Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok
2015-06-25
An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.
Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.
Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi
2018-05-21
The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.
Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing
2017-11-29
Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.
Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture
NASA Astrophysics Data System (ADS)
Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh
2015-01-01
We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.
Kuo, Chiu-Mei; Lin, Tsung-Hsien; Yang, Yi-Chun; Zhang, Wen-Xin; Lai, Jinn-Tsyy; Wu, Hsi-Tien; Chang, Jo-Shu; Lin, Chih-Sheng
2017-11-01
An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO 2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO 2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO 2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL -1 d -1 , respectively. When Chlorella sp. AT1 was aerated with 10% CO 2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL -1 and 0.726gL -1 d -1 , respectively. Our results show that CO 2 utilization efficiency can be markedly increased by intermittent CO 2 aeration and alkaline media as a CO 2 -capturing strategy for alkali-tolerant microalga cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele
2015-03-13
CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Wood, P. C.; Wydeven, T.
1985-01-01
In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.
Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang
2014-07-15
Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.
Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking
NASA Astrophysics Data System (ADS)
Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao
2018-06-01
In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.
Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking
NASA Astrophysics Data System (ADS)
Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao
2018-03-01
In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.
Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency.
Kim, Ga-Yeong; Heo, Jina; Kim, Hee-Sik; Han, Jong-In
2017-08-01
In this study, bicarbonate was proposed as an alternative carbon source to overcome exceedingly low CO 2 fixation efficiency of conventional microalgae cultivation system. 5gL -1 of sodium bicarbonate was found to well support the growth of Dunaliella salina, showing 2.84-fold higher specific growth rate than a bicarbonate-free control. This bicarbonate-fed cultivation also could yield biomass productivity similar to that of CO 2 -based system as long as pH was controlled. While the supplied CO 2 , because of its being a gas, was mostly lost and only 3.59% of it was used for biomass synthesis, bicarbonate was effectively incorporated into the biomass with 91.40% of carbon utilization efficiency. This study showed that the bicarbonate-based microalgae cultivation is indeed possible, and can even become a truly environment-friendly and workable approach, provided that a CO 2 mineralization technology is concomitantly established. Copyright © 2017 Elsevier Ltd. All rights reserved.
CO{sub 2} mitigation potential of efficient demand-side technologies: The case of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, R.M.; Biswas, W.K.; Timilsina, G.R.
This study assesses the techno-economic potential of selected demand-side efficient appliances to mitigate CO{sub 2} emission from the power sector in Thailand under national, consumer, and utility perspectives. A key finding of this study is that about 5.5--7% of the total annual CO{sub 2} emission from the electricity sector of the country can be reduced during 1996--2011 from the national perspective.
Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua
2014-10-20
The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV
2012-03-06
A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.
Economics of carbon dioxide capture and utilization-a supply and demand perspective.
Naims, Henriette
2016-11-01
Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO 2 -based innovations are entering the markets, the possible economic effects of a large-scale CO 2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO 2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO 2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO 2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO 2 sources. For near-term scenarios the demand for the commodity CO 2 can be covered from industrial processes, that emit CO 2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO 2 utilization, CO 2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO 2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO 2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.
Equilibrium model analysis of waste plastics gasification using CO2 and steam.
Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C
2017-12-01
Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.
NASA Astrophysics Data System (ADS)
Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan
2018-03-01
To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.
Reduction of CO2 to C1 products and fuel
Mill, T.; Ross, D.
2002-01-01
Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.
CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System
NASA Astrophysics Data System (ADS)
Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi
We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.
Kim, Hyun Woo; Marcus, Andrew K; Shin, Jeong Hoon; Rittmann, Bruce E
2011-06-01
A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.
Bai, Shuxing; Shao, Qi; Feng, Yonggang; Bu, Lingzheng; Huang, Xiaoqing
2017-06-01
Carbon dioxide (CO 2 ) hydrogenation is an effective strategy for CO 2 utilization, while unsatisfied conversion efficiencies remain great challenges. It is reported herein that zigzag Pt-Co nanowires (NWs) with Pt-rich surfaces and abundant steps/edges can perform as highly active and stable CO 2 hydrogenation catalysts. It is found that tuning the Pt/Co ratio of the Pt-Co NWs, solvents, and catalyst supports could well optimize the CO 2 hydrogenation to methanol (CH 3 OH) with the Pt 4 Co NWs/C exhibiting the best performance, outperforming all the previous catalysts. They are also very durable with limited activity decays after six catalytic cycles. The diffuse reflectance infrared Fourier transform spectroscopy result of CO 2 adsorption shows that the Pt 4 Co NWs/C undergoes the adsorption/activation of CO 2 by forming appropriate carboxylate intermediates, and thus enhancing the CH 3 OH production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance
Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H.
2013-01-01
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.
Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.
Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing
2017-05-24
Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.
Photocatalytic conversion of CO2 into value-added and renewable fuels
NASA Astrophysics Data System (ADS)
Yuan, Lan; Xu, Yi-Jun
2015-07-01
The increasing energy crisis and the worsening global climate caused by the excessive utilization of fossil fuel have boosted tremendous research activities about CO2 capture, storage and utilization. Artificial photosynthesis that uses solar light energy to convert CO2 to form value-added and renewable fuels such as methane or methanol has been consistently drawing increasing attention. It is like killing two birds with one stone since it can not only reduce the greenhouse effects caused by CO2 emission but also produce value added chemicals for alternative energy supplying. This review provides a brief introduction about the basic principles of artificial photosynthesis of CO2 and the progress made in exploring more efficient photocatalysts from the viewpoint of light harvesting and photogenerated charge carriers boosting. Moreover, the undergoing mechanisms of CO2 photoreduction are discussed with selected examples, in terms of adsorption of reactants, CO2 activation as well as the possible reaction pathways. Finally, perspectives on future research directions and open issues in CO2 photoreduction are outlined.
SARS-like cluster of circulating bat coronavirus pose threat for human emergence
Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.
2016-01-01
The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008
Modeling syngas-fired gas turbine engines with two dilutants
NASA Astrophysics Data System (ADS)
Hawk, Mitchell E.
2011-12-01
Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.
Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery.
Attard, Thomas M; McElroy, Con Robert; Hunt, Andrew J
2015-07-31
To date limited work has focused on assessing the economic viability of scCO2 extraction to obtain waxes as part of a biorefinery. This work estimates the economic costs for wax extraction from maize stover. The cost of manufacture (COM) for maize stover wax extraction was found to be € 88.89 per kg of wax, with the fixed capital investment (FCI) and utility costs (CUT) contributing significantly to the COM. However, this value is based solely on scCO2 extraction of waxes and does not take into account the downstream processing of the biomass following extraction. The cost of extracting wax from maize stover can be reduced by utilizing pelletized leaves and combusting the residual biomass to generate electricity. This would lead to an overall cost of € 10.87 per kg of wax (based on 27% combustion efficiency for electricity generation) and €4.56 per kg of wax (based on 43% combustion efficiency for electricity generation). A sensitivity analysis study showed that utility costs (cost of electricity) had the greatest effect on the COM.
Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery
Attard, Thomas M.; McElroy, Con Robert; Hunt, Andrew J.
2015-01-01
To date limited work has focused on assessing the economic viability of scCO2 extraction to obtain waxes as part of a biorefinery. This work estimates the economic costs for wax extraction from maize stover. The cost of manufacture (COM) for maize stover wax extraction was found to be €88.89 per kg of wax, with the fixed capital investment (FCI) and utility costs (CUT) contributing significantly to the COM. However, this value is based solely on scCO2 extraction of waxes and does not take into account the downstream processing of the biomass following extraction. The cost of extracting wax from maize stover can be reduced by utilizing pelletized leaves and combusting the residual biomass to generate electricity. This would lead to an overall cost of €10.87 per kg of wax (based on 27% combustion efficiency for electricity generation) and €4.56 per kg of wax (based on 43% combustion efficiency for electricity generation). A sensitivity analysis study showed that utility costs (cost of electricity) had the greatest effect on the COM. PMID:26263976
Sayari, Abdelhamid; Liu, Qing; Mishra, Prashant
2016-10-06
Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO 2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO 2 from air is an ideal solution to supply pure CO 2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C 16 chains from cetyltrimethylammonium (CTMA + ) cations. The CTMA + layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO 2 (400 ppm CO 2 /N 2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C 16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /g PEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO 2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Gong; Kong, Xian; Lu, Diannan; Wu, Jianzhong; Liu, Zheng
2017-05-10
Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO 2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO 2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO 2 diffusion in hCA-II is a rate-limiting step in the CO 2 diffusion-binding-reaction process. The equilibrium distribution of CO 2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO 2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln 136 contributes to the maximal flux. The simulation results offer a new perspective on the CO 2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO 2 sequestration and utilization.
Techno-economic analysis of supercritical carbon dioxide power blocks
NASA Astrophysics Data System (ADS)
Meybodi, Mehdi Aghaei; Beath, Andrew; Gwynn-Jones, Stephen; Veeraragavan, Anand; Gurgenci, Hal; Hooman, Kamel
2017-06-01
Developing highly efficient power blocks holds the key to enhancing the cost competitiveness of Concentration Solar Thermal (CST) technologies. Supercritical CO2 (sCO2) Brayton cycles have proved promising in providing equivalent or higher cycle efficiency than supercritical or superheated steam cycles at temperatures and scales relevant for Australian CST applications. In this study, a techno-economic methodology is developed using a stochastic approach to determine the ranges for the cost and performance of different components of central receiver power plants utilizing sCO2 power blocks that are necessary to meet the Australian Solar Thermal Initiative (ASTRI) final LCOE target of 12 c/kWh.
Throwing new light on the reduction of CO2.
Ozin, Geoffrey A
2015-03-18
While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German
2012-01-01
Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749
Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German
2012-01-01
Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.
Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo
2016-01-15
With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei
2017-03-06
Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO 2 ) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO 2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO 2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.
Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.
Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang
2016-02-01
A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biradha, Kumar; Maity, Kartik; Karan, Chandan Kumar
2018-06-11
Development of active porous materials that can efficiently adsorb H2 and CO2 are in need due to their practical utilities. Here we present the design and synthesis of an interpenetrated Cu(II)-MOF that is thermally stable, highly porous and can act as a heterogeneous catalyst. The Cu(II)-MOF contains highly symmetric polyhedral metal cluster (Cu24) with cuboctahedron geometry as SBU. The double interpenetration of such huge cluster containing nets provides high density of open metal sites due to which it exhibits remarkable H2 storage capacity (313 cm3g-1 at 1bar and 77K) as well as high CO2 capture ability (159 cm3g-1 at 1bar and 273K). Further, its propensity towards the CO2 sorption utilized for the heterogeneous catalysis of chemical conversion of CO2 into the corresponding cyclic carbonates upon reaction with epoxides with high TON and TOF values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar Water Splitting Utilizing a SiC Photocathode, a BiVO4 Photoanode, and a Perovskite Solar Cell.
Iwase, Akihide; Kudo, Akihiko; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu; Ichikawa, Naoto; Kato, Masashi; Hashimoto, Hideki; Inoue, Haruo; Ishitani, Osamu; Tamiaki, Hitoshi
2017-11-23
We have successfully demonstrated solar water splitting using a newly fabricated photoelectrochemical system with a Pt-loaded SiC photocathode, a CoO x -loaded BiVO 4 photoanode, and a perovskite solar cell. Detection of the evolved H 2 and O 2 with a 100 % Faradaic efficiency indicates that the observed photocurrent was used for water splitting. The solar-to-hydrogen (STH) efficiency was 0.55 % under no additional bias conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser arthroscopic surgery of the shoulder and knee
NASA Astrophysics Data System (ADS)
Smith, Chadwick F.; Johansen, Ed; Bonvalet, Todd; Sutter, Leroy V., Jr.; Marshall, G. June
1990-06-01
The laser is used less in orthopaedics than in any other medical specialty. Improving technology and the impressive effect of the CO2 laser on orthopaedic tissues has, however, accelerated the interest of orthopaedic surgeons over the past two years. The carbon dioxide laser is now commonly used in orthopaedics for difficult to access lesions of the knee - particularly those of a degenerative nature with high surface area and low volume. The results are presented in this paper and reveal no evidence of lasting complications. Although several types of lasers are being experimentally utilized in orthopaedics, the YAG and CO2 lasers are the only lasers commonly utilized. The YAG laser is utilized for shoulder arthroscopy and offers the advantage of passage of energy through fiber and the ability to utilize the tool in an aqueous environment. It is too early to determine as to whether or not the YAG laser or the CO2 laser will be the most efficient energy delivery system for use in the shoulder.
Regulation of Multiple Carbon Monoxide Consumption Pathways in Anaerobic Bacteria
Techtmann, Stephen M.; Colman, Albert S.; Murphy, Michael B.; Schackwitz, Wendy S.; Goodwin, Lynne A.; Robb, Frank T.
2011-01-01
Carbon monoxide (CO), well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH), the protein complex that enables anaerobic CO-utilization, has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extraordinarily resistant to high CO concentrations, thriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: one clade (CooA-1) is found in the majority of CooA-containing bacteria, whereas the other clade (CooA-2) is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of concentrations. PMID:21808633
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.
Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota
2017-03-13
Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1 d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria
NASA Astrophysics Data System (ADS)
Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota
2017-03-01
Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.
Chueh, William C; Falter, Christoph; Abbott, Mandy; Scipio, Danien; Furler, Philipp; Haile, Sossina M; Steinfeld, Aldo
2010-12-24
Because solar energy is available in large excess relative to current rates of energy consumption, effective conversion of this renewable yet intermittent resource into a transportable and dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low conversion efficiencies, particularly with CO(2) reduction, as well as utilization of precious materials have limited the practical generation of solar fuels. By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO(2) and H(2)O, yielding CO and H(2), respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale and design rather than by chemistry.
Liquid Hydrocarbon Production from CO2 : Recent Development in Metal-Based Electrocatalysis.
Daiyan, Rahman; Lu, Xunyu; Ng, Yun Hau; Amal, Rose
2017-11-23
Rising levels of CO 2 accumulation in the atmosphere have attracted considerable interest in technologies capable of CO 2 capture, storage and conversion. The electrochemical reduction of CO 2 into high-value liquid organic products could be of vital importance to mitigate this issue. The conversion of CO 2 into liquid fuels by using photovoltaic cells, which can readily be integrated in the current infrastructure, will help realize the creation of a sustainable cycle of carbon-based fuel that will promote zero net CO 2 emissions. Despite promising findings, significant challenges still persist that must be circumvented to make the technology profitable for large-scale utilization. With such possibilities, this Minireview presents the current high-performing catalysts for the electrochemical reduction of CO 2 to liquid hydrocarbons, address the limitations and unify the current understanding of the different reaction mechanisms. The Minireview also explores current research directions to improve process efficiencies and production rate and discusses the scope of using photo-assisted electrochemical reduction systems to find stable, highly efficient catalysts that can harvest solar energy directly to convert CO 2 into liquid hydrocarbons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode.
Qie, Long; Lin, Yi; Connell, John W; Xu, Jiantie; Dai, Liming
2017-06-06
Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO 2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li 2 CO 3 , making the battery less rechargeable. To make the Li-CO 2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO 2 reduction and evolution reactions and investigate the electrochemical behavior of Li-CO 2 batteries. Here, we demonstrate a rechargeable Li-CO 2 battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO 2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO 2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g -1 . Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A
2016-09-27
The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.
NASA Astrophysics Data System (ADS)
Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao
2014-05-01
Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.
Investigation on energy conversion technology using biochemical reaction elements, 2
NASA Astrophysics Data System (ADS)
1994-03-01
For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.
Energy recovery from waste glycerol by utilizing thermal water vapor plasma.
Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas
2017-04-01
Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2 + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.
Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameri, S.; Aminian, K.; Wasson, J.A.
1991-06-01
The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagationmore » of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.« less
Membrane thinning for efficient CO2 capture
Selyanchyn, Roman; Fujikawa, Shigenori
2017-01-01
Abstract Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed. PMID:29152016
Wei, Liguo; Yang, Yulin; Fan, Ruiqing; Na, Yong; Wang, Ping; Dong, Yuwei; Yang, Bin; Cao, Wenwu
2014-08-07
N,N'-Bis((6-methoxylpyridin-2-yl)methylene)-p-phenylenediimine based four-coordinated d(10) transition metal complexes (named ML, M = Zn, Cd, Hg) were synthesized and employed as co-sensitizers and co-adsorbents in combination with a ruthenium complex N719 in dye sensitized solar cells. After co-sensitization, not only the incident-photon-to-current conversion efficiency is enhanced but also the dark current is reduced. A short circuit current density of 14.46 mA cm(-2), an open circuit voltage of 0.74 V and a fill factor of 0.62 corresponding to an overall conversion efficiency of 6.65% under AM 1.5 G solar irradiation were achieved when ZnL was used as a co-sensitizer, which are much higher than that for DSSCs only sensitized by N719 (5.22%) under the same conditions. The improvement in efficiency is attributed to the fact that N,N'-bis((6-methoxylpyridin-2-yl)methylene)-p-phenylenediimine coordinated complexes overcome the deficiency of N719 absorption in the low wavelength region of the visible spectrum, prevent its aggregation, offset competitive visible light absorption of I3(-) and reduce charge recombination due to formation of an effective cover layer of the dye molecules on the TiO2 surface. As a result, the synthesized complexes are promising candidates as co-adsorbents and co-sensitizers for highly efficient DSSCs.
NASA Astrophysics Data System (ADS)
Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas
2016-04-01
Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.
2012-01-01
Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co-overexpressing enzymes of the methanol utilization pathway significantly affected the specific growth rate, the methanol uptake and the specific productivity of recombinant P. pastoris MutS strains. A recently developed methodology to determine strain specific parameters based on dynamic batch cultivations proved to be a valuable tool for fast strain characterization and thus early process development. PMID:22330134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, J F; Cherepy, N; Upadhye, R
Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance ofmore » common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from coal, petroleum or natural gas. For coal and lignite, such hydrocarbons may be produced by cyclic hydrogenation (hydropyrolysis), with the recycle of the hydrogen intermediate following pyrolysis. Starting with common CH{sub x} feedstock for carbon black manufacture, the ash entrained into the carbon (<0.03%) does not jeopardize cell life or enter into the economic estimates for power generation. The value of carbon (relative to hydrogen) as an electrochemical fuel derives from thermodynamic aspects of the C/O{sub 2} reaction. First, the entropy change of the C/O{sub 2} reaction is nearly zero, allowing theoretical efficiencies ({Delta}G(T)/{Delta}H{sub i298}) of 100% (cf. H{sub 2}/O{sub 2} theoretical efficiency of 70%). Second, the thermodynamic activity of the carbon fuel and the CO{sub 2} product are spatially and temporally invariant. This allows 100% utilization of the carbon fuel in single pass (cf. hydrogen utilizations of 75-85%). The carbodmelt slurry is non-explosive at operating temperatures. The total energy efficiency for the C/O{sub 2} is roughly 80% for cell operation at practical rates. In summary, what gives this route its fundamental advantage in energy conversion is that it derives the greatest possible fraction of energy of the fossil resource from an electrochemical reaction (C+O{sub 2} = CO{sub 2}) that is comparatively simple to operate at efficiencies of 80%, in a single-pass cell configuration without bottoming turbine cycles.« less
Ca-Embedded C2N: an efficient adsorbent for CO2 capture.
Liu, Yuzhen; Meng, Zhaoshun; Guo, Xiaojian; Xu, Genjian; Rao, Dewei; Wang, Yuhui; Deng, Kaiming; Lu, Ruifeng
2017-10-25
Carbon dioxide as a greenhouse gas causes severe impacts on the environment, whereas it is also a necessary chemical feedstock that can be converted into carbon-based fuels via electrochemical reduction. To efficiently and reversibly capture CO 2 , it is important to find novel materials for a good balance between adsorption and desorption. In this study, we performed first-principles calculations and grand canonical Monte Carlo (GCMC) simulations, to systematically study metal-embedded carbon nitride (C 2 N) nanosheets for CO 2 capture. Our first-principles results indicated that Ca atoms can be uniformly trapped in the cavity center of C 2 N structure, while the transition metals (Sc, Ti, V, Cr, Mn, Fe, Co) are favorably embedded in the sites off the center of the cavity. The determined maximum number of CO 2 molecules with strong physisorption showed that Ca-embedded C 2 N monolayer is the most promising CO 2 adsorbent among all considered metal-embedded materials. Moreover, GCMC simulations revealed that at room temperature the gravimetric density for CO 2 adsorbed on Ca-embedded C 2 N reached 50 wt% at 30 bar and 23 wt% at 1 bar, higher than other layered materials, thus providing a satisfactory system for the CO 2 capture and utilization.
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-07-01
A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.
Ji, Jinli; Zhang, Jiyu; Yang, Liutianyi; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang
2017-06-01
Anaerobic digestion (AD) is an effective way to utilize the abundant resource of corn stover (CS). In this light, Ca(OH) 2 pretreatment alone, steam explosion (SE) pretreatment alone, and co-pretreatment of Ca(OH) 2 and SE were applied to improve the digestion efficiency of CS. Results showed that AD of co-pretreated CS with 1.0% Ca(OH) 2 and SE at 1.5 MPa achieved the highest cumulative methane yield of [Formula: see text], which was 61.54% significantly higher (p < .01) than untreated CS. The biodegradability value of CS after co-pretreatment enhanced from 43.03% to 69.52%. Methane yield could be well fitted by the first-order model and the modified Gompertz model. In addition, composition and structural changes of CS after pretreatment were analyzed by a fiber analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The validated results indicated that co-pretreatment of Ca(OH) 2 and SE was efficient to improve the digestion performance of CS and might be a suitable method for agricultural waste pretreatment in the future AD industry.
AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization
Ingram-Smith, Cheryl; Smith, Kerry S.
2007-01-01
Adenosine monophosphate (AMP)-forming acetyl-CoA synthetase (ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1) is a key enzyme for conversion of acetate to acetyl-CoA, an essential intermediate at the junction of anabolic and catabolic pathways. Phylogenetic analysis of putative short and medium chain acyl-CoA synthetase sequences indicates that the ACSs form a distinct clade from other acyl-CoA synthetases. Within this clade, the archaeal ACSs are not monophyletic and fall into three groups composed of both bacterial and archaeal sequences. Kinetic analysis of two archaeal enzymes, an ACS from Methanothermobacter thermautotrophicus (designated as MT-ACS1) and an ACS from Archaeoglobus fulgidus (designated as AF-ACS2), revealed that these enzymes have very different properties. MT-ACS1 has nearly 11-fold higher affinity and 14-fold higher catalytic efficiency with acetate than with propionate, a property shared by most ACSs. However, AF-ACS2 has only 2.3-fold higher affinity and catalytic efficiency with acetate than with propionate. This enzyme has an affinity for propionate that is almost identical to that of MT-ACS1 for acetate and nearly tenfold higher than the affinity of MT-ACS1 for propionate. Furthermore, MT-ACS1 is limited to acetate and propionate as acyl substrates, whereas AF-ACS2 can also utilize longer straight and branched chain acyl substrates. Phylogenetic analysis, sequence alignment and structural modeling suggest a molecular basis for the altered substrate preference and expanded substrate range of AF-ACS2 versus MT-ACS1. PMID:17350930
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.
Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen
2018-06-07
Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bansal, Sunil; Durrett, Timothy P.
2016-11-08
Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. Inmore » vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. As a result, this improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants.« less
Bansal, Sunil; Durrett, Timothy P.
2016-01-01
Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Sunil; Durrett, Timothy P.
Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. Inmore » vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. As a result, this improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants.« less
Nguyen, Diem-Mai Kim; Imai, Tsuyoshi; Dang, Thanh-Loc Thi; Kanno, Ariyo; Higuchi, Takaya; Yamamoto, Koichi; Sekine, Masahiko
2018-03-01
This paper presents the results from using a physical absorption process to absorb gaseous CO 2 mixed with N 2 using water by producing tiny bubbles via a liquid-film-forming device (LFFD) that improves the solubility of CO 2 in water. The influence of various parameters-pressure, initial CO 2 concentration, gas-to-liquid ratios, and temperature-on the CO 2 removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method (RSM) with a central composite design (CCD). Based on the analysis, a high efficiency of CO 2 capture can be reached in conditions such as low pressure, high CO 2 concentration at the inlet, low gas/liquid ratio, and low temperature. For instance, the highest removal efficiency in the RSM-CCD experimental matrix of nearly 80% occurred for run number 20, which was conducted at 0.30MPa, CO 2 concentration of 35%, gas/liquid ratio of 0.71, and temperature of 15°C. Furthermore, the coefficients of determination, R 2 , were 0.996 for the removal rate and 0.982 for the absorption rate, implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values. The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO 2 capture in air pollution treatment. Copyright © 2017. Published by Elsevier B.V.
Heart failure in primary care: co-morbidity and utilization of health care resources.
Carmona, Montserrat; García-Olmos, Luis M; García-Sagredo, Pilar; Alberquilla, Ángel; López-Rodríguez, Fernando; Pascual, Mario; Muñoz, Adolfo; Salvador, Carlos H; Monteagudo, José L; Otero-Puime, Ángel
2013-10-01
In order to ensure proper management of primary care (PC) services, the efficiency of the health professionals tasked with such services must be known. Patients with heart failure (HF) are characterized by advanced age, high co-morbidity and high resource utilization. To ascertain PC resource utilization by HF patients and variability in the management of such patients by GPs. Descriptive, cross-sectional study targeting a population attended by 129 GPs over the course of 1 year. All patients with diagnosis of HF in their clinical histories were included, classified using the Adjusted Clinical Group system and then grouped into six resource utilization bands (RUBs). Resource utilization and Efficiency Index were both calculated. One hundred per cent of patients with HF were ranked in RUBs 3, 4 and 5. The highest GP visit rate was 20 and the lowest in excess of 10 visits per year. Prescription drug costs for these patients ranged from €885 to €1422 per patient per year. Health professional efficiency varied notably, even after adjustment for co-morbidity (Efficiency Index Variation Ratio of 28.27 for visits and 404.29 for prescription drug cost). Patients with HF register a high utilization of resources, and there is great variability in the management of such patients by health professionals, which cannot be accounted for by the degree of case complexity.
NASA Astrophysics Data System (ADS)
Echigo, Mitsuaki; Shinke, Norihisa; Takami, Susumu; Tabata, Takeshi
Natural gas fuel processors have been developed for 500 W and 1 kW class residential polymer electrolyte fuel cell (PEFC) systems. These fuel processors contain all the elements—desulfurizers, steam reformers, CO shift converters, CO preferential oxidation (PROX) reactors, steam generators, burners and heat exchangers—in one package. For the PROX reactor, a single-stage PROX process using a novel PROX catalyst was adopted. In the 1 kW class fuel processor, thermal efficiency of 83% at HHV was achieved at nominal output assuming a H 2 utilization rate in the cell stack of 76%. CO concentration below 1 ppm in the product gas was achieved even under the condition of [O 2]/[CO]=1.5 at the PROX reactor. The long-term durability of the fuel processor was demonstrated with almost no deterioration in thermal efficiency and CO concentration for 10,000 h, 1000 times start and stop cycles, 25,000 cycles of load change.
Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production.
Ran, Jingrun; Zhu, Bicheng; Qiao, Shi-Zhang
2017-08-21
Transitional metals are widely used as co-catalysts boosting photocatalytic H 2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting
2018-01-01
Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2016-06-01
An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization
NASA Astrophysics Data System (ADS)
Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.
2011-12-01
Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.
Computational Modeling of Photocatalysts for CO2 Conversion Applications
NASA Astrophysics Data System (ADS)
Tafen, De; Matranga, Christopher
2013-03-01
To make photocatalytic conversion approaches efficient, economically practical, and industrially scalable, catalysts capable of utilizing visible and near infrared photons need to be developed. Recently, a series of CdSe and PbS quantum dot-sensitized TiO2 heterostructures have been synthesized, characterized, and tested for reduction of CO2 under visible light. Following these experiments, we use density functional theory to model these heterostructured catalysts and investigate their CO2 catalytic activity. In particular, we study the nature of the heterostructure interface, charge transport/electron transfer, active sites and the electronic structures of these materials. The results will be presented and compared to experiments. The improvement of our understanding of the properties of these materials will aid not only the development of more robust, visible light active photocatalysts for carbon management applications, but also the development of quantum dot-sensitized semiconductor solar cells with high efficiencies in solar-to-electrical energy conversion.
CoCoNUT: an efficient system for the comparison and analysis of genomes
2008-01-01
Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477
NASA Astrophysics Data System (ADS)
Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer
2013-06-01
The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.
2017-01-01
Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of ∼2.3 mmol g–1. This is on par with the best solution-phase amine chemical capture technologies available today. PMID:28378994
Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.
Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia
2018-06-20
Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.
Biomass in the manufacture of industrial products—the use of proteins and amino acids
Peter, Francisc; Sanders, Johan
2007-01-01
The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals: the replacement of fossil resources with CO2 neutral biomass. Allied with this, the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion to either materials or (functional) chemicals with the aid of co-reagents such as ammonia and various process steps to introduce functionalities such as -NH2 into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this to bypass the use, and preparation of, co-reagents as well as eliminating various process steps by utilizing suitable biomass-based precursors for the production of chemicals. It is the aim of this mini-review to describe the scope of the possibilities to generate current functionalized chemical materials using amino acids from biomass instead of fossil resources, thereby taking advantage of the biomass structure in a more efficient way than solely utilizing biomass for the production of fuels or electricity. PMID:17387469
U.S. Army’s Ground Vehicle Energy Storage R&D Programs & Goals
2011-09-13
Results Li-ion Pack Testing ( NCA ) 13 CO CO2 Analyte Peak Concentration (ppm) 15 min Average Concentration (ppm) Carbon Monoxide (CO) 108939 81588...Carbonate (DMC) 21734 14307 Methyl Butyrate (MB) 47198 33368 • NCA Cell Chemistry • 173V, 6.4kWhr Pack • Prototype pack design (to determine worst case...including advanced prognostic and diagnostic capability) • O092-EP7 – Enhancing the Utilization Efficiency of Cathode Materials in the Li ion
Solar Reforming of Carbon Dioxide to Produce Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Schuetzle; Robert Schuetzle
2010-12-31
This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies.more » The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.« less
Bell, M J; Wall, E; Russell, G; Simm, G; Stott, A W
2011-07-01
This study compared the environmental impact of a range of dairy production systems in terms of their global warming potential (GWP, expressed as carbon dioxide equivalents, CO(2)-eq.) and associated land use, and explored the efficacy of reducing said impact. Models were developed using the unique data generated from a long-term genetic line × feeding system experiment. Holstein-Friesian cows were selected to represent the UK average for milk fat plus protein production (control line) or were selected for increased milk fat plus protein production (select line). In addition, cows received a low forage diet (50% forage) with no grazing or were on a high forage (75% forage) diet with summer grazing. A Markov chain approach was used to describe the herd structure and help estimate the GWP per year and land required per cow for the 4 alternative systems and the herd average using a partial life cycle assessment. The CO(2)-eq. emissions were expressed per kilogram of energy-corrected milk (ECM) and per hectare of land use, as well as land required per kilogram of ECM. The effects of a phenotypic and genetic standard deviation unit improvement on herd feed utilization efficiency, ECM yield, calving interval length, and incidence of involuntary culling were assessed. The low forage (nongrazing) feeding system with select cows produced the lowest CO(2)-eq. emissions of 1.1 kg/kg of ECM and land use of 0.65 m(2)/kg of ECM but the highest CO(2)-eq. emissions of 16.1t/ha of the production systems studied. Within the herd, an improvement of 1 standard deviation in feed utilization efficiency was the only trait of those studied that would significantly reduce the reliance of the farming system on bought-in synthetic fertilizer and concentrate feed, as well as reduce the average CO(2)-eq. emissions and land use of the herd (both by about 6.5%, of which about 4% would be achievable through selective breeding). Within production systems, reductions in CO(2)-eq. emissions per kilogram of ECM and CO(2)-eq. emissions per hectare were also achievable by an improvement in feed utilization. This study allowed development of models that harness the biological trait variation in the animal to improve the environmental impact of the farming system. Genetic selection for efficient feed use for milk production according to feeding system can bring about reductions in system nutrient requirements, CO(2)-eq. emissions, and land use per unit product. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Solar powered blackbody-pumped lasers
NASA Astrophysics Data System (ADS)
Christiansen, Walter H.; Sirota, J. M.
1991-02-01
A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.
Wastewater: A Potential Bioenergy Resource.
Prakash, Jyotsana; Sharma, Rakesh; Ray, Subhasree; Koul, Shikha; Kalia, Vipin Chandra
2018-06-01
Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H 2 and CH 4 ). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H 2 and CH 4 production despite its huge potential for complete waste degradation.
Zhang, Jian; Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Bao, Jie
2013-04-01
Cassava cellulose accounts for one quarter of cassava residues and its utilization is important for improving the efficiency and profit in commercial scale cassava ethanol industry. In this study, three scenarios of cassava cellulose utilization for ethanol production were experimentally tested under same conditions and equipment. Based on the experimental results, a rigorous flowsheet simulation model was established on Aspen plus platform and the cost of cellulase enzyme and steam energy in the three cases was calculated. The results show that the simultaneous co-saccharification of cassava starch/cellulose and ethanol fermentation process (Co-SSF) provided a cost effective option of cassava cellulose utilization for ethanol production, while the utilization of cassava cellulose from cassava ethanol fermentation residues was not economically sound. Comparing to the current fuel ethanol selling price, the Co-SSF process may provide an important choice for enhancing cassava ethanol production efficiency and profit in commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Lijun; Hu, Xumin; Hao, Liang
2018-06-01
Via an ultrasonic-assisted in-situ etching method, BiOBr modified Bi 2 O 2 CO 3 microstructures were fabricated in short time. The samples were characterized by XRD, SEM, TEM, BET, UV-Vis, XPS and PL spectra methods. Rhodamine B (RhB) aqueous solution was applied to evaluate the photocatalytic activities of the as-prepared samples. The results showed that the sample prepared at pH of 2 in which the molar ratio of BiOBr and Bi 2 O 2 CO 3 was 0.69:1 had the largest specific surface area, the best utilization for ultraviolet and visible light and efficient separation efficiency of charge carriers, contributing to its best photocatalytic activity. O 2 - was proved to be main active species in RhB photodegradation process. Last, the photocatalytic mechanism of the composite was discussed in detail. Copyright © 2018 Elsevier B.V. All rights reserved.
Macroalgae for CO 2 Capture and Renewable Energy - A Pilot Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, Kristine
2011-01-31
The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO 2) through a technology designed to capture CO 2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO 2/ NO x flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where themore » plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO 2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.« less
Lee, Tse-Min; Tseng, Yu-Fei; Cheng, Chieh-Lun; Chen, Yi-Chuan; Lin, Chih-Sheng; Su, Hsiang-Yen; Chow, Te-Jin; Chen, Chun-Yen; Chang, Jo-Shu
2017-01-01
Fermentative production of lactic acid from algae-based carbohydrates devoid of lignin has attracted great attention for its potential as a suitable alternative substrate compared to lignocellulosic biomass. A Chlorella sp. GD mutant with enhanced thermo-tolerance was obtained by mutagenesis using N -methyl- N '-nitro- N -nitrosoguanidine to overcome outdoor high-temperature inhibition and it was used as a feedstock for fermentative lactic acid production. The indoor experiments showed that biomass, reducing sugar content, photosynthetic O 2 evolution rate, photosystem II activity ( F v / F m and F v '/ F m '), and chlorophyll content increased as temperature, light intensity, and CO 2 concentration increased. The mutant showed similar DIC affinity and initial slope of photosynthetic light response curve (α) as that of the wild type but had higher dissolved inorganic carbon (DIC) utilization capacity and maximum photosynthesis rate ( P max ). Moreover, the PSII activity ( F v '/ F m ') in the mutant remained normal without acclimation process after being transferred to photobioreactor. This suggests that efficient utilization of incident high light and enhanced carbon fixation with its subsequent flux to carbohydrates accumulation in the mutant contributes to higher sugar and biomass productivity under enriched CO 2 condition. The mutant was cultured outdoors in a photobioreactor with 6% CO 2 aeration in hot summer season in southern Taiwan. The harvested biomass was subjected to separate hydrolysis and fermentation (SHF) for lactic acid production with carbohydrate concentration equivalent to 20 g/L glucose using the lactic acid-producing bacterium Lactobacillus plantarum 23. The conversion rate and yield of lactic acid were 80% and 0.43 g/g Chlorella biomass, respectively. These results demonstrated that the thermo-tolerant Chlorella mutant with high photosynthetic efficiency and biomass productivity under hot outdoor condition is an efficient fermentative feedstock for large-scale lactic acid production.
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Busby, Stacy A.; Abney, Morgan B.; Perry, Jay L.; Knox, James C.
2012-01-01
The utilization of CO2 to produce (or recycle) life support consumables, such as O2 and H2O, and to generate propellant fuels is an important aspect of NASA's concept for future, long duration planetary exploration. One potential approach is to capture and use CO2 from the Martian atmosphere to generate the consumables and propellant fuels. Precision Combustion, Inc. (PCI), with support from NASA, continues to develop its regenerable adsorber technology for capturing CO2 from gaseous atmospheres (for cabin atmosphere revitalization and in-situ resource utilization applications) and its Sabatier reactor for converting CO2 to methane and water. Both technologies are based on PCI's Microlith(R) substrates and have been demonstrated to reduce size, weight, and power consumption during CO2 capture and methanation process. For adsorber applications, the Microlith substrates offer a unique resistive heating capability that shows potential for short regeneration time and reduced power requirements compared to conventional systems. For the Sabatier applications, the combination of the Microlith substrates and durable catalyst coating permits efficient CO2 methanation that favors high reactant conversion, high selectivity, and durability. Results from performance testing at various operating conditions will be presented. An effort to optimize the Sabatier reactor and to develop a bench-top Sabatier Development Unit (SDU) will be discussed.
Potential for reducing air pollution from oil refineries.
Karbassi, A R; Abbasspour, M; Sekhavatjou, M S; Ziviyar, F; Saeedi, M
2008-10-01
Islamic Republic of Iran has to invest 95 billion US$ for her new oil refineries to the year 2045. At present, the emission factors for CO(2), NO( x ) and SO(2) are 3.5, 4.2 and 119 times higher than British refineries, respectively. In order to have a sustainable development in Iranian oil refineries, the government has to set emission factors of European Community as her goal. At present CO(2) per Gross Domestic Production (GDP) in the country is about 2.7 kg CO(2) as 1995's USD value that should be reduced to 1.25 kg CO(2)/GDP in the year 2015. Total capital investment for such reduction is estimated at 346 million USD which is equal to 23 USD/ton of CO(2). It is evident that mitigation of funds set by Clean Development Mechanism (3 to 7 USD/tons of CO(2)) is well below the actual capital investment needs. Present survey shows that energy efficiency promotion potential in all nine Iranian oil refineries is about 165,677 MWh/year through utilization of more efficient pumps and compressors. Better management of boilers in all nine refineries will lead to a saving of 273 million m(3) of natural gas per year.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmugam; Su, Song-Chuan; Kao, Shon-Chen; Teng, Hsisheng; Lee, Yuh-Lang
2015-01-01
Propionitrile (PPN) or 3-methoxypropionitrile (MPN) is mixed with acetonitrile (ACN) to prepare ACN/PPN and ACN/MPN co-solvents and used to fabricate polymer gel electrolytes (PGEs) of dye-sensitized solar cells (DSSCs), aiming at improving the stability of gel-state DSSCs. Co-solvents with various ratios are utilized to prepare PGEs using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as the gelator. The ratio effects of the co-solvents on the properties of PGEs and the performances of the corresponding DSSCs are studied. The results show that in-situ gelation of the gel-electrolytes can still be performed at the presence of 40% PPN or 30% MPN. However, increasing the composition of PPN and MPN in the co-solvents triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the viscosity. Therefore, the energy conversion efficiencies of the cells decrease as a result. However, the introduction of PPN and MPN elevates the gel-to-liquid transition temperature (Tp) of the PGEs which significantly increases the stability of the gel-state DSSCs. Comparing between the effects of the two co-solvents, PPN and MPN have similar effect on elevation of Tp, but the conductivity of PGEs and the corresponding cell efficiency are higher for the ACN/PPN system, attributed to its lower viscosity compared with ACN/MPN system. By using the ACN/PPN (60/40) co-solvent at the presence of TiO2 fillers, gel-state cell with an efficiency of 8.3% can be achieved, which is even higher than that obtained by the liquid state cell (8%). After 500 h test at 60 °C, the cell can retain 95.4% of its initial efficiency.
Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu
2011-10-05
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.
Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja
2016-08-01
Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance.
Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels
Singh, Shardendu K.; Reddy, Vangimalla R.
2017-01-01
Elevated carbon dioxide (eCO2) often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K) deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM) and two deficient (0.50 and 0.02 mM) levels of K under ambient CO2 (aCO2; 400 μmol mol−1) and eCO2 (800 μmol mol−1). Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet). In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl), and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K), photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum K fertilization for maximum crop productivity under eCO2. Thus, eCO2 compensated, at least partially, for the reduced soybean growth and seed yield under 0.5 mM K supply, but severe K deficiency completely suppressed the eCO2-enhanced seed yield. PMID:28642785
Bioethanol production from raffinate phase of supercritical CO2 extracted Stevia rebaudiana leaves.
Coban, Isik; Sargin, Sayit; Celiktas, Melih Soner; Yesil-Celiktas, Ozlem
2012-09-01
The extracts of Stevia rebaudiana are marketed as dietary supplements and utilized as natural sweetening agent in food products. Subsequent to extraction on industrial scale, large quantities of solid wastes are produced. The aim of this study was to investigate the bioconversion efficiency of supercritical CO(2) extracted S. rebaudiana residues. Therefore, leaves were extracted with supercritical CO(2) and ethanol mixture in order to obtain glycosides, then the raffinate phase was hydrolyzed by both dilute acid and various concentrations of cellulase and β-glucosidase cocktail. The maximum yield of reducing sugars reached 25.67 g/L under the optimal conditions of enzyme pretreatment, whereas 32.00 g/L was reached by consecutive enzymatic and acid hydrolyses. Bioethanol yield (20 g/L, 2.0% inoculum, 2 days) based on the sugar consumed was 45.55% corresponding to a productivity of 0.19 kg/m(3)h which demonstrates challenges to be utilized as a potential feedstock for the production of bioethanol. Copyright © 2012 Elsevier Ltd. All rights reserved.
Earth Battery: An Approach for Reducing the Carbon and Water Intensity of Energy
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Bielicki, J. M.; Randolph, J.
2016-12-01
Mitigating climate change requires a range of measures, including increased use of renewable and low-carbon energy and reducing the CO2 intensity of fossil energy use. Our approach, called the Earth Battery, uses the storage of supercritical CO2, N2, or pressurized air to enable utility-scale energy storage needed for increased use of variable renewable energy and low-carbon baseload power. When deployed with CO2, the Earth Battery is designed to address the major deployment barriers to CO2 capture, utilization, and storage (CCUS) by managing overpressure and creating a business case for CO2 storage. We use the huge fluid and thermal storage capacity of the earth, together with overpressure driven by CO2, N2, or pressurized air storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, fossil) thermal resources, as well as excess energy from electric grids. The storage of CO2, N2, or air enables the earth to function as a low-carbon energy-system hub. Stored CO2, N2, or air plays three key roles: (1) as a supplemental fluid that creates pressure to efficiently recirculate working fluids that store and recover energy, (2) as a working fluid for efficient, low-water-intensity electricity conversion, and (3) as a shock absorber to allow diurnal and seasonal recharge/discharge cycles with minimal pressure oscillations, providing large pressure-storage capacity, with reduced risk of induced seismicity or leakage of stored CO2. To keep reservoir pressures in a safe range, a portion of the produced brine is diverted to generate water. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, N2/air, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and heated when power supply exceeds demand and depressurized when demand exceeds supply. The Earth Battery is designed for locations where a permeable geologic formation is overlain by an impermeable formation that constrains migration of buoyant CO2, N2/air, and heated brine. Such geologic conditions exist over half of the contiguous United States. This work was performed under the auspices of the USDOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Min-Sik; Kang, Sung Gyun; Lee, Jung-Hyun; Choi, Jong-Soon; Kim, Seung Il; Chung, Young-Ho
2012-01-01
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H2-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H2-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MSE. A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H2 production via an electron transport mechanism and that CO2 produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1. PMID:22232491
"Long life" DC brush motor for use on the Mars surveyor program
NASA Technical Reports Server (NTRS)
Braun, David; Noon, Don
1998-01-01
DC brush motors have several qualities which make them very attractive for space flight applications. Their mechanical commutation is simple and lightweight, requiring no external sensing and control in order to function properly. They are extremely efficient in converting electrical energy into mechanical energy. Efficiencies over 80% are not uncommon, resulting in high power throughput to weight ratios. However, the inherent unreliability and short life of sliding electrical contacts, especially in vacuum, have driven previous programs to utilize complex brushless DC or the less efficient stepper motors. The Mars Surveyor Program (MSP'98) and the Shuttle Radar Topography Mission (SRTM) have developed a reliable "long life" brush type DC motor for operation in low temperature, low pressure CO2 and N2, utilizing silver-graphite brushes. The original intent was to utilize this same motor for SRTM's space operation, but the results thus far have been unsatisfactory in vacuum. This paper describes the design, test, and results of this development.
NASA Technical Reports Server (NTRS)
Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.
2005-01-01
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.
Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S
2016-07-02
The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.
Zhang, Shouren; Dang, Qing-Lai
2013-01-01
White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.
Kai, Tianhan; Zhou, Min; Duan, Zhiyao; Henkelman, Graeme A; Bard, Allen J
2017-12-27
The electrocatalytic reduction of CO 2 has been studied extensively and produces a number of products. The initial reaction in the CO 2 reduction is often taken to be the 1e formation of the radical anion, CO 2 •- . However, the electrochemical detection and characterization of CO 2 •- is challenging because of the short lifetime of CO 2 •- , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO 2 •- in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO 2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO 2 •- produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO 2 •- depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 8 M -1 s -1 ) and half-life (10 ns) of CO 2 •- can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO 2 •- , oxalate, can also be determined quantitatively. Furthermore, the formal potential (E 0 ') and heterogeneous rate constant (k 0 ) for CO 2 reduction were determined with different quaternary ammonium electrolytes. The significant difference in k 0 is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.
Directly converting CO2 into a gasoline fuel
Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian
2017-01-01
The direct production of liquid fuels from CO2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na–Fe3O4/HZSM-5 catalyst, which can directly convert CO2 to gasoline-range (C5–C11) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe3O4, Fe5C2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO2 utilization to liquid fuels. PMID:28462925
Directly converting CO2 into a gasoline fuel.
Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian
2017-05-02
The direct production of liquid fuels from CO 2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO 2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na-Fe 3 O 4 /HZSM-5 catalyst, which can directly convert CO 2 to gasoline-range (C 5 -C 11 ) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO 2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe 3 O 4 , Fe 5 C 2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO 2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO 2 utilization to liquid fuels.
NASA Astrophysics Data System (ADS)
Han, Hongyan; Zhu, Weiyao; Long, Yunqian; Song, Hongqing; Huang, Kun
2018-02-01
This paper provides an experimental method to deal with the problems of low oil recovery ratio faced with water flooding utilizing the CO2/water alternate displacement technology. A series of CO2/water alternate flooding experiments were carried out under 60°C and 18.4MPa using high temperature / pressure microscopic visualization simulation system. Then, we used the image processing technique and software to analyze the proportion of remaining oil in the displacement process. The results show that CO2 can extract the lighter chemical components in the crude oil and make it easier to form miscible phase, which can reduce the viscosity and favorable mobility ratio of oil. What’s more, the displacement reduces the impact of gas channeling, which can achieve an enlarged sweeping efficiency to improve filtration ability. In addition, the CO2 dissolved in oil and water can greatly reduce the interfacial tension, which can increase the oil displacement efficiency in a large extent. Generally speaking, the recovery rate of residual oil in the micro - model can be elevated up to 15.89% ∼ 16.48% under formation condition by alternate displacement.
Zhou, Xuemei; Shen, Xuetao; Xia, Zhaoming; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-09-16
Nano-/micrometer multiscale hierarchical structures not only provide large surface areas for surface redox reactions but also ensure efficient charge conductivity, which is of benefit for utilization in areas of electrochemical energy conversion and storage. Herein, hollow fluffy cages (HFC) of Co3O4, constructed of ultrathin nanosheets, were synthesized by the formation of Co(OH)2 hollow cages and subsequent calcination at 250 °C. The large surface area (245.5 m2 g(-1)) of HFC Co3O4 annealed at 250 °C ensures the efficient interaction between electrolytes and electroactive components and provides more active sites for the surface redox reactions. The hierarchical structures minimize amount of the grain boundaries and facilitate the charge transfer process. Thin thickness of nanosheets (2-3 nm) ensures the highly active sites for the surface redox reactions. As a consequence, HFC Co3O4 as the supercapacitor electrode exhibits a superior rate capability, shows an excellent cycliability of 10,000 cycles at 10 A g(-1), and delivers large specific capacitances of 948.9 and 536.8 F g(-1) at 1 and 40 A g(-1), respectively. Catalytic studies of HFC Co3O4 for oxygen evolution reaction display a much higher turnover frequency of 1.67×10(-2) s(-1) in pH 14.0 KOH electrolyte at 400 mV overpotential and a lower Tafel slope of 70 mV dec(-1). HFC Co3O4 with the efficient electrochemical activity and good stability can remain a promising candidate for the electrochemical energy conversion and storage.
Shi, Yi; Gulevich, Anton V; Gevorgyan, Vladimir
2014-12-15
A general and efficient NH insertion reaction of rhodium pyridyl carbenes derived from pyridotriazoles was developed. Various NH-containing compounds, including amides, anilines, enamines, and aliphatic amines, smoothly underwent the NH insertion reaction to afford 2-picolylamine derivatives. The developed transformation was further utilized in a facile one-pot synthesis of imidazo[1,5-a]pyridines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light Absorbers and Catalysts for Solar to Fuel Conversion
NASA Astrophysics Data System (ADS)
Kornienko, Nikolay I.
Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous solvents, I aimed to heterogenize a class of molecular porphyrin catalysts into a 3D mesoscopic porous catalytic structure in the form of a metal-organic framework (MOF). To do so, I initially developed a growth for thin film MOFs that were embedded with catalytic groups in their linkers. Next, I utilized these thin film MOFs grown on conductive substrates and functionalized with cobalt porphyrin units as 3D porous CO2 reduction catalysts. This new class of catalyst exhibited high efficiency, selectivity, and stability in neutral pH aqueous electrolytes. Finally, as a last chapter of my work, I explored hybrid inorganic/biological CO2 reduction pathways. Specifically, I used time-resolved spectroscopic and biochemical techniques to investigate charge transfer pathways from light absorber to CO2-derived acetate in acetogenic self-sensitized bacteria.
Akao, Ken-ichi; Okubo, Yusei; Inoue, Yoshio; Sakurai, Minoru
2002-10-11
Form II is a kind of metastable crystalline form of trehalose anhydrate, and it is easily converted to the dihydrate crystal by absorbing water in moist atmosphere at room temperature (Akao et al., Carbohydr. Res. 2001, 334, 233-241). It can be utilized as an edible and nontoxic desiccant, and thus its efficient production from the dihydrate is significant from a viewpoint of industrial applications. In this study, we attempt to extract crystal water from the dihydrate using supercritical CO(2). We examine the dependence of extraction efficiency on the extraction time, the temperature and pressure of the fluid. Then, FTIR measurements are carried out to detect the extracted water and to identify the polymorphic phase of the sugar sample after the extraction treatment. In particular, the so-called first derivative euclidean distance analysis for IR spectra is shown to be quite useful for the structural identification. Consequently, we demonstrate that form II is produced from the dihydrate through supercritical CO(2) fluid extraction if appropriate temperature and pressure conditions (around 80 degrees C and 20 MPa) are maintained.
Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
Buelens, Lukas C; Galvita, Vladimir V; Poelman, Hilde; Detavernier, Christophe; Marin, Guy B
2016-10-28
Efficient CO 2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a "super-dry" CH 4 reforming reaction for enhanced CO production from CH 4 and CO 2 We used Ni/MgAl 2 O 4 as a CH 4 -reforming catalyst, Fe 2 O 3 /MgAl 2 O 4 as a solid oxygen carrier, and CaO/Al 2 O 3 as a CO 2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH 4 conversion to syngas over Ni and CO 2 extraction and storage as CaCO 3 CO 2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier's principle). Super-dry reforming uses up to three CO 2 molecules per CH 4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin. Copyright © 2016, American Association for the Advancement of Science.
Yang, Jin; Wang, Wei David; Dong, Zhengping
2018-08-15
In the present work, a facile and environment-friendly route is illustrated for the efficient fabrication of highly dispersed PdCo nanoparticles (NPs) by modified cotton-derived carbon fibers (PdCo/CCF). Firstly, commercial cotton was impregnated with CoCl 2 , followed by pyrolysis under high calcination temperature to obtain the Co NPs modified CCF sample (Co/CCF). Secondly, Co/CCF was treated with Pd(AcO) 2 aqueous solution, wherein, through a spontaneous replacement reaction process, Pd 2+ is reduced to metallic Pd and mostly covered on the surface of the Co NPs. Thus, the PdCo/CCF catalyst was obtained avoiding the use of toxic reductants like NaBH 4 , NH 2 NH 2 and HCHO. The PdCo/CCF catalyst exhibits excellent catalytic activity and recyclability for the reduction of 4-nitrophenol and other nitroarenes compared with Pd/CCF, PdCo NPs and many other noble metals based catalysts. The reasons could be attributed to the uniformly dispersed and accessible PdCo NPs on the surface of the CCF, and the Pd atoms deposited on the Co NPs surface that makes the Pd active sites available for optimum use. The PdCo/CCF catalyst also exhibits potential application for catalytic reduction of nitroarenes in a fixed bed reactor under mild reaction conditions. Furthermore, the PdCo/CCF catalyst can be magnetically recycled and reused for at least ten cycles without either losing catalytic activity or leaching of Pd active sites, thereby confirming its superior stability. Copyright © 2018 Elsevier Inc. All rights reserved.
One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.
Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun
2015-01-01
Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. Copyright © 2014 Elsevier Inc. All rights reserved.
A Hierarchical Z-Scheme α-Fe2 O3 /g-C3 N4 Hybrid for Enhanced Photocatalytic CO2 Reduction.
Jiang, Zhifeng; Wan, Weiming; Li, Huaming; Yuan, Shouqi; Zhao, Huijun; Wong, Po Keung
2018-03-01
The challenge in the artificial photosynthesis of fossil resources from CO 2 by utilizing solar energy is to achieve stable photocatalysts with effective CO 2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO 2 to CO, yielding a CO evolution rate of 27.2 µmol g -1 h -1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C 3 N 4 alone (10.3 µmol g -1 h -1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO 2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C 3 N 4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO 2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung
2015-12-01
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less
A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao
2016-05-01
In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits. © The Author(s) 2016.
Chen, Wenhui; Lei, Yalin
2017-02-01
Identifying the impact path on factors of CO 2 emissions is crucial for the government to take effective measures to reduce carbon emissions. The most existing research focuses on the total influence of factors on CO 2 emissions without differentiating between the direct and indirect influence. Moreover, scholars have addressed the relationships among energy consumption, economic growth, and CO 2 emissions rather than estimating all the causal relationships simultaneously. To fill this research gaps and explore overall driving factors' influence mechanism on CO 2 emissions, this paper utilizes a path analysis model with latent variables (PA-LV) to estimate the direct and indirect effect of factors on China's energy-related carbon emissions and to investigate the causal relationships among variables. Three key findings emanate from the analysis: (1) The change in the economic growth pattern inhibits the growth rate of CO 2 emissions by reducing the energy intensity; (2) adjustment of industrial structure contributes to energy conservation and CO 2 emission reduction by raising the proportion of the tertiary industry; and (3) the growth of CO 2 emissions impacts energy consumption and energy intensity negatively, which results in a negative impact indirectly on itself. To further control CO 2 emissions, the Chinese government should (1) adjust the industrial structure and actively develop its tertiary industry to improve energy efficiency and develop low-carbon economy, (2) optimize population shifts to avoid excessive population growth and reduce energy consumption, and (3) promote urbanization steadily to avoid high energy consumption and low energy efficiency.
Applying DER-CAM for IIT Microgrid Explansion Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad; Li, Zuyi; Wang, Jianhui
The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an economic and environmental model of customer DER adoption. This model has been in development at the Lawrence Berkeley National Laboratory since 2000. The objective of the model is to find optimal DER investments while minimizing total energy costs or carbon dioxide (CO2) emissions, or achieving a weighted objective that simultaneously considers both criteria. The Illinois Institute of Technology (IIT) Microgrid project started in August 2008, and the majority of the project was completed in May 2013. IIT Microgrid, funded mostly by a grant from the U.S. Department of Energy asmore » well as State and philanthropic contributions, empowers the campus consumers with the objective of establishing a smart microgrid that is highly reliable, economically viable, environmentally friendly, fuel-efficient, and resilient in extreme circumstances with a self-healing capability. In this project, we apply DER-CAM to study the expansion planning of the IIT Microgrid. First, the load data, environmental data, utility data, and technology data for the IIT Microgrid are gathered and organized to follow the DER-CAM input requirements. Then, DERCAM is applied to study the expansion planning of the IIT Microgrid for different cases, where different objectives in DER-CAM and different utility conditions are tested. Case 1 considers the objective of minimizing energy costs with fixed utility rates and 100% electric utility availability. Case 2 considers the objective of minimizing energy costs with real-time utility rates and 4 emergency weeks when the IIT Microgrid does not have access to the electric utility grid and has to operate in island mode. In Case 3, the utility rates are restored to fixed values and 100% electric utility availability is assumed, but a weighted multi-objective (Obj: a × costs + b × CO2 emissions, where a and b are weights for cost minimization and CO2 emissions minimization) is utilized to consider both energy costs and CO2 emissions. On the basis of the test results, the IIT Microgrid has the potential to benefit from investments in more DER technologies. The current annual energy costs and CO2 emissions for the IIT Microgrid are 6,495.1 k$ and 39,838.5 metric tons, respectively. This represents the baseline for this project.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.
Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang
2017-08-30
One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.
Designing overall stoichiometric conversions and intervening metabolic reactions
Chowdhury, Anupam; Maranas, Costas D.
2015-11-04
Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e.,more » minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C 2+ metabolites with higher carbon efficiency.« less
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
Jo, Suah; Yoon, Jinkyung; Lee, Sun-Mi; Um, Youngsoon; Han, Sung Ok; Woo, Han Min
2017-09-20
Xylose-negative Corynebacterium glutamicum has been engineered to utilize xylose as the sole carbon source via either the xylose isomerase (XI) pathway or the Weimberg pathway. Heterologous expression of xylose isomerase and overexpression of a gene encoding for xylulose kinase enabled efficient xylose utilization. In this study, we show that two functionally-redundant transcriptional regulators (GntR1 and GntR2) present on xylose repress the pentose phosphate pathway genes. For efficient xylose utilization, pentose phosphate pathway genes and a phosphoketolase gene were overexpressed with the XI pathway in C. glutamicum. Overexpression of the genes encoding for transaldolase (Tal), 6-phosphogluconate dehydrogenase (Gnd), or phosphoketolase (XpkA) enhanced the growth and xylose consumption rates compared to the wild-type with the XI pathway alone. However, co-expression of these genes did not have a synergetic effect on xylose utilization. For the succinate production from xylose, overexpression of the tal gene with the XI pathway in a succinate-producing strain improved xylose utilization and increased the specific succinate production rate by 2.5-fold compared to wild-type with the XI pathway alone. Thus, overexpression of the tal, gnd, or xpkA gene could be helpful for engineering C. glutamicum toward production of value-added chemicals with efficient xylose utilization. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E
2016-03-01
An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance of CO2 enrich CNG in direct injection engine
NASA Astrophysics Data System (ADS)
Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.
2015-12-01
This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.
Improved Light Utilization in Camelina: Center for Enhanced Camelina Oil (CECO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
PETRO Project: The Danforth Center will optimize light utilization in Camelina, a drought-resistant, cold-tolerant oilseed crop. The team is modifying how Camelina collects sunlight, engineering its topmost leaves to be lighter in color so sunlight can more easily reflect onto lower parts of the plant. A more uniform distribution of light would improve the efficiency of photosynthesis. Combined with other strategies to produce more oil in the seed, Camelina would yield more oil per plant. The team is also working to allow Camelina to absorb carbon dioxide (CO2) more efficiently, providing more carbon input for oil production. The goal ismore » to improve light utilization and oil production to the point where Camelina produces enough fuel precursors per acre to compete with other fuels.« less
Lian, Zichao; Pan, Donglai; Wang, Wenchao; Zhang, Dieqing; Li, Guisheng; Li, Hexing
2017-10-01
A solar-light double illumination photoelectrocatalytic cell (SLDIPEC) was fabricated for autonomous CO 2 reduction and O 2 evolution with the aid of photosystem II (PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires (Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO 2 conversion to methanol, with a high evolution rate (41.94mmol/hr), owing to fast electron transfer from PS-II to Cu foam. Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage (0.5V), and a suitable conduction band potential of Si (-0.6eV) allowed CO 2 to be easily reduced to CH 3 OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO 2 (8.03mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy. Copyright © 2017. Published by Elsevier B.V.
Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva
2018-05-01
The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carbon dioxide recycling: emerging large-scale technologies with industrial potential.
Quadrelli, Elsje Alessandra; Centi, Gabriele; Duplan, Jean-Luc; Perathoner, Siglinda
2011-09-19
This Review introduces this special issue of ChemSusChem dedicated to CO(2) recycling. Its aim is to offer an up-to-date overview of CO(2) chemical utilization (inorganic mineralization, organic carboxylation, reduction reactions, and biochemical conversion), as a continuation and extension of earlier books and reviews on this topic, but with a specific focus on large-volume routes and projects/pilot plants that are currently emerging at (pre-)industrial level. The Review also highlights how some of these routes will offer a valuable opportunity to introduce renewable energy into the existing energy and chemical infrastructure (i.e., "drop-in" renewable energy) by synthesis of chemicals from CO(2) that are easy to transport and store. CO(2) conversion therefore has the potential to become a key pillar of the sustainable and resource-efficient production of chemicals and energy from renewables. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yong; Wen, Xin; Cui, Xin; Wojtas, Lukasz; Zhang, X Peter
2017-01-25
Donor-substituted diazo reagents, generated in situ from sulfonyl hydrazones in the presence of base, can serve as suitable radical precursors for Co(II)-based metalloradical catalysis (MRC). The cobalt(II) complex of D 2 -symmetric chiral porphyrin [Co(3,5-Di t Bu-Xu(2'-Naph)Phyrin)] is an efficient metalloradical catalyst that is capable of activating different N-arylsulfonyl hydrazones for asymmetric radical cyclopropanation of a broad range of alkenes, affording the corresponding cyclopropanes in high yields with effective control of both diastereo- and enantioselectivity. This Co(II)-based metalloradical system represents the first catalytic protocol that can effectively utilize donor-type diazo reagents for asymmetric olefin cyclopropanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, John; Stanislowski, Joshua; Tolbert, Scott
Utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to maintain operations and address carbon reduction. Subtask 2.1 – Pathway to Low-Carbon Lignite Utilization focused on several research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two postcombustion capture solvents were tested, one from CO 2 Solutions Inc. and one from ARCTECH, Inc. The CO 2 Solutions solvent had been evaluated previously, and the company had incorporated the concept of a rotating packed bed (RPB) to replacemore » the traditional packed columns typically used. In the limited testing performed at the Energy & Environmental Research Center (EERC), no CO 2 reduction benefit was seen from the RPB; however, if the technology could be scaled up, it may introduce some savings in capital expense and overall system footprint. Rudimentary tests were conducted with the ARCTECH solvent to evaluate if it could be utilized in a spray tower configuration contactor and capture CO 2, SO 2, and NO x. This solvent after loading can be processed to make an additional product to filter wastewater, providing a second-tier usable product. Modeling of the RPB process for scaling to a 550-MW power system was also conducted. The reduced cost of RPB systems combined with a smaller footprint highlight the potential for reducing the cost of capturing CO 2; however, more extensive testing is needed to truly evaluate their potential for use at full scale. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation (CSIRO) were evaluated through precombustion testing. These had also been previously tested and were improved by CSIRO for this test campaign. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was good, and they may be good candidates for medium-pressure gasifiers, but much more scale-up work is needed. Next-generation power cycles are currently being developed and show promise for high efficiency, and the utilization of supercritical CO 2 to drive a turbine could significantly increase cycle efficiency over traditional steam cycles. The EERC evaluated pressurized oxy-combustion technology from the standpoint of CO 2 purification. If impurities can be removed, the costs for CO 2 capture can be lowered significantly over postcombustion capture systems. Impurity removal consisted of a simple water scrubber referred to as the DeSNO x process. The process worked well, but corrosion management is crucial to its success. A model of this process was constructed. Finally, an integrated gasification combined-cycle (IGCC) system model, developed by the Massachusetts Institute of Technology (MIT), was modified to allow for the modeling of membrane systems in the IGCC process. This modified model was used to provide an assessment of the costs of membrane use at full scale. An economic estimation indicated a 14% reduction in cost for CO 2 separation over the SELEXOL™ process. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FE0024233. Nonfederal sponsors for this project were the North Dakota Industrial Commission, Basin Electric Power Cooperative, and Allete, Inc. (including BNI Coal and Minnesota Power).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.
2016-06-15
Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might bemore » due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.« less
No Cost – Low Cost Compressed Air System Optimization in Industry
NASA Astrophysics Data System (ADS)
Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.
2018-04-01
Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.
USDA-ARS?s Scientific Manuscript database
This study investigates the utility of integrating remotely sensed estimates of leaf chlorophyll (Cab) into a therma-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LU...
Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi
2016-06-01
The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua
2013-01-01
The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925
Chen, Di-Ming; Tian, Jia-Yue; Chen, Min; Liu, Chun-Sen; Du, Miao
2016-07-20
A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.
Development of a preprototype sabatier CO2 reduction subsystem
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Birbara, P.
1980-01-01
A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.
Design of experimental system for supercritical CO2 fracturing under confining pressure conditions
NASA Astrophysics Data System (ADS)
Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.
2018-03-01
Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas
Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less
Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen
2014-01-03
This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.
Methodology to model the energy and greenhouse gas emissions of electronic software distributions.
Williams, Daniel R; Tang, Yinshan
2012-01-17
A new electronic software distribution (ESD) life cycle analysis (LCA) methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative, physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO(2)e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO(2)e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.
Lorenzen, Jan; Igl, Nadine; Tippelt, Marlene; Stege, Andrea; Qoura, Farah; Sohling, Ulrich; Brück, Thomas
2017-06-01
Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO 2 , they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO 2 ) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7-80 MPa), temperature (20-200 °C) and CO 2 to biomass ratio (20-200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO 2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO 2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO 2 extraction plant.
NASA Astrophysics Data System (ADS)
Tezcan, Burcu; Ulusal, Fatma; Egitmen, Asım; Guzel, Bilgehan
2018-05-01
Ligand-free palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNT) were prepared by the supercritical carbon dioxide (scCO2) deposition method using a novel scCO2-soluble Pd organometallic complex as a precursor. The precursor with the perfluoroalkyl chain group was synthesized and identified by microanalytic methods. The deposition was carried out at the temperature of 363.15 K and pressure of 27.6 MPa CO2. The prepared metallic nanoparticles were obtained with an average size of 2 nm. Pd/MWCNT was utilized as a heterogeneous catalyst in Suzuki cross-coupling reaction. The nanocatalyst was found very effective in Suzuki reaction and it could also be recovered easily from the reaction media and reused over several cycles without significant loss of catalytic activity under mild conditions. [Figure not available: see fulltext.
Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin
2014-08-01
This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.
NASA Astrophysics Data System (ADS)
Gao, Mu; Lu, Xiaofeng; Nie, Guangdi; Chi, Maoqiang; Wang, Ce
2017-12-01
Recently, much attention has been paid on the nanomaterial-based artificial enzymes due to their tunable catalytic activity, high stability and low cost compared to the natural enzymes. Different from the peroxidase mimics which have been studied for several decades, nanomaterials with oxidase-like property are burgeoning in the recent years. In this paper, hierarchical carbon nanofibers (CNFs)/MnCo2O4.5 nanofibers as efficient oxidase mimics are reported. The products are synthesized by an electrospinning technique and an electrochemcial deposition process in which the CNFs are used as the working electrode where MnCo2O4.5 nanosheets deposit on. The resulting binary metal oxide-based nanocomposites exhibit a good oxidase-like activity toward the oxidations of 3,3‧,5,5‧tetramethylbenzi-dine (TMB), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) salt and o-phenylenediamine (OPD) without exogenous addition of H2O2. The system of CNFs/MnCo2O4.5-TMB can be used as a candidate to detect sulfite and ascorbic acid via a colorimetric method with a high sensitivity. This work provides the efficient utilization and potential applications of binary metal oxide-based nanocomposites with oxidase activities in biosensors and other biotechnologies.
NASA Technical Reports Server (NTRS)
Raper, C. D.; Tolley-Henry, L.
1989-01-01
An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.
NASA Astrophysics Data System (ADS)
Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K. I.; Suzuki, T. M.; Kajino, T.; Motohiro, T.
2013-12-01
We developed a new hybrid photocatalyst for CO2 reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (ECBM) of the semiconductor and the CO2 reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO2 to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO2 reduction with a TiO2 photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.
Jabeen, Gugan; Farooq, Robina
2016-09-01
Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
Carbon Management in the Electric Power Industry
NASA Astrophysics Data System (ADS)
Stringer, John
2002-03-01
Approximately 53States in 2000 came from the combustion of coal in Rankine cycle plant; 16principally in Brayton cycle or combined cycle units. Electricity generation is responsible for 36amthropogenic CO2. This compares with 32transportation sector, but since the electric utility generators are large fixed sources it is likely that any legislation designed to reduce CO2 production will adress the utility generators first. Over the last 100 years there has been a continuous decrease in the carbon fraction of the fuels used for energy production world wide, and it is expected that this will continue, principally as a result of the increasing fraction of natural gas. It appears probable that the retirement of the existing nuclear fleet will be delayed by relicensing, and it seems more possible that new nuclear plant will be built than seemed likely even a couple of years ago. The impact of renewables should be increasing, but currently only about 2way currently, and without some considerable incentives, the rate of increase in this component over the next twenty years will probably be small. Currently, hydroelectric plants account for 7indication that this will increase appreciably. At the moment, a significant change would appear to require the capture of CO2 from the exhaust of the combustion plants, and particularly the large existing fleet of coal-fired Rankine units. Following the capture, the CO2 must then be sequestered in secure long-term locations. In addition, increases in the efficiency of power generation, and increases in the efficiency of end use leading to reductions in the energy intensity of the Gross Domestic Product, will be necessary. This paper will review the current state of art in these various approaches to the problem.
Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security
NASA Astrophysics Data System (ADS)
Pawar, R.
2017-12-01
Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Devin; Stoffregen, Torsten; Rigby, Sean
This topical report presents the techno-economic evaluation of a 550 MWe supercritical pulverized coal (PC) power plant utilizing Illinois No. 6 coal as fuel, integrated with 1) a previously presented (for a subcritical PC plant) Linde-BASF post-combustion CO 2 capture (PCC) plant incorporating BASF’s OASE® blue aqueous amine-based solvent (LB1) [Ref. 6] and 2) a new Linde-BASF PCC plant incorporating the same BASF OASE® blue solvent that features an advanced stripper interstage heater design (SIH) to optimize heat recovery in the PCC process. The process simulation and modeling for this report is performed using Aspen Plus V8.8. Technical information frommore » the PCC plant is determined using BASF’s proprietary thermodynamic and process simulation models. The simulations developed and resulting cost estimates are first validated by reproducing the results of DOE/NETL Case 12 representing a 550 MWe supercritical PC-fired power plant with PCC incorporating a monoethanolamine (MEA) solvent as used in the DOE/NETL Case 12 reference [Ref. 2]. The results of the techno-economic assessment are shown comparing two specific options utilizing the BASF OASE® blue solvent technology (LB1 and SIH) to the DOE/NETL Case 12 reference. The results are shown comparing the energy demand for PCC, the incremental fuel requirement, and the net higher heating value (HHV) efficiency of the PC power plant integrated with the PCC plant. A comparison of the capital costs for each PCC plant configuration corresponding to a net 550 MWe power generation is also presented. Lastly, a cost of electricity (COE) and cost of CO 2 captured assessment is shown illustrating the substantial cost reductions achieved with the Linde-BASF PCC plant utilizing the advanced SIH configuration in combination with BASF’s OASE® blue solvent technology as compared to the DOE/NETL Case 12 reference. The key factors contributing to the reduction of COE and the cost of CO 2 captured, along with quantification of the magnitude of the reductions achieved by each of these factors, are also discussed. Additionally, a high-level techno-economic analysis of one more highly advanced Linde-BASF PCC configuration case (LB1-CREB) is also presented to demonstrate the significant impact of innovative PCC plant process design improvements on further reducing COE and cost of CO 2 captured for overall plant cost and performance comparison purposes. Overall, the net efficiency of the integrated 550 MWe supercritical PC power plant with CO 2 capture is increased from 28.4% with the DOE/NETL Case 12 reference to 30.9% with the Linde-BASF PCC plant previously presented utilizing the BASF OASE® blue solvent [Ref. 6], and is further increased to 31.4% using Linde-BASF PCC plant with BASF OASE® blue solvent and an advanced SIH configuration. The Linde-BASF PCC plant incorporating the BASF OASE® blue solvent also results in significantly lower overall capital costs, thereby reducing the COE and cost of CO 2 captured from $147.25/MWh and $56.49/MT CO 2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO 2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO 2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO2 captured can be further reduced to $125.51/MWh and $39.90/MT CO 2 for LB1-CREB. Most notably, the Linde-BASF process options presented here have already demonstrated the potential to lower the cost of CO2 captured below the DOE target of $40/MT CO 2 at the 550 MWe scale for second generation PCC technologies.« less
Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra
2018-08-01
A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
High Carbon Use Efficiency is Not Explained by Production of Storage Compounds
NASA Astrophysics Data System (ADS)
Dijkstra, Paul; van Groenigen, Kees-Jan
2015-04-01
The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.
Ye, Lingting; Zhang, Minyi; Huang, Ping; Guo, Guocong; Hong, Maochun; Li, Chunsen; Irvine, John T. S.; Xie, Kui
2017-01-01
Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis. PMID:28300066
Ceotto, E
2005-01-01
This paper focuses on the benefits of an efficient use of animal waste from the standpoint of curbing the rise of anthropogenic carbon dioxide (CO(2)) in the atmosphere. An effective use of animal waste resources might provide a partial, but still important, contribution in reducing net CO(2) emissions. In particular: the fulfillment of nutrient requirements of crop plants growing in non-limiting conditions and thus sequestering CO(2) at their potential level; the chance of diminishing the use of fossil energy, and related CO(2) emissions, required for manufacturing industrial fertilizers; the possibility of enhancing carbon sequestration in agricultural soils by the application of farmyard manure. The future success of agriculture in providing these ecosystem services can only be achieved with a changed social awareness of the links between sustainable land use and global environmental change.
A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy
NASA Astrophysics Data System (ADS)
Zhang, Xin-Rong; Yamaguchi, Hiroshi; Fujima, Katsumi; Enomoto, Masatoshi; Sawada, Noboru
An experiment study was carried out in order to investigate feasibility of CO2-based Rankine cycle powered by solar energy. The proposed cycle is to achieve a cogeneration of heat and power, which consists of evacuated solar tube collectors, power generating turbine, heat recovery system, and feed pump. The Rankine cycle of the system utilizes solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and produce electrical power. The cycle also recovers thermal energy, which can be used for absorption refrigerator, air conditioning, hot water supply so on for a building. A set of experimental set-up was constructed to investigate the performance of the CO2-based Rankine cycle. The results show the cycle can achieve production of heat and power with reasonable thermodynamics efficiency and has a great potential of the application of the CO2-based Rankine cycle powered by solar energy. In addition, some research interests related to the present study will also be discussed in this paper.
Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans
NASA Astrophysics Data System (ADS)
Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong
2018-05-01
The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.
Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J
2015-10-01
The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A carbon-air battery for high power generation.
Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping
2015-03-16
We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmugam; Obadja, Nesia; Chang, Ting-Wei; Chen, Li-Tung; Lee, Yuh-Lang
2014-12-01
Poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) and poly (acrylonitrile-co-vinyl acetate) (PAN-VA) are used as gelator to prepare gel- and solid-state polymer electrolytes for dye sensitized solar cells (DSSCs) applications. The electrolytes prepared using PVDF-HFP have higher conductivities than those prepared using PAN-VA. In blended polymers, the conductivities of the electrolytes increase with increasing composition of PVDF-HFP; at 75% PVDF-HFP, conductivity of the blended polymer surpassed that of pure polymers. It is also found that the viscosity of the electrolyte prepared by PAN-VA (1.2 kPaS) is much lower than that by PVDF-HFP (11 kPaS). Therefore, increasing PAN-VA composition can decrease the viscosity of the electrolyte, improving the penetration of electrolytes in the TiO2 matrix. By controlling the ratio of PVDF-HFP/PAN-VA, the conductivity and viscosity of the electrolyte can be regulated and an optimal ratio based on the conversion efficiency of the gel- and solid state DSSCs is obtained at the ratio of 3/1. The highest efficiency achieved by the gel- and solid-state cells using the blending polymers are 6.3% and 4.88%, respectively, which are higher than those prepared using pure polymers (5.53% and 4.56%, respectively). The introduction of TiO2 fillers to the solid electrolyte can further increase the cell efficiency to 5.34%.
Oh, Yunok; Moorthy, Madhappan Santha; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Oh, Junghwan
2017-02-01
Magnetic iron oxide nanoparticles (MNPs) have been extensively utilized in a wide range of biomedical applications including magnetic hyperthermia agent. To improve the efficiency of the MNPs in therapeutic applications, in this study, we have synthesized CoFe 2 O 4 nanoparticles and its surface was further functionalized with meso-2,3-dimercaptosuccinic acid (DMSA). The anticancer agent, Doxorubucin (DOX) was conjugated with CoFe 2 O 4 @DMSA nanoparticle to evaluate the combined effects of thermotherapy and chemotherapy. The drug delivery efficiency of the DOX loaded CoFe 2 O 4 @DMSA nanoparticles were examined based on magnetically triggered delivery of DOX into the subcellular level of cancer cells by using MDA-MB-231 cell line. The amine part of the DOX molecules were effectively attached through an electrostatic interactions and/or hydrogen bonding interactions with the carboxylic acid groups of the DMSA functionalities present onto the surface of the CoFe 2 O 4 nanoparticles. The DOX loaded CoFe 2 O 4 @DMSA nanoparticles can effectively uptake with cancer cells via typical endocytosis process. After endocytosis, DOX release from CoFe 2 O 4 nanoparticles was triggered by intracellular endosomal/lysosomal acidic environments and the localized heat can be generated under an alternating magnetic field (AMF). In the presence of AMF, the released DOX molecules were accumulated with high concentrations into the subcellular level at a desired sites and exhibited a synergistic effect of an enhanced cell cytotoxicity by the combined effects of thermal-chemotherapy. Importantly, pH- and thermal-responsive Dox-loaded CoFe 2 O 4 nanoparticles induced significant cellular apoptosis more efficiently mediated by active mitochondrial membrane and ROS generation than the free Dox. Thus, the Dox-loaded CoFe 2 O 4 @DMSA nanoparticles can be used as a potential therapeutic agent in cancer therapy by combining the thermo-chemotherapy techniques. Copyright © 2016. Published by Elsevier B.V.
Offshore Storage Resource Assessment - Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill; Ozgen, Chet
The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less
A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.
Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia
2016-07-05
Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.
Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.
Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang
2015-12-21
Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.
Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.
Zhang, Y-H Percival; Huang, Wei-Dong
2012-06-01
In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Holey graphene frameworks for highly selective post-combustion carbon capture
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-01-01
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications. PMID:26879393
Holey graphene frameworks for highly selective post-combustion carbon capture.
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-02-16
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.
Holey graphene frameworks for highly selective post-combustion carbon capture
NASA Astrophysics Data System (ADS)
Chowdhury, Shamik; Balasubramanian, Rajasekhar
2016-02-01
Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.
CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)
NASA Astrophysics Data System (ADS)
Lindon, Michael Allen
As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge ExpeRiment (VADER) demonstrated how different factors, like voltage, frequency and the addition of a photocatalyst, change the efficiency of CO2 dissociation in VADER and the plasma chemistry involved.
Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang
2018-02-01
Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.
ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak
2016-09-01
The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias
2015-01-01
Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions
NASA Astrophysics Data System (ADS)
Al-Menhali, Ali; Krevor, Samuel
2014-05-01
The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements, core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.
Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong
Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide- a -loaded polyethylene glycol-poly(lactic- co -glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm 2 , 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide- a has the potential to be used in tumor-targeted PDT.
Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong
2016-01-01
Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT. PMID:27729788
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Hu, Shunxin; Zhou, Bin; Wang, You; Wang, Ying; Zhang, Xinxin; Zhao, Yan; Zhao, Xinyu; Tang, Xuexi
2017-01-01
Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4-6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3- was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2 increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.
Effect of different fertilization measures on soil CO2 emissions of spring corn in Northeast China
NASA Astrophysics Data System (ADS)
Xu, Shicai; Qiao, Shaoqing
2018-04-01
To research the sustainability of efficient utilization approaches and modes of nitrogen in spring corns. Taking different fertilization measures to research the influence on soil respiration and microbial biomass carbon and nitrogen; the experiment takes the spring corns and black soil of Harbin in Northeast China as research objects. It researches the influence of 4 different fertilization measures by using field long-term located experiment on soil respiration of the spring corns and analyzes the yield. The four measures are as follows: farmer's fertilization practice FP; Tl mode of decreasing 20% of nitrogenous fertilizer on the basis of FP; T2 mode of 20% of Tl nitrogenous fertilizer replaced by organic fertilizer and other 20% replaced by slow-release nitrogen fertilizer; T3 mode of adding 2t/hm2 of corn stalk carbon on the basis of T2. There are significant differences of CO2 emission flux in spring corn soil with four fertilization measures (P<0.05). The rank of CO2 emission flux is: T3>Tl>T2>FP and the yield rank of spring corns is: T3>T2>Tl>FP. (1) The rational nitrogen-decrease fertilization measure has no obvious influence on spring corn yield and the replacement of organic fertilizer and slow-release nitrogen fertilizer and the addition of active carbon can improve the spring corn yield. (2) Utilization of organic fertilizer can accelerate the emission of CO2 from the soil. (3) Addition of biological carbon can promote the emission of CO2 from soil during the growing period of spring corns.
Krischan, J; Makaruk, A; Harasek, M
2012-05-15
Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. Copyright © 2012 Elsevier B.V. All rights reserved.
Encapsulation of lutein in liposomes using supercritical carbon dioxide.
Zhao, Lisha; Temelli, Feral; Curtis, Jonathan M; Chen, Lingyun
2017-10-01
Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO 2 ). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO 2 method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO 2 method resulted in particle characteristics highly associated with the ability of CO 2 to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO 2 to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO 2 method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S
2015-03-01
Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO 2 -reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate-silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO 2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO 2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, R.M.; Biswas, W.K.; Jalal, A.I.
1998-11-01
This paper assesses the potential of selected efficient electrical appliances for avoiding power generation and for mitigation of selected air pollutants from the power sector in Pakistan from technical as well as national, utility and user perspectives. The study shows that about 14, 21 and 35% of the total CO{sub 2}, SO{sub 2} and NO{sub x} emissions in the business as usual (BAU) case could be avoided by the adoption of selected efficient appliances during 1997--2015 from the national perspective, while the corresponding figures from the user perspective are 12, 17 and 29%, respectively. All selected efficient appliances would bemore » cost effective to the users if electricity prices were set at the long-run marginal cost of supply.« less
Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor.
Lan, Yann-Wen; Torres, Carlos M; Tsai, Shin-Hung; Zhu, Xiaodan; Shi, Yumeng; Li, Ming-Yang; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L
2016-11-01
The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS 2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS 2 , results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Yunjin; Wu, Guodong; Lu, Fang; Wang, Shaobin; Hu, Yi; Zhang, Jie; Huang, Wanzheng; Wei, Fengyu
2016-11-01
Low-cost catalysts with high activity and stability toward producing strongly oxidative species are extremely desirable, but their development still remains a big challenge. Here, we report a novel strategy for the synthesis of a magnetic CoFe 2 O 4 /C 3 N 4 hybrid via a simple self-assembly method. The CoFe 2 O 4 /C 3 N 4 was utilized as a photo-Fenton-like catalyst for degradation of organic dyes in the presence of H 2 O 2 under natural indoor light irradiation, a green and energy-saving approach for environmental cleaning. It was found the CoFe 2 O 4 /C 3 N 4 hybrid with a CoFe 2 O 4 : g-C 3 N 4 mass ratio of 2:1 can completely degrade Rhodamine B nearly 100 % within 210 min under room-light irradiation. The effects of the amount of H 2 O 2 (0.01-0.5 M), initial dye concentration (5-20 mg/L), solution pH (3.08-10.09), fulvic acid concentration (5-50 mg/L), different dyes and catalyst stability on the organic dye degradation were investigated. The introduction of CoFe 2 O 4 on g-C 3 N 4 produced an enhanced separation efficiency of photogenerated electron - hole pairs by a Z-scheme mechanism between the interfaces of g-C 3 N 4 and CoFe 2 O 4 , leading to an excellent activity as compared with either g-C 3 N 4 or CoFe 2 O 4 and their mixture. This study demonstrates an efficient way to construct the low-cost magnetic CoFe 2 O 4 /C 3 N 4 heterojunction as a typical Z-scheme system in environmental remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, T., E-mail: morikawa@mosk.tytlabs.co.jp; Sato, S., E-mail: morikawa@mosk.tytlabs.co.jp; Arai, T., E-mail: morikawa@mosk.tytlabs.co.jp
2013-12-10
We developed a new hybrid photocatalyst for CO{sub 2} reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (E{sub CBM}) of the semiconductor and the CO{sub 2} reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO{sub 2} to formate using water as an electron donor andmore » a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO{sub 2} reduction with a TiO{sub 2} photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.« less
NASA Astrophysics Data System (ADS)
Hendrickson, Thomas P.; Horvath, Arpad
2014-01-01
Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from -130 to 35 t-1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure.
Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.
Authier, Olivier; Ouhabaz, Hind; Bedogni, Stefano
2018-07-01
CO 2 capture and utilization (CCU) is a process that captures CO 2 emissions from sources such as fossil fuel power plants and reuses them so that they will not enter the atmosphere. Among the various ways of recycling CO 2 , reduction reactions are extensively studied at lab-scale. However, CO 2 reduction by standard methods is difficult. Sonochemistry may be used in CO 2 gas mixtures bubbled through water subjected to ultrasound waves. Indeed, the sonochemical reduction of CO 2 in water has been already investigated by some authors, showing that fuel species (CO and H 2 ) are obtained in the final products. The aim of this work is to model, for a single bubble, the close coupling of the mechanisms of bubble dynamics with the kinetics of gas phase reactions in the bubble that can lead to CO 2 reduction. An estimation of time-scales is used to define the controlling steps and consequently to solve a reduced model. The calculation of the concentration of free radicals and gases formed in the bubble is undertaken over many cycles to look at the effects of ultrasound frequency, pressure amplitude, initial bubble radius and bubble composition in CO 2 . The strong effect of bubble composition on the CO 2 reduction rate is confirmed in accordance with experimental data from the literature. When the initial fraction of CO 2 in the bubble is low, bubble growth and collapse are slightly modified with respect to simulation without CO 2 , and chemical reactions leading to CO 2 reduction are promoted. However, the peak collapse temperature depends on the thermal properties of the CO 2 and greatly decreases as the CO 2 increases in the bubble. The model shows that initial bubble radius, ultrasound frequency and pressure amplitude play a critical role in CO 2 reduction. Hence, in the case of a bubble with an initial radius of around 5 μm, CO 2 reduction appears to be more favorable at a frequency around 300 kHz than at a low frequency of around 20 kHz. Finally, the industrial application of ultrasound to CO 2 reduction in water would be largely dependent on sonochemical efficiency. Under the conditions tested, this process does not seem to be sufficiently efficient. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao
An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.
CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.
2014-01-01
The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith® catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., =90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at various operating conditions and the results from durability testing will be presented.
CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew
2010-01-01
Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.
Guo, Li-Ping; Zhang, Yan; Li, Wen-Cui
2017-05-01
Microalgae biomass is a sustainable source with the potential to produce a range of products. However, there is currently a lack of practical and functional processes to enable the high-efficiency utilization of the microalgae. We report here a hydrothermal process to maximize the utilizability of microalgae biomass. Specifically, our concept involves the simultaneous conversion of microalgae to (i) hydrophilic and stable carbon quantum dots and (ii) porous carbon. The synthesis is easily scalable and eco-friendly. The microalgae-derived carbon quantum dots possess a strong two-photon fluorescence property, have a low cytotoxicity and an efficient cellular uptake, and show potential for high contrast bioimaging. The microalgae-based porous carbons show excellent CO 2 capture capacities of 6.9 and 4.2mmolg -1 at 0 and 25°C respectively, primarily due to the high micropore volume (0.59cm 3 g -1 ) and large specific surface area (1396m 2 g -1 ). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu
2017-02-01
Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-15
Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied frommore » novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.« less
Development of a preprototype Sabatier CO2 reduction subsystem
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Birbara, P.
1981-01-01
A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.
NASA Astrophysics Data System (ADS)
Pak, Pyong Sik
This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.
Next-Gen 3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zengler, Karsten; Palsson, Bernhard; Lewis, Nathan
Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO 2), and hydrogen (H 2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivitymore » of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.« less
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
2016-05-17
Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.
Solar-pumped lasers for space power transmission
NASA Technical Reports Server (NTRS)
Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.
1979-01-01
Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.
Limnios, Dimitris; Kokotos, Christoforos G
2014-01-07
A cheap, mild and environmentally friendly oxidation of tertiary amines and azines to the corresponding N-oxides is reported by using polyfluoroalkyl ketones as efficient organocatalysts. 2,2,2-Trifluoroacetophenone was identified as the optimum catalyst for the oxidation of aliphatic tertiary amines and azines. This oxidation is chemoselective and proceeds in high-to-quantitative yields utilizing 10 mol % of the catalyst and H2 O2 as the oxidant. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boo, C; Khalil, YF; Elimelech, M
We evaluated the performance of trimethylamine-carbon dioxide (TMA-CO2) as a potential thermolytic draw solution for engineered osmosis. Water flux and reverse solute flux with TMA-CO2 draw solution were measured in forward osmosis (FO) and pressure retarded osmosis (PRO) modes using thin-film composite (TFC) and cellulose triacetate (CTA) FO membranes. Water flux with the TMA-CO2 draw solution was comparable to that obtained with the more common ammonia-carbon dioxide (NH3-CO2) thermolytic draw solution at similar (1 M) concentration. Using a TFC-FO membrane, the water fluxes produced by 1 M TMA-CO2 and NH3-CO2 draw solutions with a DI water feed were, respectively, 33.4more » and 35.6 L m(-2) h(-1) in PRO mode and 14.5 and 152 L m(-2) h(-1) in FO mode. Reverse draw permeation of TMA-CO2 was relatively low compared to NH3-CO2, ranging from 0.1 to 0.2 mol m(-2) h(-1) in all experiments, due to the larger molecular size of TMA. Thermal separation and recovery efficiency for TMA-CO2 was compared to NH3-CO2 by modeling low-temperature vacuum distillation utilizing low-grade heat sources. We also discuss possible challenges in the use TMA-CO2, including potential adverse impact on human health and environments. (C) 2014 Elsevier B.V. All rights reserved.« less
Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.
Yuan, Zhe; Peng, Hong-Jie; Hou, Ting-Zheng; Huang, Jia-Qi; Chen, Cheng-Meng; Wang, Dai-Wei; Cheng, Xin-Bing; Wei, Fei; Zhang, Qiang
2016-01-13
Lithium-sulfur (Li-S) battery system is endowed with tremendous energy density, resulting from the complex sulfur electrochemistry involving multielectron redox reactions and phase transformations. Originated from the slow redox kinetics of polysulfide intermediates, the flood of polysulfides in the batteries during cycling induced low sulfur utilization, severe polarization, low energy efficiency, deteriorated polysulfide shuttle, and short cycling life. Herein, sulfiphilic cobalt disulfide (CoS2) was incorporated into carbon/sulfur cathodes, introducing strong interaction between lithium polysulfides and CoS2 under working conditions. The interfaces between CoS2 and electrolyte served as strong adsorption and activation sites for polar polysulfides and therefore accelerated redox reactions of polysulfides. The high polysulfide reactivity not only guaranteed effective polarization mitigation and promoted energy efficiency by 10% but also promised high discharge capacity and stable cycling performance during 2000 cycles. A slow capacity decay rate of 0.034%/cycle at 2.0 C and a high initial capacity of 1368 mAh g(-1) at 0.5 C were achieved. Since the propelling redox reaction is not limited to Li-S system, we foresee the reported strategy herein can be applied in other high-power devices through the systems with controllable redox reactions.
Steib, Philip; Breit, Bernhard
2018-04-19
Herein, we report on the first enantioselective and atom-efficient catalytic one-step dimerization method to selectively transform ω-allenyl carboxylic acids into C 2 -symmetric 14- to 28-membered bismacrolactones (macrodiolides). This convenient asymmetric access serves as an attractive route towards multiple naturally occuring homodimeric macrocyclic scaffolds and demonstrates excellent efficiency to construct the complex, symmetric core structures. By utilizing a rhodium catalyst with a modified chiral cyclopentylidene-diop ligand, the desired diolides were obtained in good to high yields, high diastereoselectivity, and excellent enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mao, Bao-Hua; Liu, Chang-Hai; Gao, Xu; Chang, Rui; Liu, Zhi; Wang, Sui-Dong
2013-10-01
The room-temperature ionic liquid assisted sputtering method is utilized to achieve the Pd-nanoparticle (NP)-graphene hybrid. The supported Pd NPs possess uniformly small sizes of 1-2 nm, which create huge surface area with ultralow Pd consumption and high NP stability. The Pd-NP-graphene hybrid is in situ characterized by the ambient pressure X-ray photoelectron spectroscopy using synchrotron radiation, and the results demonstrate high catalytic activity of the hybrid for CO oxidation. The catalytic behavior is reproducible for several catalytic cycles. The present simple and clean approach is promising to produce metal-NP-based high-efficiency catalysts for CO oxidation.
Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
Douskova, I; Doucha, J; Livansky, K; Machat, J; Novak, P; Umysova, D; Zachleder, V; Vitova, M
2009-02-01
A flue gas originating from a municipal waste incinerator was used as a source of CO(2) for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO(2) simultaneously. The utilization of the flue gas containing 10-13% (v/v) CO(2) and 8-10% (v/v) O(2) for the photobioreactor agitation and CO(2) supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO(2) and air (11% (v/v) CO(2)). Correspondingly, the CO(2) fixation rate was also higher when using the flue gas (4.4 g CO(2) l(-1) 24 h(-1)) than using the control gas (3.0 g CO(2) l(-1) 24 h(-1)). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements.
Liu, Huijun; Zeng, Jiajie; Guo, Jingjing; Nie, Han; Zhao, Zujin; Tang, Ben Zhong
2018-06-01
Nondoped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton utilization are generally unsuitable for nondoped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation-induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for nondoped OLEDs. By grafting 4-(phenoxazin-10-yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Nondoped OLEDs of these AIDF luminogens exhibit excellent luminance (~100000 cd m-2), outstanding external quantum efficiencies (22.1-22.6%), negligible efficiency roll-off and improved operational stability. To the best of our knowledge, these are the most efficient nondoped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of nondoped OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S
2017-12-01
Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.
High-energy redox-flow batteries with hybrid metal foam electrodes.
Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun
2014-07-09
A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.
NASA Astrophysics Data System (ADS)
Wallmann, K.; Schneider, B.; Sarnthein, M.
2016-02-01
We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.
Caballero, Antonio; Ramos, Juan Luis
2017-04-01
Lignocellulose contains two pentose sugars, l-arabinose and d-xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing Saccharomyces cerevisiae yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant Saccharomyces cerevisiae strains capable of fermenting d-xylose are available on the market; however, there are few examples of l-arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both d-xylose and l-arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested d-xylose and l-arabinose co-fermentation. To find efficient alternative l-arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate l-arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using l-arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g-1). We demonstrate that efficient co-fermentation of d-xylose and l-arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.
Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito
2010-01-01
In order to decrease CO(2) emissions from the burning of fossil fuels, the development of new renewable energy sources sufficiently large in quantity is essential. To meet this need, we propose large-scale H(2) production on the sea surface utilizing cyanobacteria. Although many of the relevant technologies are in the early stage of development, this chapter briefly examines the feasibility of such H(2) production, in order to illustrate that under certain conditions large-scale photobiological H(2) production can be viable. Assuming that solar energy is converted to H(2) at 1.2% efficiency, the future cost of H(2) can be estimated to be about 11 (pipelines) and 26.4 (compression and marine transportation) cents kWh(-1), respectively.
Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun
2017-03-06
High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.
Lv, Xiaomei; Wang, Fan; Zhou, Pingping; Ye, Lidan; Xie, Wenping; Xu, Haoming; Yu, Hongwei
2016-09-21
Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.
Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Li, Li; Liu, Yuan-Gang; Zhao, Chen
2012-01-01
Background The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO2-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO2 (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO2 (SEDS). Methods Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an “injector” was utilized in the suspension delivery system. Results After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. Conclusion Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system. PMID:22787397
Siriwardane, Ranjani V; Fisher, II, James C
2013-12-31
The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...
2017-08-18
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott
2016-01-01
There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. © 2015 Wiley Periodicals, Inc.
Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H
2014-01-21
CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.
Sun, Qi; Jin, Yingyin; Aguila, Briana; Meng, Xiangju; Ma, Shengqian; Xiao, Feng-Shou
2017-03-22
Direct use of atmospheric CO 2 as a C 1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO 2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO 2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO 2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO 2 uptake capacity of the PIPs facilitates the enrichment of CO 2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO 2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO 2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey
2018-04-03
Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.
Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk
2017-03-09
The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO 2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO 2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO 2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO 2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmol formate h -1 cm -2 , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO 2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.
2011-01-01
The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA s cabin Atmosphere Revitalization System and In-Situ Resource Utilization architectures for both low-earth orbit and long-term manned space missions. In the current International Space Station (ISS) and other low orbit missions, metabolically-generated CO2 is removed from the cabin air and vented into space, resulting in a net loss of O2. This requires a continuous resupply of O2 via water electrolysis, and thus highlights the need for large water storage capacity. For long-duration space missions, the amount of life support consumables is limited and resupply options are practically nonexistent, thus atmosphere resource management and recycle becomes crucial to significantly reduce necessary O2 and H2O storage. Additionally, the potential use of the Martian CO2-rich atmosphere and Lunar regolith to generate life support consumables and propellant fuels is of interest to NASA. Precision Combustion, Inc. (PCI) has developed a compact, lightweight Microlith(Registered TradeMark)-based Sabatier (CO2 methanation) reactor which demonstrates the capability of achieving high CO2 conversion and near 100% CH4 selectivity at space velocities of 30,000-60,000 hr-1. The combination of the Microlith(Registered TradeMark) substrates and durable, novel catalyst coating permitted efficient Sabatier reactor operation that favors high reactant conversion, high selectivity, and long-term durability. This paper presents the reactor development and performance results at various operating conditions. Additionally, results from 100-hr durability tests and mechanical vibration tests are discussed.
Layzell, D B; Rainbird, R M; Atkins, C A; Pate, J S
1979-11-01
The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO(2) and H(2). Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 +/- 0.26 (standard error) milligrams C as CO(2) and negligible H(2) were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 +/- 0.28 milligrams C as CO(2), 0.22 +/- 0.05 milligrams H(2), and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO(2). The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of (14)CO(2) fixation by detached nodules were greater for the cowpea symbiosis (0.56 +/- 0.06 and 0.22 milligrams C as CO(2) fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 +/- 0.02 and 0.01 milligrams C as CO(2) fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera
2013-06-01
Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.
Straw and Xylan Utilization by Pure Cultures of Nitrogen-Fixing Azospirillum spp
Halsall, Dorothy M.; Turner, Graham L.; Gibson, Alan H.
1985-01-01
Azospirillum spp. were shown to utilize both straw and xylan, a major component of straw, for growth with an adequate combined N supply and also under N-limiting conditions. For most strains examined, a semisolid agar medium was satisfactory, but several strains appeared to be capable of slow metabolism of the agar. Subsequently, experiments were done with acid-washed sand supplemented with various carbon sources. In these experiments, authenticated laboratory strains, and all 16 recent field isolates from straw-amended soils, of both A. brasilense and A. lipoferum possessed the ability to utilize straw and xylan as energy sources for nitrogen fixation. Neither carboxymethyl cellulose nor cellulose was utilized. The strains and isolates differed in their abilities to utilize xylan and straw and in the efficiency of nitrogenase activity (CO2/C2H2 ratio). Reasonable levels of activity could be maintained for at least 14 days in the sand cultures. Nitrogenase activity (acetylene reduction) was confirmed by 15N2 incorporation. The level of nitrogenase activity observed was dependent on the time of the addition of acetylene to the culture vessels. PMID:16346730
Liu, Xiao-Yuan; Chen, Hao; Wang, Ruili; Shang, Yuequn; Zhang, Qiong; Li, Wei; Zhang, Guozhen; Su, Juan; Dinh, Cao Thang; de Arquer, F Pelayo García; Li, Jie; Jiang, Jun; Mi, Qixi; Si, Rui; Li, Xiaopeng; Sun, Yuhan; Long, Yi-Tao; Tian, He; Sargent, Edward H; Ning, Zhijun
2017-06-01
Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS 2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS 2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
Investigation of highly active and cost-efficient electrocatalysts for oxygen reduction reaction is of great importance in a wide range of clean energy devices, including fuel cells and metal-air batteries. Herein, the simultaneous formation of Co9S8 and N,S-codoped carbon was achieved in a dual templates system. First, Co(OH)2 nanosheets and tetraethyl orthosilicate were utilized to direct the formation of two-dimensional carbon precursors, which were then dispersed into thiourea solution. After subsequent pyrolysis and templates removal, N/S-codoped porous carbon sheets confined Co9S8 catalysts (Co9S8/NSC) were obtained. Owing to the morphological and compositional advantages as well as the synergistic effects, the resultant Co9S8/NSCmore » catalysts with modified doping level and pyrolysis degree exhibit superior ORR catalytic activity and long-term stability compared with the state-of-the-art Pt/C catalyst in alkaline media. Remarkably, the as-prepared carbon composites also reveal exceptional tolerance of methanol, indicating their potential applications in fuel cells.« less
Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete
Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do
2015-01-01
Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry. PMID:28793639
Wang, Zhifeng; Cui, Zhaojie
2016-12-01
A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T
2018-05-08
Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.
Alcohol synthesis from CO or CO.sub.2
Hu, Jianli [Kennewick, WA; Dagle, Robert A [Richland, WA; Holladay, Jamelyn D [Kennewick, WA; Cao, Chunshe [Houston, TX; Wang, Yong [Richland, WA; White, James F [Richland, WA; Elliott, Douglas C [Richland, WA; Stevens, Don J [Richland, WA
2010-12-28
Methods for producing alcohols from CO or CO.sub.2 and H.sub.2 utilizing a palladium-zinc on alumina catalyst are described. Methods of synthesizing alcohols over various catalysts in microchannels are also described. Ethanol, higher alcohols, and other C.sub.2+ oxygenates can produced utilizing Rh--Mn or a Fisher-Tropsch catalyst.
Yang, Hongyu; Tang, Zhenghua; Wang, Kai; Wu, Wen; Chen, Yinghuan; Ding, Zhaoqing; Liu, Zhen; Chen, Shaowei
2018-05-21
Developing efficient bi-functional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for producing hydrogen and utilizing hydrogen effectively to promote electrochemical energy storage in proton membrane exchange fuel cells (PEMFCs). Herein, we report Co@Pd core-shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 (ZIF-67) for both ORR and HER. The controlled pyrolysis of ZIF-67 can lead to the formation of Co nanoparticles encapsulated in nitrogen-doped porous carbon (Co NC), which subsequently underwent galvanic replacement with Na 2 PdCl 4 to form Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon (Co@Pd NC). The Co@Pd NC exhibited outperformance in ORR and HER than commercial Pd/C, as manifested by more positive onset potential and larger diffusion-limited current density in ORR tests, as well as a small overpotential to drive a current density of 10 mA cm -2 , and much lower Tafel slope in HER tests. It also demonstrated more robust long-term stability than commercial Pd/C for both ORR and HER. Multiple techniques inter-confirmed that the Pd loading in the sample was very low. The findings can pave a path for fabricating a core-shell structured nanocomposite with ultralow noble metal usage as a bifunctional catalyst for electrochemical energy storage and conversion with high-efficiency and remarkable longevity. Copyright © 2018 Elsevier Inc. All rights reserved.
Net energy payback and CO2 emissions from three midwestern wind farms: An update
White, S.W.
2006-01-01
This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.
USDA-ARS?s Scientific Manuscript database
Oryzacystatins I and II (OCI and OCII) show potential for controlling pests that utilize cysteine proteinases for protein digestion. To strengthen individual inhibitory range and achieve an additive effect in the overall efficiency of these proteins against pests, both cystatin genes were co-express...
Endoglucanase and xylanase production by Bacillus sp. AR03 in co-culture.
Hero, Johan S; Pisa, José H; Perotti, Nora I; Romero, Cintia M; Martínez, María A
2017-07-03
The behavior of three isolates retrieved from different cellulolytic consortia, Bacillus sp. AR03, Paenibacillus sp. AR247 and Achromobacter sp. AR476-2, were examined individually and as co-cultures in order to evaluate their ability to produce extracellular cellulases and xylanases. Utilizing a peptone-based medium supplemented with carboxymethyl cellulose (CMC), an increase estimation of 1.30 and 1.50 times was obtained by the co-culture containing the strains AR03 and AR247, with respect to enzyme titles registered by their individual cultivation. On the contrary, the extracellular enzymatic production decreased during the co-cultivation of strain AR03 with the non-cellulolytic Achromobacter sp. AR476-2. The synergistic behavior observed through the combined cultivation of the strains AR03 and AR247 might be a consequence of the consumption by Paenibacillus sp. AR247 of the products of the CMC hydrolysis (i.e., cellobiose and/or cello-oligosaccharides), which were mostly generated by the cellulase producer Bacillus sp. AR03. The effect observed could be driven by the requirement to fulfill the nutritional supply from both strains on the substrate evaluated. These results would contribute to a better description of the degradation of the cellulose fraction of the plant cell walls in nature, expected to an efficient utilization of renewable sources.
Yu, Zhou; Bai, Yu; Liu, Yuxuan; Zhang, Shimin; Chen, Dandan; Zhang, Naiqing; Sun, Kening
2017-09-20
The development of inexpensive, efficient, and environmentally friendly catalysts for oxygen evolution reaction (OER) is of great significant for green energy utilization. Herein, binary metal oxides (M x Co 3-x O 4 , M = Zn, Ni, and Cu) with yolk-shell polyhedron (YSP) structure were fabricated by facile pyrolysis of bimetallic zeolitic imidazolate frameworks (MCo-ZIFs). Benefiting from the synergistic effects of metal ions and the unique yolk-shell structure, M x Co 3-x O 4 YSP displays good OER catalytic activity in alkaline media. Impressively, Zn x Co 3-x O 4 YSP shows a comparable overpotential of 337 mV at 10 mA cm -2 to commercial RuO 2 and exhibits superior long-term durability. The high activity and good stability reveals its promising application.
Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert
2017-01-01
With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.
Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin
2015-05-19
To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage.
NASA Astrophysics Data System (ADS)
Geng, Yong; Huang, Xiatao; Cui, Wenwen; Ling, Yun; Xu, Bo; Zhang, Jin; Yi, Xingwen; Wu, Baojian; Huang, Shu-Wei; Qiu, Kun; Wong, Chee Wei; Zhou, Heng
2018-05-01
We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.
Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.
Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen
2016-04-01
To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.
Lai, Jianping; Guo, Shaojun
2017-12-01
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-power microwave production by gyroharmonic conversion and co-generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Yoder, R.B.; Wang, M.
1997-03-01
An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less
Shimizu, Rie; Dempo, Yudai; Nakayama, Yasumune; Nakamura, Satoshi; Bamba, Takeshi; Fukusaki, Eiichiro; Fukui, Toshiaki
2015-07-01
Ralstonia eutropha is a facultative chemolithoautotrophic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation. This study showed that R. eutropha strain H16G incorporated (13)CO2, emitted by the oxidative decarboxylation of [1-(13)C1]-glucose, into key metabolites of the CBB cycle and finally into poly(3-hydroxybutyrate) [P(3HB)] with up to 5.6% (13)C abundance. The carbon yield of P(3HB) produced from glucose by the strain H16G was 1.2 times higher than that by the CBB cycle-inactivated mutants, in agreement with the possible fixation of CO2 estimated from the balance of energy and reducing equivalents through sugar degradation integrated with the CBB cycle. The results proved that the 'gratuitously' functional CBB cycle in R. eutropha under aerobic heterotrophic conditions participated in the reutilization of CO2 emitted during sugar degradation, leading to an advantage expressed as increased carbon yield of the storage compound. This is a new insight into the role of the CBB cycle, and may be applicable for more efficient utilization of biomass resources.
NASA Astrophysics Data System (ADS)
Zeng, Pan; Huang, Liwu; Zhang, Xinling; Han, Yamiao; Chen, Yungui
2018-01-01
Lithium-sulfur (Li-S) batteries are considered as one of the most promising chemistries in secondary energy storage field owing to their high energy density. However, the poor electrochemical performance mainly associated with the polysulfides shuttle has greatly hampered their practical application. Herein, a simple acetylene black (AB)-CoS2 coated separator is first designed to suppress the migration of polysulfides. The AB-CoS2 modified separator can not only efficiently capture the polysulfides by forming strong chemical bonding but also guarantee the rapid lithium ions diffusion. Moreover, the AB-CoS2 coating could serve as an upper current collector to accelerate electron transport for reinforcing the utilization of sulfur and ensuring the reactivation of the trapped active material. Consequently, the Li-S cell using AB-CoS2 modified separator shows a long-term cycling stability with an extremely low decay rate (0.09% per cycle) up to 450 cycles at a high rate of 2 C (3350 mA g-1). It also exhibits excellent rate capabilities, which maintains a capacity of 475 mAh g-1 even at 4.0 C rate.
Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K
2018-05-16
Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.
2014-01-01
Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.
NASA Astrophysics Data System (ADS)
Shen, Zhong; Zhong, Jin-Yi; Chai, Na-Na; He, Xin; Zang, Jian-Zheng; Xu, Hui; Han, Xiao-Yuan; Zhang, Peng
2017-06-01
Zr4+, Ge4+ doped and co-doped TiO2 nanoparticles were prepared by a 'one-pot' homogeneous precipitation method. The photocatalytic reaction kinetics of DMMP and the disinfection efficiency of HD, GD and VX on the samples were investigated. By means of a variety of characterization methods, especially the positron annihilation lifetime spectroscopy, the changes in structure and property of TiO2 across doping were studied. The results show that the reasonable engineering design of novel photocatalysts in the field of CWAs decontamination can be realized by adjusting the bulk-to-surface defects ratio, except for crystal structure, specific surface area, pore size distribution and light utilization.
Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing
2013-11-15
Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO 2 Recompression Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Shaun D.; Kesseli, James; Nash, James
This project has performed solar receiver designs for two supercritical carbon dioxide (sCO 2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 .more » Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kW th cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO 2 receiver for a sCO 2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Kristen
2015-08-18
Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Kristen
2015-08-19
Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN
2017-12-01
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F.J.; van Wezel, Gilles P.; Claessen, Dennis; Hae Choi, Young
2015-01-01
Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782
Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian
2015-07-01
Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koech, Phillip K.; Malhotra, Deepika; Heldebrant, David J.
2015-01-01
Climate change is partly attributed to global anthropogenic carbon dioxide (CO2) emission to the atmosphere. These environmental effects can be mitigated by CO2 capture, utilization and storage. Alkanolamine solvents, such as monoethanolamine (MEA), which bind CO2 as carbamates or bicarbonate salts are used for CO2 capture in niche applications. These solvents consist of approximately 30 wt% of MEA in water, exhibiting a low, CO2-rich viscosity, fast kinetics and favorable thermodynamics. However, these solvents have low CO2 capacity and high heat capacity of water, resulting in prohibitively high costs of thermal solvent regeneration. Effective capture of the enormous amounts of CO2more » produced by coal-fired plants requires a material with high CO2 capacity and low regeneration energy requirements. To this end, several water-lean transformational solvents systems have been developed in order to reduce these energy penalties. These technologies include nano-material organic hybrids (NOHMs), task-specific, protic and conventional ionic liquids, phase change solvents. As part of an ongoing program in our group, we have developed new water lean transformational solvents known as CO2 binding organic liquids (CO2BOLs) which have the potential to be energy efficient CO2 capture solvents. These solvents, also known as switchable ionic liquids meaning, are organic solvents that can reversibly transform from non- ionic to ionic form and back. The zwitterionic state in these liquids is formed when low polarity non-ionic alkanolguanidines or alkanolamidines react with CO2 or SO2 to form ionic liquids with high polarity. These polar ionic liquids can be thermally converted to the less polar non-ionic solvent by releasing CO2.« less
Shen, Juanxia; Yang, Zhi; Ge, Mengzhan; Li, Ping; Nie, Huagui; Cai, Qiran; Gu, Cancan; Yang, Keqin; Huang, Shaoming
2016-07-13
The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field.
Photoluminescence properties and energy transfer of color tunable MgZn₂(PO₄)₂:Ce³⁺,Tb³⁺ phosphors.
Xu, Mengjiao; Wang, Luxiang; Jia, Dianzeng; Zhao, Hongyang
2015-11-21
A series of Ce(3+)/Tb(3+) co-doped MgZn2(PO4)2 phosphors have been synthesized by the co-precipitation method. Their structure, morphology, photoluminescence properties, decay lifetime, thermal stability and luminous efficiency were investigated. The possible energy transfer mechanism was proposed based on the experimental results and detailed luminescence spectra and decay curves of the phosphors. The critical distance between Ce(3+) and Tb(3+) ions was calculated by both the concentration quenching method and the spectral overlap method. The energy transfer mechanism from the Ce(3+) to Tb(3+) ion was determined to be dipole-quadrupole interaction, and the energy transfer efficiency was 85%. By utilizing the principle of energy transfer and appropriate tuning of Ce(3+)/Tb(3+) contents, the emission color of the obtained phosphors can be tuned from blue to green light. The MgZn2(PO4)2:Ce(3+),Tb(3+) phosphor is proved to be a promising UV-convertible material capable of green light emitting in UV-LEDs due to its excellent thermal stability and luminescence properties.
Svetlitchnyi, V; Peschel, C; Acker, G; Meyer, O
2001-09-01
Two monofunctional NiFeS carbon monoxide (CO) dehydrogenases, designated CODH I and CODH II, were purified to homogeneity from the anaerobic CO-utilizing eubacterium Carboxydothermus hydrogenoformans. Both enzymes differ in their subunit molecular masses, N-terminal sequences, peptide maps, and immunological reactivities. Immunogold labeling of ultrathin sections revealed both CODHs in association with the inner aspect of the cytoplasmic membrane. Both enzymes catalyze the reaction CO + H(2)O --> CO(2) + 2 e(-) + 2 H(+). Oxidized viologen dyes are effective electron acceptors. The specific enzyme activities were 15,756 (CODH I) and 13,828 (CODH II) micromol of CO oxidized min(-1) mg(-1) of protein (methyl viologen, pH 8.0, 70 degrees C). The two enzymes oxidize CO very efficiently, as indicated by k(cat)/K(m) values at 70 degrees C of 1.3. 10(9) M(-1) CO s(-1) (CODH I) and 1.7. 10(9) M(-1) CO s(-1) (CODH II). The apparent K(m) values at pH 8.0 and 70 degrees C are 30 and 18 microM CO for CODH I and CODH II, respectively. Acetyl coenzyme A synthase activity is not associated with the enzymes. CODH I (125 kDa, 62.5-kDa subunit) and CODH II (129 kDa, 64.5-kDa subunit) are homodimers containing 1.3 to 1.4 and 1.7 atoms of Ni, 20 to 22 and 20 to 24 atoms of Fe, and 22 and 19 atoms of acid-labile sulfur, respectively. Electron paramagnetic resonance (EPR) spectroscopy revealed signals indicative of [4Fe-4S] clusters. Ni was EPR silent under any conditions tested. It is proposed that CODH I is involved in energy generation and that CODH II serves in anabolic functions.
Svetlitchnyi, Vitali; Peschel, Christine; Acker, Georg; Meyer, Ortwin
2001-01-01
Two monofunctional NiFeS carbon monoxide (CO) dehydrogenases, designated CODH I and CODH II, were purified to homogeneity from the anaerobic CO-utilizing eubacterium Carboxydothermus hydrogenoformans. Both enzymes differ in their subunit molecular masses, N-terminal sequences, peptide maps, and immunological reactivities. Immunogold labeling of ultrathin sections revealed both CODHs in association with the inner aspect of the cytoplasmic membrane. Both enzymes catalyze the reaction CO + H2O → CO2 + 2 e− + 2 H+. Oxidized viologen dyes are effective electron acceptors. The specific enzyme activities were 15,756 (CODH I) and 13,828 (CODH II) μmol of CO oxidized min−1 mg−1 of protein (methyl viologen, pH 8.0, 70°C). The two enzymes oxidize CO very efficiently, as indicated by kcat/Km values at 70°C of 1.3 · 109 M−1 CO s−1 (CODH I) and 1.7 · 109 M−1 CO s−1 (CODH II). The apparent Km values at pH 8.0 and 70°C are 30 and 18 μM CO for CODH I and CODH II, respectively. Acetyl coenzyme A synthase activity is not associated with the enzymes. CODH I (125 kDa, 62.5-kDa subunit) and CODH II (129 kDa, 64.5-kDa subunit) are homodimers containing 1.3 to 1.4 and 1.7 atoms of Ni, 20 to 22 and 20 to 24 atoms of Fe, and 22 and 19 atoms of acid-labile sulfur, respectively. Electron paramagnetic resonance (EPR) spectroscopy revealed signals indicative of [4Fe-4S] clusters. Ni was EPR silent under any conditions tested. It is proposed that CODH I is involved in energy generation and that CODH II serves in anabolic functions. PMID:11489867
Cheng, Yan; Chang, Yun; Feng, Yanlin; Liu, Ning; Sun, Xiujuan; Feng, Yuqing; Li, Xi; Zhang, Haiyuan
2017-05-01
Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO 2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analyses on Cost Reduction and CO2 Mitigation by Penetration of Fuel Cells to Residential Houses
NASA Astrophysics Data System (ADS)
Aki, Hirohisa; Yamamoto, Shigeo; Kondoh, Junji; Murata, Akinobu; Ishii, Itaru; Maeda, Tetsuhiko
This paper presents analyses on the penetration of polymer electrolyte fuel cells (PEFC) into a group of 10 residential houses and its effects of CO2 emission mitigation and consumers’ cost reduction in next 30 years. The price is considered to be reduced as the penetration progress which is expected to begin in near future. An experimental curve is assumed to express the decrease of the price. Installation of energy interchange systems which involve electricity, gas and hydrogen between a house which has a FC and contiguous houses is assumed to utilize both electricity and heat more efficiently, and to avoid start-stop operation of fuel processor (reformer) as much as possible. A multi-objective model which considers CO2 mitigation and consumers’ cost reduction is constructed and provided a Pareto optimum solution. A solution which simultaneously realizes both CO2 mitigation and consumers’ cost reduction appeared in the Pareto optimum solution. Strategies to reduce CO2 emission and consumers’ cost are suggested from the results of the analyses. The analyses also revealed that the energy interchange systems are effective especially in the early stage of the penetration.
Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang
2015-02-01
It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Ogawa, Takashi
Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.
Kalema, T; Viot, M
2014-02-01
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.
2013-05-01
Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.
Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.
Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E; Drake, H L
2000-03-01
A strictly anaerobic, H2-utilizing bacterium, strain SL1, was isolated from the sediment of an acidic coal mine pond. Cells of strain SL1 were sporulating, motile, long rods with a multilayer cell wall. Growth was observed at 5-35 degrees C and pH 3.9-7.0. Acetate was the sole end product of H2 utilization and was produced in stoichiometries indicative of an acetyl-CoA-pathway-dependent metabolism. Growth and substrate utilization also occurred with CO/CO2, vanillate, syringate, ferulate, ethanol, propanol, 1-butanol, glycerine, cellobiose, glucose, fructose, mannose, xylose, formate, lactate, pyruvate and gluconate. With most substrates, acetate was the main or sole product formed. Growth in the presence of H2/CO2 or CO/CO2 was difficult to maintain in laboratory cultures. Methoxyl, carboxyl and acrylate groups of various aromatic compounds were O-demethylated, decarboxylated and reduced, respectively. Small amounts of butyrate were produced during the fermentation of sugars. The acrylate group of ferulate was reduced. Nitrate, sulfate, thiosulfate, dimethylsulfoxide and Fe(III) were not utilized as electron acceptors. Analysis of the 16S rRNA gene sequence of strain SL1 demonstrated that it is closely related to Clostridium scatologenes (99.6% sequence similarity), an organism characterized as a fermentative anaerobe but not previously shown to be capable of acetogenic growth. Comparative experiments with C. scatologenes DSM 757T demonstrated that it utilized H2/CO2 (negligible growth), CO/CO2 (negligible growth), formate, ethanol and aromatic compounds according to stoichiometries indicative of the acetyl-CoA pathway. CO dehydrogenase, formate dehydrogenase and hydrogenase activities were present in both strain SL1 and C. scatologenes DSM 757T. These results indicate that (i) sediments of acidic coal mine ponds harbour acetogens and (ii) C. scatologenes is an acetogen that tends to lose its capacity to grow acetogenically under H2/CO2 or CO/CO2 after prolonged laboratory cultivation.
NASA Astrophysics Data System (ADS)
Mahaffey, Jacob Thomas
Over the course of the past couple decades, increased concern has grown on the topics of climate change and energy consumption, focusing primarily on carbon emissions. With modernization of countries like India and China, there are no signs of slowing of global carbon emissions and energy usage. To combat this, new more efficient power conversion cycles must be utilized. The Supercritical Carbon Dioxide (s-CO2) Brayton cycle promises increased efficiency and smaller component sizes. These cycles will push the limits of current high temperature materials, and must be studied before implementation is made possible. A large collection of high temperature CO2 corrosion research has been reported over the last thirty years. While many of the studies in the past have focused on corrosion in research grade (RG) (99.999%) and industrial grade (IG) (99.5%) CO2, very few have focused on studying the specific effects that impurities can have on the corrosion rates and mechanisms. The work described in this document will lay the foundation for advancement of s-CO2 corrosion studies. A testing facility has been constructed and was designed as an open flow s-CO2 loop with a fluid residence time of 2 hours. This facility is capable of heating up to 750°C at pressures up to 20 MPa. Instrumentation for monitoring oxygen and carbon monoxide concentration were added to make measurements both before and after sample exposure, for the duration of testing. Testing of both model and commercial alloys was conducted for temperatures ranging from 450-750°C at 20MPa for 1,000 hours. The effect of the partial pressure of oxygen (pO2) was studied by adding 100ppm of O2 to RG CO2 during testing. The activity of carbon (aC) was studied by adding 1%CO to RG CO2. Each environment greatly altered the mechanisms and rates of oxidation and carburization on each material exposed to the environment.
Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori
2016-01-01
Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe−containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push−pull mechanism. Bio−inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe−Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe−Fe separation distance. PMID:27087483
Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori
2016-04-18
Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.
NASA Astrophysics Data System (ADS)
Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori
2016-04-01
Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.
Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi
2016-12-01
The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Utilization of waste glycerin to fuelling of spark ignition engines
NASA Astrophysics Data System (ADS)
Stelmasiak, Z.; Pietras, D.
2016-09-01
The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.
Zhang, Haiyang; Guo, Ruili; Hou, Jinpeng; Wei, Zhong; Li, Xueqin
2016-10-26
In this study, a carbon nanotubes composite coated with N-isopropylacrylamide hydrogel (NIPAM-CNTs) was synthesized. Mixed-matrix membranes (MMMs) were fabricated by incorporating NIPAM-CNTs composite filler into poly(ether-block-amide) (Pebax MH 1657) matrix for efficient CO 2 separation. The as-prepared NIPAM-CNTs composite filler mainly plays two roles: (i) The extraordinary smooth one-dimensional nanochannels of CNTs act as the highways to accelerate CO 2 transport through membranes, increasing CO 2 permeability; (ii) The NIPAM hydrogel layer coated on the outer walls of CNTs acts as the super water absorbent to increase water content of membranes, appealing both CO 2 permeability and CO 2 /gas selectivity. MMM containing 5 wt % NIPAM-CNTs exhibited the highest CO 2 permeability of 567 barrer, CO 2 /CH 4 selectivity of 35, and CO 2 /N 2 selectivity of 70, transcending 2008 Robeson upper bound line. The improved CO 2 separation performance of MMMs is mainly attributed to the construction of the efficient CO 2 transport pathways by NIPAM-CNTs. Thus, MMMs incorporated with NIPAM-CNTs composite filler can be used as an excellent membrane material for efficient CO 2 separation.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
Biotechnological storage and utilization of entrapped solar energy.
Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K
2005-03-01
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.
Thakur, Indu Shekhar; Kumar, Manish; Varjani, Sunita J; Wu, Yonghong; Gnansounou, Edgard; Ravindran, Sindhu
2018-05-01
To meet the CO 2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO 2 into useful organic products. At industrial scale, utilization of CO 2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO 2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO 2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO 2 into biofuels and biomaterials by chemical and biological methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Min; Zhang, Xueying; Zhou, Jun; Yuan, Yuexiang; Dai, Yumei; Li, Dong; Li, Zhidong; Liu, Xiaofeng; Yan, Zhiying
2017-02-01
Anaerobic co-digestion is considered to be an efficient way to improve the biogas production. The abundance, dynamic and interactional networks of prokaryotic community were investigated between co-digestion and mono-digestions of corn stalk and pig manure in mesophilic batch test. Co-digestion showed higher methane production, and contributed to suitable microenvironment as well as stable prokaryotic community structure. The highest methane production was achieved with the highest relative abundance of Methanosaeta. Prokaryotic community in mono-digestions might inhibited by FA or FVFA. The functional modules in co-digestion and mono-digestion of pig manure clustered together with bigger size and higher degree, and the connections of metabolic functions were better-organized, which means high-efficient utilization of substrate and prevention of the two digestion systems crash. The partial mantel tests showed the functional modules were significantly affected by environmental factors. These results further explained that why co-digestion was more efficient than mono-digestion owing to suitable microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
NASA Astrophysics Data System (ADS)
Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha
2017-11-01
The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.
Kaewpengkrow, Prangtip; Atong, Duangduen; Sricharoenchaikul, Viboon
2012-12-01
Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management.
NASA Astrophysics Data System (ADS)
Helgason, B. L.; Levy-Booth, D.; Arcand, M. M.
2017-12-01
Over the long-term, differences in soil management can result in fundamental changes in biogeochemical cycling. The Alternative Cropping Systems (ACS) Study at Scott, SK, Canada (est. 1994) compares organic (ORG) vs. conventionally (CON) managed crop rotations in a loamy Typic Borall. Nitrogen (N) and phosphorus (P) deficiency in the ORG systems have limited crop growth and thus plant carbon (C) inputs for over two decades, ultimately resulting in a C deficiency which has further altered biogeochemical cycling. We conducted a short-term microcosm experiment using 13C-glucose stable isotope probing (SIP) of DNA to test whether ORG soils have greater microbial C use efficiency due to long term resource limitation. Glucose-utilizing populations were dominated by Proteobacteria and Actinobacteria, with differing species-level identities and physiological capacities between CON and ORG systems. Of the 13C-utilizing taxa, relative abundance of Proteobacteria was greater in CON while Actinobacteria (and notably Firmicutes) were more dominant in ORG soils. Using isothermal calorimetry, we measured a thermodynamic efficiency (ηeff) of 0.68, which was not significantly different between soils indicating that the metabolic cost of glucose utilization was similar in CON and ORG soils. In spite of this, differential abundance analysis of 13C-labelled OTUs revealed that ORG soils had distinct active bacterial populations that were positively correlated with ηeff, ηsoil (glucose energy retained in soil) and primed soil organic matter (pSOM). In contrast, differentially abundant OTUs in the CON soils were negatively correlated with measures of thermodynamic efficiency but positively correlated with glucose-derived heat and CO2 production as well as NO3- and PO4- availability. ORG bacterial communities may co-metabolize other resources (N and P) from SOM to meet their metabolic requirements during glucose utilization, while the active bacteria in the CON soils could access these resources from existing available pools, resulting in similar ηeff during glucose utilization. Our work combining isothermal calorimetry coupled with 13C DNA-SIP demonstrates a legacy effect of agricultural management on fundamental aspects microbial ecology and bioenergetics of soil.
Utilization of methanol for polymer electrolyte fuel cells in mobile systems
NASA Astrophysics Data System (ADS)
Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.
1994-04-01
The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Carbon dioxide utilization via carbonate-promoted C-H carboxylation.
Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W
2016-03-10
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.
Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys
Klose, Christian; Demminger, Christian; Mroz, Gregor; Reimche, Wilfried; Bach, Friedrich-Wilhelm; Maier, Hans Jürgen; Kerber, Kai
2013-01-01
In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations. PMID:23344376
Liu, Shengwen; Zhang, Xian; Wang, Guozhong; Zhang, Yunxia; Zhang, Haimin
2017-10-04
Developing bifunctional oxygen electrocatalysts with superior catalytic activities of oxygen reduction reaction (ORR) and oxygen revolution reaction (OER) is crucial to their practical energy storage and conversion applications. In this work, we report the fabrication of Co/Co x S y @S,N-codoped porous carbon structures with various morphologies, specific surface areas, and pore structures, derived from controllably grown Co-based metal-organic frameworks with S- and N-containing organic ligands (thiophene-2,5-dicarboxylate, Tdc; and 4,4'-bipyridine, bpy) utilizing solvent effect (e.g., water and methanol) under room temperature and hydrothermal conditions. The results demonstrate that Co/Co x S y @S,N-codoped carbon fibers fabricated at a pyrolytic temperature of 800 °C (Co/Co x S y @SNCF-800) from Co-MOFs fibers fabricated in methanol under hydrothermal conditions as electrocatalysts exhibit superior bifunctional ORR and OER activities in alkaline media, endowing them as air cathodic catalysts in rechargeable zinc-air batteries with high power density and good durability.
Li, Young Feng; Soheilnia, Navid; Greiner, Mark; Ulmer, Ulrich; Wood, Thomas; Jelle, Abdinoor A; Dong, Yuchan; Yin Wong, Annabelle Po; Jia, Jia; Ozin, Geoffrey A
2018-06-01
The design of photocatalysts able to reduce CO 2 to value-added chemicals and fuels could enable a closed carbon circular economy. A common theme running through the design of photocatalysts for CO 2 reduction is the utilization of semiconductor materials with high-energy conduction bands able to generate highly reducing electrons. Far less explored in this respect are low-energy conduction band materials such as WO 3 . Specifically, we focus attention on the use of Pd nanocrystal decorated WO 3 nanowires as a heretofore-unexplored photocatalyst for the hydrogenation of CO 2 . Powder X-ray diffraction, thermogravimetric analysis, ultraviolet-visible-near infrared, and in situ X-ray photoelectron spectroscopy analytical techniques elucidate the hydrogen tungsten bronze, H y WO 3- x , as the catalytically active species formed via the H 2 spillover effect by Pd. The existence in H y WO 3- x of Brønsted acid hydroxyls OH, W(V) sites, and oxygen vacancies (V O ) facilitate CO 2 capture and reduction reactions. Under solar irradiation, CO 2 reduction attains CO production rates as high as 3.0 mmol g cat -1 hr -1 with a selectivity exceeding 99%. A combination of reaction kinetic studies and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements provide a valuable insight into thermochemical compared to photochemical surface reaction pathways, considered responsible for the hydrogenation of CO 2 by Pd@H y WO 3- x .
Li, Zhengqi; Zhao, Wei; Li, Ruiyang; Wang, Zhenwang; Li, Yuan; Zhao, Guangbo
2009-04-01
Measurements were taken for a 35-ton-per-hour biomass-fired travelling grate boiler. Local mean concentrations of O(2), CO, SO(2) and NO gas species and gas temperatures were determined in the region above the grate. For a 28-ton-per-hour load, the mass ratios of biomass fly ash and boiler slag were 42% and 58%, the boiler efficiency was 81.56%, and the concentrations of NO(x) and SO(2) at 6% O(2) were 257 and 84 mg/m(3). For an 18-ton-per-hour load, the fuel burning zone was nearer to the inlet than it was for the 28-ton-per-hour load, and the contents of CO and NO in the fuel burning zone above the grate were lower.
Optimization of Pressurized Oxy-Combustion with Flameless Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malavasi, Massimo; Landegger, Gregory
2014-06-30
Pressurized OxyECombustion is one of the most promising technologies for utility-scale power generation plants. Benefits include the ability to burn low rank coal and capture CO 2. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100 kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstratedmore » the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxy-combustion, and a competitive cost of electricity plus greater CO 2 avoidance costs then prior study’s presented. UPA’s operation of the bench-scale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had non-detectable residual fly ashes, and low levels of SO3 and heavy-metal. These results correspond to prior pressurized oxy-combustion testing completed by IteaEEnel.« less
Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; ...
2016-03-08
In this work, a generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K 2Cr 2O 7, KClO 3, and K 2S 2O 8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn 2+) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivitymore » of carbon monoxide (CO) oxidation. K 2Cr 2O 7 and KClO 3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. Finally, the straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.« less
Cyanuric Acid-Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure.
Yu, Bing; Kim, Daeun; Kim, Seoksun; Hong, Soon Hyeok
2017-03-22
A organocatalytic system based on economical and readily available cyanuric acid has been developed for the synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from propargylamines and 2-aminobenzonitriles under atmospheric pressure carbon dioxide. Notably, a low concentration of carbon dioxide in air was directly converted into 2-oxazolidinone in excellent yields without an external base. Through mechanistic investigation by in situ FTIR spectroscopy, cyanuric acid was demonstrated to be an efficient catalyst for carbon dioxide fixation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Al Sadat, Wajdi I; Archer, Lynden A
2016-07-01
Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis-Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions.
Al Sadat, Wajdi I.; Archer, Lynden A.
2016-01-01
Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis–Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions. PMID:27453949
NASA Astrophysics Data System (ADS)
Li, Chao; Hu, Chunbo; Zhu, Xiaofei; Hu, Jiaming; Li, Yue; Hu, Xu
2018-06-01
Powdered Mg and CO2 bipropellant engine providing a practical demonstration of in situ resource utilization (ISRU) for Mars Sample Return (MSR) mission seems to be feasible by current investigations. However, essential functions of the engine to satisfy the complicated ballistics requirements such as thrust modulation and multiple pulse have not been established yet. The aim of this experimental study is to evaluate the engine's thrust modulation feasibility and to investigate its thrust modulation characteristics. A powdered Mg and CO2 bipropellant engine construction aiming to achieve thrust modulation ability was proposed. A mass flow rate calibration experiment to evaluate the gas-solid mass flow rate regulating performance was conducted before fire tests. Fire test result shows that the engine achieved successful ignition as well as self-sustaining combustion; Thrust modulation of the engine is feasible, detail thrust estimating result of the test shows that maximum thrust is 135.91 N and the minimum is 5.65 N with a 22.11 thrust modulation ratio, moreover, the transportation period is quick and the thrust modulation ratio is adjustable. At the same time, the powder feed system reaches a two-step flow rate regulating with a modulation ratio of 4.5-5. What' more, caused by the uneven engine working conditions, there is an obvious difference in combustion efficiency value, maximum combustion efficiency of the powdered Mg and CO2 bipropellant engine is 80.20%.
The role of CO2 capture and utilization in mitigating climate change
NASA Astrophysics Data System (ADS)
Mac Dowell, Niall; Fennell, Paul S.; Shah, Nilay; Maitland, Geoffrey C.
2017-04-01
To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4-8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.
Carbon dioxide utilization via carbonate-promoted C-H carboxylation
NASA Astrophysics Data System (ADS)
Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.
2016-03-01
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.
NASA Astrophysics Data System (ADS)
Wei, Wen; Zhang, Wei; Hu, Dan; Ou, Langbo; Tong, Yindong; Shen, Guofeng; Shen, Huizhong; Wang, Xuejun
2012-09-01
Carbon dioxide (CO2) and carbon monoxide (CO) impact climate change and human health. The uncertainties in emissions inventories of CO2 and CO are primarily due to the large variation in measured emissions factors (EFs), especially to the lack of EFs from developing countries. China's goals of reducing CO2 emissions require a maximum utilization of biomass fuels. Pelletized biomass fuels are well suited for the residential biomass market, providing possibilities of more automated and optimized systems with higher modified combustion efficiency (MCE) and less products from incomplete combustion. However, EFs of CO2 and CO from pellet biomass fuels are seldom reported, and a comparison to conventional uncompressed biomass fuels has never been conducted. Therefore, the objectives of this study were to experimentally determine the CO2 and CO EFs from uncompressed biomass (i.e., firewood and crop residues) and biomass pellets (i.e., pine wood pellet and corn straw pellet) under real residential applications and to compare the influences of fuel properties and combustion conditions on CO2 and CO emissions from the two types of biomass fuels. For the uncompressed biomass examples, the CO2 and CO EFs were 1649.4 ± 35.2 g kg-1 and 47.8 ± 8.9 g kg-1, respectively, for firewood and 1503.2 ± 148.5 g kg-1 and 52.0 ± 14.2 g kg-1, respectively, for crop residues. For the pellet biomass fuel examples, the CO2 and CO EFs were 1708.0 ± 3.8 g kg-1 and 4.4 ± 2.4 g kg-1, respectively, for pellet pine and 1552.1 ± 16.3 g kg-1 and 17.9 ± 10.2 g kg-1, respectively, for pellet corn. In rural China areas during 2007, firewood and crop residue burning produced 721.7 and 23.4 million tons of CO2 and CO, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Kevin C.
The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO 2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO 2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact atmore » the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO 2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO 2. Towards the larger project goal, the UI-led team, together with Linde, has completed a preliminary design for the carbon capture pilot plant with basic engineering and cost estimates, established permitting needs, identified approaches to address Environmental, Health, and Safety concerns related to pilot plant installation and operation, developed approaches for long-term use of the captured carbon, and established strategies for workforce development and job creation that will re-train coal operators to operate carbon capture plants. This report describes Phase I accomplishments and demonstrates that the project team is well-prepared for full implementation of Phase 2, to design, build, and operate the carbon capture pilot plant.« less
Co-flow planar SOFC fuel cell stack
Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.
2004-11-30
A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.
Maru, Biniam T; Munasinghe, Pradeep C; Gilary, Hadar; Jones, Shawn W; Tracy, Bryan P
2018-04-01
Biological CO2 fixation is an important technology that can assist in combating climate change. Here, we show an approach called anaerobic, non-photosynthetic mixotrophy can result in net CO2 fixation when using a reduced feedstock. This approach uses microbes called acetogens that are capable of concurrent utilization of both organic and inorganic substrates. In this study, we investigated the substrate utilization of 17 different acetogens, both mesophilic and thermophilic, on a variety of different carbohydrates and gases. Compared to most model acetogen strains, several non-model mesophilic strains displayed greater substrate flexibility, including the ability to utilize disaccharides, glycerol and an oligosaccharide, and growth rates. Three of these non-model strains (Blautia producta, Clostridium scatologenes and Thermoanaerobacter kivui) were chosen for further characterization, under a variety of conditions including H2- or syngas-fed sugar fermentations and a CO2-fed glycerol fermentation. In all cases, CO2 was fixed and carbon yields approached 100%. Finally, the model acetogen C. ljungdahlii was engineered to utilize glucose, a non-preferred sugar, while maintaining mixotrophic behavior. This work demonstrates the flexibility and robustness of anaerobic, non-photosynthetic mixotrophy as a technology to help reduce CO2 emissions.
2010-06-01
could not. Figure 11 shows the Indium Gallium Phosphide (InGaP)- Gallium Arsenide (GaAs)- Germanium (Ge) solar cell utilization of the solar spectrum...2 opcv nL (4.4) p = 1, 2, 3, … nr = index of refraction of the cavity co = speed of light in a vacuum (m/s) L = cavity length (meters...illumination – ηsolar Efficiency under solar illumination – n Number of electrons – nr Index of refraction – Photon frequency Hz ΔFSR
Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Kalepu, Jagadeesh; Chennamsetti, Haribabu; Lad, Bapurao Sudam; Katukojvala, Sreenivas
2014-04-14
Disclosed herein is the design of an unprecedented electrophilic rhodium enalcarbenoid which results from rhodium(II)-catalyzed decomposition of a new class of enaldiazo compounds. The synthetic utility of these enalcarbenoids has been successfully demonstrated in the first transition-metal-catalyzed [4+2] benzannulation of pyrroles, thus leading to substituted indoles. The new benzannulation has been applied to the efficient synthesis of the natural product leiocarpone as well as a potent adipocyte fatty-acid binding protein inhibitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subtask 2.18 - Advancing CO 2 Capture Technology: Partnership for CO 2 Capture (PCO 2C) Phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, John; Azenkeng, Alexander; Fiala, Nathan
2016-03-31
Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO 2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO 2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO 2 control, were evaluated on the Energy &more » Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO 2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO 2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO 2 Solutions Incorporated. Both of these solvents showed the ability to capture CO 2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO 2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that could be accrued if 90% capture is not required. Modeling of three regional power plants using the Carnegie Mellon Integrated Environmental Control Model showed that, among other things, the use of a bypass during partial capture may minimize the size of the capture tower(s) and result in a slight reduction in the revenue required to operate the capture facility. The results reinforced that a one-size-fits-all approach cannot be taken to adding capture to a power plant. Laboratory testing indicated that Fourier transform infrared spectroscopy could be used to continuously sample stack emissions at CO 2 capture facilities to detect and quantify any residual amine or its degradation products, particularly nitrosamines. The information gathered during Phase III is important for utility stakeholders as they determine how to reduce their CO 2 emissions in a carbon-constrained world. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the North Dakota Industrial Commission, PPL Montana, Nebraska Public Power District, Tri-Mer Corporation, Montana–Dakota Utilities Co., Basin Electric Power Cooperative, KCRC/Korean Institute of Energy Research, Cansolv Technologies, and CO 2 Solutions, Inc.« less
Xiao, Juan-Ding; Shang, Qichao; Xiong, Yujie; Zhang, Qun; Luo, Yi; Yu, Shu-Hong; Jiang, Hai-Long
2016-08-01
Improving the efficiency of electron-hole separation and charge-carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal-organic framework (MOF), UiO-66-NH2 , denoted as Pt@UiO-66-NH2 and Pt/UiO-66-NH2 , respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt-decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen-production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO-66-NH2 greatly shortens the electron-transport distance, which favors the electron-hole separation and thereby yields much higher efficiency than Pt/UiO-66-NH2 . The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Joynt, E.; Grundl, T.; Han, W. S.; Gulbranson, E. L.
2016-12-01
Wetlands are vital components of the carbon cycle containing an estimated 20-30% of the global soil carbon store. The Cedarburg Bog of southeastern Wisconsin contains multiple wetland types, including the southernmost string bog found in North America. Carbon dioxide (CO2) behavior in wetland systems respond to multiple interdependent variables that are collectively not well understood. Modeling CO2 behavior in wetland environments requires a detailed representation of these variables. In 2014 a LI-COR 8100A automated soil gas flux system was installed in the string bog, measuring CO2 concentration and flux. Groundwater data, soil temperature, and weather data (temperature, pressure, precipitation, etc.) were included to reveal correlations between soil CO2 flux/concentration and external forces. In 2015 field data were complemented with soil moisture data and depth profiles of pore water chemistry and stable carbon isotopes from peat and soil gas to discern source and evolution of CO2 at depth. Initial gaseous δ13C(CO2) average -18‰ and deplete overnight suggesting increasing microbial metabolic efficiency. δ13C soil microbial biomass measure roughly -21‰ to -22‰. LI-COR data show diurnal and seasonal trends; CO2 concentration builds overnight while flux increases during the day. CO2 flux magnitude and CO2 concentration range peak in mid-summer, but frequency of increased CO2 flux events varies seasonally each year. Flux averages 7.55 mgCO2/min-m2 during the day but reaches 530 mgCO2/min-m2. Increased atmospheric and soil temperatures and decreasing atmospheric pressure prelude increasing CO2 flux intensity, though correlation strengths vary. Water level may influence CO2 flux, but observations suggest a mobile peat surface with the water table. 2016 imagery from trail cameras will determine extent of peat/well casing movement with water level changes. Further interpretation of data trends will utilize HYDRUS-1D to quantify relationships under changing environmental conditions.
Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi
2012-09-01
Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO2), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO2 concentrations. Adsorption capacity of SO2 declines with the increasing of O2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO2 increases and removal efficiencies of NO and SO2 would be relatively stable. Adsorption capacities of both NO and SO2 decrease with the increasing of CO2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO2 content exceeds 12.4%. The mechanisms of this process are also discussed. The prominent SO2 and NOx treatment techniques in power plants are wet flue gas desulfurization (FGD) and the catalytic decomposition method like selective catalytic reduction (SCR) or nonselective catalytic reduction (NSCR). However, these processes would have some difficulties in commercial application due to their high investment, requirement of expensive catalysts and large-scale equipment, and so on. A simple SO2 and NOx reduction utilizing decomposition by microwave energy method can be used. The pollutants control of flue gas in the power plants by the method of microwave-induced decomposition using adsorption of activated carbon/microwave desorption can meet the requirements of environmental protection, which will be stricter in the future.
Reengineering cyt b562 for hydrogen production: A facile route to artificial hydrogenases.
Sommer, Dayn Joseph; Vaughn, Michael David; Clark, Brett Colby; Tomlin, John; Roy, Anindya; Ghirlanda, Giovanna
2016-05-01
Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.
Morishita, Masaki; Takahashi, Yuki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu
2016-12-01
For cancer immunotherapy via tumor antigen vaccination in combination with an adjuvant, major challenges include the identification of a particular tumor antigen and efficient delivery of the antigen as well as adjuvant to antigen-presenting cells. In this study, we proposed an efficient exosome-based tumor antigens-adjuvant co-delivery system using genetically engineered tumor cell-derived exosomes containing endogenous tumor antigens and immunostimulatory CpG DNA. Murine melanoma B16BL6 cells were transfected with a plasmid vector encoding a fusion streptavidin (SAV; a protein that binds to biotin with high affinity)-lactadherin (LA; an exosome-tropic protein) protein, yielding genetically engineered SAV-LA-expressing exosomes (SAV-exo). SAV-exo were combined with biotinylated CpG DNA to prepare CpG DNA-modified exosomes (CpG-SAV-exo). Fluorescent microscopic observation revealed the successful modification of exosomes with CpG DNA by SAV-biotin interaction. CpG-SAV-exo showed efficient and simultaneous delivery of exosomes with CpG DNA to murine dendritic DC2.4 cells in culture. Treatment with CpG-SAV-exo effectively activated DC2.4 cells and enhanced tumor antigen presentation capacity. Immunization with CpG-SAV-exo exhibited stronger in vivo antitumor effects in B16BL6 tumor-bearing mice than simple co-administration of exosomes and CpG DNA. Thus, genetically engineered CpG-SAV-exo is an effective exosome-based tumor antigens-adjuvant co-delivery system that will be useful for cancer immunotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B
2005-12-08
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.
NASA Technical Reports Server (NTRS)
McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.
2010-01-01
CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.
Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi
2017-12-08
Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, M.M.; Song, S.K.; Lee, Y.Y.
1991-12-31
The effectiveness of pretreatments on hardwood substrate was investigated in connection with its subsequent conversion by simultaneous saccharification and fermentation (SSF), using Clostridium acetobutylicum. The main objectives of the pretreatment were to achieve efficient separation of lignin from carbohydrates, and to obtain maximum sugar yield on enzymatic hydrolysis of pretreated wood. Two methods have given promising results: (1) supercritical CO{sub 2}-SO{sub 2} treatment, and (2) monoethanolamine (MEA) treatment. The MEA pretreatment removed above 90% of hardwood lignin while retaining 83% of carbohydrates. With CO{sub 2}-SO{sub 2} pretreatment, the degree of lignin separation was lower. Under the scheme of SSF, themore » pretreated hardwood was converted to acetone, butanol, and ethanol (ABE) via single stage processing by cellulose enzyme system and C. acetobutylicum cells. The product yield in the process was such that 15 g of ABE/100 g of dry aspen wood was produced. In the overall process of SSF, the enzymatic hydrolysis was found to be the rate-limiting step. The ability of C. acetobutylicum to metabolize various 6-carbon and 5-carbon sugars resulted in efficient utilization of all available sugars from hardwood.« less
Yuan, Dandan; Tian, Lei; Li, Zhida; Jiang, Hong; Yan, Chao; Dong, Jing; Wu, Hongjun; Wang, Baohui
2018-02-15
Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO 2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.
Development of a General Form CO 2 and Brine Flux Input Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansoor, K.; Sun, Y.; Carroll, S.
2014-08-01
The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO 2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probemore » variability in key parameters. This report presents the procedures used to develop a generalized model for CO 2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan
Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less
Palomino, Robert M.; Gutiérrez, Ramón A.; Liu, Zongyuan; ...
2017-09-26
Au(111) does not bind CO and O 2 well. The deposition of small nanoparticles of MgO, CeO 2, and TiO 2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO 2(111), and Au/TiO 2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO 2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO 2/Au(111) < TiO 2/Au(111). Ambient pressure X-raymore » photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO 2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO 3 2–(ads), and OH(ads) were identified under reaction conditions. CO 3 2–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO 2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO 2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Yang, Xin; Lv, Yaqi; Xin, Xiaofei; Qin, Chao; Han, Xiaopeng; Yang, Lei; He, Wei; Yin, Lifang
2017-04-01
Co-delivery of microRNAs and chemotherapeutic drugs into tumor cells is an attractive strategy for synergetic breast cancer therapy due to their complementary mechanisms. In this work, a core-shell nanocarrier coated by cationic albumin was developed to simultaneously deliver miRNA-34a and docetaxel (DTX) into breast cancer cells for improved therapeutic effect. The co-delivery nanocarriers showed a spherical morphology with an average particle size of 183.9 nm, and they efficiently protected miRNA-34a from degradation by RNase and serum. Importantly, the nanocarriers entered the cytosol via a caveolae-mediated pathway without entrapment in endosomes/lysosomes, thus improving the utilization of the cargo. In vitro, the co-delivery nanocarriers suppressed the expression of anti-apoptosis gene Bcl-2 at both transcription and protein levels, inhibited tumor cell migration and efficiently induced cell apoptosis and cytotoxicity. In vivo, the co-delivery nanocarriers prolonged the blood circulation of DTX, enhanced tumor accumulation of the cargo and significantly inhibited tumor growth and metastasis in 4T1-tumor bearing mice models. Taken together, the present nanocarrier co-loading with DTX and miRNA-34a is a new nanoplatform for the combination of insoluble drugs and gene/protein drugs and provides a promising strategy for the treatment of metastatic breast cancer.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Optimizing the dermal accumulation of a tazarotene microemulsion using skin deposition modeling.
Nasr, Maha; Abdel-Hamid, Sameh
2016-01-01
It is well known that microemulsions are mainly utilized for their transdermal rather than their dermal drug delivery potential due to their low viscosity, and the presence of penetration enhancing surfactants and co-surfactants. Applying quality by design (QbD) principles, a tazarotene microemulsion formulation for local skin delivery was optimized by creating a control space. Critical formulation factors (CFF) were oil, surfactant/co-surfactant (SAA/CoS), and water percentages. Critical quality attributes (CQA) were globular size, microemulsion viscosity, tazarotene skin deposition, permeation, and local accumulation efficiency index. Increasing oil percentage increased globular size, while the opposite occurred regarding SAA/CoS, (p = 0.001). Microemulsion viscosity was reduced by increasing oil and water percentages (p < 0.05), due to the inherent high viscosity of the utilized SAA/CoS. Drug deposition in the skin was reduced by increasing SAA/CoS due to the increased hydrophilicity and viscosity of the system, but increased by increasing water due to hydration effect (p = 0.009). Models with very good fit were generated, predicting the effect of CFF on globular size, microemulsion viscosity, and drug deposition. A combination of 40% oil and 45% SAA/CoS showed the maximum drug deposition of 75.1%. Clinical skin irritation study showed that the aforementioned formula was safe for topical use. This article suggests that applying QbD tools such as experimental design is an efficient tool for drug product design.
Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.
2015-01-01
Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826
Zhu, Yuan-Gang; Dong, Shu-Ting; Zhang, Ji-Wang; Liu, Peng; Yang, Jin-Sheng; Jia, Chun-Lan; Liu, Jing-Guo; Li, Deng-Hai
2010-06-01
In order to investigate the effects of interplanting and direct seeding on the photosynthesis characteristics of summer maize and its utilization of solar and heat resources, two summer maize cultivars (Zhengdan 958 and Denghai 661) were planted in the farmlands of Denghai Seed Co. Ltd in Laizhou City of Shandong Province, with 67500 plants x hm(-2) and three sowing dates. The above-ground biomass, plant growth rate, leaf area index, and net photosynthetic rate per ear leaf were measured to reveal the photosynthesis characteristics of test cultivars. In the meantime, the characters of grain-filling were simulated by Richards' model, and the solar resource utilization efficiency of the cultivars was calculated, in combining with meteorological data. Comparing with interplanting, direct seeding increased the grain yield by 1.17%-3.33%, but decreased the thousand-grain weight significantly. Growth stages were extended under earlier sowing. The leaf area index and net photosynthetic rate from flowering to 30 d after anthesis were significantly higher under direct seeding than under interplanting, but after then, they decreased faster. Direct seeding induced a higher accumulation of dry matter and a faster plant growth rate before and after flowering. Under direct seeding, the maximum grain-filling rate reached earlier, the starting potential was higher, but the grain-filling period, active grain-filling period, and W(max) were lower, compared with those under interplanting. Also under direct seeding, the total accumulative temperature and solar radiation during growth period decreased by 150-350 degrees C x d and 200-400 MJ x m(-2), respectively, but the solar resource utilization efficiency of grain increased by 10.5%-24.7%. All the results suggested that direct seeding was superior to interplanting for the summer maize production under field condition. In order to enhance solar and heat utilization efficiency and excavate yield potential, it would be essential to improve the leaf photosynthesis efficiency and postpone leaf aging.
Ko, Ja Kyong; Jung, Je Hyeong; Altpeter, Fredy; Kannan, Baskaran; Kim, Ha Eun; Kim, Kyoung Heon; Alper, Hal S; Um, Youngsoon; Lee, Sun-Mi
2018-05-01
The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Schut, Gerrit J.; Lipscomb, Gina L.; Nguyen, Diep M. N.; ...
2016-01-29
In this study, carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a CO dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na +/H + antiporter module. This complex oxidizes CO, evolves CO 2 and H 2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein wemore » used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100° C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H 2 at 80° C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.« less
Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.
Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C
2015-02-04
Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sourav; Chanda, Abhra; Das, Sourav; Akhand, Anirban; Pattanaik, Suchismita; Choudhury, S. B.; Dutta, Dibyendu; Hazra, Sugata
2018-04-01
The rate of nutrient removal and changes in pCO2 (water) were compared between a lentic aquaculture pond [East Kolkata Wetlands (EKW), India] and a lotic estuarine system [Diamond Harbor (DH) in Hugli Estuary, India] during the post-monsoon season (experiencing a similar tropical climate) by means of ex situ microcosm experiment. Though the DH waters were found to be substantial source of CO2 towards atmosphere and EKW waters to be sink for CO2 (according to the initial concentration of CO2), the eight consecutive days microcosm experiment revealed that the nutrient removal and pCO2 reduction efficiency were significantly higher in DH (ΔpCO2—90%) compared to EKW (ΔpCO2—78%). Among the five nutrients studied [dissolved nitrate-nitrogen (NO3-N), dissolved ammonium nitrogen (NH4-N), silicate, phosphate and iron], dissolved NO3-N followed by NH4-N was the most utilized in both EKW and DH. Except silicate, the other nutrients reduced to 78-91% in EKW and 84-99% in DH samples of their initial concentrations. Chlorophyll-a concentration steadily depleted in EKW ( 68-26 mg m-3) during the experiment indicating intense zooplankton grazing, whereas in DH it increased rapidly ( 3.4-23 mg m-3) with decreasing pCO2 (water). The present observations further indicated that regular flushing of EKW aquaculture ponds is required to avoid stagnation of water column which would enhance the zooplankton grazing and hamper the primary production of an otherwise sink of CO2. In DH, controlled freshwater discharge from Farakka and reduction of untreated organic waste might allow the existing phytoplankton community to enhance their photosynthetic activity.
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-07-01
We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing
Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; ...
2016-02-12
Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less
Financial development, income inequality, and CO2 emissions in Asian countries using STIRPAT model.
Khan, Abdul Qayyum; Saleem, Naima; Fatima, Syeda Tamkeen
2018-03-01
The main purpose of this paper is to find the effects of financial development, income inequality, energy usage, and per capita GDP on carbon dioxide (CO 2 ) emissions as well the environmental Kuznets curve (EKC) for the three developing Asian countries-Bangladesh, India, and Pakistan. Panel data during the period 1980-2014 and the Stochastic Impacts by Regression on Population, Affluence, and Technology model with fully modified ordinary least squares (FMOLS) are employed for empirical investigation. The results show that financial development has a significant negative relationship with CO 2 emission in the three selected Asian countries with the exception of India. The results further reveal that income inequality in Pakistan and India reduce CO 2 emission, while the result for Bangladesh is opposite. Likewise, energy usage has a significant positive effect on CO 2 emission in Bangladesh, Pakistan, and India. Our empirical analysis based on long-run and short-run elasticity appraisal suggests the validation of the EKC in Pakistan and India. The study findings recommend an important policy insinuation. The study suggests introducing a motivational campaign for the inhabitant towards utilization of high-efficiency electrical appliances, constructing mutual cooperation for economic development rather involve in winning development race, and introducing effective pollution absorption measures along with big projects.
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan
2016-03-01
This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.
Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret; Boehman, Andre; Lavoie, George
Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less
Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin
2014-07-01
A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high nitrogen utilization efficiency had a strong ability of dry matter production and nitrogen accumulation. It could synergistically improve yield and nitrogen utilization efficiency by enhancing the ability of nitrogen uptake and dry matter formation before jointing stage in barley.
Saqib, Muhammad; Li, Suping; Gao, Wenyue; Majeed, Saadat; Qi, Liming; Liu, Zhongyuan; Xu, Guobao
2016-12-01
The development of novel coreactants for chemiluminescence is very important to improve performance and widen its applications without using any other catalyst. N-Hydroxysuccinimide (NHS), a highly popular amine-reactive, activating, or protecting reagent in biochemical applications and organic synthesis, has been explored as an efficient and stable chemiluminescence coreactant for the first time. The chemiluminescence intensity of the newly developed luminol-NHS system is about 22 times higher than that of the traditional luminol-H 2 O 2 system. Chemiluminescence of this system is dramatically enhanced by Co 2+ . This new chemiluminescence system is then applied for the highly selective and ultrasensitive detection of Co 2+ with limit of detection (0.01 nM) better than those of several conventional analytical methods. This system also enables the efficient detection of luminol (LOD = 7 pM) and NHS (LOD = 3.0 μM) with excellent sensitivity. This chemiluminescence method was then also utilized to detect Co 2+ in tap water and blue silica gel with excellent recoveries in the range 99.20-103.07 %. This novel chemiluminescence system has several advantages, including simple, cost-effective, highly sensitive, selective, and wide linear range. We expect that this chemiluminescence system will be a promising candidate for chemical and biological sensing. Graphical Abstract Comparison of CL peak intensities of classical luminol-H 2 O 2 CL system and newly developed luminol-NHS CL system.
Wang, Huamin; Wang, Guangyu; Lu, Qingquan; Chiang, Chien-Wei; Peng, Pan; Zhou, Jiufu; Lei, Aiwen
2016-10-04
Difunctionalization of activated alkenes, a powerful strategy in chemical synthesis, has been accomplished for direct synthesis of a series of β-keto sulfides and β-keto sulfones. The transformation, mediated by O2 , proceeds smoothly in water and without any catalyst. Prominent advantages of this method include mild reaction conditions, purification simplicity, and gram-scale synthesis, underlining the practical utility of this methodology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tang, Li Juan; Chen, Xiao; Wen, Tian Yu; Yang, Shuang; Zhao, Jun Jie; Qiao, Hong Wei; Hou, Yu; Yang, Hua Gui
2018-02-26
A highly transparent NiO layer was prepared by a solution processing method with nickel(II) 2-ethylhexanoate in non-polar solvent and utilized as HTM in perovskite solar cells. Excellent optical transmittance and the matched energy level lead to the enhanced power conversion efficiency (PCE, 18.15 %) than that of conventional sol-gel-processed NiO-based device (12.98 %). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chou, Tsu-Chin; Doong, Ruey-An; Hu, Chi-Chang; Zhang, Bingsen; Su, Dang Sheng
2014-03-01
A promising energy storage material, MnO2 /hierarchically porous carbon (HPC) nanocomposites, with exceptional electrochemical performance and ultrahigh energy density was developed for asymmetric supercapacitor applications. The microstructures of MnO2 /HPC nanocomposites were characterized by transmission electron microscopy, scanning transmission electron microscopy, and electron dispersive X-ray elemental mapping analysis. The 3-5 nm MnO2 nanocrystals at mass loadings of 7.3-10.8 wt % are homogeneously distributed onto the HPCs, and the utilization efficiency of MnO2 on specific capacitance can be enhanced to 94-96 %. By combining the ultrahigh utilization efficiency of MnO2 and the conductive and ion-transport advantages of HPCs, MnO2 /HPC electrodes can achieve higher specific capacitance values (196 F g(-1) ) than those of pure carbon electrodes (60.8 F g(-1) ), and maintain their superior rate capability in neutral electrolyte solutions. The asymmetric supercapacitor consisting of a MnO2 /HPC cathode and a HPC anode shows an excellent performance with energy and power densities of 15.3 Wh kg(-1) and 19.8 kW kg(-1) , respectively, at a cell voltage of 2 V. Results obtained herein demonstrate the excellence of MnO2 /HPC nanocomposites as energy storage material and open an avenue to fabricate the next generation supercapacitors with both high power and energy densities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Oechel, W. C.; Hastings, S. J.; Bryant, P. J.; Qian, Y.
2003-12-01
This research took two different approaches to measuring carbon and water vapor fluxes at the plot level (2 x 2 meter and 1 x 1 meter plots) to help understand and predict ecosystem responses to elevated CO2 concentrations and concomitant environmental changes. The first measurement approach utilized a CO2-controlled, ambient lit, temperature controlled (CO2LT) null-balance chamber system run in a chaparral ecosystem in southern California, with six different CO2 concentrations ranging from 250 to 750 ppm CO2 concentrations with 100 ppm difference between treatments. The second measurement approach used a free air CO2 enrichment (FACE) system operated at 550 ppm CO2 concentration. These manipulations allowed the study of responses of naturally-growing chaparral to varying levels of CO2, under both chamber and open air conditions. There was a statistically significant CO2 effect on annual NEE (net ecosystem exchange) during the period of this study, 1997 to 2000. The effects of elevated CO2 on CO2 and water vapor flux showed strong seasonal patterns. Elevated CO2 delayed the development of water stress, enhanced leaf-level photosynthesis, and decreased transpiration and conductance rates. These effects were observed regardless of water availability. Ecosystem CO2 sink strength and plant water status were significantly enhanced by elevated CO2 when water availability was restricted. Comparing the FACE treatment and the FACE control, the ecosystem was either a stronger sink or a weaker source to the atmosphere throughout the dry seasons, but there was no statistically significant difference during the wet seasons. Annual average leaf transpiration decreased with the increasing of the atmospheric CO2 concentration. Although leaf level water-use efficiency (WUE) increased with the growth CO2 concentration increase, annual evapotranspiration (ET) during these four years also increased with the increase of the atmospheric CO2 concentrations. These results indicate that chaparral or other similar ecosystems, under future elevated CO2 concentrations, might be even more water stressed than they are under current conditions.
Chang, Yan; Szybist, James P.; Pihl, Josh A.; ...
2017-12-19
The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yan; Szybist, James P.; Pihl, Josh A.
The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less
Light use efficiency of California redwood forest understory plants along a moisture gradient.
Santiago, Louis S; Dawson, Todd E
2014-02-01
We investigated photosynthesis of five plant species growing in the understory at three sites (1,170-, 1,600- and 2,100-mm annual moisture inputs), along the geographical range of coastal California redwood forest, to determine whether greater inputs of rain and fog at northern sites enhance photosynthetic utilization of fluctuating light. Measurements of understory light environment and gas exchange were carried out to determine steady state and dynamic photosynthetic responses to light. Leaf area index ranged from 4.84 at the 2,100-mm site to 5.98 at the 1,170-mm site. Maximum rates of net photosynthesis and stomatal conductance (g) did not vary appreciably within species across sites. Photosynthetic induction after a change from low to high light was significantly greater in plants growing in lower light conditions regardless of site. Photosynthetic induction also increased with the rate of g in diffuse light, prior to the increase to saturating light levels. Post-illumination CO2 assimilation was the largest factor contributing to variation in C gain during simulated lightflecks. The duration of post-illumination photosynthetic activity, total CO2 assimilation per light received, and light use efficiency during simulated lightflecks increased significantly with moisture inputs in four out of five species. Increasing leaf N concentration with increasing moisture inputs in three out of five species, coupled with changes in leaf N isotopic composition with the onset of the summer fog season suggest that natural N deposition increases with rain and fog inputs and contributes to greater utilization of fluctuating light availability in coastal California redwood forests.
NASA Astrophysics Data System (ADS)
Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin
2017-10-01
Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J
2018-02-20
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Y.; Navid, A.
Rising energy demands and the imperative to reduce carbon dioxide (CO 2) emissions are driving research on biofuels development. Hydrogen gas (H 2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO 2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say thatmore » the concept of the direct manufacture of alternative fuels, such as H 2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H 2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H 2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H 2 at the expense of solar energy. Because of the elimination of energy cost used for H 2O oxidation and the prevention of the production of O 2 that inhibits the H 2-producing enzymes, the efficiency of light energy conversion to H 2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H 2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO 2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO 2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.« less
Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.
Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu
2013-11-08
Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.
Cummins, Peter L; Kannappan, Babu; Gready, Jill E
2018-01-01
The ubiquitous enzyme Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) fixes atmospheric carbon dioxide within the Calvin-Benson cycle that is utilized by most photosynthetic organisms. Despite this central role, RuBisCO's efficiency surprisingly struggles, with both a very slow turnover rate to products and also impaired substrate specificity, features that have long been an enigma as it would be assumed that its efficiency was under strong evolutionary pressure. RuBisCO's substrate specificity is compromised as it catalyzes a side-fixation reaction with atmospheric oxygen; empirical kinetic results show a trend to tradeoff between relative specificity and low catalytic turnover rate. Although the dominant hypothesis has been that the active-site chemistry constrains the enzyme's evolution, a more recent study on RuBisCO stability and adaptability has implicated competing selection pressures. Elucidating these constraints is crucial for directing future research on improving photosynthesis, as the current literature casts doubt on the potential effectiveness of site-directed mutagenesis to improve RuBisCO's efficiency. Here we use regression analysis to quantify the relationships between kinetic parameters obtained from empirical data sets spanning a wide evolutionary range of RuBisCOs. Most significantly we found that the rate constant for dissociation of CO 2 from the enzyme complex was much higher than previous estimates and comparable with the corresponding catalytic rate constant. Observed trends between relative specificity and turnover rate can be expressed as the product of negative and positive correlation factors. This provides an explanation in simple kinetic terms of both the natural variation of relative specificity as well as that obtained by reported site-directed mutagenesis results. We demonstrate that the kinetic behaviour shows a lesser rather than more constrained RuBisCO, consistent with growing empirical evidence of higher variability in relative specificity. In summary our analysis supports an explanation for the origin of the tradeoff between specificity and turnover as due to competition between protein stability and activity, rather than constraints between rate constants imposed by the underlying chemistry. Our analysis suggests that simultaneous improvement in both specificity and turnover rate of RuBisCO is possible.
Design of experiment analysis of CO2 dielectric barrier discharge conditions on CO production
NASA Astrophysics Data System (ADS)
Becker, Markus; Ponduri, Srinath; Engeln, Richard; van de Sanden, Richard; Loffhagen, Detlef
2016-09-01
Dielectric barrier discharges (DBD) are frequently used for the generation of CO from CO2 which is of particular interest for syngas production. It has been found by means of fluid modelling in that the CO2 conversion frequency in a CO2 DBD depends linearly on the specific energy input (SEI) while the energy efficiency of CO production is only weakly dependent on the SEI. Here, the same numerical model as in is applied to study systematically the influence of gas pressure, applied voltage amplitude and frequency on the CO2 conversion frequency and the energy efficiency of CO production based on a 2-level 3-factor full factorial experimental design. It is found that the operating conditions of the CO2 DBD for CO production can be chosen to either have an optimal throughput or a better energy efficiency. This work was partly supported by the German Research Foundation within the Collaborative Research Centre Transregio 24.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Kevin C.; Lu, Yongqi; Patel, Vinod
The successful implementation of CCUS requires the confluence of technology, regulatory, and financial factors. One of the factors that impact this confluence is the ability to utilize and monetize captured CO 2. The generally accepted utilization approach has been CO 2-based Enhanced Oil Recovery (EOR), yet this is not always feasible and/or a preferable approach. There is a need to be able to explore a multitude of utilization approaches in order to identify a portfolio of potential utilization mechanisms. This portfolio must be adapted based on the economy of the region. In response to this need, the University of Illinoismore » has formed a Carbon Dioxide Utilization and Reduction (COOULR) Center. The open nature of the university, coupled with a university policy to reduce CO 2 emissions, provides a model for the issues communities will face when attempting to reduce emissions while still maintaining reliable and affordable power. This Center is one of the key steps in the formation of a market for captured CO 2. Furthermore, the goal of the Center is to not only evaluate technologies, but also demonstrate at a large pilot scale how communities may be able to adjust to the need to reduce GHG emissions.« less
O'Brien, Kevin C.; Lu, Yongqi; Patel, Vinod; ...
2017-01-01
The successful implementation of CCUS requires the confluence of technology, regulatory, and financial factors. One of the factors that impact this confluence is the ability to utilize and monetize captured CO 2. The generally accepted utilization approach has been CO 2-based Enhanced Oil Recovery (EOR), yet this is not always feasible and/or a preferable approach. There is a need to be able to explore a multitude of utilization approaches in order to identify a portfolio of potential utilization mechanisms. This portfolio must be adapted based on the economy of the region. In response to this need, the University of Illinoismore » has formed a Carbon Dioxide Utilization and Reduction (COOULR) Center. The open nature of the university, coupled with a university policy to reduce CO 2 emissions, provides a model for the issues communities will face when attempting to reduce emissions while still maintaining reliable and affordable power. This Center is one of the key steps in the formation of a market for captured CO 2. Furthermore, the goal of the Center is to not only evaluate technologies, but also demonstrate at a large pilot scale how communities may be able to adjust to the need to reduce GHG emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric
Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less
Selective Transformation of CO2 to CO at a Single Nickel Center.
Yoo, Changho; Kim, Yeong-Eun; Lee, Yunho
2018-05-15
Carbon dioxide conversion mediated by transition metal complexes continues to attract much attention because of its future potential utilization as a nontoxic and inexpensive C1 source for the chemical industry. Given the presence of nickel in natural systems that allow for extremely efficient catalysis, albeit in an Fe cluster arrangement, studies that focus on selective CO 2 conversion with synthetic nickel species are currently of considerable interest in our group. In this Account, the selective conversion of CO 2 to carbon monoxide occurring at a single nickel center is discussed. The chemistry is based on a series of related nickel pincer complexes with attention to the uniqueness of the coordination geometry, which is crucial in allowing for particular reactivity toward CO 2 . Our research is inspired by the efficient enzymatic CO 2 catalysis occurring at the active site of carbon monoxide dehydrogenase. Since the binding and reactivity toward CO 2 are controlled in part by the geometry of a L 3 Ni scaffold, we have explored the chemistry of low-valent nickel supported by PP Me P and PNP ligands, in which a pseudotetrahedral or square-planar geometry is accommodated. Two isolated nickel-CO 2 adducts, (PP Me P)Ni(η 2 -CO 2 -κ C) (2) and {Na(12-C-4) 2 }{(PNP)Ni(η 1 -CO 2 -κ C)} (7), clearly demonstrate that the geometry of the nickel ion is crucial in the binding of CO 2 and its level of activation. In the case of a square-planar nickel center supported by a PNP ligand, a series of bimetallic metallacarboxylate Ni-μ-CO 2 -κ C, O-M species (M = H, Na, Ni, Fe) were synthesized, and their structural features and reactivity were studied. Protonation cleaves the C-O bond, resulting in the formation of a nickel(II) monocarbonyl complex. By sequential reduction, the corresponding mono- and zero-valent Ni-CO species were produced. The reactivities of three nickel carbonyl species toward various iodoalkanes and CO 2 were explored to address whether their corresponding reactivities could be controlled by the number of valence d electrons. In particular, a (PNP)Ni(0)-CO species (13) shows immediate reactivity toward CO 2 but displays multiple product formation. By incorporation of a -CMe 2 - bridging unit, a structurally rigidified acri PNP ligand was newly designed and produced. This ligand modification was successful in preparing the T-shaped nickel(I) metalloradical species 9 exhibiting open-shell reactivity due to the sterically exposed nickel center possessing a half-filled d x 2 - y 2 orbital. More importantly, the selective addition of CO 2 to a nickel(0)-CO species was enabled to afford a nickel(II)-carboxylate species (22) with the expulsion of CO(g). Finally, the ( acri PNP)Ni system provides a synthetic cycle in the study of the selective conversion of CO 2 to CO that involves two-electron reduction of Ni-CO followed by the direct addition of CO 2 to release the coordinated CO ligand.
Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.
Williams, R S; Lincoln, D E; Thomas, R B
1994-06-01
Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.
Estimation of the quantum efficiency of the photodissociation of HbO2 and HbCO
NASA Astrophysics Data System (ADS)
Gisbrecht, A. I.; Mamilov, S. A.; Esman, S. S.; Asimov, M. M.
2016-01-01
The paper presents our results on the study of the efficiency of inter-fractional changes in hemoglobin molecules depending on the laser radiation parameters. The evaluation of the quantum efficiency of light interaction in vivo with oxyhemoglobin (HbO2) and carboxyhemoglobin (HbCO) in the blood at wavelengths for 525 and 605 nm is presented. The photodissociation yield of 11% for HbO2 and 79% for HbCO are measured at the wavelength of 525 nm and 10 % for HbO2 and 76 % for HbCO at a wavelength of 605 nm. Thus, the quantum yield of photodissociation of the HbCO is considerably higher, which ensures high efficiency of photodecomposition of the HbCO in the blood. The obtained results can be used in the clinical phototherapy practice for effective treatment of CO poisoning.
Is CO2 emission a side effect of financial development? An empirical analysis for China.
Hao, Yu; Zhang, Zong-Yong; Liao, Hua; Wei, Yi-Ming; Wang, Shuo
2016-10-01
Based on panel data for 29 Chinese provinces from 1995 to 2012, this paper explores the relationship between financial development and environmental quality in China. A comprehensive framework is utilized to estimate both the direct and indirect effects of financial development on CO 2 emissions in China using a carefully designed two-stage regression model. The first-difference and orthogonal-deviation Generalized Method of Moments (GMM) methods are used to control for potential endogeneity and introduce dynamics. To ensure the robustness of the estimations, two indicators measuring financial development-financial depth and financial efficiency-are used. The empirical results indicate that the direct effects of financial depth and financial efficiency on environmental quality are positive and negative, respectively. The indirect effects of both indicators are U shaped and dominate the shape of the total effects. These findings suggest that the influences of the financial development on environment depend on the level of economic development. At the early stage of economic growth, financial development is environmentally friendly. When the economy is highly developed, a higher level of financial development is harmful to the environmental quality.
NASA Astrophysics Data System (ADS)
Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen
2015-08-01
A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.
1300°F 800 MWe USC CFB Boiler Design Study
NASA Astrophysics Data System (ADS)
Robertson, Archie; Goidich, Steve; Fan, Zhen
Concern about air emissions and the effect on global warming is one of the key factors for developing and implementing new advanced energy production solutions today. One state-of-the-art solution is circulating fluidized bed (CFB) combustion technology combined with a high efficiency once-through steam cycle. Due to this extremely high efficiency, the proven CFB technology offers a good solution for CO2 reduction. Its excellent fuel flexibility further reduces CO2 emissions by co-firing coal with biomass. Development work is under way to offer CFB technology up to 800MWe capacities with ultra-supercritical (USC) steam parameters. In 2009 a 460MWe once-through supercritical (OTSC) CFB boiler designed and constructed by Foster Wheeler will start up. However, scaling up the technology further to 600-800MWe with net efficiency of 45-50% is needed to meet the future requirements of utility operators. To support the move to these larger sizes, an 800MWe CFB boiler conceptual design study was conducted and is reported on herein. The use of USC conditions (˜11 00°F steam) was studied and then the changes, that would enable the unit to generate 1300°F steam, were identified. The study has shown that by using INTREX™ heat exchangers in a unique internal-external solids circulation arrangement, Foster Wheeler's CFB boiler configuration can easily accommodate 1300°F steam and will not require a major increase in heat transfer surface areas.
Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia
NASA Astrophysics Data System (ADS)
Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji
2016-06-01
Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Park, Shinyoung; Yasin, Muhammad; Kim, Daehee; Park, Hee-Deung; Kang, Chang Min; Kim, Duk Jin; Chang, In Seop
2013-09-01
A gas-lift reactor having a high mass transfer coefficient (k(L)a = 80.28 h(-1)) for a relatively insoluble gas (carbon monoxide; CO) was used to enrich (homo)acetogens from animal feces. Samples of fecal matter from cow, rabbit, chicken, and goat were used as sources of inoculum for the enrichment of CO and H(2) utilizing microbial consortia. To confirm the successful enrichment, the Hungate roll tube technique was employed to count and then isolate putative CO utilizers. The results of this work showed that CO and H(2) utilizing consortia were established for each inoculum source after 8 days. The number of colony-forming units in cow, rabbit, chicken, and goat fecal samples were 3.83 × 10(9), 1.03 × 10(9), 8.3 × 10(8), and 3.25 × 10(8) cells/ml, respectively. Forty-two colonies from the animal fecal samples were screened for the ability to utilize CO/H(2). Ten of these 42 colonies were capable of utilizing CO/H(2). Five isolates from cow feces (samples 5, 6, 8, 16, and 22) were highly similar to previously unknown (homo)acetogen, while cow-7 has shown 99 % similarity with Acetobacterium sp. as acetogens. On the other hand, four isolates from chicken feces (samples 3, 8, 10, and 11) have also shown high CO/H(2) utilizing activity. Hence, it is expected that this research could be used as the basis for the rapid enrichment of (homo)acetogenic consortia from various environmental sources.
Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander
2018-03-05
The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhai, Haibo; Ou, Yang; Rubin, Edward S
2015-07-07
This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.
NASA Astrophysics Data System (ADS)
Zhang, Shi-Yuan; Yang, Yuan-Yuan; Zheng, Yue-Qing; Zhu, Hong-Lin
2018-07-01
Electrocatalytic reduction of CO2 to useful fuels or chemicals is a promising path for carbon recycling. In this study, a novel mixed-metallic MOF [Ag4Co2(pyz)PDC4][Ag2Co(pyz)2PDC2] was synthesized, and it transformed into Ag doped Co3O4 catalyst, which exhibits excellent electro-catalytic performance for reduction of CO2 in water to syngas (H2 + CO). The as-prepared Ag/Co3O4 material exhibits a high selectivity of CO in 0.1 M KHCO3 aqueous solution (CO2 saturated) with the corresponding faradaic efficiency up to 55.6%. Compared with the Ag/Co3O4 electrode, the maximum faradaic efficiency (FE) of CO of pure Co3O4 is 21.3% at - 1.8 V vs. SCE. The results show that the presence of Ag can improve the efficiency of CO significantly, thereby inhibiting the production of H2. The stability of the samples can be maintained for more than 10 h at - 1.8 V vs. SCE. The ratio of production between H2 and CO can be controlled by varying the potential values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkedahl, Bruce
Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current renewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0more » of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO 2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The feasibility analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.« less
NASA Astrophysics Data System (ADS)
Lin, Jinghuang; Liu, Yulin; Wang, Yiheng; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai
2017-09-01
Herein, binder-free hierarchically structured nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer (Ni-Co-S@C@CoO NAs) are fabricated via hydrothermal synthesis, carbonization treatment and electrodeposition, where three key components (CoO nanosheet arrays, a carbon layer and Ni-Co-S nanoflakes) are strategically combined to construct an efficient electrode for supercapacitors. The highly well-defined CoO nanosheets are utilized as ideal conductive scaffolds, where the conductivity is further improved by coating carbon layer, as well as the large electroactive surface area of Ni-Co-S nanoflakes. Furthermore, self-supported electrodes are directly grown on Ni foam without conductive additives or binders, which can effectively simplify the whole preparation process and achieve excellent electrical contact. Benefiting from the unique structural features, the hierarchically structured Ni-Co-S@C@CoO NAs exhibit high specific capacitance up to 4.97 F cm-2, excellent rate capability, and maintains 93.2% of the initial capacitance after 10000 cycles. Furthermore, an asymmetric supercapacitor using the Ni-Co-S@C@CoO NAs electrode and activated carbon is assembled, which achieves a high energy density (49.7 W h kg-1) with long cycling lifespan. These results demonstrate the as-fabricated Ni-Co-S@C@CoO NAs can be a competitive battery-like electrode for supercapacitors in energy storages.
Microfluidic platform for studying the electrochemical reduction of carbon dioxide
NASA Astrophysics Data System (ADS)
Whipple, Devin Talmage
Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2 reduction and suppressing undesirable hydrogen evolution (Chapter 6). • Investigation of the effects of reaction temperature on the Faradaic efficiency and current density for CO2 reduction on several catalysts (Chapter 7). These studies demonstrate the utility of this flexible reactor design and provide increased understanding of the electrochemical reduction of CO2 and the critical parameters for optimization of this process.
The effect of CO2 on the plasma remediation of NxOy
NASA Astrophysics Data System (ADS)
Gentile, Ann C.; Kushner, Mark J.
1996-04-01
Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-10-01
Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.
Metabolic Engineering for Substrate Co-utilization
NASA Astrophysics Data System (ADS)
Gawand, Pratish
Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the mutant LMSE2, the mutant is subjected to targeted and whole genome sequencing. Finally, we use the mutant LMSE2 to produce D-ribose from a mixture of glucose and xylose by overexpressing an endogenous phosphatase. The methods developed in this thesis are anticipated to provide a novel approach to solve sugar co-utilization problem in industrial microorganisms, and provide insights into microbial response to forced co-utilization of sugars.
Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach.
Lin, Shu-Ling; Wei, Tao; Lin, Jun-Fang; Guo, Li-Qiong; Wu, Guang-Pei; Wei, Jun-Bin; Huang, Jia-Jun; Ouyang, Ping-Lan
2018-07-01
Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.
Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro
2017-03-22
A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Levin, Andrey V.
1996-04-01
High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.
NASA Astrophysics Data System (ADS)
Curletti, F.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Maréchal, F.
2015-10-01
This article investigates the techno-economic performance of large integrated biogas Solid Oxide Fuel Cell (SOFC) power plants. Both atmospheric and pressurized operation is analysed with CO2 vented or captured. The SOFC module produces a constant electrical power of 1 MWe. Sensitivity analysis and multi-objective optimization are the mathematical tools used to investigate the effects of Fuel Utilization (FU), SOFC operating temperature and pressure on the plant energy and economic performances. FU is the design variable that most affects the plant performance. Pressurized SOFC with hybridization with a gas turbine provides a notable boost in electrical efficiency. For most of the proposed plant configurations, the electrical efficiency ranges in the interval 50-62% (LHV biogas) when a trade-off of between energy and economic performances is applied based on Pareto charts obtained from multi-objective plant optimization. The hybrid SOFC is potentially able to reach an efficiency above 70% when FU is 90%. Carbon capture entails a penalty of more 10 percentage points in pressurized configurations mainly due to the extra energy burdens of captured CO2 pressurization and oxygen production and for the separate and different handling of the anode and cathode exhausts and power recovery from them.
Speckmeier, Elisabeth; Klimkait, Michael; Zeitler, Kirsten
2018-04-06
Orthogonal protection and deprotection of amines remain important tools in synthetic design as well as in chemical biology and material research applications. A robust, highly efficient, and sustainable method for the formation of phenacyl-based carbamate esters was developed using CO 2 for the in situ preparation of the intermediate carbamates. Our mild and broadly applicable protocol allows for the formation of phenacyl urethanes of anilines, primary amines, including amino acids, and secondary amines in high to excellent yields. Moreover, we demonstrate the utility by a mild and convenient photocatalytic deprotection protocol using visible light. A key feature of the [Ru(bpy) 3 ](PF 6 ) 2 -catalyzed method is the use of ascorbic acid as reductive quencher in a neutral, buffered, two-phase acetonitrile/water mixture, granting fast and highly selective deprotection for all presented examples.
Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...
2016-08-08
Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less
Bubenheim, D L; Patterson, M; Wignarajah, K; Flynn, M
1997-01-01
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.
NASA Astrophysics Data System (ADS)
1997-01-01
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 μmol mol-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.
NASA Astrophysics Data System (ADS)
Bubenheim, D. L.; Patterson, M.; Wignarajah, K.; Flynn, M.
1997-01-01
This study addressed the recycle of carbon from inedible biomass to CO_2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO_2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO_2 source for crop production. Injection rate was based on maintenance of CO_2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO_2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 mumol mol^-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO_2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO_2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.
Electrochemical separation of hydrogen from reformate using PEM fuel cell technology
NASA Astrophysics Data System (ADS)
Gardner, C. L.; Ternan, M.
This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.
Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I N; Kang, Xiaofeng; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui
2016-07-01
Monovalent Zn + (3d 10 4s 1 ) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn + -containing materials. By careful design, Zn + -related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO 2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X-ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn + species and their structure-performance relationships can be understood. Such advanced characterization tools guide the rational design of high-performance Zn + -containing catalysts for efficient energy conversion.
Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I. N.; Kang, Xiaofeng; Wu, Li‐Zhu; Tung, Chen‐Ho
2016-01-01
Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+‐containing materials. By careful design, Zn+‐related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X‐ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure‐performance relationships can be understood. Such advanced characterization tools guide the rational design of high‐performance Zn+‐containing catalysts for efficient energy conversion. PMID:27818902
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad; Riaz, Amir
2017-11-01
CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.
Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun
2017-09-01
Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shi, Wangying; Han, Minfang
2017-09-01
A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.
NASA Technical Reports Server (NTRS)
Davis, S. H.; Kissinger, L. D.
1978-01-01
The effect of humidity on the CO2 removal efficiency of small beds of anhydrous LiOH has been studied. Experimental data taken in this small bed system clearly show that there is an optimum humidity for beds loaded with LiOH from a single lot. The CO2 efficiency falls rapidly under dry conditions, but this behavior is approximately the same in all samples. The behavior of the bed under wet conditions is quite dependent on material size distribution. The presence of large particles in a sample can lead to rapid fall off in the CO2 efficiency as the humidity increases.
Hemicellulose conversion by anaerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.; Henry, M.P.; Christopher, R.W.
1982-01-01
The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was highermore » under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.« less
The Land-Use Efficiency of Big Solar
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Hoffacker, M.; Field, C. B.
2013-12-01
As utility-scale solar energy (USSE) systems increase in size and numbers globally, there is a growing interest in understanding environmental interactions between solar energy development and land-use decisions. Maximizing the efficient use of land for USSE is one of the major challenges in realizing the full potential of solar energy, however, the land-use efficiency (LUE; Wm-2) of USSE remains unknown. We quantified the nominal LUE of 183 USSE installations (> 20 megawatts; planned, under construction, and operating) using California as a case study. In California, we found that USSE installations are concentrated in the Central Valley and desert interior of southern California and have a LUE of 35.01 Wm-2. The installations comprise approximately 86,000 hectares (ha) and more land is allocated for photovoltaic schemes (72,294 ha) than for concentrating solar power (13,604 ha). Photovoltaic installations are greater in abundance (93%) than concentrating solar power, but technology type and nameplate capacity has no impact on LUE. More USSE installations are on private land (80%) and have a significantly greater LUE (35.83 Wm-2) than installations on public land (25.42 Wm-2). We show how LUE can be improved and how co-benefit opportunities can be integrated with USSE enterprises to maximize their economic, energetic, and environmental returns on investment. (Left) The distribution of utility-scale solar energy installations in California (constructed and in progress) by technology type: concentrating solar power and photovoltaic with county lines shown. (Right) The distribution of utility-scale solar energy installations in California (constructed and in progress) by location: public or privately owned land. Larger capacity installations (megawatts) have relatively greater point size.
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao
2017-10-01
A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.
Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiguang; Shou, S.; Pyrzynski, Travis
2013-12-31
This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less
Fabrication and Thermoelectric Properties of n-Type CoSb2.85Te0.15 Using Selective Laser Melting.
Yan, Yonggao; Ke, Hongquan; Yang, Jihui; Uher, Ctirad; Tang, Xinfeng
2018-04-25
We report a nonequilibrium fabrication method of n-type CoSb 2.85 Te 0.15 skutterudites using selective laser melting (SLM) technology. A powder of CoSb 2.85 Te 0.15 was prepared by self-propagating high-temperature synthesis (SHS) and served as the raw material for the SLM process. The effect of SLM processing parameters such as the laser power and scanning speed on the quality of the forming CoSb 2.85 Te 0.15 thin layers was systematically analyzed, and the optimal processing window for SLM was determined. A brief postannealing at 450 °C for 4 h, following the SLM process, has resulted in a phase-pure CoSb 2.85 Te 0.15 bulk material deposited on a Ti substrate. The Seebeck coefficient of the annealed SLM prepared bulk material is close to that of the sample prepared by the traditional sintering method, and its maximum ZT value reached 0.56 at 823 K. Moreover, a Ti-Co-Sb ternary compound transition layer of about 70 μm in thickness was found at a dense interface between CoSb 2.85 Te 0.15 and the Ti substrate. The contact resistivity was measured as 37.1 μΩcm 2 . The results demonstrate that SLM, coupled with postannealing, can be used for fabrication of incongruently melting skutterudite compounds on heterogeneous substrates. This lays an important foundation for the follow-up research utilizing energy efficient SHS and SLM processes in rapid printing of thermoelectric modules.
Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar
2015-09-30
The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.
Liu, Fang; Wu, Weihua; Tran-Gyamfi, Mary B; Jaryenneh, James D; Zhuang, Xun; Davis, Ryan W
2017-11-09
First generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers' grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improve the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate 'one-pot' bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains. The carbohydrate conversion strain E. coli BLF2 was constructed from the wild type E. coli strain B and showed improved capability to produce fusel alcohols from hexose and pentose sugars. Up to 12 g/L fusel alcohols was produced from glucose or xylose synthetic medium by E. coli BLF2. The second strain, E. coli AY3, was dedicated for utilization of proteins in the hydrolysates to produce mixed C4 and C5 alcohols. To maximize conversion yield by the co-culture, the inoculation ratio between the two strains was optimized. The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the highest total fusel alcohol titer of up to 10.3 g/L from DGS hydrolysates. The engineered E. coli co-culture system was shown to be similarly applicable for biofuel production from other biomass sources, including algae hydrolysates. Furthermore, the co-culture population dynamics revealed by quantitative PCR analysis indicated that despite the growth rate difference between the two strains, co-culturing didn't compromise the growth of each strain. The q-PCR analysis also demonstrated that fermentation with an appropriate initial inoculation ratio of the two strains was important to achieve a balanced co-culture population which resulted in higher total fuel titer. The efficient conversion of DGS hydrolysates into fusel alcohols will significantly improve the feasibility of the first generation bioethanol process. The integrated carbohydrate and protein conversion platform developed here is applicable for the bioconversion of a variety of biomass feedstocks rich in sugars and proteins.
Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.
Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo
2017-09-20
We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO 2 and reforming of CH 4 using concentrated radiation as the source of process heat. The 2 kW th solar reactor prototype utilizes a cavity receiver enclosing a vertical Al 2 O 3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH 4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO 2-δ ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H 2 :CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH 4 reformed.
Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor
2017-01-01
We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2−δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed. PMID:28966440
Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures.
Omar, Basma; Abou-Shanab, Reda; El-Gammal, Maie; Fotidis, Ioannis A; Kougias, Panagiotis G; Zhang, Yifeng; Angelidaki, Irini
2018-05-29
A novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO 2 in the biogas and externally provided H 2 were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH 4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate were investigated initially to inhibit methanogenesis and enrich the acetogenic bacterial inoculum. Subsequently, the effect of different H 2 :CO 2 ratios on the efficiency of biogas upgrading and production of VFAs were further explored. The composition of the microbial community under different treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg HAc/L) compared to the thermal treatment. Based upon 16S rRNA gene sequencing, it was found that H 2 -utilizing methanogens were the dominant species in the thermally treated inoculum, while a significantly lower abundance of methanogens was observed in the chemically treated inoculum. The highest biogas content (96% (v/v)) and acetate production were achieved for 2H 2 :1CO 2 ratio (v/v), with Acetoanaerobium noterae, as the dominant homoacetogenic hydrogen scavenger. Results from the present study can pave the way towards more development with respect to microorganisms and conditions for high efficient VFAs production and biogas upgrading. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui
2017-06-01
Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu
2016-09-28
Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.
Danyagri, Gabriel; Dang, Qing-Lai
2013-01-01
Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.
Danyagri, Gabriel; Dang, Qing-Lai
2013-01-01
Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable. PMID:24146894
Liu, Shou-Heng; Kuok, Chi-Hong
2018-01-01
It is well-known that global warming of the earth is caused by the progressive increase of CO 2 concentration in the environment due to the huge utilization of fossil fuels. As a result, the development of an efficient and economic method to capture CO 2 from large stationary sources, such as coal-fired power plants, cement and steel factories, and so on is urgent. In this study, ordered mesoporous silicas (E-SBA-15) have been prepared by using Equisetum ramosissimum plants as the silica sources and their subsequently incorporating with amino-containing compounds (tetraethylenepentamine, TEPA) and stabilizers (titanium isopropoxide, TIP). A variety of different spectroscopic and analytical techniques, such as nitrogen adsorption-desorption isotherms, low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transformed infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) are used to characterize the physicochemical properties of various materials. CO 2 adsorption capacities of prepared sorbents at 75 °C are obtained by TGA at atmospheric pressure. Among all sorbents, TEPA impregnated E-SBA-15 sorbents possess the highest CO 2 sorption capacity (1.60 mmol CO 2 g -1 sorbent ) under ambient pressure using dry 15% CO 2 . However, TEPA/TIP incorporated E-SBA-15 sorbents exhibit enhanced durability during repeated sorption-desorption cycles compared to the above-mentioned sorbents. This significant enhancement in the stability of CO 2 sorption-desorption process is most likely due to the decreased decomposition/leaching of TEPA which is restricted via the steric effect of TIP. These synthesized sorbents from inexpensive resources (agricultural waste) exhibit good sorbent capacity and surpassing regenerability, revealing a promising CO 2 sorbent for the cost-effective applications in a cyclic adsorption process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a 5 kW Prototype Coal-Based Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh
2014-01-20
The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less
Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city.
Gurney, Kevin R; Razlivanov, Igor; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul-Massih, Michel
2012-11-06
In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001).
Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction.
Li, Xiaogang; Bi, Wentuan; Chen, Minglong; Sun, Yuexiang; Ju, Huanxin; Yan, Wensheng; Zhu, Junfa; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi
2017-10-25
Electrochemical reduction of carbon dioxide (CO 2 ) to value-added carbon products is a promising approach to reduce CO 2 levels and mitigate the energy crisis. However, poor product selectivity is still a major obstacle to the development of CO 2 reduction. Here we demonstrate exclusive Ni-N 4 sites through a topo-chemical transformation strategy, bringing unprecedentedly high activity and selectivity for CO 2 reduction. Topo-chemical transformation by carbon layer coating successfully ensures preservation of the Ni-N 4 structure to a maximum extent and avoids the agglomeration of Ni atoms to particles, providing abundant active sites for the catalytic reaction. The Ni-N 4 structure exhibits excellent activity for electrochemical reduction of CO 2 with particularly high selectivity, achieving high faradaic efficiency over 90% for CO in the potential range from -0.5 to -0.9 V and gives a maximum faradaic efficiency of 99% at -0.81 V with a current density of 28.6 mA cm -2 . We anticipate exclusive catalytic sites will shed new light on the design of high-efficiency electrocatalysts for CO 2 reduction.
Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui
2017-11-28
Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.
Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing
2018-06-20
Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.
Rational construction of a stable Zn4O-based MOF for highly efficient CO2 capture and conversion.
Zhou, Hui-Fang; Liu, Bo; Hou, Lei; Zhang, Wen-Yan; Wang, Yao-Yu
2018-01-11
By employing a carboxylate ligand derived from benzene-1,4-dicarboxylate, a chemically stable Zn 4 O-based self-penetrating metal-organic framework has been rationally synthesized, which exhibits high CO 2 adsorption and efficient catalytic conversion for CO 2 cycloaddition.
Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources
NASA Astrophysics Data System (ADS)
Wilcox, J.; Kirchofer, A.
2014-12-01
Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency of 85%. The total CO2 storage potential for the alkalinity sources considered in the U.S. ranges from 1.3% to 23.7% of U.S. CO2 emissions, depending on the assumed availability of natural alkalinity sources and efficiency of the mineral carbonation processes.
NASA Astrophysics Data System (ADS)
Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng
2017-09-01
Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmuganathan; Hidayati, Noor; Liu, I.-Ping; Lee, Yuh-Lang
2016-12-01
Propionitrile (PPN) solvent based iodide/triiodide liquid-electrolyte is utilized to prepare highly efficient poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer gel electrolytes (PGEs) of dye-sensitized solar cells, aiming at improving the energy conversion efficiency as well as the stability of gel-state DSSCs. The concentrations effect of the PVdF-HFP on the properties of PGEs and the performance of the corresponding cells are studied. The results show that the in-situ gelation is performed for the PVdF-HFP concentration range of 8-18% at room temperature. However, increasing the concentration of polymer in the PGEs triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the phase transition temperature of the PGEs. A high phase transition temperature is obtained for the PGEs with 18 wt% PVdF-HFP, which increase the long-term stability of the gel-state DSSC. By using the 18 wt% PVdF-HFP in the presence of 5 wt% TiO2 nanofillers (NFs), gel-state cells with an efficiency of 8.38% can be obtained, which is higher than that achieved by liquid-state cells (7.55%). After 1000 h test at room temperature (RT) and 50 °C, the cell can retain 96% and 82%, respectively, of its initial efficiency.
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1998-01-01
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.
2010-02-01
Territory of Republic of Bulgaria 2.2.3 Quantity of Conventional Ammunition in the Expired Term 2-3 2.2.4 Technological Possibilities for...Utilization of Life Expired Conventional Ammunition 2-4 2.2.4.1 ‘VMZ’ Co., Sopot 2-4 2.2.4.2 ‘Trema’ Co., Tryavna 2-5 2.2.4.3 ‘Arcus’ Co., Lyaskovetz 2-5...Technology and Process Equipment 2-7 2.2.5 Acts on Environment Preservation in Utilization of Conventional Ammunition in 2-8 the Expired Term 2.2.6
Alexander, C; Sahu, N P; Pal, A K; Akhtar, M S; Saravanan, S; Xavier, B; Munilkumar, S
2011-10-01
A 60-day experiment was conducted to delineate the effect of three dietary levels of gelatinized carbohydrate (GC) on growth, nutrient-utilization and body composition of Labeo rohita fingerlings (avg. wt 6.5 ± 0.3 g) reared at two water temperatures (ambient-AT (26 ± 0.8 °C) and 32 °C). Two hundred and sixteen fingerlings were randomly distributed into six treatments in triplicates. Three semi-purified isonitrogenous diets were prepared with graded levels of GC viz. D(1) : 40%, D(2) : 50% and D(3) : 58%. Growth rate, feed efficiency and protein efficiency ratio were significantly (p < 0.05) higher in 50% GC and 32 °C reared groups than their AT counterparts. Hepato Somatic Index was higher in AT reared groups compared to 32 °C reared counterparts. Apparent digestibility co-efficient of carbohydrate was significantly (p < 0.05) higher at 32 °C reared groups but decreased with increasing carbohydrate (GC) levels. Fish reared at 32 °C showed significantly (p < 0.05) higher amylase, protease and hexokinase activities while glucose-6-phosphate dehydrogenase and glucose-6-phosphatse were significantly (p < 0.05) higher at ambient temperatures. The results obtained in present study indicated that L. rohita could utilize higher level (50%) of dietary carbohydrate at 32 °C. © 2010 Blackwell Verlag GmbH.
Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source.
Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen
2017-04-01
Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O 2 atmosphere, while CO 2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O 2 batteries. In the study of CO 2 contamination on metal-O 2 batteries, it has been gradually found that CO 2 can be utilized as the reactant gas alone; namely, metal-CO 2 batteries can work. On the other hand, investigations on CO 2 fixation are in focus due to the potential threat of CO 2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO 2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO 2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO 2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.
2009-01-01
CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.
Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.
Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng
2017-11-01
Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun
2018-05-01
Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice
2015-12-10
Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok
2017-04-01
The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.
Mittal, H; Mishra, Shivani B; Mishra, A K; Kaith, B S; Jindal, R; Kalia, S
2013-10-15
Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N'-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L(-1) polymer dose in acidic medium at 50 °C. Copyright © 2013. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.
Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less
Kuehnel, Moritz F; Sahm, Constantin D; Neri, Gaia; Lee, Jonathan R; Orchard, Katherine L; Cowan, Alexander J; Reisner, Erwin
2018-03-07
A precious metal and Cd-free photocatalyst system for efficient CO 2 reduction in water is reported. The hybrid assembly consists of ligand-free ZnSe quantum dots (QDs) as a visible-light photosensitiser combined with a phosphonic acid-functionalised Ni(cyclam) catalyst, NiCycP. This precious metal-free photocatalyst system shows a high activity for aqueous CO 2 reduction to CO (Ni-based TON CO > 120), whereas an anchor-free catalyst, Ni(cyclam)Cl 2 , produced three times less CO. Additional ZnSe surface modification with 2-(dimethylamino)ethanethiol (MEDA) partially suppresses H 2 generation and enhances the CO production allowing for a Ni-based TON CO of > 280 and more than 33% selectivity for CO 2 reduction over H 2 evolution, after 20 h visible light irradiation ( λ > 400 nm, AM 1.5G, 1 sun). The external quantum efficiency of 3.4 ± 0.3% at 400 nm is comparable to state-of-the-art precious metal photocatalysts. Transient absorption spectroscopy showed that band-gap excitation of ZnSe QDs is followed by rapid hole scavenging and very fast electron trapping in ZnSe. The trapped electrons transfer to NiCycP on the ps timescale, explaining the high performance for photocatalytic CO 2 reduction. With this work we introduce ZnSe QDs as an inexpensive and efficient visible light-absorber for solar fuel generation.
Fu, Wen Gan
2018-05-02
Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; ...
2016-12-28
A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two –OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h –1 and a turnovermore » number of 7280 at 25 °C, which are higher than ever reported. Furthermore, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2-storage system in water.« less
Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.
1997-05-01
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.
Medina-Ramos, Jonnathan; DiMeglio, John L; Rosenthal, Joel
2014-06-11
The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel.
Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang
2017-10-01
Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue
2018-04-11
Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng
2018-06-01
Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.
Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation
NASA Astrophysics Data System (ADS)
Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony
2018-04-01
Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2 + 0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.
USDA-ARS?s Scientific Manuscript database
Previous studies of elevated carbon dioxide concentration ([CO2]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy stru...
Hamze, Abdallah; Brion, Jean-Daniel; Alami, Mouad
2012-06-01
An efficient access to 1,1-diarylethylenes of biological interest by coupling functionalized aryl Grignard reagents and 1-arylvinyl halides in the presence of FeCl(3)/CuTC is described. This bimetallic system proved to be superior to the use of Fe or Cu catalyst alone. The synthetic utility of this protocol is illustrated in the field of steroid chemistry.
Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells.
Chen, Ke; Hu, Qin; Liu, Tanghao; Zhao, Lichen; Luo, Deying; Wu, Jiang; Zhang, Yifei; Zhang, Wei; Liu, Feng; Russell, Thomas P; Zhu, Rui; Gong, Qihuang
2016-12-01
The charge-carrier balance strategy by interface engineering is employed to optimize the charge-carrier transport in inverted planar heterojunction perovskite solar cells. N,N-Dimethylformamide-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and poly(methyl methacrylate)-modified PCBM are utilized as the hole and electron selective contacts, respectively, leading to a high power conversion efficiency of 18.72%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan
2017-07-01
Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, C.P.; Long, S.P.; Drake, B.G.
1997-05-01
As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less
Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.
Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel
2017-07-01
Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.
Identification of nodes and internodes of chopped biomass stems by Image analysis
USDA-ARS?s Scientific Manuscript database
Separating the morphological components of biomass leads to better handling, more efficient processing as well as value added product generation, as these components vary in their chemical composition and can be preferentially utilized. Nodes and internodes of biomass stems have distinct chemical co...
Stokes injected Raman capillary waveguide amplifier
Kurnit, Norman A.
1980-01-01
A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.
Diethylstilbestrol in fish tissue determined through subcritical fluid extraction and with GC-MS
NASA Astrophysics Data System (ADS)
Qiao, Qinghui; Shi, Nianrong; Feng, Xiaomei; Lu, Jie; Han, Yuqian; Xue, Changhu
2016-06-01
As the key point in sex hormone analysis, sample pre-treatment technology has attracted scientists' attention all over the world, and the development trend of sample preparation forwarded to faster and more efficient technologies. Taking economic and environmental concerns into account, subcritical fluid extraction as a faster and more efficient method has stood out as a sample pre-treatment technology. This new extraction technology can overcome the shortcomings of supercritical fluid and achieve higher extraction efficiency at relatively low pressures and temperatures. In this experiment, a simple, sensitive and efficient method has been developed for the determination of diethylstilbestrol (DES) in fish tissue using subcritical 1,1,1,2-tetrafluoroethane (R134a) extraction in combination with gas chromatography-mass spectrometry (GC-MS). After extraction, freezing-lipid filtration was utilized to remove fatty co-extract. Further purification steps were performed with C18 and NH2 solid phase extraction (SPE). Finally, the analyte was derived by heptafluorobutyric anhydride (HFBA), followed by GC-MS analysis. Response surface methodology (RSM) was employed to optimizing the extraction condition, and the optimized was as follows: extraction pressure, 4.3 MPa; extraction temperature, 26°C; amount of co-solvent volume, 4.7 mL. Under this condition, at a spiked level of 1, 5, 10 μg kg-1, the mean recovery of DES was more than 90% with relative standard deviations (RSDs) less than 10%. Finally, the developed method has been successfully used to analyzing the real samples.
Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.
Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling
2017-05-15
To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Integration options for high energy efficiency and improved economics in a wood-to-ethanol process.
Sassner, Per; Zacchi, Guido
2008-04-15
There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41-0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other.
Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.
Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras
2018-05-01
New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions
NASA Astrophysics Data System (ADS)
Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun
2016-12-01
With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.
Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.
Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun
2016-12-01
With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.
Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining
2018-06-15
The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
NASA Astrophysics Data System (ADS)
Gao, Wenyang
The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric field favours more than the richness of exposed nitrogen atoms for the interactions between MOFs and CO2 molecules, which provides a new perspective for future design of new MOFs and other types of porous materials for CO2 capture. Meanwhile, to address the water/moisture stability issue of MOFs, remote stabilization of copper paddlewheel clusters is achieved by strengthening the bonding between organic ligands and triangular inorganic copper trimers, which in turn enhances the stability of the whole MOF network and provides a better understanding of the mechanism promoting prospective suitable MOFs with enhanced water stability. In contrast with CO2 capture by sorbent materials, the chemical transformation of the captured CO2 into value-added products represents an alternative which is attractive and sustainable, and has been of escalating interest. The nanospace within MOFs not only provides the inner porosity for CO2 capture, but also engenders accessible room for substrate molecules for catalytic purpose. It is demonstrated that high catalytic efficiency for chemical fixation of CO2 into cyclic carbonates under ambient conditions is achieved on MOF-based nanoreactors featuring a high-density of well-oriented Lewis active sites. Furthermore, described for the first time is that CO 2 can be successfully inserted into aryl C-H bonds of a MOF to generate carboxylate groups. This proof-of-concept study contributes a different perspective to the current landscape of CO2 capture and transformation. In closing, the overarching goal of this work is not only to seek efficient MOF adsorbents for CO2 capture, but also to present a new yet attractive scenario of CO2 utilization on MOF platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Fridley, David; Zhou, Nan
2011-09-30
Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by Chinamore » can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.« less
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-09-01
An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.
NASA Astrophysics Data System (ADS)
Bosman, Arthur D.; Tielens, Alexander G. G. M.; van Dishoeck, Ewine F.
2018-04-01
Context. Radial transport of icy solid material from the cold outer disk to the warm inner disk is thought to be important for planet formation. However, the efficiency at which this happens is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk, enhancing the gas-phase abundances of the major ice constituents such as H2O and CO2. Aim. Our aim is to model the gaseous CO2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. From the model predictions, infrared CO2 spectra are simulated and features that could be tracers of icy CO2, and thus dust, radial transport efficiency are investigated. Methods: We have developed a 1D viscous disk model that includes gas accretion and gas diffusion as well as a description for grain growth and grain transport. Sublimation and freeze-out of CO2 and H2O has been included as well as a parametrisation of the CO2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2, as can be observed with JWST-MIRI. Results: CO2 ice sublimating at the iceline increases the gaseous CO2 abundance to levels equal to the CO2 ice abundance of 10-5, which is three orders of magnitude more than the gaseous CO2 abundances of 10-8 observed by Spitzer. Grain growth and radial drift increase the rate at which CO2 is transported over the iceline and thus the gaseous CO2 abundance, further exacerbating the problem. In the case without radial drift, a CO2 destruction rate of at least 10-11 s-1 or a destruction timescale of at most 1000 yr is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest destruction rate included in chemical databases. A range of potential physical mechanisms to explain the low observed CO2 abundances are discussed. Conclusions: We conclude that transport processes in disks can have profound effects on the abundances of species in the inner disk such as CO2. The discrepancy between our model and observations either suggests frequent shocks in the inner 10 AU that destroy CO2, or that the abundant midplane CO2 is hidden from our view by an optically thick column of low abundance CO2 due to strong UV and/or X-rays in the surface layers. Modelling and observations of other molecules, such as CH4 or NH3, can give further handles on the rate of mass transport.
Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.
Li, Christina W; Ciston, Jim; Kanan, Matthew W
2014-04-24
The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H(+) source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O ('oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.
Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.
Fu, Yongping; Cai, Xin; Wu, Hongwei; Lv, Zhibin; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun
2012-11-08
A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri; ...
2016-08-04
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
Aerts, Robby; Somers, Wesley; Bogaerts, Annemie
2015-02-01
Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Shouren; Dang, Qing-Lai
2005-05-01
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].
Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G
2016-06-03
Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.
Flight prototype CO2 and humidity control system
NASA Technical Reports Server (NTRS)
Rudy, K. M.
1979-01-01
A regenerable CO2 and humidity control system is presently being developed for potential use on shuttle as an alternative to the baseline lithium hydroxide system. The system utilizes a sorbent material (designated HS-C) to adsorb CO2 and the latent heat load from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum, thus reducing the overall vehicle heat rejection load. Continuous operation is achieved by utilizing two beds which are alternatively cycled between adsorption and desorption. The HS-C material process was verified. Design concepts for the auxiliary components for the HS-C prototype system were generated. Performance testing verified system effectiveness in controlling CO2 partial pressure and humidity.
Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F
2012-12-01
Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.
Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc
Jin, Fangming; Zeng, Xu; Liu, Jianke; Jin, Yujia; Wang, Lunying; Zhong, Heng; Yao, Guodong; Huo, Zhibao
2014-01-01
Artificial photosynthesis, specifically H2O dissociation for CO2 reduction with solar energy, is regarded as one of the most promising methods for sustainable energy and utilisation of environmental resources. However, a highly efficient conversion still remains extremely challenging. The hydrogenation of CO2 is regarded as the most commercially feasible method, but this method requires either exotic catalysts or high-purity hydrogen and hydrogen storage, which are regarded as an energy-intensive process. Here we report a highly efficient method of H2O dissociation for reducing CO2 into chemicals with Zn powder that produces formic acid with a high yield of approximately 80%, and this reaction is revealed for the first time as an autocatalytic process in which an active intermediate, ZnH− complex, serves as the active hydrogen. The proposed process can assist in developing a new concept for improving artificial photosynthetic efficiency by coupling geochemistry, specifically the metal-based reduction of H2O and CO2, with solar-driven thermochemistry for reducing metal oxide into metal. PMID:24675820
Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei
2018-05-01
Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, W.; Stalcup, T.; Schild, V.
1992-01-01
The Neil Simpson Unit is a 220,000 lb/hr pulverized coal boiler that was designed to fire a local Wyoming subbituminous coal. During the late 1980s, the Wyoming Department of Air Quality imposed emission limits on the Black Hills Power and Light Co., Neil Simpson Station. The new limits required Black Hills power to control not only particulate and sulfur dioxide (SO{sub 2}) emissions, but also nitrogen oxide (NO{sub x}) emissions. At the same time, Black Hills Power initiated an efficiency improvement study at Neil Simpson Station to investigate methods for reducing net electrical generation costs. This paper addresses the plantmore » efficiency and emissions studies, startup activities, the operating problems and successful operating solutions for NO{sub x} control when firing a Wyoming subbituminous coal. Also included is a summary of the post-0retrofit boiler performance data.« less
Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids
Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron
2015-11-02
We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less
Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron
We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less
Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers
NASA Astrophysics Data System (ADS)
Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández
2017-06-01
Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with <2.5 ns fronts and with maximum input power 1 W. The maximum modulation depth of the initial probe wave absorption via EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.
Choi, Okkyoung; Kim, Taeyeon; Woo, Han Min; Um, Youngsoon
2014-01-01
Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due to the lack of an electroactive heterotroph. Here, we show that Clostridium pasteurianum DSM 525 simultaneously utilizes both cathode and substrate as electron donors through direct electron transfer. In a cathode compartment poised at +0.045 V vs. SHE, a metabolic shift in C. pasteurianum occurs toward NADH-consuming metabolite production such as butanol from glucose (20% shift in terms of NADH consumption) and 1,3-propandiol from glycerol (21% shift in terms of NADH consumption). Notably, a small amount of electron uptake significantly induces NADH-consuming pathways over the stoichiometric contribution of the electrons as reducing equivalents. Our results demonstrate a previously unknown electroactivity and metabolic shift in the biochemical-producing heterotroph, opening up the possibility of efficient and enhanced production of electron-dense metabolites using electricity. PMID:25376371
Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.
Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław
2017-03-01
Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l -1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l -1 of glycerol and 25 g l -1 of lactose as carbon sources. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Concurrent CO2 Control and O2 Generation for Advanced Life Support
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.
2007-01-01
The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then integrated into a single CO2 removal system. This paper describes our progress to date on these tasks.
Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
Liang, Keming; Shen, Claire R
2017-12-01
Enzymatic reduction of acetoin into 2,3-butanediol (2,3-BD) typically requires the reduced nicotinamide adenine dinucleotide (NADH) or its phosphate form (NADPH) as electron donor. Efficiency of 2,3-BD biosynthesis, therefore, is heavily influenced by the enzyme specificity and the cofactor availability which varies dynamically. This work describes the engineering of cofactor flexibility for 2,3-BD production by simultaneous overexpression of an NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (KpBudC) and an NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (CbAdh). Co-expression of KpBudC and CbAdh not only enabled condition versatility for 2,3-BD synthesis via flexible utilization of cofactors, but also improved production stereo-specificity of 2,3-BD without accumulation of acetoin. With optimization of medium and fermentation condition, the co-expression strain produced 92 g/L of 2,3-BD in 56 h with 90% stereo-purity for (R,R)-isoform and 85% of maximum theoretical yield. Incorporating cofactor flexibility into the design principle should benefit production of bio-based chemical involving redox reactions.
Morrill, Penny L.; Brazelton, William J.; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M.; Kavanagh, Heidi; Schrenk, Matthew O.; Ziegler, Susan E.; Lang, Susan Q.
2014-01-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in 13C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ13C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO. PMID:25431571
Morrill, Penny L; Brazelton, William J; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M; Kavanagh, Heidi; Schrenk, Matthew O; Ziegler, Susan E; Lang, Susan Q
2014-01-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in (13)C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ(13)C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO.
Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su
2017-11-01
Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Galfond, B.; Riemer, D. D.; Swart, P. K.
2014-12-01
In order for Carbon Capture Utilization and Storage (CCUS) to gain wide acceptance as a method for mitigating atmospheric CO2 concentrations, schemes must be devised to ensure that potential leakage is detected. New regulations from the US Environmental Protection Agency require monitoring and accounting for Class VI injection wells, which will remain a barrier to wide scale CCUS deployment until effective and efficient monitoring techniques have been developed and proven. Monitoring near-surface CO2 at injection sites to ensure safety and operational success requires high temporal resolution CO2 concentration and carbon isotopic (δ13C) measurements. The only technologies currently capable of this rapid measurement of δ13C are optical techniques such as Cavity Ringdown Spectroscopy (CRDS). We have developed a comprehensive remote monitoring approach using CRDS and a custom manifold system to obtain accurate rapid measurements from a large sample area over an extended study period. Our modified Picarro G1101-i CRDS allows for automated rapid and continuous field measurement of δ13CO2 and concentrations of relevant gas species. At our field site, where preparations have been underway for Enhanced Oil Recovery (EOR) operations, we have been able to measure biogenic effects on a diurnal scale, as well as variation due to precipitation and seasonality. Taking these background trends into account, our statistical treatment of real data has been used to improve signal-to-noise ratios by an order of magnitude over published models. Our system has proven field readiness for the monitoring of sites with even modest CO2 fluxes.
Pérez-Ruiz, Juan Manuel; Naranjo, Belén; Ojeda, Valle; Guinea, Manuel; Cejudo, Francisco Javier
2017-11-07
Thiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the Arabidopsis thaliana ntrc KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin-Benson cycle enzymes. Moreover, the dramatic phenotype of the ntrc-trxf1f2 triple mutant, lacking NTRC and f -type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the ntrc-trxf1f2-Δ2cp mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO 2 fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function. Copyright © 2017 the Author(s). Published by PNAS.
Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.
Bokare, Alok D; Choi, Wonyong
2016-03-05
Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film
NASA Astrophysics Data System (ADS)
Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun
2015-08-01
Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.
Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO.
Geng, Zhigang; Kong, Xiangdong; Chen, Weiwei; Su, Hongyang; Liu, Yan; Cai, Fan; Wang, Guoxiong; Zeng, Jie
2018-05-22
As electron transfer to CO 2 is generally considered to be the critical step during the activation of CO 2 , it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO 2 electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO 2 activation by introducing oxygen vacancies into electrocatalysts with electronic-rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of -16.1 mA cm -2 with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO 2 . Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO 2 and the eased CO 2 activation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Barbieri, E. M. S.; Lima, E. P. C.; Cantarino, S. J.; Lelis, M. F. F.; Freitas, M. B. J. G.
2014-12-01
In this work, Co(OH)2 and Co3O4 films have been obtained using a solution to leach the cathodes of spent Li-ion batteries. The Co(OH)2 is electrodeposited onto conductive glass by the application of -0.85 V, with a charge density of 20 C cm-2, and its efficiency is found to be 66.67%. The Co3O4 film is obtained by heat treatment of the Co(OH)2 film at 450 °C for 3 h, in an air atmosphere, with a conversion efficiency of 64.29%. The cyclic voltammetry of Co(OH)2, in KOH 1.0 mol L-1 shows: three anodic peaks in the first cycle associated with the oxidation of Co(OH)2 to Co3O4, the conversion of Co3O4 into CoOOH, and the formation of CoOOH to CoO2 and the oxidation of water. The absence of cathodic peaks shows that oxidation from Co(OH)2 to CoO2 is an irreversible process. For the Co3O4 electrode, this verifies the existence of a redox pair associated with reversible oxidation of the Co3O4 to CoO2. The Co3O4 obtains a charge efficiency of 77% for the first 10 cycles (1.0 mV s-1) and a specific capacitance of 31.2 F g-1 (1.0 mV s-1) and 10.5 F g-1 (10 mV s-1). Co3O4 films have promising applications as pseudocapacitors.
Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.
Ruppert, Agnieszka M; Weinberg, Kamil; Palkovits, Regina
2012-03-12
In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nozaki, Tomohiro; Tsukijihara, Hiroyuki; Fukui, Wataru; Okazaki, Ken
2006-10-01
Although huge amounts of biogas, which consists of 20-60% of CH4 in CO2/N2, can be obtained from landfills, coal mines, and agricultural residues, most of them are simply flared and wasted: because global warming potential of biogas is 5-15 times as potent as CO2. Poor combustibility of such biogas makes it difficult to utilize in conventional energy system. The purpose of this project is to promote the profitable recovery of methane from poor biogas via non-thermal plasma technology. We propose low-temperature steam reforming of biogas using DBD generated in catalyst beds. Methane is partially converted into hydrogen, and then fed into internal combustion engines for improved ignition stability as well as efficient operation. Low-temperature steam reforming is beneficial because exhaust gas from an engine can be used to activate catalyst beds. Space velocity (3600-15000 hr-1), reaction temperature (300-650^oC), and energy cost (30-150 kJ per mol CH4) have been investigated with simulated biogas (20-60% CH4 in mixtures of CO2/N2). The DBD enhances reaction rate of CH4 by a factor of ten at given catalyst temperatures, which is a rate-determining step of methane steam reforming, while species concentration of upgraded biogas was governed by thermodynamic equilibrium in the presence of catalyst.
Xie, Youping; Zhao, Xurui; Chen, Jianfeng; Yang, Xuqiu; Ho, Shih-Hsin; Wang, Baobei; Chang, Jo-Shu; Shen, Ying
2017-11-01
The type and concentration of inorganic carbon and nitrogen sources were manipulated to improve cell growth and lutein productivity of Desmodesmus sp. F51. Using nitrate as nitrogen source, the better cell growth and lutein accumulation were obtained under 2.5% CO 2 supply when compared to the addition of NaHCO 3 or Na 2 CO 3 . To solve the pH variation problem of ammonium consumption, the strategy of using dual carbon sources (NaHCO 3 and CO 2 ) was explored. A lower bicarbonate-C: ammonium-N ratio led to a lower culture pH as well as lower lutein productivity, but significantly enhanced the auto-flocculation efficiency of the microalgal cells. The highest biomass productivity (939mg/L/d) and lutein productivity (5.22mg/L/d) were obtained when the bicarbonate-C/ammonium-N ratio and ammonium-N concentration were 1:1 and 150mg/L, respectively. The lutein productivity of 5.22mg/L/d is the highest value ever reported in the literature using batch phototrophic cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.
Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie
2017-06-22
Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Chongyang; Zhu, Yimei; Min, Huihua; ...
2015-10-05
Utilizing inexpensive, high-efficiency counter electrodes (CEs) to replace the traditional platinum counterparts in dye-sensitized solar cells (DSSCs) is worthwhile. In this paper, we detail how we synchronously prepared composite CEs of CoS nanosheet arrays and reduced graphene oxide (rGO) layers for the first time via a low temperature, ultrafast one-step electrochemical strategy. With this approach, the whole fabrication process of the composite CEs was only a small percentage of the average time (~15 hours) using other methods. The DSSC assembled with the rGO–CoS composite CE achieved an enhanced power conversion efficiency (PCE) of 8.34%, which is dramatically higher than 6.27%more » of pure CoS CE-based DSSC and even exceeds 7.50% of Pt CE-based DSSC. The outstanding PCE breakthrough is undoubtedly attributed to the enhancement in electrocatalytic ability of the rGO–CoS composite CE due to the incorporation of highly conducting rGO layers and the GO layers-induced growth of CoS nanosheet arrays with higher density and larger surface area. Therefore, lower charge-transfer resistance and higher exchange current density can be achieved as corroborated by the electrochemical impedance spectra (EIS) and Tafel polarization curves (TPCs). As a result, further experiments also proved that the electrochemical strategy exhibited its universality of fabricating other graphene-enhanced chalcogenide functional composite films.« less
Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard
2013-01-01
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660