, Dennis V.; Muttoni, Giovanni
2008-01-01
India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO2 concentration (pCO2) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO2 delivery to the atmosphere capable to maintain high pCO2 levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at ≈50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering further perturbed the delicate equilibrium between CO2 input to and removal from the atmosphere toward progressively lower pCO2 levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary. PMID:18809910
Equatorial convergence of India and early Cenozoic climate trends.
Kent, Dennis V; Muttoni, Giovanni
2008-10-21
India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO(2) concentration (pCO(2)) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO(2) delivery to the atmosphere capable to maintain high pCO(2) levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at approximately 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO(2) by efficient silicate weathering further perturbed the delicate equilibrium between CO(2) input to and removal from the atmosphere toward progressively lower pCO(2) levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Study of CO2 recovery in a carbonate fuel cell tri-generation plant
NASA Astrophysics Data System (ADS)
Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo
2015-06-01
The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
Biodegradation of p-cresol and sulfide removal by a marine-denitrifying consortium.
Meza-Escalante, Edna R; Alvarez, Luis H; Serrano, Denisse; Mendoza, Erika; Bonola, Ramsés
2015-02-01
The simultaneous removal of sulfide and p-cresol was carried out by using a marine-denitrifying consortium collected in the coastal zone of Sonora, Mexico. Different experimental conditions were used to evaluate the capacity of the consortium to simultaneously eliminate nitrate, sulfide, and p-cresol. For instance, the first set of assays was conducted at different sulfide concentrations (20, 50, and 100 mg S(2À) L(À1) ), with a fixed concentration of p-cresol (45 mg C L(À1) ). The second set of assays was developed at different concentrations of p-cresol (45, 75, and 100 mg C L(-1) ), in the presence of 20 mg S(2À) L(À1) . In all cases, the concentration of nitrate was stoichiometrically added for the complete oxidization of the substrates. The results showed removal efficiencies up to 92% for p-cresol and nitrate at 20 and 50 mg S(2À) L(À1) ; whereas at 100 mg S(2À) L(À1) removal efficiencies were 77% and 59% for p-cresol and nitrate, respectively. On the other hand, sulfide (20 mg L(À1) ) was completely removed under different concentrations of p-cresol tested, with a partial accumulation of nitrite according to the increment of p-cresol concentration. The results obtained indicate that the marine consortium was able to simultaneously remove the pollutants studied. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluid extraction using carbon dioxide and organophosphorus chelating agents
Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.
1998-11-24
Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.
Fluid extraction using carbon dioxide and organophosphorus chelating agents
Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa
1998-01-01
Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.
Particulate Removal Using a CO2 Composite Spray Cleaning System
NASA Technical Reports Server (NTRS)
Chen, Nicole; Lin, Ying; Jackson, David; Chung, Shirley
2016-01-01
The Planetary Protection surface cleanliness requirements for potential Mars Sample Return hardware that would come in contact with Martian samples may be stricter than previous missions. The Jet Propulsion Laboratory has developed a new technology that will enable us to remove sub-micron size particles from critical hardware surfaces. A hand-held CO2 composite cleaning system was tested to verify its cleaning capabilities. This convenient, portable device can be used in cleanrooms for cleaning after rework or during spacecraft integration and assembly. It is environmentally safe and easy to use. This cleaning concept has the potential to be further developed into a robotic cleaning device on a Mars Lander to be used to clean sample acquisition or sample handling devices in situ. Contaminants of known sizes and concentrations, such as fluorescent microspheres and spores were deposited on common spacecraft material surfaces. The cleaning efficiency results will be presented and discussed.
Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain
2016-04-01
Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.
Maatar, Wafa; Boufi, Sami
2015-08-01
A poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA) aerogel was prepared via radical polymerization in an aqueous solution using Fenton's reagent. The ensuing aerogel, in the form of a rigid porous material, was characterized by FTIR and NMR and used as an adsorbent for the removal of heavy metals from aqueous solutions. It showed an efficient adsorption, exceeding 95% toward Pb(2+), Cd(2+), Zn(2+) and Ni(2+) when their concentration was lower than 10 ppm and ranged from 90% to 60% for a metal concentration higher than 10 ppm. Over 98% of the adsorbed metal ion was recovered using EDTA as a desorbing solution, and the subsequent washing allowed the aerogel to be reused repeatedly without noticeable loss of adsorption capacity. It was concluded that the (NFC-MAA-MA) aerogel may be used as a high capacity and reusable sorbent material in heavy-metal removing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Salerno, Aurelio; Saurina, Javier; Domingo, Concepción
2015-12-30
The manufacture of porous polycaprolactone (PCL) scaffolds containing three different drugs, namely 5-fluorouracil, nicotinamide and triflusal, was investigated in this work with the aim of obtaining bioactive systems with controlled drug delivery capabilities. The scaffolds were prepared by means of a supercritical CO2 (scCO2) foaming technique by optimizing the drug loading process. This was achieved by dissolving the drugs in organic solvents miscible with scCO2 and by mixing these drug/solvent solutions with PCL powder. The as prepared mixtures were further compressed to eliminate air bubbles and finally processed by the scCO2 foaming technique. ScCO2 saturation and foaming conditions were optimized to create the porosity within the samples and to allow for the concomitant removal of the organic solvents. Physical and chemical properties of porous scaffolds, as well as drug content and delivery profiles, were studied by HPLC. The results of this study demonstrated that the composition of the starting PCL/drug/solvent mixtures affected polymer crystallization, scaffold morphology and pore structure features. Furthermore, it was found that drug loading efficiency depended on both initial solution composition and drug solubility in scCO2. Nevertheless, in the case of highly scCO2-soluble drugs, such as triflusal, loading efficiency was improved by adding a proper amount of free drug inside of the pressure vessel. The drug delivery study indicated that release profiles depended mainly upon scaffolds composition and pore structure features. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven
In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO 2 from the flue gas. The sorbent exhibits a much higher affinity for CO 2 than N 2, H 2O or O 2, enabling effective CO 2 separation from the flue gas. We also carried out a detailed process design and analysis ofmore » the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO 2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO 2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO 2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO 2 captured for TDA’s VSA based system is $38.90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO 2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO 2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.« less
NASA Technical Reports Server (NTRS)
Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan
2005-01-01
The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.
NASA Astrophysics Data System (ADS)
Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos
2018-02-01
The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian
2018-01-01
Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1 m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1 m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.
Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.
Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel
2017-07-01
Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediaiton of polycyclic aromatic hydrocarbons...
Abinandan, S; Shanthakumar, S
2016-06-01
Bicarbonate species in the aqueous phase is the primary source for CO 2 for the growth of microalgae. The potential of carbon dioxide (CO 2 ) fixation by Chlorella pyrenoidosa in enriched bicarbonate medium was evaluated. In the present study, effects of parameters such as pH, sodium bicarbonate concentration and inoculum size were assessed for the removal of CO 2 by C. pyrenoidosa under mixotrophic condition. Central composite design tool from response surface methodology was used to validate statistical methods in order to study the influence of these parameters. The obtained results reveal that the maximum removal of CO 2 was attained at pH 8 with sodium bicarbonate concentration of 3.33 g/l, and inoculum size of 30 %. The experimental results were statistically significant with R 2 value of 0.9527 and 0.960 for CO 2 removal and accumulation of chlorophyll content, respectively. Among the various interactions, interactive effects between the parameters pH and inoculum size was statistically significant (P < 0.05) for CO 2 removal and chlorophyll accumulation. Based on the studies, the application of C. pyrenoidosa as a potential source for carbon dioxide removal at alkaline pH from bicarbonate source is highlighted.
Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.
Bokare, Alok D; Choi, Wonyong
2016-03-05
Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Hassan, Muhammad; Ding, Weimin; Shi, Zhendan; Zhao, Sanqin
2016-07-01
The present study emphasized the co-digestion of the thermal-H2O2 pretreated wheat straw (WS) and chicken manure (CM) with the waste activated sludge at four levels of C/N (35:1, 30:1, 25:1 and 20:1). All C/N compositions were found significant (P<0.05) to enhance methane generation and process stability during the anaerobic co-digestion of WS and CM. The experimental results revealed that the composition having C/N value of 20:1 was proved as optimum treatment with the methane enhancing capability of 85.11%, CODs removal efficiency of 48.55% and 66.83% VS removal as compared with the untreated WS. The other compositions having C/N of 25:1, 30:1 and 35:1 provided 75.85%, 63.04% and 59.96% enhanced methane respectively as compared with the control. Pretreatment of the WS reduced its C/N value up to 65%. Moreover, to optimize the most suitable C/N composition, the process stability of the co-digestion of WS and CM was deeply monitored. Copyright © 2016 Elsevier Ltd. All rights reserved.
A transient performance method for CO2 removal with regenerable adsorbents
NASA Technical Reports Server (NTRS)
Hwang, K. C.
1972-01-01
A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.
Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus
Kumar, Mia; Mazur, Steven; Ork, Britini L.; Postnikova, Elena; Hensley, Lisa E.; Jahrling, Peter B.; Johnson, Reed; Holbrook, Michael R.
2015-01-01
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 minutes of contact time in a cell culture system while a mixture of methanol and acetone required 60 minutes to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities. PMID:26190637
Deng, Mingjun; Kuo, Dave T F; Wu, Qihang; Zhang, Ying; Liu, Xinyu; Liu, Shengyu; Hu, Xiaodong; Mai, Bixian; Liu, Zhineng; Zhang, Haozhi
2018-05-01
The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L -1 to 103.91 ng L -1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L -1 , respectively. Thirteen regulated heavy metals - including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) - have been detected in all wastewater samples at sub-mg L -1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.
Decomposition of dimethylamine gas with dielectric barrier discharge.
Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi
2013-09-15
The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. Copyright © 2013 Elsevier B.V. All rights reserved.
Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl
2017-05-01
The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO 2 -H 2 S absorption column (AC) via settled broth recirculation. CO 2 -removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H 2 S removal was achieved regardless of the operational conditions. A maximum CH 4 concentration of 94% with a limited O 2 and N 2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm -2 d -1 and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silica removal from steamflood-produced water: South Texas tar sands pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.A.; Yost, M.E.; Cathey, S.R.
1987-05-01
Steamflood-produced waters commonly contain suspended solids, oil, hardness-causing minerals, sulfide, and silica. Removal of these contaminants would make many of these waters suitable for recycling as steamer feedwater. Reuse of steamflood-produced waters increases steamer feedwater supplies and reduces water disposal requirements. This paper describes a field pilot study of silica removal from steamflood-produced water in the south Texas tar sands region. A hot-lime precipitation process was used to reduce dissolved silica (SiO/sub 2/) concentrations from 400 to less than 50 mg/L SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-lime precipitation for silica removal requiremore » the addition of magnesium salt, as well as lime, to enhance silica removal. In this field study, however, addition of magnesium salt did not improve silica removal efficiency. Hydrated lime, CA(OH)/sub 2/, alone was sufficient to attain desired silica residual, 50 mg/L SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/L Ca(OH)/sub 2/.« less
Muneer, Bushra; Lali, Tayyaba; Iqbal, Muhammad J; Shakoori, Farah R; Shakoori, Abdul R
2016-10-01
Four arsenic resistant yeast were isolated from the industrial wastewater. Two strains IIB-As1 and IIB-As2 identified as Candida tropicalis and Saccharomyces cerevisiae, respectively. IIB-As1 and IIB-As2 showed maximum arsenic resistance. IIB-As1 showed maximum growth at 35 °C whereas it was 30 °C for IIB-As2. The yeast isolate showed typical growth curves, but arsenic extended the lag phase. Glutathione plays an important role in metal tolerance. In the present study, As increased the level glutathione and non-protein thiols in yeast isolates. Removal of As from supernatant was analyzed using the atomic absorption spectrophotometer. They removed arsenic from the medium after 72 h of incubation. Both yeast strains efficiently removed arsenic from the industrial effluent when used individually or in consortia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.
Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George
2011-07-11
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor
Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George
2011-01-01
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni0 and Cu2+. This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals – considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well. PMID:21874093
Advanced CO2 Removal and Reduction System
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.
2011-01-01
An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO2 Technique
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-01-01
Co-plating of Cu-Ni coatings by supercritical CO2 (sc-CO2) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO2 process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO2 process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO2 process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO2 process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content. PMID:28772787
[Studies on the degradation of paracetamol in sono-electrochemical oxidation].
Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng
2012-07-01
A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.
Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control
NASA Technical Reports Server (NTRS)
Lin, Amy; Smith, Frederick; Sweterlitsch, Jeffrey; Graf, John; Nalette, Tim; Papale, William; Campbell, Melissa; Lu, Sao-Dung
2007-01-01
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control is crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well-suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels. Results of this testing are presented and potential flight operational strategies discussed.
Zhai, Haibo; Rubin, Edward S
2013-03-19
This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.
Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping
2014-07-01
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.
Magnetically Separable Fe3O4/SnO2/Graphene Adsorbent for Waste Water Removal
NASA Astrophysics Data System (ADS)
Paramarta, V.; Taufik, A.; Saleh, R.
2017-05-01
Our previous study conducted the SnO2 and SnO2/graphene adsorption efficiency in Methylene Blue removal from aqueous solution, however, the difficulty of adsorbent separation from the methylene blue solution limits its efficiency. Therefore, in this work, SnO2 and SnO2/graphene was combined with Fe3O4 to improve the separation process and adsorption performance for removing the organic dyes. Fe3O4/SnO2/grapheme were synthesized by using the co-precipitation method. The graphene content was varied from 1, 3, and 5 weight percent (wt%). The crystalline phase and thermal stability of the samples were characterized by using X- ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The adsorption ability of the samples was investigated by using significant adsorption degradation of MB observed when the graphene in Fe3O4/SnO2 nanocomposite was added. The other parameters such as pH and initial concentration have also been investigated. The reusability was also investigated to study the stability of the samples. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of Fe3O4/SnO2 nanocomposite with graphene tends to follow the Langmuir adsorption isotherm model.
Tilahun, Ebrahim; Bayrakdar, Alper; Sahinkaya, Erkan; Çalli, Bariş
2017-03-01
H 2 S in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of H 2 S from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances. The results revealed that at the lowest loading rate (91mg H 2 S/m 2 ·h) more than 98% H 2 S and 59% CO 2 absorption efficiencies were achieved. The CH 4 content in the treated gas increased from 60 to 80% with nearly 5% CH 4 loss. Increasing the pH (7-10) and loading rate (91-355mg H 2 S/m 2 ·h) enhanced the H 2 S absorption capacity, and the maximum H 2 S/CO 2 and H 2 S/CH 4 selectivity factors were 2.5 and 58, respectively. Temperature played a key role in the process and lower temperature was beneficial for intensifying H 2 S absorption performance. The highest H 2 S fluxes at pH 10 and 7 were 3.4g/m 2 ·d and 1.8g/m 2 ·d with overall mass transfer coefficients of 6.91×10 -6 and 4.99×10 -6 m/s, respectively. The results showed that moderately high H 2 S fluxes with low CH 4 loss may be achieved by using a robust and cost-effective membrane based absorption process for desulfurization of biogas. A tubular PDMS membrane contactor was tested for the first time to remove H 2 S from biogas under slightly alkaline conditions and the suggested process could be a promising for real scale applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.
Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R
2014-05-01
Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.
2016-01-01
Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while needing to conserve water.
Rapid Cycle Amine (RCA) 3.0 System Development
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Hawes, Kevin; Wichowski, Robert
2015-01-01
The Rapid Cycle Amine (RCA) 3.0 system is currently under development by NASA, the Lyndon B. Johnson Space Center (JSC) in conjunction with United Technologies Corporation Aerospace Systems (UTAS). The RCA technology is a new carbon dioxide (CO2) and humidity removal system that has been baselined for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System. The evolution of the RCA development has progressed through several iterations of technology readiness levels including RCA 1.0, RCA 2.0, and RCA 3.0 test articles. The RCA is an advancement over currently technologies due to its unique regeneration capability. The RCA is capable of simultaneously removing CO2 and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. The RCA technology uses two solid amine sorbent beds in an alternating fashion to adsorb CO2 and water (uptake mode) and desorb CO2 and water (regeneration mode) at the same time. The two beds operate in an efficient manner so that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. The RCA 2.0 and 3.0 test articles were designed with a novel valve assembly which allows for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The RCA technology also is low power, small, and has performed extremely well in all development testing thus far. A final design was selected for the RCA 3.0, fabricated, assembled, and performance tested in 2014 with delivery to NASAJSC in January 2015. This paper will provide an overview on the RCA 3.0 system design and results of pre-delivery testing with references to the development of RCA 1.0 and RCA 2.0.
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.
Lin, Kun-Yi Andrew; Lin, Jia-Yin; Lien, Hsing-Lung
2017-04-01
Aluminum scrap (AS) is adopted for the first time as a readily available aluminum source to prepare zero-valent aluminum (ZVAl) for removing bromate from water via a reductive reaction. Since aluminum is easily oxidized to aluminum oxide (Al 2 O 3 ) on exposure to air, an acid-washing pretreatment on AS is developed to remove the layer of Al 2 O 3 . HCl is found as the most effective acid to pretreat AS and the HCl-pretreated or acid-washed AS (AWAS) is able to remove bromate from water and convert it to bromide. Factors, such as temperature, pH, co-existing anions, and particle size, which influence the bromate removal using AWAS are also investigated. The mechanism of bromate removal by AWAS can be attributed to both reduction and adsorption. The elevated temperature also significantly improves bromate removal capacity of AWAS as well as the reaction kinetics. The bromate removal capacity of AWAS is substantially improved under acidic conditions. However, the basic conditions and co-existing anions suppress or interfere with the interaction between bromate and AWAS, leading to much lower removal capacities. The recyclability of AWAS is also evaluated and the acid-washing regeneration is necessary to restore its capacity. However, the mass of AWAS can gradually decrease due to multi-cycle acid-washing regeneration. Through this study, the valorization of AS via acid-washing is demonstrated and optimization of acid-washing parameters is presented. Our findings reveal that the acid-washing is a useful technique to utilize AS as an inexpensive and efficient material for removing bromate from water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and characterization of nanocomposite GO@α-Fe2O3:Efficient material for dye removal
NASA Astrophysics Data System (ADS)
Mandal, B.; Panda, J.; Tudu, B.
2018-05-01
In this work a composite of Graphene Oxide (GO) supported α-Fe2O3 nanoparticles (GF) has been synthesized via a simple co-precipitation method. Structural, and morphological study of nanocomposite (GF) are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The XRD study indicates that Graphene oxide is implanted with well crystalline α-Fe2O3 which has pure rhombohedral phase. Surface morphological study of SEM depicts sphere-like shaped α-Fe2O3 particles with formation of clusters have been embedded on Graphene oxide nano sheet. TEM image reveals that GO sheet acts as a good supporting material for anchoring nano sized α -Fe2O3 particles. Efficiency of dye removal of the prepared GF composite has been measured by the degradation of methylene blue (MB) in an aqueous solution under visible light irradiation. The degradation of the dye has been evaluated by a UV-visible spectroscopy, by decrease in the intensity of absorbance and concentration. The degradation efficiency of GF is found to be 90% towards MB.
NASA Astrophysics Data System (ADS)
Tran, Hoang V.; Bui, Lieu T.; Dinh, Thuy T.; Le, Dang H.; Huynh, Chinh D.; Trinh, Anh X.
2017-03-01
In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of methylene blue (MB) as a cationic dye from aqueous solutions was investigated. For this purpose, first, graphene oxide (GO) was prepared from pencil’s graphite by Hummer’s method, then after, CS/Fe3O4/GO was synthesized via chemical co-precipitation method from a mixture solution of GO, Fe3+, Fe2+ and chitosan. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting dye removal were investigated. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer capacity (q max), was calculated from the Langmuir as 30.10 mg · g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of cationic dyes from aqueous solutions.
Qu, Songying; Xiong, Yuhan; Zhang, Jun
2018-05-15
Non-metallic graphene oxide (GO) and carbon nanodots (CDots) co-doped BiOBr ternary system (GO/CDots/BiOBr) were successfully synthesized via a simple one-step solvothermal process. The compositional characterization, optical and electrical properties of photocatalysts were investigated in detail. The prepared ternary photocatalysts possessed the excellent visible-light driven photocatalytic 4-chlorophenol (4-CP) degradation. Additionally, the 4-CP removal efficiencies decreased in the order of GO/CDots/BiOBr (88.9%) > CDots/BiOBr (62.9%) > GO/BiOBr (60.5%) > pristine BiOBr (46.9%) in 6 h under visible light irradiation. The dissolved organic carbon (DOC) removal and the dechlorination efficiency by the GO/CDots/BiOBr were 58.4% and 78.2%, respectively, much higher than pristine BiOBr. The co-existence of GO and CDots on the BiOBr greatly promoted visible light harvesting and utilizing ability and inhibited the recombination of photogenerated electron/hole pairs. The synergistic effect between GO, CDots and BiOBr was expounded, and the photocatalytic reaction mechanism was proposed in detail via the band structure analysis and free radical trapping experiments. Copyright © 2018 Elsevier Inc. All rights reserved.
Regenerable Sorbent for CO2 Removal
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Jayaraman, Ambal
2013-01-01
A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.
Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.
Chang, Qing; Zhang, Min; Wang, Jinxi
2009-09-30
A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.
Cheng, Jun; Ye, Qing; Yang, Zongbo; Yang, Weijuan; Zhou, Junhu; Cen, Kefa
2017-02-15
The response mechanisms of microalgal mutant Chlorella PY-ZU1 cells were investigated in their removal of antibiotic tilmicosin from wastewater under 15% CO 2 . Low concentrations (0.01-2mgL -1 ) of tilmicosin in wastewater stimulated the growth of microalgal cells, whereas high concentrations (5-50mgL -1 ) of tilmicosin significantly inhibited cell growth. When initial tilmicosin concentration increased from 0 to 50mgL -1 , fractal dimension of microalgal cells monotonically increased from 1.36 to 1.62 and cell size monotonically decreased from 4.86 to 3.75μm. In parallel, malondialdehyde content, which represented the degree of cellular oxidative damage, monotonically increased from 1.92×10 -7 to 7.07×10 -7 nmol cell -1 . Superoxide dismutase activity that represented cellular antioxidant capacity first increased from 2.59×10 -4 to the peak of 6.60×10 -4 U cell -1 , then gradually decreased to 2.39×10 -4 U cell -1 . The maximum tilmicosin removal efficiency of 99.8% by Chlorella PY-ZU1 was obtained at the initial tilmicosin concentration of 50mgL -1 . Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers.
Liu, Zhen-Shu
2008-11-01
Activated carbon fibers (ACFs) were used to remove SO2 and NO from incineration flue gas. Three types of ACFs in their origin state and after pretreatment with HNO3, NaOH, and KOH were investigated. The removal efficiencies of SO2 and NO were determined experimentally at defined SO2 and NO concentrations and at temperatures of 150, 200 and 260 degrees C. Experimental results indicated that the removal efficiencies of SO2 and NO using the original ACFs were < 56% and < 27%, respectively. All ACFs modified with HNO3, NaOH, and KOH solution could increase the removal efficiencies of SO(2) and NO. The mesopore volumes and functional groups of ACFs are important in determining the removal of SO2 and NO. When the mesopore volumes of the ACFs are insufficient for removing SO2 and NO, the functional groups on the ACFs are not important in determining the removal of SO2 and NO. On the contrary, the effects of the functional groups on the removal of SO2 and NO are more important than the mesopore volumes as the amount of mesopores on the ACFs is sufficient to remove SO2 and NO. Moreover, the removal efficiencies of SO2 and NO were greatest at 200 degrees C. When the inlet concentration of SO2 increased to 600 ppm, the removal efficiency of SO2 increased slightly and the removal efficiency of NO decreased.
Liu, Hui; Lu, Qian; Wang, Qin; Liu, Wen; Wei, Qian; Ren, Hongyan; Ming, Caibing; Min, Min; Chen, Paul; Ruan, Roger
2017-07-01
Algae were able to grow healthy on bacteria-containing centrate wastewater in a pilot-scale bioreactor. The batch experiment indicated that the co-cultivation of algae and wastewater-borne bacteria improved the removal efficiencies of chemical oxygen demand and total phosphorus in centrate wastewater to 93.01% and 98.78%, respectively. A strain of beneficial aerobic bacteria, Acinetobacter sp., was isolated and its biochemical characteristics were explored. Synergistic cooperation was observed in the growth of algae and Acinetobacter sp. Removal efficiencies of some nutrients were improved significantly by the co-cultivation of algae and Acinetobacter sp. After treatment, residual nutrients in centrate wastewater reached the permissible discharge limit. The cooperation between algae and Acinetobacter sp. was in part attributed to the exchange of carbon dioxide and oxygen between the algae and bacteria. This synergetic relationship between algae and Acinetobacter sp. provided a promising way to treat the wastewater by improving the nutrients removal and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Treatment of oily waters using vermiculite.
Mysore, Deepa; Viraraghavan, Thiruvenkatachari; Jin, Yee-Chung
2005-07-01
The main objective of this study was to examine the removal of oil from water by expanded and hydrophobized vermiculite. A pH of 9 showed a higher removal efficiency of oil by vermiculite. Oil removal efficiencies at pH 9 were found to be 79%, 93%, 90%, 57% for standard mineral oil (SMO), Canola oil (CO), Kutwell oil (KUT45), refinery effluent (RE), respectively, in the case of expanded vermiculite, and 56%, 58%, 47%, 43% for SMO, CO, KUT45 and RE, respectively, for hydrophobized vermiculite. Kinetic data satisfied both the Lagergren and Ho models. Equilibrium studies showed that the Langmuir isotherm was the best-fit isotherm for oil removal by both expanded and hydrophobized vermiculite. The data showed a higher adsorptive capacity by the expanded vermiculite compared to the hydrophobized vermiculite. Desorption studies showed that the expanded vermiculite did not desorb oil to the same extent compared to hydrophobized vermiculite. The Freundlich isotherm was the best-fit model for desorption. Expanded vermiculite showed better retention than hydrophobic vermiculite. The results showed that the expanded vermiculite had a greater affinity for oil than hydrophobized vermiculite.
USDA-ARS?s Scientific Manuscript database
Purpose Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of po...
Biochars made from agro-industrial by-products remove chlorine from water and wastewater
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2017-04-01
Chlorination is the most common disinfection process for water and wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination kinetics of the different raw and biochar materials as well as those of commercial activated carbons. The removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The first-order constant k1 ranged between 0.001 and 0.014 (min-1) for the biosorbents and the biochars and it was equal to 0.017 (min-1) for the commercial activated carbons. Consequently, the half-life time ranged between 50 and 700 (min) for the biosorbents and the biochars and it was equal to 41 (min) for the commercial activated carbons. The column experiment also showed positive results; A breakthrough for concentrations higher than 10(AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition, American Water Works Association Fourth edition.
NASA Astrophysics Data System (ADS)
Barbosa, Rui Pedro Fernandes
The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.
Diao, Yifei; Yan, Zhikai; Guo, Min; Wang, Xidong
2018-02-15
Magnetic nanoparticles of multi-metal co-doped magnesium ferrite (MgFe 2 O 4 ) were synthesized from saprolite laterite ore by a hydrothermal method, and firstly proposed as a heterogeneous photon-Fenton-like catalyst for degradation of Rhodamine B (RhB). The factors that influence the degradation reaction including pH value, the concentration of H 2 O 2 and the amount of catalyst, were systematically investigated. The doped MgFe 2 O 4 exhibited a degradation efficiency up to 96.8%, and the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies about 85.6% and 68.3%, respectively, under visible light illumination for 180min. The high activity is mainly attributed to the high specific surface area of the catalyst and the synergistic interaction between photo-catalytic oxidation and Fenton-like oxidation. Moreover, the catalyst also showed good stability and recycling performance for degrading RhB. After five consecutive degradation cycles, the activity decayed no more than 10%. Compared to other catalysts prepared from pure chemical agents, the multi-metal co-doped MgFe 2 O 4 is more competitive due to its high activity, good stability, ease of recollection, and especially the use of saprolite laterite ore as precursor. This work may provide a new avenue to synthesize efficient ferrite catalysts for degrading organic pollutants in wastewater by using natural minerals. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy and material balance of CO2 capture from ambient air.
Zeman, Frank
2007-11-01
Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma; Rother, Gernot; Wu, Zili
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Tumuluri, Uma; Rother, Gernot; Wu, Zili
2016-03-21
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Zhang, Feng; Wang, Xin; Yin, Daixia; Peng, Bo; Tan, Changyin; Liu, Yunguo; Tan, Xiaofei; Wu, Shixue
2015-04-15
This study investigated the efficiency and mechanisms of Cd removal by biochar pyrolyzed from water hyacinth (BC) at 250-550 °C. BC450 out-performed the other BCs at varying Cd concentrations and can remove nearly 100% Cd from aqueous solution within 1 h at initial Cd ≤ 50 mg l(-1). The process of Cd sorption by BC450 followed the pseudo-second order kinetics with the equilibrium being achieved after 24 h with initial Cd ranging from 100 to 500 mg l(-1). The maximum Cd sorption capacity of BC450 was estimated to be 70.3 mg g(-1) based on Langmuir model, which is prominent among a range of low-cost sorbents. Based on the balance analysis between cations released and Cd sorbed onto BC450 in combination with SEM-EDX and XPS data, ion-exchange followed by surface complexation is proposed as the dominant mechanism responsible for Cd immobilization by BC450. In parallel, XRD analysis also suggested the formation of insoluble Cd minerals (CdCO3, Cd3P2, Cd3(PO4)2 and K4CdCl6) from either (co)-precipitation or ion exchange. Results from this study highlighted that the conversion of water hyacinth into biochar is a promising method to achieve effective Cd immobilization and improved management of this highly problematic invasive species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miller, Rebecca L.; Pinkerton, Anthony B.; Abney, Kent D.; Kinkead, Scott A.
1997-01-01
Preparation and use of tetra-C-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents. Tetra-C-alkyl derivatives of cobalt dicarbollide, Co(C.sub.2 R.sub.2 B.sub.9 H.sub.9).sub.2.sup.- (CoB.sub.2 R.sub.4.sup.- ; R=CH.sub.3 and C.sub.6 H.sub.13) are demonstrated to be significant cesium and strontium extractants from acidic and alkaline solutions into non-toxic organic solvent systems. Extractions using mesitylene and diethylbenzene are compared to those with nitrobenzene as the organic phase. CoB.sub.2 -hexyl.sub.4.sup.- in diethylbenzene shows improved selectivity (10.sup.4) for Cs over Na in acidic solution. In dilute alkaline solution, CoB.sub.2 -hexyl.sub.4.sup.- extracts Cs less efficiently, but more effectively removes Sr from higher base concentrations. A general synthesis of tetra-C-alkyl cobalt dicarbollides is described.
Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis.
Deng, Liping; Zhu, Xiaobin; Wang, Xinting; Su, Yingying; Su, Hua
2007-08-01
Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol(-1) by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C-O could combine strongly with Cu2+.
Miller, R.L.; Pinkerton, A.B.; Abney, K.D.; Kinkead, S.A.
1997-02-11
Preparation and use of tetra-C-alkyl cobalt dicarbollide for extraction of cesium and strontium into hydrocarbon solvents. Tetra-C-alkyl derivatives of cobalt dicarbollide, Co(C{sub 2}R{sub 2}B{sub 9}H{sub 9}){sub 2}{sup {minus}}(CoB{sub 2}R{sub 4}{sup {minus}}; R=CH{sub 3} and C{sub 6}H{sub 13}) are demonstrated to be significant cesium and strontium extractants from acidic and alkaline solutions into non-toxic organic solvent systems. Extractions using mesitylene and diethylbenzene are compared to those with nitrobenzene as the organic phase. CoB{sub 2}-hexyl{sub 4}{sup {minus}} in diethylbenzene shows improved selectivity (10{sup 4}) for Cs over Na in acidic solution. In dilute alkaline solution, CoB{sub 2}-hexyl{sub 4}{sup {minus}} extracts Cs less efficiently, but more effectively removes Sr from higher base concentrations. A general synthesis of tetra-C-alkyl cobalt dicarbollides is described. 6 figs.
Włóka, Dariusz; Placek, Agnieszka; Rorat, Agnieszka; Smol, Marzena; Kacprzak, Małgorzata
2017-11-01
The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO 2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO 2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO 2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
Meng, Pingping; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Cousins, Ian T; Yu, Gang
2018-07-01
Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.
The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100more » years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less
Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie
2016-06-01
Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-15
Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied frommore » novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.« less
Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.
Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying
2017-04-01
Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.
FIELD DEMONSTRATION OF LEAD PAINT ABATEMENT TECHNOLOGIES IN RESIDENTIAL HOUSING
This study was conducted to demonstrate lead-based paint (LBP) removal from architectural wood components in CO2 unoccupied residential housing using four technologies: granular carbon dioxide (CO2 blasting), pelletized CO2 blasting, encapsulant paint remover, and wet abrasive bl...
Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.
2015-10-20
Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.
Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less
NASA Astrophysics Data System (ADS)
Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang
2015-12-01
Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.
Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis
NASA Astrophysics Data System (ADS)
Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting
2008-02-01
The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.
NASA Astrophysics Data System (ADS)
Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.
2015-07-01
A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.
Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.
Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R
2017-08-02
In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.
Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri
2015-10-12
This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing
2015-04-15
Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
Ye, Sang-Ho; Arazawa, David T.; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D.; Kimmel, Jeremy D.; Gamble, Lara J.; Ishihara, Kazuhiko; Federspiel, William J.; Wagner, William R.
2015-01-01
Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer. PMID:25669307
NASA Technical Reports Server (NTRS)
Nalette, T. A.
1984-01-01
A regenerable, three man preprototype solid amine, water desorbed (SAWD) CO2 removal and concentation subsystem was designed, fabricated, and successfully acceptance tested by Hamilton Standard. The preprototype SAWD incorporates a single solid amine canister to perform the CO2 removal function, an accumulator to provide the CO2 storage and delivery function, and a microprocessor which automatically controls the subsystem sequential operation and performance. The SAWD subsystem was configured to have a CO2 removal and CO2 delivery capability at the rate of 0.12 kg/hr (0.264 lb/hr) over the relative humidity range of 35 to 70%. The controller was developed to provide fully automatic control over the relative humidity range via custom software that was generated specifically for the SAWD subsystem. The preprototype SAWD subsystem demonstrated a total of 281 hours (208) cycles of operation during ten acceptance tests that were conducted over the 3 to 70% relative humidity range. This operation was comprised of 178 hours (128 cycles) in the CO2 overboard mode and 103 hours (80 cycles) in the CO2 reduction mode. The average CO2 removal/delivery rate met or exceeded the design specification rate of 0.12 kg/hr (0.254 lb/hr) for all ten of the acceptance tests.
Evolution of the chemistry of Fe bearing waters during CO2 degassing
Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.
2012-01-01
The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.
NASA Astrophysics Data System (ADS)
Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.
2003-07-01
This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.
[Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].
Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu
2015-03-01
CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).
Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong
2016-11-05
Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferdowsi, Milad; Ramirez, Antonio Avalos; Jones, Joseph Peter; Heitz, Michèle
2017-09-01
Methane (CH 4 ) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH 4 inlet load (IL) of 13 ± 0.5 g CH4 m -3 h -1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH 4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 g ethanol m -3 h -1 . Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO 2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO 2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 g ethanol m -3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH 2 O m -1 ) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH 2 O m -1 .
A study of phosphate absorption by magnesium iron hydroxycarbonate.
Du, Yi; Rees, Nicholas; O'Hare, Dermot
2009-10-21
A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.
Praveen, Prashant; Loh, Kai-Chee
2015-12-01
Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.
Long-term field-scale experiment on using lime filters in an agricultural catchment.
Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo
2012-01-01
The River Yläneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals.
Jawad, Ali; Liao, Zhuwei; Zhou, Zhihua; Khan, Aimal; Wang, Ting; Ifthikar, Jerosha; Shahzad, Ajmal; Chen, Zhulei; Chen, Zhuqi
2017-08-30
It has always been a serious challenge to design efficient, selective, and stable absorbents for heavy-metal removal. Herein, we design layered double hydroxide (LDH)-based Fe-MoS 4 , a highly efficient adsorbent, for selective removal of heavy metals. We initially synthesized FeMgAl-LDH and then enriched its protective layers with MoS 4 2- anions as efficient binding sites for heavy metals. Various characterization tools, such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), CHN analysis, and inductively coupled plasma analysis, were applied to confirm structural and compositional changes during the synthesis of Fe-MoS 4 as final product. The prepared Fe-MoS 4 offered excellent attraction for heavy metals, such as Hg 2+ , Ag + , Pb 2+ , and Cu 2+ , and displayed selectivity in the order Hg 2+ ∼ Ag + > Pb 2+ > Cu 2+ > Cr 6+ > As 3+ > Ni 2+ ∼ Zn 2+ ∼ Co 2+ . The immense capacities of Hg 2+ , Ag + , and Pb 2+ (583, 565, and 346 mg/g, respectively), high distribution coefficient (K d ∼ 10 7 -10 8 ), and fast kinetics place Fe-MoS 4 on the top of materials list known for removal of such metals. The sorption kinetics and isothermal studies conducted on Hg 2+ , Ag + , Pb 2+ , and Cu 2+ suit well pseudo-second-order kinetics and Langmuir model, suggesting monolayer chemisorption mechanism through M-S linkages. XRD and FTIR studies suggested that adsorbed metals could result as coordinated complexes in LDH interlayer region. More interestingly, LDH structure offers protective space for MoS 4 2- anions to avoid oxidation under ambient environments, as confirmed by XPS studies. These features provide Fe-MoS 4 with enormous capacity, good reusability, and excellent selectivity even in the presence of huge concentration of common cations.
NASA Astrophysics Data System (ADS)
Sun, Dongxue; Shen, Tingting; Sun, Jing; Wang, Chen; Wang, Xikui
2018-01-01
Catalyst of Bi2O2CO3 and Fe2O3 modified Bi2O2CO3 (Fe2O3/Bi2O2CO3) were prepared by hydrothermal method and characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and UV-vis DRS. The catalytic activity of Bi2O2CO3 and Fe2O3/Bi2O2CO3 were comparatively investigated in the photodegradation and Fento-like process. Rhodamine B(RhB) was selected as the target pollutant under the irradiation of 300 W xenon lamp. The results indicated that Fe2O3 plays a great role in the enhancing the treatment efficiency and the and the maximum reaction rate was achieved at the Fe2O3 loading of 1.5%. The Fenton-like degradation rate constant of RhB with bare Bi2O2CO3 in dark is 0.4 min-1, while that with 1.5 Fe2O3/Bi2O2CO3 increases to 28.4 min-1 under visible light irradiation, a 71-fold improvement. It is expected to shed a new light for the constructing novel composite photocatalyst and also provide a potential method for the removal of dyes in the aqueous system.
[Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].
Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa
2005-07-01
Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.
Evaluation of Low Temperature CO Removal Catalysts
NASA Technical Reports Server (NTRS)
Monje, Oscar
2015-01-01
CO removal from spacecraft gas streams was evaluated for three commercial, low temperature oxidation catalysts: Carulite 300, Sofnocat 423, and Hamilton Sundstrand Pt1. The catalysts were challenged with CO concentrations (1-100 ppm) under dry and wet (50% humidity) conditions using 2-3 % O2. CO removal and CO2 concentration were measured at constant feed composition using a FTIR. Water vapor affected the CO conversion of each catalyst differently. An initial screening found that Caulite 300 could not operate in humid conditions. The presence of water vapor affected CO conversion of Sofnocat 423 for challenge concentrations below 40 ppm. The conversion of CO by Sofnocat 423 was 80% at CO concentrations greater than 40 ppm under both dry and moist conditions. The HS Pt1 catalyst exhibited CO conversion levels of 100% under both dry and moist conditions.
Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992
NASA Technical Reports Server (NTRS)
Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)
1992-01-01
Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.
Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.
He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei
2017-08-01
We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.
Methods and apparatus for carbon dioxide removal from a fluid stream
Wei, Wei; Ruud, James Anthony; Ku, Anthony Yu-Chung; Ramaswamy, Vidya; Liu, Ke
2010-01-19
An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO.sub.2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO.sub.2 from the stream and to be in flow communication with a sweep gas.
Xia, Min; Ye, Chunsong; Pi, Kewu; Liu, Defu; Gerson, Andrea R
2017-11-01
Selective removal of Ca and recovery of Mg by precipitation from flue gas desulfurization (FGD) wastewater has been investigated. Thermodynamic analysis of four possible additives, Na 2 CO 3 , Na 2 C 2 O 4 , NaF and Na 2 SO 4 , indicated that both carbonate and oxalate could potentially provide effective separation of Ca via precipitation from Mg in FGD wastewater. However, it was found experimentally that the carbonate system was not as effective as oxalate in this regard. The oxalate system performed considerably better, with Ca removal efficiency of 96% being obtained, with little Mg inclusion at pH 6.0 when the dosage was ×1.4 the stoichiometric requirement. On this basis, the subsequent recovery process for Mg was carried out using NaOH with two-step precipitation. The product was confirmed to be Mg(OH) 2 (using X-ray diffraction and thermo gravimetric analysis) with elemental analysis suggesting a purity of 99.3 wt.%.
Jiang, Xia; Yan, Rong; Tay, Joo Hwa
2009-01-01
A horizontal biotrickling filter (HBTF) was used to inoculate autotrophic sulfide-oxidizing and ammonia-oxidizing microbial consortiums over H2S-exhausted carbon for co-treating H2S and NH3 waste gas in a long-term operation. In this study, several aspects (i.e., pH change, shock loading and starvation) of the dynamic behavior of the HBTF were investigated. The metabolic products of N and S bearing species in recycling liquid and biological activities of the biofilm were analyzed to explain the observed phenomena and further explore the fundamentals behind. In the pH range of 4-8.5, although the removal efficiencies of H2S and NH3 remained 96-98% and 100%, respectively, the metabolic products demonstrated different removal mechanisms and pathways. NH4-N and NO2/NO3-N were dominated at pH < or = 6 and > or = 7, respectively, indicating the differentiated contributions from physical/chemical adsorption and bio-oxidation. Moreover, the HBTF demonstrated a good dynamic stability to withstand shock loadings by recovering immediately to the original. During shock loading, only 15.4% and 17.9% of captured H2S and NH3 was biodegraded, respectively. After 2, 11, and 48 days of starvation, the HBTF system reached a full performance within reasonable re-startup times (2-80 h), possibly due to the consumption of reduced S and N species in biomass or activated carbon thus converted into SO4-S and NO3-N during starvation period. The results helped to understand the fundamental knowledge by revealing the effects of pH and transient loadings linked with individual removal mechanism for H2S and NH3 co-treatment in different conditions.
Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R
2014-01-01
Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.
NASA Technical Reports Server (NTRS)
Nakhost, Z.; Karel, M.; Krukonis, V. J.
1987-01-01
Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen; Wang, Han; Li, Gen
CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less
Zhu, Chen; Wang, Han; Li, Gen; ...
2017-09-19
CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less
CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu
2015-06-01
Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yiwei; Parnell, Andrew J.; Pontecchiani, Fabio; Cooper, Joshaniel F. K.; Thompson, Richard L.; Jones, Richard A. L.; King, Stephen M.; Lidzey, David G.; Bernardo, Gabriel
2017-01-01
We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency. PMID:28287164
NASA Astrophysics Data System (ADS)
Potts, D. L.; Harpole, W. S.; Suding, K. N.; Goulden, M. L.
2006-12-01
Changes in vegetation structure and composition may interact with management activities to influence biosphere-atmosphere exchanges of mass and energy in unforeseen ways. Increases in the distribution and density of artichoke thistle (Cynara cardunculus), a perennial, non-native forb in Californian coastal grasslands, may alter seasonal dynamics of ecosystem C-assimilation and evapotranspiration (ET). During spring and summer 2006, we compared midday net ecosystem CO2 exchange (NEE) and ET among adjacent grassland plots where thistle was present and where it was absent. Estimates of NEE supported the prediction that deeply-rooted thistles increase ecosystem C-assimilation. Measurements of midday ecosystem respiration demonstrated that increases in ecosystem C-assimilation were associated with increased ecosystem photosynthesis rather than declines in respiration. Furthermore, the presence of C. cardunculus increased midday ET but did not influence shallow soil moisture or ecosystem water use efficiency. Following the initial sampling in late April, we removed C. cardunculus from half the thistle- containing plots with spot applications of herbicide. Three weeks later, fluxes in thistle-removal plots were indistinguishable from those in plots where thistles were never present, suggesting additive rather than interactive effects of thistles on grassland CO2 exchange and ET. Similar to woody-encroachment in some semi-arid ecosystems, C. cardunculus invasion in Californian grasslands increases ecosystem CO2 assimilation. Moreover, our results suggest that herbicide removal of C. cardunculus may be accompanied by few legacy effects. Future research should focus on the effects of C. cardunculus on early-growing season fluxes and belowground C-storage, and the interaction between the spread of non-native species and climate variability on biosphere-atmosphere exchanges of carbon and water.
Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi
2018-03-01
Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3 d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Innovative CO2 LASER-Based Pavement Striping and Stripe Removal
DOT National Transportation Integrated Search
2014-07-01
This is a Technical Report of an FY2014 NDOT funded project on Innovative CO2 Laserbased Pavement Striping and Stripe Removal. The project was concerned with adopting the laser technology for pavement stripe and markers removal and inferring on its e...
40 CFR 86.111-90 - Exhaust gas analytical system.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., or indicating silica gel to remove water vapor and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
40 CFR 86.111-90 - Exhaust gas analytical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or indicating silica gel to remove water vapor and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela
2013-12-01
This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.
About how to capture and exploit the CO2 surplus that nature, per se, is not capable of fixing.
Godoy, Manuel S; Mongili, Beatrice; Fino, Debora; Prieto, M Auxiliadora
2017-09-01
Human activity has been altering many ecological cycles for decades, disturbing the natural mechanisms which are responsible for re-establishing the normal environmental balances. Probably, the most disrupted of these cycles is the cycle of carbon. In this context, many technologies have been developed for an efficient CO 2 removal from the atmosphere. Once captured, it could be stored in large geological formations and other reservoirs like oceans. This strategy could present some environmental and economic problems. Alternately, CO 2 can be transformed into carbonates or different added-value products, such as biofuels and bioplastics, recycling CO 2 from fossil fuel. Currently different methods are being studied in this field. We classified them into biological, inorganic and hybrid systems for CO 2 transformation. To be environmentally compatible, they should be powered by renewable energy sources. Although hybrid systems are still incipient technologies, they have made great advances in the recent years. In this scenario, biotechnology is the spearhead of ambitious strategies to capture CO 2 and reduce global warming. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Sorption of metals on humic acid
NASA Astrophysics Data System (ADS)
Kerndorff, H.; Schnitzer, M.
1980-11-01
The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg≫ Fe≫ Pb≫ CuAl ≫ Ni ≫ CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO 2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100/[1 + exp - (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.
Optimizing Toxic Chemical Removal through Defect-Induced UiO-66-NH2 Metal-Organic Framework.
Peterson, Gregory W; Destefano, Matthew R; Garibay, Sergio J; Ploskonka, Ann; McEntee, Monica; Hall, Morgan; Karwacki, Christopher J; Hupp, Joseph T; Farha, Omar K
2017-11-13
For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH 2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Endoscopic removal of PMMA in hip revision surgery with a CO2 laser
NASA Astrophysics Data System (ADS)
Sazy, John; Kollmer, Charles; Uppal, Gurvinder S.; Lane, Gregory J.; Sherk, Henry H.
1991-05-01
Purpose: to compare CO2 laser to mechanical means of PMMA removal in total hip arthroplasty revision surgery. Materials and methods: Forty-five patients requiring hip revision surgery were studied and compared to historical controls. Cement was removed from the femoral canal utilizing a 30 centimeter laparoscope. A CO2 laser waveguide was passed through the laparoscope into the femoral canal and a TV camera was placed over the eye piece to permit visualization of the depths of the femoral canal on a video monitor. The leg was placed in a horizontal position which avoided the pooling of blood or saline in the depths of the femur. Under direct vision the distal plug could be vaporized with a 40 centimeter CO2 laser waveguide. Power settings of 20 to 25 watts and a superpulsed mode were used. A 2 mm suction tube was welded to the outside of the laparoscope permitting aspiration of the products of vaporization. Results: Of 45 hip revisions there were no shaft perforation, fractures or undue loss of bone stock. There was no statistically different stay in hospital time, blood loss or operative time between the CO2 revision group compared to the non-laser revision group, in which cement was removed by mechanical methods. Conclusions: Mechanical methods used in removing bone cement using high speed burrs, reamers, gouges, and osteotomies is technically difficult and fraught with complications including shaft fracture, perforations, and unnecessary loss of bone stock. The authors' experience using the CO2 laser in hip revision surgery has permitted the removal of bone cement. Use of a modified laparoscope has allowed for precise, complete removal of bone cement deep within the femoral shaft without complication or additional operative time. The authors now advocate the use of a CO2 laser with modified laparoscope in hip revision surgery in which bone cement is to be removed from within the femoral shaft.
Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz
2017-01-01
Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Xuefei; Wang, Cunwen; Li, Zihao; Wang, Weiguo; Tong, Yanjie; Wei, Jiang
2013-09-01
In this work, the acclimation of Chlorella pyrenoidosa in diluted wastewater was studied to produce biomass and remove chemical oxygen demand (COD), ammonia-N and phosphorous. The results indicated that the optimal conditions (the volume ratio of wastewater, light intensity, culture temperature, CO2 concentration in feeding gas) which could influence the wastewater treatment efficiency were 0.05, 250 photons m(-2) s(-1), 28 °C and 5%, respectively. Under these conditions, the removal efficiency of COD reached up to 89.2%, while the total nitrogen and total phosphorous decreased by 64.52% and 82.20%, respectively. With the second treatment, COD in the wastewater was further reduced to less than 100 mg/L while it was only reduced to 542.9 mg/L after the first treatment. The treated wastewater could be discharged directly or subjected to for further treatment for recycling. In addition, 1.25 g/L of the biomass and 38.27% (dry basis, w%) of lipid content were reached after microalgal cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yeqing; Zhang, Jiang; Miao, Wenjuan; Wang, Huanzhong; Wei, Mao
2015-09-01
Approximately 400000t of DDTs/HCHs-contaminated soil (CS) needed to be co-processed in a cement kiln with a time limitation of 2y. A new pre-processing facility with a "drying, grinding and DDTs/HCHs vaporizing" ability was equipped to meet the technical requirements for processing cement raw meal and the environmental standards for stack emissions. And the bottom of the precalciner with high temperatures >1000°C was chosen as the CS feeding point for co-processing, which has rarely been reported. To assess the environmental performance of CS pre- and co-processing technologies, according to the local regulation, a test burn was performed by independent and accredited institutes systematically for determination of the clinker quality, kiln stack gas emissions and destruction efficiency of the pollutant. The results demonstrated that the clinker was of high quality and not adversely affected by CS co-processing. Stack emissions were all below the limits set by Chinese standards. Particularly, PCDD/PCDF emissions ranged from 0.0023 to 0.0085ngI-TEQNm(-3). The less toxic OCDD was the peak congener for CS co-processing procedure, while the most toxic congeners (i.e. 2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDD) remained in a minor proportion. Destruction and removal efficiency (DRE) and destruction efficiency (DE) of the kiln system were better than 99.9999% and 99.99%, respectively, at the highest CS feeding rate during normal production. To guarantee the environmental performance of the system the quarterly stack gas emission was also monitored during the whole period. And all of the results can meet the national standards requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cao, Xian; Yu, Chunyan; Wang, Hui; Zhou, Fang; Li, Xianning
2017-04-01
In this study, the soil microbial fuel cells (MFCs) were constructed based on sandy soil to remove the refractory organic pesticide hexachlorobenzene (HCB) in topsoil by a simple method. The construction of membraneless single-chamber soil MFCs by setting up the cathode- and the anode-activated carbon, inoculating the sludge and adding the co-substrates can promote HCB removal significantly. The results showed that HCB removal efficiencies in the soils contaminated with 40, 80 and 200 mg/kg were 71.14%, 62.15% and 50.06%, respectively, which were 18.65%, 18.46% and 19.17% higher than the control, respectively. The electricity generation of soil MFCs in different HCB concentrations was analyzed. The highest power density reached was 70.8 mW/m 2 , and an internal resistance of approximately 960 Ω was obtained when an external resistance loading of 1000 Ω was connected. Meanwhile, the influences of temperature, substrate species and substrate concentrations on soil MFCs initial electricity production were investigated. The addition of the anionic surfactant sodium dodecyl sulfate (SDS) into the soil MFCs system contributed to the improvement in HCB removal efficiency.
Zhang, Hui; Liu, Jianguo; Ou, Changjin; Faheem; Shen, Jinyou; Yu, Hongxia; Jiao, Zhenhuan; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun
2017-03-01
The potentially hazardous iron-containing sludge from the Fenton process requires proper treatment and disposal, which often results in high treatment cost. In this study, a novel method for the reuse of Fenton sludge as an iron source for the synthesis of nickel ferrite particles (NiFe 2 O 4 ) is proposed. Through a co-precipitation method followed by sintering at 800°C, magnetic NiFe 2 O 4 particles were successfully synthesized, which was confirmed by powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The synthesized NiFe 2 O 4 could be used as an efficient catalyst in the heterogeneous Fenton process. In phenol degradation with H 2 O 2 or NiFe 2 O 4 alone, the phenol removal efficiencies within the reaction time of 330min were as low as 5.9%±0.1% and 13.5%±0.4%, respectively. However, in the presence of both NiFe 2 O 4 and H 2 O 2 , phenol removal efficiency as high as 95%±3.4% could be achieved, indicating the excellent catalytic performance of NiFe 2 O 4 in the heterogeneous Fenton process. Notably, a rapid electron exchange between Ni II and Fe III ions in the NiFe 2 O 4 structure could be beneficial for the Fenton reaction. In addition, the magnetic catalyst was relatively stable, highly active and recoverable, and has potential applications in the Fenton process for organic pollutant removal. Copyright © 2016. Published by Elsevier B.V.
[Steam and air co-injection in removing TCE in 2D-sand box].
Wang, Ning; Peng, Sheng; Chen, Jia-Jun
2014-07-01
Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.
Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David
2014-05-01
The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.
Zhu, Jin; Baig, Shams Ali; Sheng, Tiantian; Lou, Zimo; Wang, Zhuoxing; Xu, Xinhua
2015-04-09
In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications. Copyright © 2015 Elsevier B.V. All rights reserved.
40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.
Code of Federal Regulations, 2011 CFR
2011-07-01
... desiccating silica gel to remove water vapor, and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments are used which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.
Code of Federal Regulations, 2012 CFR
2012-07-01
... desiccating silica gel to remove water vapor, and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments are used which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.
Code of Federal Regulations, 2010 CFR
2010-07-01
... desiccating silica gel to remove water vapor, and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments are used which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.
Code of Federal Regulations, 2013 CFR
2013-07-01
... desiccating silica gel to remove water vapor, and containing ascarite to remove carbon dioxide from the CO analysis stream. (i) If CO instruments are used which are essentially free of CO2 and water vapor... instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a...
Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO2 Laser
Tao, You-Chen; Fried, Daniel
2011-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure. PMID:21909225
Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO(2) Laser.
Tao, You-Chen; Fried, Daniel
2008-03-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO(2) laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO(2) laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO(2) laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO(2) laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.
Tethered catalysts for the hydration of carbon dioxide
Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K
2014-11-04
A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.
Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed
2011-02-15
In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Knox, James C.; Stanley, Christine M.
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
Investigation of highly active and cost-efficient electrocatalysts for oxygen reduction reaction is of great importance in a wide range of clean energy devices, including fuel cells and metal-air batteries. Herein, the simultaneous formation of Co9S8 and N,S-codoped carbon was achieved in a dual templates system. First, Co(OH)2 nanosheets and tetraethyl orthosilicate were utilized to direct the formation of two-dimensional carbon precursors, which were then dispersed into thiourea solution. After subsequent pyrolysis and templates removal, N/S-codoped porous carbon sheets confined Co9S8 catalysts (Co9S8/NSC) were obtained. Owing to the morphological and compositional advantages as well as the synergistic effects, the resultant Co9S8/NSCmore » catalysts with modified doping level and pyrolysis degree exhibit superior ORR catalytic activity and long-term stability compared with the state-of-the-art Pt/C catalyst in alkaline media. Remarkably, the as-prepared carbon composites also reveal exceptional tolerance of methanol, indicating their potential applications in fuel cells.« less
Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying
2016-07-01
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnick, J.
1989-11-01
Electrochemical membrane removal of SO{sub 2} from flue gas and concentration into a salable by-product stream has been achieved. Full-cell tests have verified both the concept and choice of materials compatible with the process gas. Electrodes have been developed, manufactured from a conducting ceramic, La{sub 0.8}Sr{sub 0.2}CoO{sub 3}. Electrochemical cell reactions conform precisely with those discerned in free electrolyte. These reactions are stoichiometric to over 95% SO{sub 2} removal. Oleum by-product generation is likewise totally stoichiometric (100% current efficiency). NO{sub x} removal has been found to occur at the oxidizing electrode. Cell polarization, that is, the achievable current densities atmore » reasonable voltage, is unacceptable with the membranes tested thus far. Future work will focus on identifying a ceramic matrix material and a membrane fabrication technique which yields a membrane with the proper capillarity match with the porous electrodes. This will give the cell the proper polarization performance to permit larger scale endurance tests. 56 figs.« less
Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue
2018-04-26
This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).
Lackey, Jillian; Champagne, Pascale; Peppley, Brant
2017-12-01
Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH 4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NO x , SO x , and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H 2 dilutions were tested (N 2 , Ar, CO 2 ) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO 2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H 2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H 2 partial pressure in the reformate resulting from higher H 2 O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO 2 , 60 kg CH 4 and 18 kg N 2 O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H 2 , 16.1% CO, 16.5% CO 2 , 0.7% N 2 , humidified to 2.3 or 20 mol% H 2 O). Higher humidification yielded better performance as the WGS reaction produced more H 2 with additional H 2 O. It was concluded that AD-derived biogas, when cleaned to remove H 2 S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biochemical Capture and Removal of Carbon Dioxide
NASA Technical Reports Server (NTRS)
Trachtenberg, Michael C.
1998-01-01
We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.
Seo, Yongwon; Jo, Sung-Ho; Ryu, Chong Kul; Yi, Chang-Keun
2007-10-01
CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.
Lin, Hui; Niu, Junfeng; Xu, Jiale; Huang, Haiou; Li, Duo; Yue, Zhihan; Feng, Chenghong
2013-11-19
The electrochemical mineralization of environmentally persistent long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluorononanoic acid (C8F17COOH, PFNA) and perfluorodecanoic acid (C9F19COOH, PFDA) was investigated in aqueous solutions (0.25 mmol L(-1)) over Ti/SnO2-Sb-Ce (SnO2), Ti/SnO2-Sb/Ce-PbO2 (PbO2), and Ti/BDD (BDD) anodes under galvanostatic control at room temperature. Based on PFCA decay rate, total organic carbon (TOC) reduction, defluorination ratio, safety, and energy consumption, the performance of PbO2 electrode was comparable with that of BDD electrode. After 180 min electrolysis, the PFNA removals on BDD and PbO2 electrodes were 98.7 ± 0.4% and 97.1 ± 1.0%, respectively, while the corresponding PFDA removals were 96.0 ± 1.4% and 92.2 ± 1.9%. SnO2 electrode yielded lower PFCA removals and led to notable secondary pollution by Sb ions. The primary mineralization product, F(-), as well as trace amounts of intermediate PFCAs with shortened chain lengths, were detected in aqueous solution after electrolysis. On the basis of these results, a degradation mechanism including three potential routes is proposed: via formation of short-chain PFCAs by stepwise removal of CF2; direct mineralization to CO2 and HF; conversion to volatile fluorinated organic compounds. The results presented here demonstrate that electrochemical technique exhibits high efficiency in mineralizing PFNA and PFDA under mild conditions, and is promising for the treatment of long-chain PFCAs in wastewater.
Lefort, I; Herreros, J M; Tsolakis, A
2014-02-18
The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.
Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo
2014-09-15
In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. Copyright © 2014 Elsevier Inc. All rights reserved.
Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal
Yao, Lili; Shi, Jianye; Miao, Xiaoling
2015-01-01
Biomass, nutrient removal capacity, lipid productivity and morphological changes of Chlorella sorokiniana and Desmodesmus communis were investigated in mixed wastewaters with different CO2 concentrations. Under optimal condition, which was 1:3 ratio of swine wastewater to second treated municipal wastewater with 5% CO2, the maximum biomass concentrations were 1.22 g L-1 and 0.84 g L-1 for C. sorokiniana and D. communis, respectively. Almost all of the ammonia and phosphorus were removed, the removal rates of total nitrogen were 88.05% for C. sorokiniana and 83.18% for D. communis. Lipid content reached 17.04% for C. sorokiniana and 20.37% for D. communis after 10 days culture. CO2 aeration increased intracellular particle numbers of both microalgae and made D. communis tend to be solitary. The research suggested the aeration of CO2 improve the tolerance of microalgae to high concentration of NH4-N, and nutrient excess stress could induce lipid accumulation of microalgae. PMID:26418261
Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V.; Wagner, W. R.
2013-01-01
Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional groups for enzyme immobilization. XPS and a colorimetric amine assay confirmed higher amine densities on the chitosan coated fiber compared to control fiber. Chitosan/CA coated fibers exhibited accelerated CO2 removal in scaled-down gas exchange devices in buffer and blood (115 % enhancement vs. control, 37 % enhancement vs. control, respectively). Carbonic anhydrase immobilized directly on hollow fiber membranes without chitosan tethering resulted in no enhancement in CO2 removal. Additionally, fibers coated with chitosan/carbonic anhydrase demonstrated reduced platelet adhesion when exposed to blood compared to control and heparin coated fibers. PMID:23888352
NASA Astrophysics Data System (ADS)
Fried, Daniel; Ragadio, Jerome N.; Akrivou, Maria; Featherstone, John D.; Murray, Michael W.; Dickenson, Kevin M.
2001-04-01
Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 micrometers wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1 - 4 microsecond(s) . The pulse duration is well matched to the 1 - 2 microsecond(s) thermal relaxation time of the deposited laser energy at 9.6 micrometers and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.
Dental hard tissue modification and removal using sealed TEA lasers operating at λ=9.6 and 10.6 μm
NASA Astrophysics Data System (ADS)
Fried, Daniel; Murray, Michael W.; Featherstone, John D. B.; Akrivou, Maria; Dickenson, Kevin M.; Duhn, Clifford W.; Ojeda, Orlando P.
1999-05-01
Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed TEA laser systems optimally tuned to the highly absorbed 9.6 μm wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce a laser pulse wit a 100-200 ns gain switched spike followed by a long tail of about 1-4 μs in duration. the pulse duration is well matched to the 1-2 μs thermal relaxation time of the deposited laser energy at 9.6 μm and effectively heats the enamel to temperatures required for surface modification for caries prevention at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk, of pulpal necrosis form excessive heat accumulation is minimized. At higher fluences the high peak power of the gain-switched spike rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By slightly stretching the pulse to reduce the energy distributed in the initial 100-200 ns of the laser pulse, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.
Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.
Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin
2017-07-01
The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2012-07-24
A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.
Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal
NASA Astrophysics Data System (ADS)
Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong
2018-05-01
The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.
Supercritical gasification for the treatment of o-cresol wastewater.
Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo
2006-01-01
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.
Production, purification and utilization of biogas as fuel for internal combustion engine
NASA Astrophysics Data System (ADS)
Hernandez, Noel M.; Villanueva, Eliseo P.
2018-03-01
This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-03
New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve
2010-01-01
A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.
Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.
Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-30
Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves
2016-12-01
A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent. Copyright © 2016 Elsevier Inc. All rights reserved.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.
Mohammad, Balsam T; Veiga, María C; Kennes, Christian
2007-08-15
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.
Ji, Min-Kyu; Yun, Hyun-Shik; Park, Young-Tae; Kabra, Akhil N; Oh, In-Hwan; Choi, Jaeyoung
2015-08-15
The biomass and lipid/carbohydrate production by a green microalga Scenedesmus obliquus under mixotrophic condition using food wastewater and flue gas CO2 with municipal wastewater was investigated. Different dilution ratios (0.5-2%) of municipal wastewater with food wastewater were evaluated in the presence of 5, 10 and 14.1% CO2. The food wastewater (0.5-1%) with 10-14.1% CO2 supported the highest growth (0.42-0.44 g L(-1)), nutrient removal (21-22 mg TN L(-1)), lipid productivity (10-11 mg L(-1)day(-1)) and carbohydrate productivity (13-16 mg L(-1)day(-1)) by S. obliquus after 6 days of cultivation. Food wastewater increased the palmitic and oleic acid contents up to 8 and 6%, respectively. Thus, application of food wastewater and flue gas CO2 can be employed for enhancement of growth, lipid/carbohydrate productivity and wastewater treatment efficiency of S. obliquus under mixotrophic condition, which can lead to development of a cost effective strategy for microalgal biomass production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selective removal of natural occlusal caries by coupling near-infrared imaging with a CO II laser
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fried, Daniel
2008-02-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.
Six-man, self-contained carbon dioxide concentrator system
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Marshall, R. D.; Shumar, J. W.
1974-01-01
A six man, self contained electrochemical carbon dioxide concentrating subsystem was successfully designed and fabricated. It was a preprototype engineering model designed to nominally remove 6.0 kg (13.2 lb) CO2/day with an inlet air CO2 partial pressure of 400 N/sq m (3 mm Hg) and an overcapacity removal capability of 12.0 kg (26.4 lb) CO2/day. The design specifications were later expanded to allow operation at space station prototype CO2 collection subsystem operating conditions.
NASA Astrophysics Data System (ADS)
Kowsari, Elaheh; Abdpour, Soheil
2017-12-01
A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.
Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lingzhi; Wei, Wei; Manke, Jeff
Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system design, identification and selection of tar compounds and 2 mixtures for use in CPO tests, and preparation of CPO catalysts for validation. (Q3 2009 ~ Q4 2009) - Task C: Test CPO with biomass gasification product gas. Optimize CPO performance with selected tar compounds. Optimize CPO performance with multi-component mixtures. Milestones include optimizing CPO catalysts design, collecting CPO experimental data for next stage kinetic modeling and understanding the effect of relative reactivities on ultimate tar conversion and syngas yields. (Q1 2010 ~ Q3 2010) - Task D: Develop tar CPO kinetic model with CPO kinetic model and modeling results as deliverables. (Q3 2010 ~ Q2 2011) - Task E: Project management and reporting. Milestone: Quarterly reports and presentations, final report, work presented at national technical conferences (Q1 2009 ~ Q2 2011) At the beginning of the program, IP landscaping was conducted to understand the operation of various types of biomass gasifiers, their unique syngas/tar compositions and potential tar mitigation options using the catalytic partial oxidation technology. A process simulation model was developed to quantify the system performance and economics impact of CPO tar removal technology. Biomass gasification product compositions used for performance evaluation tests were identified after literature review and system modeling. A reaction system for tar conversion tests was designed, constructed, with each individual component shaken-down in 2009. In parallel, University of Minnesota built a lab-scale unit and evaluated the tar removal performance using catalytic reforming. Benzene was used as the surrogate compound. The biomass gasification raw syngas composition was provided by GE through system studies. In 2010, GE selected different tar compounds and evaluated the tar removal effectiveness of the CPO catalyst. The catalytic performance was evaluated under different operating conditions, including catalyst geometry, S/C ratio, O/C ratio, GHSV, and N2 dilution. An understanding of how to optimize catalytic tar removal efficiency by varying operating conditions has been developed. GE collaborated with UoMn in examining inorganic impurities effects. Catalysts were pre-impregnated with inorganic impurities commonly present in biomass gasification syngas, including Si, Ca, Mg, Na, K, P and S. UoMn performed catalyst characterization and has acquired fundamental understandings of impurities effect on catalytic tar removal. Based on experimental data and the proposed reaction pathway, GE constructed a model to predict kinetic performance for biomass gasification tar cleanup process. Experimental data (eg. tar conversion, reactor inlet and outlet temperatures, product distribution) at different operating conditions were used to validate the model. A good fit between model predictions and experimental data was found. This model will be a valuable tool in designing the tar removal reactor and identifying appropriate operating conditions. We attended the 2011 DOE Biomass Program Thermochemical Platform Review held in Denver, CO from February 16 to 18 and received very positive comments from the review panel. Further, syngas utility and biomass to power/fuel companies expressed strong interest in our tar removal technology.« less
Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong
2018-02-27
Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.
Carbon Dioxide Removal and Conversion to Ocean Alkalinity: Why and How
NASA Astrophysics Data System (ADS)
Rau, G. H.
2014-12-01
Drastic reduction in anthropogenic CO2 emissions is the most obvious way to stabilize atmospheric CO2. However, there is growing risk that effective emissions reduction policies and technologies will not engage soon enough to avoid significant CO2-induced climate and ocean acidification impacts. This realization has lead to increased interest (e.g., IPCC AR5, 2014; NRC/NAS, 2014) in the possibility of pro-actively increasing CO2 removal (CDR) from the atmosphere above the 55% of our emissions that are already removed from air by natural land and ocean processes. While a variety of biotic, abiotic, and hybrid CDR methods have been proposed, those involving geochemistry have much to recommend them. These methods employ the same geochemical reactions that naturally and effectively remove excess planetary CO2 and neutralize ocean acidity on geologic time scales. These reactions proceed when the hydrosphere, acidified by excess air CO2, contacts and reacts with carbonate and silicate minerals (>90% of the Earth's crust), producing dissolved bicarbonates and carbonates, i.e., ocean alkalinity. This alkalinity is eventually removed and the excess carbon stored via carbonate precipitation. So while the importance and global effectiveness of such reactions are not in question, it remains to be seen if this very slow, natural CDR could be safely and cost-effectively accelerated to help manage air CO2 levels on human rather than geologic time scales. Various terrestrial and marine, geochemistry-based CDR methods will be reviewed including: 1) the addition of minerals to soils and the ocean, 2) removal of CO2 from waste streams, esp. from biomass energy, via wet mineral contacting, and 3) the production and use of mineral derivatives, e.g. oxides or hydroxides, as CDR agents. The additional potential environmental benefits (e.g., reversal of ocean carbonate saturation loss) and impacts (e.g., increased mineral extraction), as well as potential economics will also be discussed.
Raghu, G; Balaji, V; Venkateswaran, G; Rodrigue, A; Maruthi Mohan, P
2008-12-01
Removal of radioactive cobalt at trace levels (approximately nM) in the presence of large excess (10(6)-fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 microg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 microg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed.
Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang
2016-06-01
Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dyar, M. D.
1985-01-01
Compositions analogous to lunar green, organge, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples; Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the Moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses.
NASA Technical Reports Server (NTRS)
Dyar, M. D.
1984-01-01
Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples; Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses.
Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G
2016-03-02
The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.
Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S
2015-01-22
This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ambient iron-mediated aeration (IMA) for water reuse.
Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata
2013-02-01
Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.
Xu, Heng; Wang, Kaijun; Holmes, Dawn E
2014-12-01
Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isolation and Expression of NAC Genes during Persimmon Fruit Postharvest Astringency Removal
Min, Ting; Wang, Miao-Miao; Wang, Hongxun; Liu, Xiaofen; Fang, Fang; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song
2015-01-01
NAC genes have been characterized in numerous plants, where they are involved in responses to biotic and abiotic stress, including low oxygen stress. High concentration of CO2 is one of the most effective treatments to remove astringency of persimmon fruit owing to the action of the accumulated anoxia metabolite acetaldehyde. In model plants, NAC genes have been identified as being responsive to low oxygen. However, the possible relationship between NAC transcription factors and persimmon astringency removal remains unexplored. In the present research, treatment with a high concentration of CO2 (95%) effectively removed astringency of “Mopan” persimmon fruit by causing decreases in soluble tannin. Acetaldehyde content increased in response to CO2 treatment concomitantly with astringency removal. Using RNA-seq and Rapid amplification of cDNA ends (RACE), six DkNAC genes were isolated and studied. Transcriptional analysis indicated DkNAC genes responded differentially to CO2 treatment; DkNAC1, DkNAC3, DkNAC5 and DkNAC6 were transiently up-regulated, DkNAC2 was abundantly expressed 3 days after treatment, while the DkNAC4 was suppressed during astringency removal. It is proposed that DkNAC1/3/5/6 could be important candidates as regulators of persimmon astringency removal and the roles of other member are also discussed. PMID:25599529
Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H
2008-01-01
Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.
Pan, Xiaoxue; Yan, Liqing; Qu, Ruijuan; Wang, Zunyao
2018-04-01
The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe 2+ , Cu 2+ , Co 2+ ), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3] 0 : [PS] 0 = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarada, B.; Krishna Prasad, M.; Kishore Kumar, K.; Murthy, Ch V. R.
2017-11-01
The present study attempted to analyze the biosorption behavior of novel biosorbent, Araucaria heterophylla (green plant) biomass, to remove Cd+2 from solutions against various parameters, i.e., initial metal ion concentration, pH, temperature, sorbent dosage and biomass particle size. The maximum biosorption was found to be 90.02% at pH 5.5 and biosorption capacity ( q e) of Cd+2 is 9.2506 mg g-1. The Langmuir and Freundlich equilibrium adsorption isotherms were studied and it was observed that Freundlich model is the best fit than the Langmuir model with correlation co-efficient of 0.999. Kinetic studies indicated that the biosorption process of Cd+2 well followed the pseudo-second-order model with R 2 0.999. Thermodynamic studies observed that the process is exothermic (Δ H ° negative). Free energy change (Δ G °) with negative sign reflected the feasibility and spontaneous nature of the process. The chemical functional -OH groups, CH2 stretching vibrations, C=O carbonyl group of alcohol, C=O carbonyl group of amide, P=O stretching vibrations and -CH groups were involved in the biosorption process. The XRD pattern of the A. heterophylla was found to be mostly amorphous in nature. The SEM studies showed Cd+2 biosorption on selective grains of the biosorbent. It was concluded that A. heterophylla leaf powder can be used as an effective, low-cost, and environmentally friendly biosorbent for the removal of Cd+2 from aqueous solution.
Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien
2007-08-01
We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).
Heavy metal tolerance and removal potential in mixed-species biofilm.
Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana
2017-08-01
The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.
Critical flow rate of anode fuel exhaust in a PEM fuel cell system
NASA Astrophysics Data System (ADS)
Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.
A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.
CO2 decomposition using electrochemical process in molten salts
NASA Astrophysics Data System (ADS)
Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2012-08-01
The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4166 Section 63.4166 Protection of Environment....4166 How do I determine the add-on control device emission destruction or removal efficiency? (a) For... device organic emissions destruction or removal efficiency, using Equation 2 of this section. ER23JY02...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
Tang, Jing; Wu, Shichao; Wang, Tao; Gong, Hao; Zhang, Huabin; Alshehri, Saad M; Ahamad, Tansir; Zhou, Haoshen; Yamauchi, Yusuke
2016-02-03
A novel cage-type highly graphitic porous carbon-Co3O4 (GPC-Co3O4) polyhedron was designed and successfully prepared for the first time by executing a two-step annealing of core-shell structured metal-organic frameworks (MOFs). The low graphitic carbon cores were selectively removed during the secondary annealing in air atmospheres, leaving the interior voids due to their lower thermal stability compared with the graphitic carbon shells. Inspired by the unique properties of the cage-type GPC-Co3O4 polyhedron, GPC-Co3O4 was assembled as an oxygen electrode for a rechargeable Li-O2 battery without the additional conductive agent. The efficient generation of Li2O2 during discharging and the reversible decomposition of Li2O2 during charging were clearly observed by XRD patterns and SEM images. The GPC-Co3O4 polyhedron integrates the beneficial properties, including high electronic conductivity, the rigid cage-type structure consisting of the mesoporous walls and interior void space, as well as the uniformly embedded catalytically active Co3O4 nanoparticles. As a result, the GPC-Co3O4 cathode displays a low charge overpotential of 0.58 V, a good rate capability, and a long cycle life in a Li-O2 battery.
Li, Jianlin; Daniel, Claus; Wood, III, David L.; ...
2016-01-11
Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi 0.5Mn 0.3Co 0.2O 2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.
NASA Astrophysics Data System (ADS)
Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu
2017-12-01
In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.
Mathur, Anil K; Majumder, C B; Chatterjee, Shamba
2007-09-05
Biofiltration of air stream containing mixture of benzene, toluene, ethyl benzene and o-xylene (BTEX) has been studied in a lab-scale biofilter packed with a mixture of compost, sugar cane bagasse and granulated activated carbon (GAC) in the ratio 55:30:15 by weight. Microbial acclimation was achieved in 30 days by exposing the system to average BTEX inlet concentration of 0.4194 gm(-3) at an empty bed residence time (EBRT) of 2.3 min. Biofilter achieved maximum removal efficiency more than 99% of all four compounds for throughout its operation at an EBRT of 2.3 min for an inlet concentration of 0.681 gm(-3), which is quite significance than the values reported in the literature. The results indicate that when the influent BTEX loadings were less than 68 gm(-3)h(-1) in the biofilter, nearly 100% removal could be achieved. A maximum elimination capacity (EC) of 83.65 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 126.5 gm(-3)h(-1) in phase IV. Elimination capacities of BTEX increased with the increase in influent VOC loading, but an opposite trend was observed for the removal efficiency. The production of CO(2) in each phase (gm(-3)h(-1)) was also observed at steady state (i.e. at maximum removal efficiency). Moreover, the high concentrations of nitrogen in the nutrient solution may adversely affect the microbial activity possibly due to the presence of high salt concentrations. Furthermore, an attempt was also made to isolate the most profusely grown BTEX-degrading strain. A Gram-positive strain had a high BTEX-degrading activity and was identified as Bacillus sphaericus by taxonomical analysis, biochemical tests and 16S rDNA gene analysis methods.
Integrated Cr(VI) removal using constructed wetlands and composting.
Sultana, Mar-Yam; Chowdhury, Abu Khayer Md Muktadirul Bari; Michailides, Michail K; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V
2015-01-08
The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparative study of differently treated animal bones for Co(2+) removal.
Dimović, S; Smiciklas, I; Plećas, I; Antonović, D; Mitrić, M
2009-05-15
The objective of the present study was the evaluation of differently treated bovine bones for Co(2+) removal from aqueous media. Powdered bones (B), as well as samples prepared by H(2)O(2) oxidation (BH(2)O(2)) and annealing at 400-1000 degrees C (B400-B1000), were tested as sorbent materials. A combination of XRD, FTIR spectroscopies, DTA/TGA analyses, specific surface area (S(p)) and point of zero charge (pH(PZC)) measurements was utilized for physicochemical characterization of sorbents. Sorption of Co(2+) was studied in batch conditions as a function of pH, contact time and Co(2+) concentration. Initial pH values in the range 4-8 were found optimal for sorption experiments. Equilibrium time of 24h was required in all investigated systems. The maximum sorption capacities differ significantly from 0.078 to 0.495mmol/g, whereas the affinity towards Co(2+) decreased in the order: B400>BH(2)O(2)>B600>B>B800>B1000. The pseudo-second-order model and Langmuir theoretical equation were used for fitting the kinetic and equilibrium data, respectively. Ion-exchange with Ca(2+) and specific cation sorption were identified as main removal mechanisms. The amounts of Co(2+) desorbed from loaded bone sorbents increased with the decrease of pH as well as with the increase of Ca(2+) concentration. Heating at 400 degrees C was found to be an optimal treatment for the production of the Co(2+) removal agent.
Radian, Adi; Mishael, Yael
2012-06-05
Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment.
NASA Astrophysics Data System (ADS)
Viena, V.; Elvitriana; Wardani, S.
2018-03-01
The aims of the study were to investigate the application of banana peels as adsorbent for the removal of CO, NO, NOx and SO2 gases from motorcycles emissions. The effect of differents thermal activation on the characteristics of banana peels adsorbent (BPA) such as moisture content, ash content, volatile matter and fixed carbon has been studied using proximate analysis. The study of Iodine adsorption capacity of BPA was obtained at 952 mg/g adsorbent. Structure and morphology of BPA were characterized by Fourier transform infrared (FTIR) and field emission scanning electron microscopy (SEM). The results showed that BPA could significantly adsorbed the CO and SO2 gases emissions from motorcycles, but not applicable for NO, NOx gases. After 10 minutes of flue gas analysis at idle mode using BPA adsorption tube, CO gas could be totally removed, from initial 19618 ppm to 0 ppm, while SO2 gas could also be totally removed from 24523 ppm to 0 ppm. SEM test showed that temperature of activation had significant effect on the size of pores of BPA formed. BPA was suitable for application in removing CO and SO2 gases emissions from motorcycles and it helps to reduce the green house gas effects of fossil fuel to the environment.
Macroalgae for CO 2 Capture and Renewable Energy - A Pilot Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, Kristine
2011-01-31
The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO 2) through a technology designed to capture CO 2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO 2/ NO x flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where themore » plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO 2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.« less
Is there an Alternative for the Huge Impact-Generated Atmosphere?
NASA Astrophysics Data System (ADS)
Gerasimov, M. V.; Dikov, Y. P.; Yakovlev, O. I.; Wlotzka, F.
1998-01-01
The Earth's primordial atmosphere is considered to be the result of impact degassing during planetary accretion. Experiments on the decomposition of a serpentine and calcite during a shock wave loading showed that a rather efficient decomposition could be achieved beginning with the impact velocities that corresponded to escape velocities of a relatively small (about Moon-sized) planetary embryo. During further accumulation of planetary mass, the decomposition of serpentine and carbonates with the release of H2O and CO2 (gases considered to be the main product of impact degassing) into the primordial atmosphere was considered to be complete. The sink rate of H2O and CO2 from the primordial atmosphere was evaluated mainly as atmospheric impact erosion, thermal and EW-driven escape from the atmosphere, hydration and carboniza60n of surface minerals, dissolution of gases in magma ocean, loss of water for oxidation of Fe, etc. The growth of the atmosphere was considered to be a result of source and sink processes during each impact event. The rehydration of 100% of degassed material during an impact is considered to be an end effect when no hydrous atmosphere is formed. But even a small efficiency of impact degassing (the ratio of volatiles that remain in the atmosphere after an impact to the amount delivered by a planetesimal) was calculated to produce an abundant H2O-CO2 atmosphere. During a set of impact simulation experiments we have investigated the chemistry of volatiles and their interaction behavior with condensing silicates at conditions similar to impact vaporization. First, the experiments showed that the gas mixture was not limited only by H20 and CO2 during high-temperature vaporization of silicates, a wide variety of gases were formed, including oxides [SO2, CO2, CO (CO/CO2 approximately 1), H20] and reduced gas components (H2, H2S, CS2, COS, and hydrocarbons). Second, experiments on high-temperature vaporization of mafic and ultramafic rocks and minerals in water and/or CO2 containing atmospheres showed that condensing silicates provide intense trapping of water and/or CO2 during the hot stage of vapor cloud expansion. The amount of water trapped by formation of different hydroxides could be about 10 wt% of silicate mass. The trapping of atmospheric CO2 is proceeded by the formation of carbonates, carbides, hydrocarbons, and elemental C phases. Preliminary results indicate that Ni is also trapped by formation of -NO3, -H2N, and -CN phases. The maximum concentrations of trapped CO2 and N were measured up to 4 wt% and 0.1 wt% respectively. Trapping is efficient even at low partial gas pressures. Impact-induced trapping of atmospheric gases was not accounted for by theoretical models, but it seems to be an efficient process controlling the atmospheric mass. The ratio of volatiles added to the atmosphere after an impact to the amount delivered by a planetesimal can only be positive but sufficiently negative as well. During the impact of a planetesimal analogous to an ordinary chondrite on the growing Earth with a dense atmosphere, the removal of gases from the atmosphere seems to be more probable as a result of release and trapping processes. The capacity of the sink buffer exceeds the whole planetary volatile inventory. The trapping efficiency of gases inside the vapor plume suggests a model for the formation of a primordial atmosphere of moderate density.
Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin
2018-05-10
A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.
Siriwardane, Ranjani V; Fisher, II, James C
2013-12-31
The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.
Investigation on energy conversion technology using biochemical reaction elements, 2
NASA Astrophysics Data System (ADS)
1994-03-01
For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.
NASA Astrophysics Data System (ADS)
Mohamad, Shurair; Fares, Almomani; Judd, Simon; Bhosale, Rahul; Kumar, Anand; Gosh, Ujjal; Khreisheh, Majeda
2017-05-01
This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, CO2 Capturing from flue gas, removals of organic matter and nutrients from three types of wastewater (primary effluent, secondary effluent and septic effluent). A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% compared to the growth for the systems injected with 5% and 15 % of CO2. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45% and 75 % for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures.
de-Bashan, Luz E; Trejo, Adan; Huss, Volker A R; Hernandez, Juan-Pablo; Bashan, Yoav
2008-07-01
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.
Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping
2015-10-30
In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.
Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong
2018-01-01
Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfusion require further study to be determined. After induction of acute lung injury (ALI) by oleic acid injection, pECLA was implemented in 12 anaesthetized and mechanically ventilated dogs for 48 h. Improved oxygenation [partial oxygen pressure (PaO2) and oxygen saturation (SaO2) was measured by arterial blood gas analysis, and increased by 29 and 18%, respectively] and CO2 elimination (partial CO2 pressure decreased by 43.35%) were obtained after pECLA implementation. A maximum arterio-venous shunt flow of up to 25% of the foundational CO resulted in stable hemodynamics. The pECLA procedure did not elicit any further increase in the concentration of tumor necrosis factor-α, interleukin (IL)-6, IL-8 and endothelin-1 compared with that in the group subjected to oleic acid injection only. In addition, the pECLA procedure had no effect on lactate levels and urine production. In conclusion, pECLA is an efficient and promising strategy for providing a mild to moderate oxygenation and adequate decarboxylation, while avoiding excessive inflammatory cascade response and tissue hypoperfusion in an experimental ALI model. PMID:29434789
Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms.
Kaur, Parvinder; Singh, Simranjeet; Kumar, Vivek; Singh, Nasib; Singh, Joginder
2018-01-28
Wastewater flowing in streams and nallahs across India carries several trace metals, including metalloid arsenic (As), which are considered serious environmental contaminants due to their toxicity, and recalcitrant nature. In this study, we determined the phytoremediation of As by Eichhornia crassipes (Mart.) Solms either alone or in association with plant growth-promoting rhizobacteria. Pseudomonas and Azotobacter inoculation to E. crassipes resulted in enhanced As removal compared to uninoculated control. Co-inoculation with a consortium of Pseudomonas, Azotobacter, Azospirillum, Actinomyces, and Bacillus resulted in a higher As (p < 0.05) phytoaccumulation efficiency. P. aeruginosa strain jogii was found particularly effective in augmenting As removal by E. crassipes. Our findings indicate that the synergistic association of E. crassipes and various rhizobacteria is an effective strategy to enhance removal of As and thus may be utilized as an efficient biological alternative for the removal of this metalloid from wastewaters.
Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan
2017-10-01
Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.
CO2 bubble generation and migration during magma-carbonate interaction
NASA Astrophysics Data System (ADS)
Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.
2015-04-01
We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.
Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang
2017-09-05
[MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.
NASA Astrophysics Data System (ADS)
Zhao, Lingkui; Li, Caiting; Du, Xueyu; Zeng, Guangming; Gao, Lei; Zhai, Yunbo; Wang, Teng; Zhang, Junyi
2018-04-01
The effect of CoOx addition on the performance and structure of V2O5/ZrO2-CeO2 catalyst for simultaneous removal of NO and Hg0 in simulated flue gas was investigated by various methods including SEM, BET, XRD, XPS, H2-TPR and FT-IR. It was found that the introduction of CoOx not only greatly enhanced the redox properties of catalysts, but also increased the catalytic performance for simultaneous removal of NO and Hg0. The CoOx-modified V2O5/ZrO2-CeO2 catalyst displayed excellent catalytic activity for NO conversion (89.6%) and Hg0 oxidation (88.9%) at 250 °C under SCR atmosphere. The synergistic effect among vanadium, cobalt, and the ZrCe support could induce oxygen vacancies formation and promote oxygen mobility via charge transfer. Besides, CoOx could assist vanadium species in rapidly changing the valence by the redox cycle of V5+ + Co2+ ↔ V4+ + Co3+. All the above features contribute to the excellent catalytic performance through CoOx addition.
Potential and costs of carbon dioxide removal by enhanced weathering of rocks
NASA Astrophysics Data System (ADS)
Strefler, Jessica; Amann, Thorben; Bauer, Nico; Kriegler, Elmar; Hartmann, Jens
2018-03-01
The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a-1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US t-1 CO2 removed for dunite, but only at 200 US t-1 CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a-1 for dunite and 4.9 Gt CO2 a-1 for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.
Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate
NASA Astrophysics Data System (ADS)
Lee, R. J.; Jawad, Z. A.; Ahmad, A. L.; Ngo, J. Q.; Chua, H. B.
2017-06-01
With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.
Efficient arsenate removal by magnetite-modified water hyacinth biochar.
Zhang, Feng; Wang, Xin; Xionghui, Ji; Ma, Lijuan
2016-09-01
Magnetic biochars (MW) prepared by chemical co-precipitation of Fe(2+)/Fe(3+) on water hyacinth biomass followed by pyrolysis exhibited important potential in aqueous As(V) elimination. In comparison, MW2501 outperformed other MWs and exhibited the highest As(V) sorption capacity which was estimated to be 7.4 mg g(-1) based on Langmuir-Freundlic model. With solution pH ranging from 3 to 10, As(V) removal efficiency by MW2501 kept stable and consistently higher than 90%. Besides, ∼100% removal of 0.5 mM As(V) can be obtained in the presence of P ≤ 0.1 mM or Cr/Sb ≤ 0.5 mM, indicating a wide applicability of MW2501 for treatment of As-containing water. The predominance of Fe3O4 on MW2501 surface was evidenced by XRD. Ligand exchange between As(V) anion and the hydroxylated surface of Fe3O4 as well as H bond was largely responsible for As(V) sorption as suggested by FTIR. XPS analysis further revealed the dominance of As(V) in the sorbed As on MW2501 surface with co-occurrence of a minor proportion of As(III) (11.45%). In parallel, oxidative transformation of Fe3O4 to Fe2O3 was also suggested by XPS. By a lab-scale column test, the potential and suitability of MW2501 in As-containing water treatment was further confirmed, which could also provide an alternative way to manage and utilize this highly problematic invasive species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Guang; Wang, Jianlong
2017-11-01
The low C/N ratio and low carbohydrate content of sewage sludge limit its application for fermentative hydrogen production. In this study, perennial ryegrass was added as the co-substrate into sludge hydrogen fermentation with different mixing ratios for enhancing hydrogen production. The results showed that the highest hydrogen yield of 60mL/g-volatile solids (VS) added was achieved when sludge/perennial ryegrass ratio was 30:70, which was 5 times higher than that from sole sludge. The highest VS removal of 21.8% was also achieved when sludge/perennial ryegrass ratio was 30:70, whereas VS removal from sole sludge was only 0.7%. Meanwhile, the co-fermentation system simultaneously improved hydrogen production efficiency and organics utilization of ryegrass. Kinetic analysis showed that the Cone model fitted hydrogen evolution better than the modified Gompertz model. Furthermore, hydrogen yield and VS removal increased with the increase of dehydrogenase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream
NASA Astrophysics Data System (ADS)
Aslam, Zaheer; Shawabkeh, Reyad A.; Hussein, Ibnelwaleed A.; Al-Baghli, Nadhir; Eic, Mladen
2015-02-01
Activated carbon (AC) is made from waste oil fly ash (OFA) which is produced in large quantities from power generation plants through combustion of heavy fuel oil. OFA contains ∼80% carbon that makes it suitable for producing AC by physicochemical treatments using a mixture of HNO3, H2SO4, and H3PO4 acids to remove non-carbonaceous impurities. The acid treated OFA is then activated by CO2 at 990 °C. The physico-chemical treatments of OFA have increased the surface area from 4 to 375 m2/g. Surface morphology and pore volume of AC are characterized by combined SEM and EDX techniques. Elemental analysis shows that sulfur content is reduced from 7.1 wt% in untreated OFA to 0.51 wt% for the treated OFA. The AC is further treated with HNO3 and NH4OH solutions in order to attach the carboxylic and amine groups on the surface, respectively. FTIR characterization is used to confirm the presence of the functional groups on the surface of AC at different stages of its development. The performance of functionalized AC samples is tested for the removal of H2S from a synthetic natural gas by carrying out breakthrough experiments. The results from these tests have shown maximum adsorption capacity of 0.3001 mg/g for NH4OH functionalized activated carbon with 86.43% regeneration efficiency. The ammonium hydroxide treated AC is found to be more effective for H2S removal than acid treated AC as confirmed by breakthrough experiments. The results indicate that the presence of more acidic functionalities on the surface reduces the H2S adsorption efficiency from the gas mixture.
Polychronopoulou, Kyriaki; Efstathiou, Angelos M
2009-06-15
A novel Fe-Mn-Zn-Ti-O mixed metal oxide has been developed for efficient low-temperature (25-50 degrees C) removal of H2S from a gas mixture containing 600 ppm H2S, 25 vol% H2, 7.5 vol % CO2, and 1-3 vol% H2O that simulates typical conditions experienced at the outlet of a bioreactor loaded with sulfate metal reducing bacteria (SMRB) that converts toxic Cr6+ and As5+ present in ground and surface waters and soils into nontoxic elements. During the latter conversion H2S gas is produced and has to be treated. In the present work it is demonstrated for the first time that by using the sol-gel synthesis route at given experimental conditions (e.g., metal precursor salts, solvent system, and solution pH), optimum structural properties for the Fe-Mn-Zn-Ti-O solid can be obtained for maximization of H2S uptake. In particular, at 25 degrees C an H2S uptake (0.085 g H2S/g solid) larger by at least a factor of 3 compared to a commercial Ni-based H2S absorbent material was obtained.
The planning of a passive seismic experiment: the Ketzin case
NASA Astrophysics Data System (ADS)
Rossi, G.; Petronio, L.
2009-04-01
In the last years, it has been recognized the importance of using microseismic activity data to gain information on the state and dynamics of a reservoir, notwithstanding the difficulties of recording, localizing the events, interpret them correctly, in terms of developing fractures, or thermal effects. The increasing number of CO2 storage experiments, with the necessity of providing efficient, economic, and long-term monitoring methods, both in the injection and post-injection phases, further encourage the development and improvement of recording and processing techniques. Microseismic signals are typically recorded with downhole sensors. Monitoring with surface sensors is problematic due to increased noise levels and signal attenuation particularly in the near surface. The actual detection distance depends on background noise conditions, seismic attenuation and the microseismic source strength. In the frame of the European project Co2ReMoVe and of the European Network of Excellence Co2GeoNet, a passive seismic experiment was planned in the Ketzin site for geological storage of CO2, a former gas store near Potsdam, object of the CO2SINK European project and inserted also in the European project Co2ReMoVe. Aim of the survey is to complement the CO2-SINK active seismic downhole experiments, adding precious information on the microseismicity induced by stress field changes at the reservoir level and in the overburden, due to the CO2 injection. The baseline survey was done in May 2008 by the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS (Italy), with the support of the Deutsches GeoForschungsZentrum-GFZ (Germany) and the collaboration of the Institut für Geowissenschaftliche Gemeinschaftsaufgaben-GGA (Germany), shortly before the starting of the CO2 injection (June 30th 2008). A continuous monitoring (about 5 days) was performed by 2 downhole 3C geophones, and 3 surface 3C geophones located around the wells. This paper, based on the analysis of the baseline data, is focused on the design and planning of the next seismic passive surveys, optimizing the recording geometry and instrumentation, to record the microseismic events that could be induced by the redistribution of the stresses following the injection, and help the understanding of the injected CO2 behaviour.
Li, Huanxuan; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Chen, Xi; Guan, Zeyu
2016-11-15
In this work, a new effective and relatively stable heterogeneous catalyst of Metal-Organic Framework Co3(BTC)2·12H2O (Co-BTC) has been synthesized and tested to activate peroxymonosulfate (PMS) for removal of refractory dibutyl phthalate (DBP). Co-BTC(A) and Co-BTC(B) were synthesized by different methods, which resulted in different activity towards PMS. The results indicated that Co-BTC(A) showed better performance on DBP degradation. The highest degradation rate of 100% was obtained within 30min. The initial pH showed respective level on DBP degradation with a rank of 5.0>2.75>9.0>7.0>11.0 in PMS/Co-BTC(A) system. No remarkable reduction of DBP was observed in the catalytic activity of Co-BTC(A) at 2nd run as demonstrated by recycling. However, the DBP degradation efficiency decreased by 8.26%, 10.9% and 25.6% in the 3rd, 4th, and 5th runs, respectively. The loss of active catalytic sites of Co(II) from Co-BTC(A) is responsible for the activity decay. Sulfate radicals (SO4(-)) and hydroxyl radicals (OH) were found at pH 2.75. Here, we propose the possible mechanism for activation of PMS by Co-BTC(A), which is involved in homogeneous and heterogeneous reactions in the solutions and the surface of Co-BTC(A), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Gogada, Raghu; Singh, Surya Satyanarayana; Lunavat, Shanti Kumari; Pamarthi, Maruthi Mohan; Rodrigue, Agnes; Vadivelu, Balaji; Phanithi, Prakash-Babu; Gopala, Venkateswaran; Apte, Shree Kumar
2015-11-01
The aim of the present work was to engineer bacteria for the removal of Co in contaminated effluents. Radioactive cobalt ((60)Co) is known as a major contributor for person-sievert budgetary because of its long half-life and high γ-energy values. Some bacterial Ni/Co transporter (NiCoT) genes were described to have preferential uptake for cobalt. In this study, the NiCoT genes nxiA and nvoA from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), respectively, were cloned under the control of the groESL promoter. These genes were expressed in Deinococcus radiodurans in reason of its high resistance to radiation as compared to other bacterial strains. Using qualitative real time-PCR, we showed that the expression of NiCoT-RP and NiCoT-NA is induced by cobalt and nickel. The functional expression of these genes in bioengineered D. radiodurans R1 strains resulted in >60 % removal of (60)Co (≥5.1 nM) within 90 min from simulated spent decontamination solution containing 8.5 nM of Co, even in the presence of >10 mM of Fe, Cr, and Ni. D. radiodurans R1 (DR-RP and DR-NA) showed superior survival to recombinant E. coli (ARY023) expressing NiCoT-RP and NA and efficiency in Co remediation up to 6.4 kGy. Thus, the present study reports a remarkable reduction in biomass requirements (2 kg) compared to previous studies using wild-type bacteria (50 kg) or ion-exchanger resins (8000 kg) for treatment of ~10(5)-l spent decontamination solutions (SDS).
NASA Technical Reports Server (NTRS)
Wright, R. M.; Hwang, K. C.
1973-01-01
The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate.
Tang, Lin; Feng, Haopeng; Tang, Jing; Zeng, Guangming; Deng, Yaocheng; Wang, Jiajia; Liu, Yani; Zhou, Yaoyu
2017-06-15
High concentration of arsenic in acid wastewater and polluted river sediment caused by metallurgical industry has presented a great environmental challenge for decades. Nanoscale zero valent iron (nZVI) can detoxify arsenic-bearing wastewater and groundwater, but the low adsorption capacity and rapid passivation restrict its large-scale application. This study proposed a highly efficient arsenic treatment nanotechnology, using the core-shell Fe@Fe 2 O 3 nanobunches (NBZI) for removal of arsenic in acid wastewater with cyclic stability and transformation of arsenic speciation in sediment. The adsorption capacity of As(III) by NBZI was 60 times as high as that of nanoscale zero valent iron (nZVI) at neutral pH. Characterization of the prepared materials after reaction revealed that the contents of As(III) and As(V) were 65% and 35% under aerobic conditions, respectively, which is the evidence of oxidation included in the reaction process apart from adsorption and co-precipitation. The presence of oxygen was proved to improve the adsorption ability of the prepared NBZI towards As(III) with the removal efficiency increasing from 68% to 92%. In order to further enhance the performance of NBZI-2 in the absence of oxygen, a new Fenton-Like system of NBZI/H 2 O 2 to remove arsenic under the anoxic condition was also proposed. Furthermore, the removal efficiency of arsenic in acid wastewater remained to be 78% after 9 times of cycling. Meanwhile, most of the mobile fraction of arsenic in river sediment was transformed into residues after NBZI treatment for 20 days. The reaction mechanism between NBZI and arsenic was discussed in detail at last, indicating great potential of NBZI for the treatment of arsenic in wastewater and sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Jundie; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei
2018-05-01
3D materials are considered promising for photocatalytic applications in air purification because of their large surface areas, controllability, and recyclability. Here, a series of aerogels consisting of graphitic-carbon nitride (g-C 3 N 4 ) modified with a perylene imide (PI) and graphene oxide (GO) are prepared for nitric oxide (NO) removal under visible-light irradiation. All of the photocatalysts exhibit excellent activity in NO removal because of the strong light absorption and good planarity of PI-g-C 3 N 4 coupled with the favorable charge transport properties of GO, which slow the recombination of electron-hole pairs. The aerogel containing thiophene displays the most efficient NO removal of the aerogel series, with a removal ratio of up to 66%. Density functional theory calculations are conducted to explain this result and recycling experiments are carried out to verify the stability and recyclability of these photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moawed, E A; Radwan, A M
2017-02-15
The commercial polyurethane foam was acid modified to get an inexpensive adsorbent (AM-PUF) has highly surface polarity and sorption capacity. The elemental analysis, scanning electron microscopy, thermal analysis, ultraviolet/visible/infrared spectroscopies and X-ray diffraction were used for characterization of AM-PUF. The surface of AM-PUF has amorphous character (broadband at 2θ, 21.75°) and contains several active sites e.g. NH, OH, CO, CC and COC groups. The electrical conductivity (σ), iodine value and methylene blue index of AM-PUF are 1.7×10 -5 Ω -1 m -1 , 208mg/g and 107mg/g. The AM-PUF has a high efficiency for completely removing (99-100%) of Aldrin, DDT, Endrin, Heptachlor, Heptachlor epoxide and Lindane pesticides in both acidic and alkaline solutions. The removing rates of the organochlorine pesticides from wastewater are very rapid (t 1/2 =22s). The negative value of ΔG (-10.9kJ/mol) for removing of OCPs using AM-PUF showed that the feasibility of the removing process and its spontaneous nature. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyung J.; Cho, David R.
Purpose: To evaluate the safety and the effectiveness of CO{sub 2} splenoportography with the 'skinny' needle. Methods: A flexible, 22 gauge needle ('skinny' needle) was introduced into the exteriorized spleens of five pigs. After checking the intrasplenic positioning withCO{sub 2} injection, increasing doses of CO{sub 2} (10-60cm{sup 3}) were injected using a dedicated CO{sub 2}injector with digital imaging. The puncture sites were observed during and after CO{sub 2} injections, and after removal of the needle.The spleens were then removed for gross and microscopic examination. Results: In all animals digital subtractionCO{sub 2} splenoportograms showed the splenic, extra- and intrahepatic portal veins,more » and the most distal portion of the superiormesenteric vein. No CO{sub 2} extravasation occurred in the spleen. There was no significant bleeding from the puncture site after removal of the needle. Gross and microscopic examination revealed no evidence of splenic rupture or intrasplenic hematoma. Conclusion: CO{sub 2} splenoportography with the 'skinny' needle is a safe and simple method of visualizing the portal vein and its branches. Careful appraisals of the clinical usefulness of the method will be needed in various clinical settings.« less
Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke
2016-02-01
Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan
2017-11-01
The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Karel, M.; Nakhost, Z.
1986-01-01
Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.
Zhu, Rencheng; Li, Shunyi; Wu, Zhenjun; Dumont, Éric
2017-04-01
A composite packing material (CM-5) was prepared in this study, mainly consisting of compost with functional microorganisms, calcium carbonate (CaCO 3 ), perlite, cement and plant fiber. To get stronger compressive strength, mass ratios of these components were optimized based on single factor experiments, and finally adding amounts of perlite, cement, plant fiber, CaCO 3 , compost and binder at 18%, 18%, 7%, 13%, 17% and 27%, respectively. According to the optimum proportion, CM-5 was extruded in cylindrical shape (12 mm in diameter and 20 mm in length) with a bulk density of 470 kg m -3 , a moisture retention capacity of 49% and the microbial counts of × 10 5 CFU g -1 of packing material. The cumulative release rates of total organic carbon (TOC) and total nitrogen (TN) from CM-5 were 3.1% and 6.5%, respectively, after 19 times extraction in distilled water. To evaluate the H 2 S removal capacity, CM-5 was compared with an organic (corncob) and an inorganic (ceramsite) packing material in three biofilters. The results showed that CM-5 had higher H 2 S removal capacity compared with corncob and ceramsite. CM-5 could avoid the large fluctuation of pH value and pressure drop during the operation. The maximum H 2 S removal capacity of CM-5 was 12.9 g m -3 h -1 and the removal efficiency could maintain over 95.4% when the inlet H 2 S loading rate was lower than 11.3 g m -3 h -1 without any addition of nutrients and pH buffer substances. Besides, only 2-3 days were needed for the recovery of biofiltration performance after about two weeks of idle period.
Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J
2012-01-01
Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).
A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2
NASA Astrophysics Data System (ADS)
Kithil, P. W.
2007-12-01
Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.
Lim, Natalie Y. N.; Roco, Constance A.; Frostegård, Åsa
2016-01-01
Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer’s recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of “representative samples” is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis. PMID:27803690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, D.C.; Yu, Z.J.; Chen, Y.
2009-06-15
A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less
Regenerable CO2 collection for spacecraft application
NASA Technical Reports Server (NTRS)
Lance, N., Jr.; Schubert, F. H.
1981-01-01
The design of the CS-3, a three-person capacity preprototype CO2 collection subsystem, is described. It is noted that the function of the CS-3 is to remove metabolically produced CO2 from the Spacelab cabin to maintain atmospheric pCO2 at 400 Pa or less. Results are presented of an extensive parametric/endurance test program characterizing the subsystem's performance. The results demonstrate the suitability of the electrochemical depolarized CO2 concentration concept for possible use in the Space Operations Center. The CS-3 is found to meet or exceed all Regenerative Life Support Evaluation requirements. Specifically, the 0.13 cu m, 46 kg subsystem is able to remove CO2 at an equivalent rate of 3.4 persons from an air stream having a pCO2 of 400 Pa.
Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep
2014-02-01
Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.
NASA Astrophysics Data System (ADS)
Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia
2017-05-01
Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.
NASA Astrophysics Data System (ADS)
Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat
2018-03-01
The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... Broadcasting Services; Benjamin and Cisco, TX; De Beque, CO; Port Lions, AK; Rule and Shamrock, TX AGENCY... 237C3 at Benjamin, Texas; Channel 261C3 at Cisco, Texas; Channel 288C2 at Rule, Texas; and Channel 225C2..., Channel 237C3; by removing Cisco, Channel 261C3; by removing Channel 288C2 at Rule; and by removing...
Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3
Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin
2018-01-01
The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577
Chemically active reduced graphene oxide with tunable C/O ratios.
Compton, Owen C; Jain, Bonny; Dikin, Dmitriy A; Abouimrane, Ali; Amine, Khalil; Nguyen, Sonbinh T
2011-06-28
Organic dispersions of graphene oxide can be thermally reduced in polar organic solvents under reflux conditions to afford electrically conductive, chemically active reduced graphene oxide (CARGO) with tunable C/O ratios, dependent on the boiling point of the solvent. The reductions are achieved after only 1 h of reflux, and the corresponding C/O ratios do not change upon further thermal treatment. Hydroxyl and carboxyl groups can be removed when the reflux is carried out above 155 °C, while epoxides are removable only when the temperature is higher than 200 °C. The increasing hydrophobic nature of CARGO, as its C/O ratio increases, improves the dispersibility of the nanosheets in a polystyrene matrix, in contrast to the aggregates formed with CARGO having lower C/O ratios. The excellent processability of the obtained CARGO dispersions is demonstrated via free-standing CARGO papers that exhibit tunable electrical conductivity/chemical activity and can be used as lithium-ion battery anodes with enhanced Coulombic efficiency.
Sun, Xiaopeng; Hu, Feng; Wan, Rong; Singh, Vikram; Ma, Pengtao; Wang, Jingping
2017-01-01
Two sandwich-type polyoxomolybdates Na8[MO2{Mo2O5(O3PCH3C(O)PO3)}2] (M = Ni2+ (1); Co2+ (2)) were synthesized by one-pot reaction of Na2HPMo12O40·14H2O, 1-hydroxy ethidene diphosphonic acid (HEDP=HOC(CH3)(PO3H2)2), and (1) NiCl2/CoCl2 (2). Compounds 1 and 2 were characterized by single crystal X-ray analysis, X-ray powder diffraction (XRPD), IR spectroscopy, 31P NMR spectra, UV-vis spectroscopy, and thermogravimetric analyses (TGA). Structural analysis reveals that 1 and 2 exhibit similar centrosymmetric structure, which consists of one transition metal (TM) ion sandwiched by two same subunits {Mo2O5(O3PCH3C(O)PO3)}. The clusters 1 and 2 show efficient catalytic activities for oxidation of thioanisole. Moreover, they are catalytically selective for oxidizing thioanisole. Both resuable polyoxomolybdates 1 and 2 catalysts show good thermo- and hydrolytic stability. It is noted that compound 1 shows outstanding catalytic activity for oxidation of various sulfides to corresponding sulfones with 93–100% selectivity at 97–100% conversion in one hour under mild conditions, which is potentially valuable to the removal of organic sulfides. PMID:29027947
Efficiency of small scale carbon mitigation by patch iron fertilization
NASA Astrophysics Data System (ADS)
Sarmiento, J. L.; Slater, R. D.; Dunne, J.; Gnanadesikan, A.; Hiscock, M. R.
2010-11-01
While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC) regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We evaluate the simulations using observations from both artificial and natural iron fertilization experiments at nearby locations. We obtain by far the greatest response to iron fertilization at the Ross Sea site, where sea ice prevents escape of sequestered CO2 during the wintertime, and the CO2 removed from the surface ocean by the biological pump is carried into the deep ocean by the circulation. As a consequence, CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in this model greatly increases the long-term biological response to iron addition as compared with simulations in which the added iron is rapidly scavenged from the ocean.
Efficiency of small scale carbon mitigation by patch iron fertilization
NASA Astrophysics Data System (ADS)
Sarmiento, J. L.; Slater, R. D.; Dunne, J.; Gnanadesikan, A.; Hiscock, M. R.
2009-11-01
While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC) regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We obtain by far the greatest response to iron fertilization at the Ross Sea site. Here the CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. Here the biological response to iron fertilization is comparable to the Ross Sea, but the enhanced biological uptake of CO2 is more spread out in the vertical and thus less effective at leading to removal of CO2 from the atmosphere. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in these models greatly increases the long-term biological response to iron addition as compared with models in which the added iron is rapidly scavenged from the ocean.
Fu, Rongbing; Yang, Yingpin; Xu, Zhen; Zhang, Xian; Guo, Xiaopin; Bi, Dongsu
2015-11-01
In this study, the synthesis and characterization of sepiolite-supported nanoscale zero-valent iron particles (S-NZVI) was investigated for the adsorption/reduction of Cr(VI) and Pb(II) ions. Nanoscale zero-valent iron (NZVI) supported on sepiolite was successfully used to remove Cr(VI) and Pb(II) from groundwater with high efficiency. The removal mechanism was proposed as a two-step interaction including both the physical adsorption of Cr(VI) and Pb(II) on the surface or inner layers of the sepiolite-supported NZVI particles and the subsequent reduction of Cr(VI) to Cr(III) and Pb(II) to Pb(0) by NZVI. The immobilization of the NZVI particles on the surface of sepiolite could help to overcome the disadvantage of NZVI particles, which have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both the effective surface area and reaction performance. The techniques of XRD, XPS, BET, Zeta potential, and TEM were used to characterize the S-NZVI and interaction between S-NZVI and heavy metals. The appropriate S-NZVI dosage was 1.6 g L(-1). The removal efficiency of Cr(VI) and Pb(II) by S-NZVI was not affected to any considerable extent by the presence of co-existing ions, such as H2PO4(-), SiO3(2-), Ca(2+) and HCO3(-). The Cr(VI) and Pb(II) removal kinetics followed a pseudo-first-order rate expression, and both Langmuir isotherm model and Freundlich isotherm model were proposed. The results suggested that supporting NZVI on sepiolite had the potential to become a promising technique for in situ heavy metal-contaminated groundwater remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbar, Nor Azliza; Aziz, Hamidi Abdul; Adlan, Mohd Nordin
2017-10-01
During pumping of groundwater to the surface, the reaction between dissolved iron (Fe2+) and oxygen causes oxidation to ferric iron (Fe3+), thereby increasing the concentration of Fe2+. In this research, the potential application of ozonation with limestone adsorption to remove Fe2+ from groundwater was investigated through batch ozonation and fixed-bed-column studies. Groundwater samples were collected from a University Science Malaysia tube well (initial concentration of Fe2+, Co=1.563 mg/L). The effect of varying ozone dosages (10, 12.5, 15, 17.5, 20, 22.5, and 25 g/Nm3) was analyzed to determine the optimum ozone dosage for treatment. The characteristics of the column data and breakthrough curve were analyzed and predicted using mathematical models, such as Adam Bohart, Thomas, and Yoon-Nelson models. The data fitted well to the Thomas and Yoon-Nelson models, with correlation coefficient r2>0.93, but not to the Adam Bohart (r2=0.47). The total Fe2+ removed was 72% (final concentration of Fe2+, Ct=0.426 mg/L) at the maximum dosage of 25 g/Nm3 through ozonation only. However, the efficiency of Fe2+ removal was increased up to 99.5% (Ct=0.008 mg/L) when the hybrid treatment of ozonation with limestone adsorption was applied in this study. Thus, this integrated treatment was considerably more effective in removing Fe2+ than single ozonation treatment.