Andreoli, Fernando César; Sabogal-Paz, Lyda Patricia
2017-11-15
Removing protozoa from a water supply using coagulation, flocculation, dissolved air flotation (DAF) and filtration on a bench scale was evaluated. Calcium carbonate flocculation with and without immunomagnetic separation (IMS) was chosen to detect Giardia spp. cysts and Cryptosporidium spp. oocysts in the studied samples. The results indicated that DAF removed between 1.31 log and 1.79 log of cysts and between 1.08 log and 1.42 log of oocysts. The performance was lower in filtration, with the removal of 1.07 log-1.44 log for cysts and 0.82 log-0.98 log for oocysts. The coagulation, flocculation, DAF and filtration steps removed more than 2.2 log of cysts and oocysts from the water studied. However, protozoa were detected in the filtered water, even with turbidity values of 0.2 NTU. The recovery of the detection method met the international criteria and was higher when there was no IMS. Including the third acid dissociation in the IMS was critical to improve the performance of the protocol tested. However, there was an increase in the technical and analytical complexity and costs. It was also observed that the efficiency of the treatment was linked to the performance of the selected method of detecting protozoa.
Zheng, Bei; Ge, Xiao-peng; Yu, Zhi-yong; Yuan, Sheng-guang; Zhang, Wen-jing; Sun, Jing-fang
2012-08-01
Atomic force microscope (AFM) fluid imaging was applied to the study of micro-flocculation filtration process and the optimization of micro-flocculation time and the agitation intensity of G values. It can be concluded that AFM fluid imaging proves to be a promising tool in the observation and characterization of floc morphology and the dynamic coagulation processes under aqueous environmental conditions. Through the use of AFM fluid imaging technique, optimized conditions for micro-flocculation time of 2 min and the agitation intensity (G value) of 100 s(-1) were obtained in the treatment of dye-printing industrial tailing wastewater by the micro-flocculation filtration process with a good performance.
Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System
NASA Astrophysics Data System (ADS)
Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.
2016-07-01
Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.
Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems
NASA Astrophysics Data System (ADS)
Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard
2017-12-01
Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.
Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.
Yonekawa, H; Tomita, Y; Watanabe, Y
2004-01-01
This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.
USDA-ARS?s Scientific Manuscript database
Wastes contained in the microscreen backwash discharged from intensive recirculating aquaculture systems were removed and dewatered in simple geotextile bag filters. Three chemical coagulation aids, (aluminum sulfate (alum), ferric chloride, and calcium hydroxide (hydrated lime)), were tested in com...
Conventional Treatment Options for HABs Impacted Waters
This presentation discusses (1) the removal of cyanobacterial cells through coagulation, flocculation, sedimentation and filtration, (2) the control of cyanobacterial toxins by powdered activated carbon, (3) the control of cyanobacterial toxins by chlorine, UV, ozone, chlorine di...
Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk
2015-01-01
Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).
Zhang, Weijun; Song, Rongna; Cao, Bingdi; Yang, Xiaofang; Wang, Dongsheng; Fu, Xingmin; Song, Yao
2018-05-01
The work evaluated the algae cells removal efficiency using titanium salt coagulants with different degree of polymerization (PTCs), and the algae cells aggregates and extracellular organic matter (EOM) under chemical flocculation were investigated. The results indicated that PTCs performed well in algae cells flocculation and separation. The main mechanism using PTCs of low alkalisation degree for algae flocculation was associated with charge neutralization, while adsorption bridging and sweep flocculation was mainly responsible for algae removal by PTCs of high alkalisation degree treatment. In addition, the flocs formed by PTC 1.0 showed the best filtration property, and EOM reached the minimum at this time, indicating the flocs formed by PTC 1.0 were more compact than other PTCs, which can be confirmed by SEM analysis. Three-dimensional excitation emission matrix fluorescence (3D-EEM) and high performance size exclusion chromatography (HPSEC) revealed that the EOMs were removed under PTCs flocculation, which improved floc filterability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dataset on the cost estimation for spent filter backwash water (SFBW) treatment.
Ebrahimi, Afshin; Mahdavi, Mokhtar; Pirsaheb, Meghdad; Alimohammadi, Fariborz; Mahvi, Amir Hossein
2017-12-01
The dataset presented in this article are related to the research article entitled "Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl 3 as a pre-treatment" (Ebrahimi et al., 2017) [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW) during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF) and recirculation of settled SFBW to water treatment plant (WTP) entrance. Coagulation conducted by PAFCl and FeCl 3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively.
Quang, Viet Ly; Choi, Ilhwan; Hur, Jin
2015-11-01
In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.
Mahdavi, Mokhtar; Ebrahimi, Afshin; Azarpira, Hossein; Tashauoei, Hamid Reza; Mahvi, Amir Hossein
2017-12-01
During operation of most water treatment plants, spent filter backwash water (SFBW) is generated, which accounts about 2-10% of the total plant production. By increasing world population and water shortage in many countries, SFBW can be used as a permanent water source until the water treatment plant is working. This data article reports the practical method being used for water reuse from SFBW through different method including pre-sedimentation, coagulation and flocculation, second clarification, ultra filtration (UF) and returned settled SFBW to the beginning of water treatment plant (WTP). Also, two coagulants of polyaluminum ferric chloride (PAFCl) and ferric chloride (FeCl 3 ) were investigated with respect to their performance on treated SFBW quality. Samples were collected from Isfahan's WTP in Iran during spring and summer season. The acquired data indicated that drinkable water can be produced form SFBW by applying hybrid coagulation-UF process (especially when PAFCl used as coagulant).
A SYSTEMATIC STUDY ON THE SURFACE CHARGE OF MICROORGANISMS IN DRINKING WATER
The removal of microbiological pathogens from drinking water is an important function of water treatment. The mechanisms of particle and pathogen removal during coagulation/flocculation/filtration processes are well known. Surface charge is particularly important in particle dest...
Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.
Beltrán-Heredia, J; Sánchez-Martín, J
2009-05-01
Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.
Developing a Tactical Environment Cyber Operations Training Program
2015-01-31
coagulation, flocculation, sedimentation, filtration, and disinfection is used for treatment of the water. The treated water is pumped under pres- sure into...Radio Frequency 0 Simplex and duplex 0 Tum-on time 0 Frequencies 0 Path studies and seasonal variations 0 Solar variations 0 Reliability and
Yao, Juan-Juan; Gao, Nai-Yun; Xia, Sheng-Ji; Chen, Bei-Bei
2009-06-15
The pilot and bench scale studies on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling were performed. The results show that above 95% As (V) in the raw water exists in the form of dissolved As (V). Furthermore, the removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 87.92%, 6.18%, 2.38%, 1.55%, 1.23% and 1.10%, 1.83%, 2.20%, 86.42%, 7.38% respectively. Therefore, conversion rate of dissolved As(V) into particulate As(V) and the settlement performance of flocs were strongly dependent on the coagulation effect, which determined the As(V) removal efficiency in the whole system. Flocs have a strong adsorption capacity for As(V) and the adsorption obeys a second order reaction kinetics and well fits the modified Freundlich model. Flocs recycling can obviously promoted the As(V) removal by enhanced coagulation and reduce the dosage of coagulant with recycling point set at rapid mixed site and recycling ratio at 50%.
Polyaluminium chloride as an alternative to alum for the direct filtration of drinking water.
Zarchi, Idit; Friedler, Eran; Rebhun, Menahem
2013-01-01
The efficiency of various polyaluminium chloride coagulants (PACls) was compared to the efficiency of aluminium sulfate (alum) in the coagulation-flocculation process preceding direct filtration in drinking water treatment. The comparative study consisted of two separate yet complementary series of experiments: the first series included short (5-7 h) and long (24 h) filter runs conducted at a pilot filtration plant equipped with large filter columns that simulated full-scale filters. Partially treated surface water from the Sea of Galilee, characterized by very low turbidity (-1 NTU), was used. In the second series of experiments, speciation of aluminium in situ was investigated using the ferron assay method. Results from the pilot-scale study indicate that most PACls were as or more efficient a coagulant as alum for direct filtration of surface water without requiring acid addition for pH adjustment and subsequent base addition for re-stabilizing the water. Consequently, cost analysis of the chemicals needed for the process showed that treatment with PACl would be significantly less costly than treatment with alum. The aluminium speciation experiments revealed that the performance of the coagulant is more influenced by the species present during the coagulation process than those present in the original reagents.
Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku
2018-07-01
Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear to be related to the fact that their small size leads to a low destabilization rate during the coagulation process and a low collision rate during the flocculation and filtration processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yili; Guo, Jinlong; Tang, Hongxiao
2002-01-01
Factors of pretreatment coagulation/flocculation units were studied using raw water of low temperature and low turbidity. Aluminum sulfate (AS) and selected polyaluminium chlorides (PACls) were all effective in the DAF process when used under favorable conditions of coagulant addition, coagulation, flocculation and flotation units. Compared with the AS coagulant, PACls, at lower dosage, could give the same effective performance even with shorter coagulation/flocculation time or lower recycle ratio during the treatment of cold water. This is attributed to the higher-charged polymeric Al species, and the lower hydrophilic and more compact flocculated flocs of PACl coagulant. Based on results of pilot experiments, the goal of FRD system can be achieved by combining a DAF heterocoagulation reactor with PACl coagulant (F), an efficient flocculation reactor (R), as well as an economical auto-dosing system (D).
Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah
2018-03-01
Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.
Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.
Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza
2016-09-01
Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.
Bongiovani, Milene Carvalho; Camacho, Franciele Pereira; Nishi, Letícia; Coldebella, Priscila Ferri; Valverde, Karina Cardoso; Vieira, Angélica Marquetotti Salcedo; Bergamasco, Rosângela
2014-01-01
The objective of this study is to investigate the impacts of anionic polymer as a flocculant aid on the coagulation/flocculation performance with a saline solution of Moringa oleifera as a coagulant to provide larger flocs and decrease the time sedimentation. For the tests, raw water was used from Pirapó River Basin (Maringá, Paraná, Brazil). Optimization of coagulation/flocculation tests was initially performed in a jar-test with a dosage of M. oleifera Lam (crude extract--MO, oil-extracted with ethanol--MO (et) and hexane--MO (hex) 1% m/v) as the coagulant that ranged from 10 to 60 mg L(-1) and of the anionic polymer 0.1% as a flocculant aid with a dosage that ranged from 0 to 0.4 mg L(-1). The parameters analysed were colour, turbidity and compounds with absorption in UV254nm. In view of the statistical analysis results, MO (hex) with a dosage of 30 mg L(-1) was chosen as a coagulant for the next tests of coagulation/flocculation. When anionic polymer was used alone (0.0 mg L(-1) of MO (hex)), parameters were not removed and there was no generation of heavy flocs as compared with the combination of MO (hex) with the anionic polymer. Statistical analysis showed that MO (hex) obtained the highest removals of the parameters analysed in lower dosages and no significant increase in parameters removal was observed when the polymer dosage was increased. The efficacy of the coagulant +/- anionic polymer was optimal when 30mg L(-1) of MO (hex) was used as a coagulant and 0.1 mg L(-1) of the anionic polymer was used as a flocculant aid, decreasing the time sedimentation from 1 h to 15 min.
Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.
Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev
2007-04-02
Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.
Improving the Efficiency of Natural Raw Water Pretreatment at Thermal Power Stations
NASA Astrophysics Data System (ADS)
Dremicheva, E. S.
2018-02-01
In the treatment of make-up water for thermal power stations (TPS) and heat networks, raw water from surface water bodies is used. It contains organic and mineral pollutants in the form of particulates or colloids. Coagulation and flocculation are reagent methods for removing these pollutants from water. Chemicals are used to assist in the formation of large structured flakes that are removed easily from water. The Kuibyshev water reservoir was selected as the object of investigation. Basic physical and chemical properties of the raw water are presented. The application of various coagulating agents, their mixtures in different proportions, and flocculating agents for clarifying the Volga water was examined. The required dose of a coagulant or flocculant was determined based on test coagulation of the treated water. Aluminum sulfate and iron (III) chloride were used a coagulant, and Praestol 2500 (nonionic) as a flocculant. A method of enhancement of coagulation and flocculation by injecting air into the treated water is examined. The results of experimental investigation of the effect of water treatment method on water quality indices, such as alkalinity, pH, iron content, suspended material content, and permanganate value, are presented. It is demonstrated that joint use of ironand aluminum containing coagulation agents brings the coagulation conditions closer to the optimum ones. Aeration does not affect the coagulation process. The methods for supplying air to a clarifier are proposed for practical implementation.
Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.
Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif
2007-06-25
Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).
López-Maldonado, E A; Oropeza-Guzman, M T; Jurado-Baizaval, J L; Ochoa-Terán, A
2014-08-30
Based on the polyelectrolyte-contaminant physical and chemical interactions at the molecular level, this article analyzed and discussed the coagulation-flocculation and chemical precipitation processes in order to improve their efficiency. Bench experiments indicate that water pH, polyelectrolyte (PE) dosing strategy and cationic polyelectrolyte addition are key parameters for the stability of metal-PE complexes. The coagulation-flocculation mechanism is proposed based on zeta potential (ζ) measurement as the criteria to define the electrostatic interaction between pollutants and coagulant-flocculant agents. Polyelectrolyte and wastewater dispersions are exposed to an electrophoretic effect to determine ζ. Finally, zeta potential values are compared at pH 9, suggesting the optimum coagulant dose at 162mg/L polydadmac and 67mg/L of flocculant, since a complete removal of TSS and turbidity is achieved. Based on the concentration of heavy metals (0.931mg/L Sn, 0.7mg/L Fe and 0.63mg/L Pb), treated water met the Mexican maximum permissible limits. In addition, the treated water has 45mg O2/L chemical oxygen demand (COD) and 45mg C/L total organic carbon (TOC). The coagulation-flocculation mechanism is proposed taking into account both: zeta potential (ζ)-pH measurement and chemical affinity, as the criteria to define the electrostatic and chemical interaction between pollutants and polyelectrolytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Birjandi, Noushin; Younesi, Habibollah; Bahramifar, Nader; Ghafari, Shahin; Zinatizadeh, Ali Akbar; Sethupathi, Sumathi
2013-01-01
The application of coagulation-flocculation (CF) process for treating the paper-recycling wastewater in jar-test experiment was employed. The purpose of the study was aimed to examine the efficiency of alum and poly aluminum chloride (PACl) in combination with a cationic polyacrylamide (C-PAM) in removal of chemical oxygen demand (COD) and turbidity from paper-recycling wastewater. Optimization of CF process were performed by varying independent parameters (coagulants dosage, flocculants dosage, initial COD and pH) using a central composite design (CCD) under response surface methodology (RSM). Maximum set required 4.5 as pH, 40 mg/L coagulants dosage and 4.5 mg/L flocculants dosage at which gave 92% reduction of turbidity, 97% of COD removal and SVI 80 mL/g. The best coagulant and flocculants were alum and chemfloc 3876 at dose of 41 and 7.52 mg/L, respectively, correspondingly at pH of 6.85. These conditions gave 91.30% COD and 95.82% turbidity removals and 12 mL/g SVI.
Oliveira, Gislayne Alves; Carissimi, Elvis; Monje-Ramírez, Ignacio; Velasquez-Orta, Sharon B; Rodrigues, Rafael Teixeira; Ledesma, María Teresa Orta
2018-07-01
The removal of nutrients by Scenedesmus sp. in a high-rate algal pond, and subsequent algal separation by coagulation-flocculation or flotation with ozone to recover biomolecules, were evaluated. Cultivation of Scenedesmus sp. in wastewater resulted in complete NH 3 -H removal, plus 93% total nitrogen and 61% orthophosphate removals. Ozone-flotation obtained better water quality results than coagulation-flocculation for most parameters (NH 3 -N, NTK, nitrate and nitrite) except orthophosphate. Ozone-flotation, also produced the highest recovery of lipids, carbohydrates and proteins which were 0.32 ± 0.03, 0.33 ± 0.025 and 0.58 ± 0.014 mg/mg of biomass, respectively. In contrast, there was a low lipid extraction of 0.21 mg of lipids/mg of biomass and 0.12-0.23 mg of protein/mg of biomass in the coagulation-flocculation process. In terms of biomolecule recovery and water quality, ozone showed better results than coagulation-flocculation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H
2015-01-01
A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.
Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong
2016-10-15
The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S
2015-04-09
This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. Copyright © 2014 Elsevier B.V. All rights reserved.
Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando
2007-01-01
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
Optimum coagulant forecasting by modeling jar test experiments using ANNs
NASA Astrophysics Data System (ADS)
Haghiri, Sadaf; Daghighi, Amin; Moharramzadeh, Sina
2018-01-01
Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform experimental jar tests but also to predict a proper dosage for coagulant amounts and to project the quality of the output water under real conditions.
Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Shao, Lan; Zhang, Xiumei; Yao, Juming
2016-01-01
The discharge of effluents from surfactant manufacturers is giving rise to increasingly serious environmental problems. In order to develop the eco-friendly flocculation materials to achieve effective removal of pollutants from the surfactant effluents, the bamboo pulp cellulose from Phyllostachys heterocycla is employed as the skeleton material to synthesize an eco-friendly bamboo pulp cellulose-g-polyacrylamide (BPC-g-PAM) for flocculation. The BPC-g-PAM is used with the metal ions as the coagulant to treat the effluent from a surfactant manufacturer. The response surface methodology coupled with Box-behnken design is employed to optimize the key factors of coagulation-flocculation. The results show that the combination of Fe(3+) with BPC-g-PAM achieves the best coagulation-flocculation performance like, the fast treatment time, minimum coagulant and BPC-g-PAM dosages compared with the other two combinations of Al(3+) with BPC-g-PAM and Ca(2+) with BPC-g-PAM. Therefore, the combination of Fe(3+) with BPC-g-PAM is expected to promote its application for the pollution control in the surfactant manufacturers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrated process for the removal of emulsified oils from effluents in the steel industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, J.M.; Rios, G.; Gutierrez, B.
1999-11-01
Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less
Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R
2009-11-01
Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.
Microalgae harvesting techniques: A review.
Singh, Gulab; Patidar, S K
2018-07-01
Microalgae with wide range of commercial applications have attracted a lot of attention of the researchers in the last few decades. However, microalgae utilization is not economically sustainable due to high cost of harvesting. A wide range of solid - liquid separation techniques are available for microalgae harvesting. The techniques include coagulation and flocculation, flotation, centrifugation and filtration or a combination of various techniques. Despite the importance of harvesting to the economics and energy balance, there is no universal harvesting technique for microalgae. Therefore, this review focuses on assessing technical, economical and application potential of various harvesting techniques so as to allow selection of an appropriate technology for cost effectively harvesting of microalgae from their culture medium. Various harvesting and concentrating techniques of microalgae were reviewed to suggest order of suitability of the techniques for four main microalgae applications i.e biofuel, human and animal food, high valued products, and water quality restoration. For deciding the order of suitability, a comparative analysis of various harvesting techniques based on the six common criterions (i.e biomass quality, cost, biomass quantity, processing time, species specific and toxicity) has been done. Based on the order of various techniques vis-a-vis various criteria and preferred order of criteria for various applications, order of suitability of harvesting techniques for various applications has been decided. Among various harvesting techniques, coagulation and flocculation, centrifugation and filtration were found to be most suitable for considered applications. These techniques may be used alone or in combination for increasing the harvesting efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D
2016-02-27
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.
Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.
2016-01-01
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152
Treatment of vinasse from tequila production using polyglutamic acid.
Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli
2012-03-01
Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pretreatment of bakery wastewater by coagulation-flocculation and dissolved air flotation.
Liu, J C; Lien, C S
2001-01-01
The pretreatment of wastewater from a large-scale bakery was studied. In the coagulation-flocculation reaction, it was found that both alum and FeCl3 were effective in the jar tests. When at coagulant dosage of 90 to 100 mg/l, 55% of COD and 95 to 100% of SS could be removed. The optimum pH was at 6.0. In addition, the removal of SS was affected by pH more significantly, while the removal of COD was not affected in the pH range of 6.0 to 8.0. In the DAF experiments, 48.6% of COD and 69.8% of SS were removed in 10 min at a pressure of 4 kg/cm2, recycle ratio of 0.3 l/min, and pH of 6.0. Upon the addition of 100 mg/l of alum, the removal efficiency of COD did not increase while SS removal increased to 82.1%. It was found that 5-min flocculation time did improve the COD removal while it had little effect on SS removal. Flocculation for longer than 5 min did not enhance the flotation performance. Similar phenomena were observed when FeCl3 was used as the coagulant, except that flocculation had an insignificant effect on COD and SS removal. It was also found that FeCl3 was relatively more effective than alum. In summary, both coagulation-flocculation and DAF were efficient for the pretreatment. The advantages and disadvantages were discussed.
Ebeling, J.M.; Sibrell, P.L.; Ogden, S.R.; Summerfelt, S.T.
2003-01-01
An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted for the supernatant overflow from settling cones used to treat the effluent from microscreen filters in an intensive recirculating aquaculture system. In addition to determining the effectiveness of these aids in removing both suspended solids and phosphorus, a systematic testing of the variables normally encountered in the coagulation-flocculation process was performed. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were 89 and 93%, respectively, at a dosage of 90 mg/l. Optimum turbidity removal was achieved with a 60 mg/l dosage for both alum and ferric chloride. Both alum and ferric. chloride demonstrated excellent removal of suspended solids from initial TSS values of approximately 100-10 mg/l at a dosage of 90 mg/l. Flocculation and mixing speed played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min. ?? 2003 Elsevier B.V. All rights reserved.
Impact of dynamic distribution of floc particles on flocculation effect.
Nan, Jun; He, Weipeng; Song, Xinin; Li, Guibai
2009-01-01
Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrease of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.
Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza
2003-07-01
The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.
Selection of the surface water treatment technology - a full-scale technological investigation.
Pruss, Alina
2015-01-01
A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.
Kreißel, Katja; Bösl, Monika; Hügler, Michael; Lipp, Pia; Franzreb, Matthias; Hambsch, Beate
2014-03-15
Bacteriophages are often used as surrogates for enteric viruses in spiking experiments to determine the efficiencies of virus removal of certain water treatment measures, like e.g. flocculation or filtration steps. Such spiking experiments with bacteriophages are indispensable if the natural virus concentrations in the raw water of water treatment plants are too low to allow the determination of elimination levels over several orders of magnitude. In order to obtain reliable results from such spiking tests, it is essential that bacteriophages behave comparable to viruses and remain stable during the experiments. To test this, the influence of flocculation parameters on the bacteriophages MS2, Qβ and phiX174 was examined. Notably, the F-specific phages MS2 and Qβ were found to be inactivated in flocculation processes with polyaluminum chloride (PACl). In contrast, other aluminum coagulants like AlCl3 or Al2(SO4)3 did not show a comparable effect on MS2 in this study. In experiments testing the influence of different PACl species on MS2 and Qβ inactivation during flocculation, it could be shown that cationic dissolved PACl species (Al13) interacted with the MS2 surface and hereby reduced the surviving phage fraction to c/c0 values below 1*10(-4) even at very low PACl concentrations of 7 μmol Al/L. Other inactivation mechanisms like the irreversible adsorption of phages to the floc structure or the damage of phage surfaces due to entrapment into the floc during coagulation and floc formation do not seem to contribute to the low surviving fraction found for both F-specific bacteriophages. Furthermore, no influence of phage agglomeration or pH drops during the flocculation process on phage inactivation could be observed. The somatic coliphage phiX174 in contrast did not show sensitivity to chemical stress and in accordance only slight interaction between Al13 and the phage surface was observed. Consequently, F-specific phages like MS2 should not be used as surrogate for viruses in flocculation experiments with PACl to determine the removal rates of viruses, as the results are influenced by a strong inactivation of the bacteriophages due to the experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of drinking water treatment process streams for optimal bacteriological water quality.
Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary
2012-08-01
Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jin, Xiaohui; Peldszus, Sigrid
2012-01-01
Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.
Amuda, O S; Amoo, I A; Ajayi, O O
2006-02-28
This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.
Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.
Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O
2007-01-01
In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.
Hibiscus rosa- sinensis leaf extract as coagulant aid in leachate treatment
NASA Astrophysics Data System (ADS)
Awang, Nik Azimatolakma; Aziz, Hamidi Abdul
2012-12-01
Hibiscus rosa- sinensis is a biodegradable material that has remained untested for flocculating properties. The objective of this study is to examine the efficiency of coagulation-flocculation processes for the removal of color, iron (Fe3+), suspended solids, turbidity and ammonia nitrogen(NH3-N), from landfill leachate using 4,000 mg/L alum in conjunction with H. rosa- sinensis leaf extract (HBaqs). Hydroxyl (O-H) and (carboxyl) C=O functional groups along the HBaqs chain help to indulge flocculating efficiency of HBaqs via bridging. The experiments confirm the positive coagulation properties of HBaqs. The Fe3+ removal rate using 4,000 mg/L alum as sole coagulant was approximately 60 %, and increased to 100 % when 4,000 mg/L alum was mixed with 500 mg/L HBaqs. By mixing, 4,000 mg/L alum with 100-500 mg/L HBaqs, 72 % of SS was removed as compared with only 45 % reduction using 4,000 mg/L alum as sole coagulant.
[The toxicity variation of organic extracts in drinking water treatment processes].
Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z
2001-01-01
Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.
Production of a novel bioflocculant and its flocculation performance in aluminum removal.
Li, Lixin; Ma, Fang; Zuo, Huimin
2016-04-02
A novel bioflocculant CBF with high flocculating activity, produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaericus F6 from soil, was investigated with regard to its production and flocculation performance in Al(III) removal. The most preferred carbon source, nitrogen source and C/N ratio (w/w) for strains F2 and F6 to produce CBF were glucose, urea and 20, respectively. The optimal inoculum size for CBF production was 10 % (v/v). The optimal initial pH, culture temperature and shaking speed were 7-8, 30°C and 140 r/min for 24 h, respectively, under which the flocculating activity of the bioflocculant reached 98.52 %. According to literature review, flocculant dosage, coagulant aid dosage, pH, hydraulic condition of coagulation and sedimentation time are considered as influencing parameters for CBF flocculation performance in Al(III) removal by L16(4(5)) orthogonal design. The optimal conditions for Al(III) removal obtained through analysis and verification experiments were as follows: CBF, 28 mg/L; coagulant aid, 1.5 mL/L; initial pH, 8.0; and hydraulic conditions of coagulation: stir speed, 160 r/min; stir time, 40 s; and sedimentation time, 30 min. Under the optimal conditions, the removal efficiency of Al(III) was 92.95 %. Overall, these findings indicate that bioflocculant CBF offers an effective alternative method of decreasing Al(III) during drinking water treatment.
NASA Astrophysics Data System (ADS)
Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin
2015-02-01
In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.
Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N
2009-01-01
The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Wong, E A; Shin, G-A
2015-03-01
There has been a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water due to its ubiquitous presence in natural waters and remarkable resistance to both chemical and physical disinfectants in drinking water treatment processes. However, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Therefore, we determined the removal of MAH by alum coagulation, flocculation and sedimentation processes in optimized drinking water treatment conditions using standard jar test equipment. Contrary to the prevailing hypothesis, the results of this study show that removal of MAH by coagulation, flocculation and sedimentation processes was only moderate (approx. 0.65 log10) under low turbidity treatment conditions and the removal of MAH was actually lower than that of Escherichia coli (reference bacterium) in all the waters tested. Overall, the results of this study suggested that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for removing MAH, and more efforts to find an effective control measures against MAH should be made to reduce the risk of MAH infection from drinking water. Despite a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water and its remarkable resistance to water disinfectants, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Contrary to the prevailing hypothesis, the results of this study suggest that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for MAH removal. As these processes have been the last remaining conventional drinking water treatment processes that might be effective against MAH, more efforts should be urgently made to find an effective control measures against this important waterborne pathogen. © 2014 The Society for Applied Microbiology.
Treatment of waste water by coagulation and flocculation using biomaterials
NASA Astrophysics Data System (ADS)
Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh
2017-11-01
The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.
Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang
2011-04-01
The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ebeling, J.M.; Ogden, S.R.; Sibrell, P.L.; Rishel, K.L.
2004-01-01
An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted to determine optimum conditions for treating the backwash effluent from microscreen filters in an intensive recirculating aquaculture system. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were greater than 90% at a dosage of 60 mg/L. Optimum turbidity removal was achieved with a 60-mg/L dosage for both alum and ferric chloride. Both alum and ferric chloride demonstrated excellent removal of suspended solids from initial total suspended solid values of approximately 320 mg/L to approximately 10 mg/L at a dosage of 60 mg/L. Flocculation and mixing speed and duration played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min.
Saini, Roli; Kumar, Pradeep; Hira, Sumit Kumar; Manna, Partha Pratim
2017-06-01
Coagulation-flocculation in water treatment has been relied upon aluminum (Al) and iron (Fe) salts for treatment of contaminants present in source waters containing dissolved organic compounds. However, water quality deteriorates day by day which makes it urgent to improve the standards of the treatment procedure. Coagulation-flocculation-sedimentation performance of ferric chloride and alum was comparatively investigated for carbofuran treatment in simulated wastewater. Coagulation trails were performed in a jar test at several pH levels and coagulant doses to determine reduction efficiencies of carbofuran degradation and chemical oxygen demand (COD). Effect of carbofuran on proliferation, viability, and direct cytotoxicity was performed using human neuroblastoma cells U-87. Direct toxicity of carbofuran on human mononuclear cells and red blood cells (RBC) was also analyzed. Carbofuran and its derivatives were found to be relatively safe at low concentration (2-5 μM). However, at slightly higher concentration (8 μM), a moderate loss in viability and proliferative potential was observed. Taken together, these results suggest that carbofuran appears to be safe at moderate or low concentration with respect to viability of normal human lymphocytes and RBC.
Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment.
Santos, Tássia R T; Silva, Marcela F; Nishi, Leticia; Vieira, Angélica M S; Fagundes-Klen, Márcia R; Andrade, Murilo B; Vieira, Marcelo F; Bergamasco, Rosângela
2016-04-01
In this work, to evaluate the effectiveness of the coagulation/flocculation using a natural coagulant, using Moringa oleifera Lam functionalized with magnetic iron oxide nanoparticles, producing flakes that are attracted by an external magnetic field, thereby allowing a fast settling and separation of the clarified liquid, is proposed. The removal efficiency of the parameters, apparent color, turbidity, and compounds with UV254nm absorption, was evaluated. The magnetic functionalized M. oleifera Lam coagulant could effectively remove 90 % of turbidity, 85 % of apparent color, and 50 % for the compounds with absorption at UV254nm, in surface waters under the influence of an external magnetic field within 30 min. It was found that the coagulation/flocculation treatment using magnetic functionalized M. oleifera Lam coagulant was able to reduce the values of the physico-chemical parameters evaluated with reduced settling time.
Ozkan, O; Mihçiokur, H; Azgin, S T; Ozdemir, O
2010-01-01
Wastewater from a medical-waste sterilisation plant (MWSP) contains unique pollutants and requires on-site treatment to prevent contamination of the municipal sewage system and receiving water bodies. Therefore, to meet the prescribed discharge standards and comply with the legal regulations, pre-treatment must be applied to MWSP wastewater. In this study, the capabilities of coagulation-flocculation processes were investigated for MWSP wastewater treatment. Processes using ferric chloride, ferrous sulfate and aluminium sulfate as coagulants were characterised. During the coagulation experiments, seven different coagulant dosages and four different pH values were evaluated to determine the optimum coagulant dosage and pH value. The highest removal efficiency of chemical oxygen demand (COD) was obtained using 300 mg/L of ferric chloride at pH 10. A COD removal of about 60% as well as considerable reductions in the amounts of suspended solids, nitrogen and phosphorus were realised.
Mohamed, Zakaria A; Deyab, Mohamed Ali; Abou-Dobara, Mohamed I; El-Sayed, Ahmad K; El-Raghi, Wesam M
2015-08-01
Monitoring of cyanobacteria and their associated toxins has intensified in raw water sources of drinking water treatment plants (WTPs) in most countries of the world. However, it is not explored yet for Egyptian WTPs. Therefore, this study was undertaken to investigate the occurrence of cyanobacteria and their microcystin (MC) toxins in the Nile River source water of Damietta WTP during warm months (April-September 2013) and to evaluate the removal efficiency of both cyanobacterial cells and MCs by conventional methods used in this plant as a representative of Egyptian drinking WTPs. The results showed that the source water at the intake of Damietta WTP contained dense cyanobacterial population (1.1-6.6 × 107 cells L(-1)) dominated by Microcystis aeruginosa. This bloom was found to produce MC-RR and MC-LR. Both cyanobacterial cell density and intracellular MCs in the intake source water increased with the increase in temperature and nutrients during the study period, with maximum values obtained in August. During treatment processes, cyanobacterial cells were incompletely removed by coagulation/flocculation/sedimentation (C/F/S; 91-96.8%) or sand filtration (93.3-98.9%). Coagulation/flocculation induced the release of MCs into the ambient water, and the toxins were not completely removed or degraded during further treatment stages (filtration and chlorination). MCs in outflow tank water were detected in high concentrations (1.1-3.6 μg L - 1), exceeding WHO provisional guideline value of 1 μg L - 1 for MC-LR in drinking water. Based on this study, regular monitoring of cyanobacteria and their cyanotoxins in the intake source water and at different stages at all WTPs is necessary to provide safe drinking water to consumers or to prevent exposure of consumers to hazardous cyanobacterial metabolites.
Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract.
Beltrán-Heredia, J; Sánchez-Martín, J
2009-05-30
Among other natural flocculant/coagulant agents, Moringa oleifera seed extract ability to remove an anionic surfactant has been evaluated and it has been found to be very interesting. Sodium lauryl sulphate was removed from aqueous solutions up to 80% through coagulation/flocculation process. pH and temperature were found to be not very important factors in removal efficiency. Freundlich (F), Frumkin-Fowler-Guggenheim (FFG) and Gu-Zhu (GZ) models were used to adjust experimental data in a solid-liquid adsorption hypothesis. Last one resulted to be the most accurate one. Several data fit parameters were determined, as Freundlich order, which was found to be 1.66, Flory-Huggins interaction parameter from FFG model, which was found to be 4.87; and limiting Moringa surfactant adsorption capacity from GZ model, which was found to be 2.13 x 10(-3)mol/g.
USDA-ARS?s Scientific Manuscript database
Non-sulfonated lignin, a byproduct of biomass conversion to fuel ethanol, is finding increasing applications and can be converted to chemical substances which replace those obtained from petrochemicals. To date, most studies of flocculant function on non-sulfonated lignin have used mixtures of lign...
Zeng, Yubin; Yang, Changzhu; Zhang, Jingdong; Pu, Wenhong
2007-08-25
Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.
The effects of physicochemical wastewater treatment operations on forward osmosis.
Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin
2017-09-01
Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.
El-Fadel, M; Matar, F; Hashisho, J
2013-05-01
The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.
NASA Astrophysics Data System (ADS)
Shaylinda, M. Z. N.; Hamidi, A. A.; Mohd, N. A.; Ariffin, A.; Irvan, D.; Hazreek, Z. A. M.; Nizam, Z. M.
2018-04-01
In this research, the performance of polyferric chloride and tapioca flour as composite coagulants for partially stabilized leachate was investigated. Response surface methodology (RSM) was used to optimize the coagulation and flocculation process of partially stabilized leachate. Central composite design a standard design tool in RSM was applied to evaluate the interactions and effects of dose and pH. Dose 0.2 g/L Fe and pH 4.71 were the optimum value suggested by RSM. Experimental test based on the optimum condition, resulted in 95.9%, 94.6% and 50.4% of SS, color and COD removals, respectively. The percentage difference recorded between experimental and model responses was <5%. Therefore, it can be concluded that RSM was an appropriate optimization tool for coagulation and flocculation process.
McKie, Michael J; Andrews, Susan A; Andrews, Robert C
2016-02-15
The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners. Copyright © 2015 Elsevier B.V. All rights reserved.
Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas
2016-05-01
The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which resulted in lower dosage concentrations, was efficient in limiting PAC consumption during these events without suffering from negative effects on process performance or effluent quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mir-Tutusaus, J A; Sarrà, M; Caminal, G
2016-11-15
Hospital wastewaters have a high load of pharmaceutical active compounds (PhACs). Fungal treatments could be appropriate for source treatment of such effluents but the transition to non-sterile conditions proved to be difficult due to competition with indigenous microorganisms, resulting in very short-duration operations. In this article, coagulation-flocculation and UV-radiation processes were studied as pretreatments to a fungal reactor treating non-sterile hospital wastewater in sequential batch operation and continuous operation modes. The influent was spiked with ibuprofen and ketoprofen, and both compounds were successfully degraded by over 80%. UV pretreatment did not extent the fungal activity after coagulation-flocculation measured as laccase production and pellet integrity. Sequential batch operation did not reduce bacteria competition during fungal treatment. The best strategy was the addition of a coagulation-flocculation pretreatment to a continuous reactor, which led to an operation of 28days without biomass renovation. Copyright © 2016 Elsevier B.V. All rights reserved.
A simple purification and activity assay of the coagulant protein from Moringa oleifera seed.
Ghebremichael, Kebreab A; Gunaratna, K R; Henriksson, Hongbin; Brumer, Harry; Dalhammar, Gunnel
2005-06-01
Use of extracts from Moringa oleifera (MO) is of great interest for low-cost water treatment. This paper discusses water and salt extraction of a coagulant protein from the seed, purification using ion exchange, its chemical characteristics, coagulation and antimicrobial properties. The coagulant from both extracts is a cationic protein with pI greater than 9.6 and molecular mass less than 6.5 kDa. Mass spectrometric analysis of the purified water extract indicated that it contained at least four homologous proteins, based on MS/MS peptide sequence data. The protein is thermoresistant and remained active after 5h heat treatment at 95 degrees C. The coagulant protein showed both flocculating and antibacterial effects of 1.1--4 log reduction. With samples of high turbidity, the MO extract showed similar coagulation activity as alum. Cecropin A and MO extract were found to have similar flocculation effects for clay and microorganisms. Simple methods for both the purification and assay of MO coagulating proteins are presented, which are necessary for large-scale water treatment applications.
The influence of hydraulic conditions on coagulation process effectiveness
NASA Astrophysics Data System (ADS)
Sambor, Aleksandra; Ferenc, Zbigniew
2017-11-01
This paper presents the impact that small changes in the hydraulic installation between the flocculation chamber and the sedimentation tanks have on coagulation process effectiveness. This study has shown significant improvements in the parameters of the treated water. The research was conducted in two treatment systems: reference and test, in order to compare the changes that were introduced in the time period between January and May 2016. The hydraulic conditions between the flocculation chamber and the sedimentation tank were changed in the test system, leaving the reference system unchanged for comparative purposes. The height-wise positioning of the sedimentation tank relative to the flocculation chamber resulted in a formation of a cascade at the flocculation chamber drain at a height of 0.60m. Air was therefore introduced into the water, forming an air-water mixture, which disturbed the flow between the devices. It was found that floc transported by the pipeline was broken down, which hampered sedimentation in the sedimentation tank. This was confirmed by the analysis of chosen parameters from treated water. After changes in the hydraulic system, changes in water turbidity were noticed, indicating an increase in post-coagulation suspension separation effectiveness. Consequently, an increase in organic carbon removal was found relative to the reference system. This change influenced changes in UV254 absorbance to a much lesser extent.
Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo
2014-05-01
Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of starch on microalgal biomass recovery, settleability and biogas production.
Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica
2015-06-01
In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boleda, M A Rosa; Galceran, M A Teresa; Ventura, Francesc
2011-06-01
The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥ 94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D
2017-05-01
Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one. Copyright © 2017 Elsevier Ltd. All rights reserved.
Natural Ferrihydrite as an Agent for Reducing Turbidity Caused by Suspended Clays
USDA-ARS?s Scientific Manuscript database
The turbidity of water can be reduced by the addition of positively charged compounds which coagulate negatively charged clay particles in suspension causing them to flocculate. This research was conducted to determine the effectiveness of the Fe oxide mineral ferrihydrite as a flocculating agent fo...
[Influence of tap water treatment on perfluorinated compounds residue in the dissolved phase].
Zhang, Hong; Chen, Qing-wu; Wang, Xin-xuan; Chai, Zhi-fang; Shen, Jin-can; Yang, Bo; Liu, Guo-qing
2013-09-01
To study the perfluorinated compounds (PFCs) residues through water treatments including flocculation, sedimentation, sand filtration, ozonation with activated carbon and chlorination, as well as the seasonal variation of PFCs in the raw water of waterworks, 13 PFCs species in the dissolved phase of raw water, finished water, as well as the water samples after flocculation, sedimentation, sand filtration, and ozonation with activated carbon filtration were measured by the high performance liquid chromatography-tandem mass spectrometry combined with solid phase extraction. Results indicated that sigma PFCs residue in water was higher in spring and summer than that in fall and winter. The vast majority of PFCs in samples were of short and medium chains (C < or = 10), and perfluorooctane sulfonate was the most typical residue species. Among the five water treatment stages, sedimentation, sand filtration and ozonation with activated carbon filtration can remove PFCs, while flocculation and chlorination significantly raise the levels of short- (C < or = 6) and medium-chain (10 > or = C > or = 7) PFCs, respectively, causing sigma PFCs increase in finished water by 10%-44% compared to raw water. However, the PFCs residues in finished water are still far below their limit values, posing no threat against human health.
Bouaouine, Omar; Bourven, Isabelle; Khalil, Fouad; Baudu, Michel
2018-04-01
Opuntia ficus-indica that belongs to the Cactaceae family and is a member of Opuntia kind has received increasing research interest for wastewater treatment by flocculation. The objectives of this study were (i) to provide more information regarding the active constituents of Opuntia spp. and (ii) to improve the extracting and using conditions of the flocculant molecules for water treatment. A classic approach by jar test experiments was used with raw and extracted material by solubilization and precipitation. The surface properties of solid material were characterized by FTIR, SEM, zeta potential measurement, and surface titration. The splitting based on the solubility of the material with pH and the titration of functional groups completed the method. The optimal pH value for a coagulation-flocculation process using cactus solid material (CSM) was 10.0 and a processing rate of 35 mg L -1 . The alkaline pH of flocculation suggests an adsorption mechanism with bridging effect between particles by water-soluble extracted molecules. To validate this mechanism, an extraction water was carried out at pH = 10 (optimum of flocculation) and the solution was acidified (pH = 7) to allow precipitation of so considered active flocculant molecules. The strong flocculant property of this extract was verified, and titration of this solution showed at least one specific pKa of 9.0 ± 0.6. This pKa corresponds to phenol groups, which could be assigned to lignin and tannin.
Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite
Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...
2015-08-20
Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH) 2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potentialmore » measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less
Removal of Heavy Metals from Solid Wastes Leachates Coagulation-Flocculation Process
NASA Astrophysics Data System (ADS)
Yousefi, Z.; Zazouli, M. A.
The main objectives of present research were to determine heavy metals (Ni, Cd, Cr, Zn and Cu) and COD concentration in raw leachate in Esfahan (Iran) composting plant and to examine the application of coagulation-flocculation process for the treatment of raw leachates. Jar-test experiments were employed in order to determine the optimum conditions (effective dosage and optimum pH) for the removal of COD and heavy metals. Alum (aluminum sulphate) and Ferric chloride were tested as conventional coagulants. Ten times had taken sampling from leachates as standard methods in the composting plant prior to composting process. The results showed that Leachate pH was 4.3-5.9 and the average was 4.98±0.62. The concentration of Leachate pollutants were more than effluent standard limits (Environment protection Agency). And also the results indicated, Cd and Zn with concentration 0.46±0.41 and 5.81±3.69 mg L-1, had minimum and maximum levels, respectively. The results of coagulation and flocculation tests showed that in optimum conditions, the removal efficiency of heavy metals and COD by using alum were 77-91 and 21%, respectively. While removal of heavy metals and COD by ferric chloride were 68-85.5% and 28%, respectively. Also the residues of heavy metals after treatment get to under of standard limits of Iran EPA. The results have indicated optimum pH of two coagulants for leachate treatment was 6.5 and 10 and also effective coagulant dosages were 1400 and 1000 mg L-1 for alum and ferric chloride, respectively. In view of economical, ferric chloride is cost benefit. The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates.
Quantitative risk assessment of Cryptosporidium in tap water in Ireland.
Cummins, E; Kennedy, R; Cormican, M
2010-01-15
Cryptosporidium species are protozoan parasites associated with gastro-intestinal illness. Following a number of high profile outbreaks worldwide, it has emerged as a parasite of major public health concern. A quantitative Monte Carlo simulation model was developed to evaluate the annual risk of infection from Cryptosporidium in tap water in Ireland. The assessment considers the potential initial contamination levels in raw water, oocyst removal and decontamination events following various process stages, including coagulation/flocculation, sedimentation, filtration and disinfection. A number of scenarios were analysed to represent potential risks from public water supplies, group water schemes and private wells. Where surface water is used additional physical and chemical water treatment is important in terms of reducing the risk to consumers. The simulated annual risk of illness for immunocompetent individuals was below 1 x 10(-4) per year (as set by the US EPA) except under extreme contamination events. The risk for immunocompromised individuals was 2-3 orders of magnitude greater for the scenarios analysed. The model indicates a reduced risk of infection from tap water that has undergone microfiltration, as this treatment is more robust in the event of high contamination loads. The sensitivity analysis highlighted the importance of watershed protection and the importance of adequate coagulation/flocculation in conventional treatment. The frequency of failure of the treatment process is the most important parameter influencing human risk in conventional treatment. The model developed in this study may be useful for local authorities, government agencies and other stakeholders to evaluate the likely risk of infection given some basic input data on source water and treatment processes used. Copyright 2009 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Flocculation can be used to separate non-sulfonated lignin from base hydrolyzed biomass. In the industrial process, the lignin is isolated by filtration and washed with water. Some of the lignin is lost in the wash water, and flocculation can be used to recover this lignin. Several ways of enhanc...
Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria
2013-06-01
This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.
Removal of heavy metals from waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, M.D.; Kozaruk, J.M.; Melvin, M.
1988-07-19
A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water,more » wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Caroline; Lischeske, James J.; Sievers, David A.
2015-11-03
One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspendedmore » particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.« less
Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation.
Vadasarukkai, Yamuna S; Gagnon, Graham A
2017-03-21
The operational significance of energy-intensive rapid mixing processes remains unaddressed in coagulation and flocculation of insoluble precipitates (flocs), which play an important role in the removal of impurities from drinking water supplies. In this study, the influence of rapid mixing and associated mixing energy on floc aggregation was examined for a surface water source characterized by a high fraction of aquatic humic matter. Infrared spectral analyses showed that the colloidal complexes resulting from ligand exchange between iron and dissolved natural organic matter (DOM) were not substantially influenced by the mixing energy input. This signified that DOM removal by coagulation can be achieved at lower mixing intensity, thereby reducing energy consumption. In contrast, macroscopic investigations showed the coagulation mixing energy affected floc size distributions during the slow mixing stage in flocculation and, to some extent, their settling characteristics. The results from analysis of floc properties clearly showed that more mixing energy was expended than necessary in coagulation, which is typically designed at a high mixing intensity range of 600-1000 s -1 in treatment plants. The key findings from this study have practical implications to water utilities to strategically meet water quality goals while reducing energy demands.
Gumińska, Jolanta; Kłos, Marcin
2015-01-01
Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.
Cobbledick, Jeffrey; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R
2017-11-01
There is considerable interest in recuperative thickening (RT), the recycling of partially digested solids in an anaerobic digester outlet stream back into the incoming feed, as a 'high-performance' process to increase biogas production, increase system capacity, and improve biosolids stabilization. While polymer flocculation is commonly used in full-scale RT operations, no studies have investigated the effect of flocculation conditions on RT process performance. Our goal was to investigate the effect of polymer type and dosage conditions on dewatering performance and biogas production in a lab-scale RT system. The type of polymer flocculant significantly affected dewatering performance. For example, the 440 LH polymer (low molecular weight (MW) polyacrylamide) demonstrated lower capillary suction time (CST) and filtrate total suspended solids (TSS) values than the C-6267 polymer (high MW polyacrylamide). An examination of the dewatering performance of RT digesters with different polymers found a strong correlation between CST and filtrate TSS. The type of polymer flocculant had no significant effect on biogas productivity or composition; the methane content was greater than 60% in good agreement with typical results. The optimization of the polymer flocculation conditions is a critical task for which the lab-scale RT system used in this work is ideally suited.
Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †
Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.
2010-01-01
The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090
Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin
2017-01-01
At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m -3 , which is an improvement compared to the median footprint of 0.75 kWh·m -3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.
Flocculation of Turbid Water Using Polyferric-Based Composite Coagulant
NASA Astrophysics Data System (ADS)
Tan, K. H.; Lai, S. H.
2017-06-01
The flocculation of turbid water using polyferric chloride-polydimethyldiallylammonium chloride (PFC-PDMDAAC) has been studied. Effect of preparation parameters basicity ratio (B ratio) of PFC and PDMDAAC/PFC ratio and operating parameters pH and dosage were investigated. PFC-PDMDAAC displayed maximum turbidity removal of 94.8% at 4.0mg/L when B=0.5 and PDMDAAC/PFC ratio = 7%. The best turbidity removal efficiencies by PFC-PDMDAAC were 84.7% at pH 7.5. These results reveal that PFC-PDMDAAC is efficient for flocculation of turbid water.
Zhu, Guocheng; Wang, Chuang; Dong, Xingwei
2017-06-01
Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Wang, Chengjin; Alpatova, Alla; McPhedran, Kerry N; Gamal El-Din, Mohamed
2015-09-01
This study investigated the application of polyaluminum chloride (PACl) for the treatment of the oil sands process-affected water (OSPW). These coagulants are commonly used in water treatment with the most effective species reported to be Al13. PACl with 83.6% Al13 was synthesized using the slow base titration method and compared with a commercially available PACl in terms of aluminum species distribution, coagulation/flocculation (CF) performance, floc morphology, and contaminant removal. Both coagulants were effective in removing suspended solids, achieving over 96% turbidity removal at all applied coagulant doses (0.5-3.0 mM Al). The removal efficiencies of metals varied among different metals depending on their pKa values with metal cations having pKa values (Fe, Al, Ga, and Ti) below OSPW pH of 6.9-8.1 (dose dependent) being removed by more than 90%, while cations with higher pKa values (K, Na, Ca, Mg and Ni) had removals of less than 40%. Naphthenic acids were not removed due to their low molecular weights, negative charges, and hydrophilic characteristics at the OSPW pH. At the highest applied coagulant dose of 3.0 mM Al, the synthetic PACl reduced Vibrio fischeri inhibition effect to 43.3 ± 3.0% from 49.5 ± 0.4% in raw OSPW. In contrast, no reduction of toxicity was found for OSPW treated with the commercial PACl. Based on water quality and floc analyses, the dominant CF mechanism for particle removal during OSPW treatment was considered to be enmeshment in the precipitates (i.e., sweep flocculation). Overall, the CF using synthesized PACl can be a valuable pretreatment process for OSPW to create wastewater that is more easily treated by downstream processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Buyel, Johannes F; Fischer, Rainer
2014-02-01
Flocculation is a cost-effective method that is used to improve the efficiency of clarification by causing dispersed particles to clump together, allowing their removal by sedimentation, centrifugation or filtration. The efficacy of flocculation for any given process depends on the nature and concentration of the particulates in the feed stream, the concentration, charge density and length of the flocculant polymer, the shear rate, the properties of the feed stream (e.g. pH and ionic strength) and the properties of the target products. We tested a range of flocculants and process conditions using a design of experiments approach to identify the most suitable polymers for the clarification step during the production of a HIV-neutralizing monoclonal antibody (2G12) and a fluorescent marker protein (DsRed) expressed in transgenic tobacco leaves. Among the 23 different flocculants we tested, the greatest reduction in turbidity was achieved with Polymin P, a branched, cationic polyethylenimine with a charge density of 13.0 meq/g. This flocculant reduced turbidity by more than 90% under a wide range of process conditions. We developed a model that predicted its performance under different process conditions, and this enabled us to increase the depth filter capacity three-sevenfold depending on the process scale, depth filter type and plant species. The costs of filter consumables were reduced by more than 50% compared with a process without flocculant, and there was no loss of recovery for either 2G12 or DsRed. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Engineering and Design: Precipitation/Coagulation/Flocculation
2001-11-15
Flocculation 7-3 7-3 Jar Test Analysis 10-1 10-3 Alternating Flow Diversion Equalization System 11-1 11-1 Intermittent Flow Diversion System...EM 1110-1-4012 15 NOV 01 (2) Polyaluminum chloride (PAC), another aluminum derivative, is a partially hydrolyzed aluminum chloride solution...derived from natural products include starch, starch derivatives, proteins, and tannins (EPA, 1987). Of these, starch is the most widely used. The
Improving primary treatment of urban wastewater with lime-induced coagulation.
Marani, Dario; Ramadori, Roberto; Braguglia, Camilla Maria
2004-01-01
The enhancement of primary treatment efficiency through the coagulation process may yield several advantages, including lower aeration energy in the subsequent biological unit and higher recovery of biogas from sludge digestion. In this work sewage coagulation with lime was studied at pilot plant level, using degritted sewage from the city of Rome. The work aimed at optimising the operating conditions (coagulant dosage or treatment pH, and mixing conditions in the coagulation and flocculation tanks), in order to maximise the efficiency of suspended Chemical Oxygen Demand (COD) removal and to minimise sludge production. Lime dosage optimisation resulted in an optimal treatment pH of 9. Lime addition up to pH 9 may increase COD removal rate in the primary treatment from typical 30-35% of plain sedimentation up to 55-70%. Within the velocity gradients experimented in this work (314-795 s(-1) for the coagulation tank and 13-46 s(-1) for the flocculation tank), mixing conditions did not significantly affect the lime-enhanced process, which seems to be controlled by slow lime dissolution. Sludge produced in the lime-enhanced process settled and compacted easily, inducing an average 36% decrease in sludge volume with respect to plain settling. However excess sludge was produced, which was not accounted for by the amount of suspended solids removed. This is probably due to incomplete dissolution of lime, which may be partially incorporated in the sludge.
Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan
2009-07-01
Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
Performance of ultrafiltration membrane process combined with coagulation/sedimentation.
Jang, N Y; Watanabe, Y; Minegishi, S
2005-01-01
Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.
Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K
2014-09-15
Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater
NASA Astrophysics Data System (ADS)
Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief
2018-02-01
Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.
Temperature effects on flocculation, using different coagulants.
Fitzpatrick, C S B; Fradin, E; Gregory, J
2004-01-01
Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.
Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process.
Marques, Rodrigo de Oliveira; Ferreira Filho, Sidney Seckler
2017-04-01
The main objective of this study was to propose an improvement to the flocculation kinetics model presented by Argaman and Kaufman, by including a new term that accounts for the irreversible floc breakup process. Both models were fitted to the experimental results obtained with flocculation kinetics assays of low turbidity raw water containing Microcystis aeruginosa cells. Aluminum sulfate and ferric chloride were used as coagulants, and three distinct average velocity gradient (G) values were applied in the flocculation stage (20, 40 and 60 s -1 ). Experimental results suggest that the equilibrium between the aggregation and breakup process, as depicted by Argaman and Kaufman's original model, might not be constant over time, since the residual turbidity increased in various assays (phenomenon that was attributed to the irreversible floc breakup process). In the aluminum sulfate assays, the residual turbidity increase was visible when G = 20 s -1 (dosages of 60 and 80 mg L -1 ). For the ferric chloride assays, the phenomenon was noticed when G = 60 s -1 (dosages of 60 and 80 mg L -1 ). The proposed model presented a better fit to the experimental results, especially at higher coagulant dosages and/or higher values of average velocity gradient (G).
40 CFR 141.715 - Microbial toolbox options for meeting Cryptosporidium treatment requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... criteria are in § 141.716(b). Pre Filtration Toolbox Options (3) Presedimentation basin with coagulation 0... separate granular media filtration stage if treatment train includes coagulation prior to first filter...
40 CFR 141.715 - Microbial toolbox options for meeting Cryptosporidium treatment requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... criteria are in § 141.716(b). Pre Filtration Toolbox Options (3) Presedimentation basin with coagulation 0... separate granular media filtration stage if treatment train includes coagulation prior to first filter...
Bhalkaran, Savi; Wilson, Lee D.
2016-01-01
The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan), which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant) and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan. PMID:27706052
Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.
Hyung, Hoon; Kim, Jae-Hong
2009-05-01
The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).
Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng
2015-09-01
Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Günther, Annika; Dias, Diogo; Mendes, Benilde
2014-06-15
The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb(2+) were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation-flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid - S/L - ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation-flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation-flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb. Copyright © 2014 Elsevier Inc. All rights reserved.
40 CFR 710.4 - Scope of the inventory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... modifier, pH neutralizer, sequesterant, coagulant, flocculant, fire retardant, lubricant, chelating agent... upon use of curable plastic or rubber molding compounds, inks, drying oils, metal finishing compounds...
40 CFR 720.30 - Chemicals not subject to notification requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... modifier, pH neutralizer, sequesterant, coagulant, flocculant, fire retardant, lubricant, chelating agent... plastic or rubber molding compounds, inks, drying oils, metal finishing compounds, adhesives, or paints...
Kwak, Dong-Heui; Kim, Mi-Sug
2015-01-01
The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.
Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.
Wong, Y K; Ho, Y H; Leung, H M; Ho, K C; Yau, Y H; Yung, K K L
2017-04-01
This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.
Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui
2018-06-15
The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B
2014-03-01
This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lima, Letícia S M S; De Almeida, Ronei; Quintaes, Bianca R; Bila, Daniele M; Campos, Juacyara C
2017-07-29
This study aimed to evaluate the use of coagulation/flocculation and Fenton processes for the removal of the recalcitrant component, in particular humic substances, from two different leachates generated in the Gericinó and Gramacho landfills in Rio de Janeiro State (Brazil). A coagulation/flocculation process, using FeCl 3 ·6H 2 O as the coagulant, was applied to the two leachate samples. In the case of the leachate from Gericinó landfill, the treatment removed 93% of color, 71% of TOC, 69% of COD, 76% of HS, 73% of humic acids (HA) and 82% of fulvic acids (FA). In addition, there was a 75% reduction in the absorbance at 254 nm, using 3,000 mg L -1 of coagulant. In the case of the leachate from Gramacho landfill, the treatment removed 91% of color, 69% of TOC, 68% of COD, 77% of HS, 75% of HA and 80% of FA. In addition, there was a 70% reduction in the absorbance at 254 nm using the same concentration of coagulant (3,000 mg L -1 ). The Fenton processes, using FeSO 4 ·7H 2 O and H 2 O 2 in a ratio of 1:5, were also applied to the two leachate samples. In the case of the Gericinó leachate, the Fenton treatment removed 95% of color, 75% of TOC, 68% of COD, 82% of HS, 77% of HA and 93% of FA. In addition, there was a 93% reduction in the absorbance at 254 nm. In the case of the Gramacho leachate, the Fenton treatment removed 93% of color, 73% of TOC, 71% of COD, 81% of HS, 76% of HA, 90% of FA, and there was an 84% reduction in the absorbance at 254 nm. The results of humic substances, color, organic matter and aromatic organic matter (absorbance at 254 nm) demonstrate that the coagulation/flocculation and Fenton processes were efficient in the removal of recalcitrant organic matter from landfill leachates.
Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D
2014-09-01
This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.
Flores, Federico M; Undabeytia, Tomas; Morillo, Esmeralda; Torres Sánchez, Rosa M
2017-06-01
Pyrimethanil (2-aniline-4, 6-dimethylpyrimidine, PRM) is used in fruit packing plants to control fungal infections and diseases. The effluents greatly polluted with this fungicide, as a point source contamination, need to be technologically treated for their regeneration before they reach water bodies. This work evaluates the use of organo-montmorillonites, synthetized in our laboratory, for their application in adsorption and coagulation/flocculation processes for the removal of PRM from water. The adsorption-desorption performance of PRM in a raw montmorillonite (Mt) and several organo-montmorillonites (organo-Mt) obtained by different amounts and types of exchanged surfactants (octadecyltrimethylammonium (ODTMA) and didodecyldimethylammonium (DDAB) bromides and benzyltrimethylammonium chloride (BTMA)) was studied. The PRM adsorption on raw Mt was assigned mainly to an interlayer occupancy, while hydrophobic interactions between PRM and the surfactants in the exchanged samples increased PRM adsorption, which was correlated with the surfactant loading. PRM desorption showed irreversible behavior in raw Mt, which changed to reversible for organo-Mt samples, and was also correlated with the increase of surfactant loading.Two of the organo-Mt with high surfactant loading (twice the CEC) were assayed for the removal of commercial PRM in coagulation/flocculation tests, and their performance was compared to that of the native clay (Mt). The use of the organo-Mt produced flocculation at a very low ratio (0.5 g L -1 ), whereas no flocculation was observed with Mt. These results proved the feasibility of the use of organo-Mt for the treatment of wastewater contaminated with PRM using a low organo-Mt/liquid ratio.
Beach, Evan S; Eckelman, Matthew J; Cui, Zheng; Brentner, Laura; Zimmerman, Julie B
2012-10-01
Dewatering of the green algae Neochloris oleoabundans by flocculation was investigated for chitosan biopolymer, ferric sulfate, and alum. Chitosan was found to be most effective flocculant, with an optimum dose of 100mg/L algae broth. Zeta potential measurements suggest the mechanism involves both adsorption and charge neutralization processes. Life cycle assessment (LCA) was used to compare the chitosan method to other flocculation methods as well as centrifugation and filtration/chamber press processes. LCA showed that among these techniques, flocculation by chitosan is the least energy intensive and had the lowest impacts across all other categories of environmental impacts. The results are discussed in the overall context of biofuel production from algal biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhanced performance of crumb rubber filtration for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2009-03-01
Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.
Flocculation and aggregation in a microgravity environment (FAME)
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.
1994-01-01
An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.
Gao, Qiang; Duan, Qiang; Wang, Depei; Zhang, Yunze; Zheng, Chunyang
2013-02-27
To date, the multifunctional γ-aminobutyric acid (GABA) is mainly produced by microbial fermentation in industry. The purpose of this study was to find an effective method for separation and purification of 31.2 g/L initial GABA from the fermentation broth of Enterococcus raffinosus TCCC11660. To remove the impurities from fermentation broth, flocculation pretreatment using chitosan and sodium alginate was first implemented to facilitate subsequent filtration. Ultrafiltration followed two discontinuous diafiltration steps to effectively remove proteins and macromolecular pigments, and the resulting permeate was further decolored by DA201-CII resin at a high decoloration ratio and GABA recovery. Subsequently, ion exchange chromatography (IEC) with Amberlite 200C resin and gradient elution were applied for GABA separation from glutamate and arginine. Finally, GABA crystals of 99.1% purity were prepared via warm ethanol precipitation twice. Overall, our results reveal that the successive process including flocculation, filtration, ultrafiltration, decoloration, IEC, and crystallization is promising for scale-up GABA extraction from fermentation broth.
ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS
This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...
Liu, Jing; Zhang, Xu; Tan, Tianwei
2016-10-01
In this study, the flocculation process of Chlorella vulgaris and Rhodotorula glutinis induced by inorganic salts modified montmorillonoid was conducted. The maximum flocculation efficiency (FE) of 98.50% for C. vulgaris and 11.83% for R. glutinis were obtained with 4g/L and 5g/L flocculant within the dosage scope of 1-5g/L. The difference of FE was then thermodynamically explained by the extended DLVO theory and the FE of R. glutinis was mechanically enhanced to 90.66% with 0.06g/L cationic polyacrylamide (CPAM) at an optimum pH of 9. After that, aimed to utilize the remainder flocculant capacity, C. vulgaris culture was added to the aggregation of R. glutinis. Fortunately, the coagulation of R. glutinis and C. Vulgaris was achieved with 0.05g/L CPAM and 5g/L flocculant at pH 9 and the FE reached 90.15% and 91.24%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang
2014-02-01
Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Organic polyelectrolytes in water treatment.
Bolto, Brian; Gregory, John
2007-06-01
The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge thickening. Practicalities of polymer use are discussed, with particular attention to polymer toxicity, and the presence of residual polymer in the final drinking water. The questions of polymer degradation and the formation of disinfection by-products are also addressed.
Zielińska, Magdalena; Galik, Maciej
2017-01-01
A membrane filtration system was used to remove organic compounds, suspended solids, colour and turbidity from anaerobically treated dairy wastewater. Direct microfiltration (MF), ultrafiltration (UF), MF-UF and a combination of UF with coagulation using two conventional coagulants were investigated. The installation with ceramic membranes was operated at a pressure of 0.15 MPa (MF) and 0.3 MPa (UF). COD removal was 89 ± 2% in MF, 95 ± 1% in UF and 99% in MF-UF. Apart from size exclusion, removal was also the result of adsorption of organics on the membrane; 3-18% of COD removal was attributed to adsorption. In all these membrane systems, colour removal was 96-98%. Coagulation removed 63-72% of COD at all coagulant doses. In combination with UF, 96-97% of COD was removed. The use of coagulants was ineffective for colour removal; further treatment by UF resulted in above 98% removal. Because of complete rejection of suspended solids, turbidity removal exceeded 99% under all conditions. The use of increased coagulant doses did not have an effect on total efficiency of pollutant removal and on the permeate flux. Coagulation pre-treatment enhanced the performance of filtration only by lengthening the filtration cycle by about 12% as compared to direct UF. Not only was pollutant removal highest in MF-UF, but also the average permeate flux was about 80% higher in this two-stage system than in direct UF. This study shows that the most effective strategy to mitigate membrane fouling is the use of MF as a pre-treatment preceding UF.
Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...
Melgaço, Fabiana Gil; Victoria, Matias; Corrêa, Adriana Abreu; Ganime, Ana Carolina; Malta, Fábio Correia; Brandão, Marcelo Luiz Lima; de Mello Medeiros, Valéria; de Oliveira Rosas, Carla; Bricio, Silvia Maria Lopes; Miagostovich, Marize Pereira
2016-01-18
Skimmed milk organic flocculation method was adapted, optimized and compared with polyethylene glycol (PEG) precipitation and filtration methods for recovering viruses from a strawberry matrix. Spiking experiments with norovirus genogroup II genotype 4 (NoV GII.4) and murine norovirus 1 (MNV-1) demonstrated that the organic flocculation method associated with a glycine elution buffer, filter bag and cetyltrimethylammonium bromide (CTAB) showed a recovery percentage of 2.5 and 32 times higher than PEG precipitation and filtration methodologies for NoV recovering. Furthermore, this method was used for investigating NoV and human adenoviruses (HAdVs) in 90 samples of fresh strawberries commercialized in Rio de Janeiro markets. NoV GI and GII were not detected in those samples and MNV-1, used as internal process control (IPC), was recovered in 95.5% (86) of them. HAdVs were detected in 18 (20.0%) samples and characterized by nucleotide sequencing as Human Mastadenovirus specie F and as type specie HAdV-2. Bacterial analysis did not detect Salmonella spp. and Listeria monocytogenes, however, 3.3% of fecal coliforms were detected in those samples. These results indicate the organic flocculation method as an alternative for recovering enteric viruses from strawberries, emphasizing a need for virus surveillance in food matrices.
Management of wastewater from the vegetable dehydration industry in Egypt--a case study.
El-Gohary, Fatma; El-Kamah, Hala; Abdel Wahaab, Rifaat; Mahmoud, Mohamed; Ibrahim, Hamdy A
2012-01-01
Management of wastewater from the vegetable dehydration industry was the subject of this study. A continuous monitoring programme for wastewater was carried out for almost four months. The characterization of the wastewater indicated that the vegetable dehydration wastewater contains moderate concentrations of organics, solids and nutrients. The wastewater was subjected to three different treatment processes, namely aerobic treatment, anaerobic treatment and chemical coagulation-flocculation treatment. For aerobic treatment, the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total suspended solids (TSS) was accomplished within 5 h, and no further reduction was observed after that, with the steady state COD and BOD5 removal efficiencies being 95% +/- 10% and 97% +/- 8%, respectively. For anaerobic treatment, the removal efficiencies for COD, BOD5 and TSS were 67-81%, 70-86% and 56-69%, respectively at hydraulic retention times (HRTs) of 5, 6 and 8 h. Chemical coagulation-flocculation treatment also achieved good results. The COD removal efficiency was 72%, 51% and 75% for ferric chloride (56 g/m3 of wastewater), lime (140 g/m3 of wastewater) and ferric chloride aided with lime (100 g/m3 for ferric chloride and 200 g/m3 for lime), respectively. The corresponding TSS removal values were 92% +/- 17%, 20% +/- 7% and 93% +/- 9%. Based on the available results and the seasonally operated mode of this industry in Egypt, the chemical coagulation-flocculation process is therefore considered to be moste applicable from a technical point of view and for the simplicity of operation and maintenance.
Microstructure of agglomerated suspended sediments in northern chesapeake bay estuary.
Zabawa, C F
1978-10-06
Suspended sediments in the turbidity maximum of Chesapeake Bay include composite particles which contain platy mineral grains, arranged both in pellets (attributable to fecal pelletization) and in networks of angular configuration (attributable to electrochemical flocculation and coagulation).
Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R
2018-02-01
Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.
Humbert, H; Gallard, H; Croué, J-P
2012-03-15
The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Özdemır, Kadir
2014-01-01
This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323
Zhong, Xin; Cui, Chongwei; Yu, Shuili
2017-07-01
Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baichenko, A.A.; Kaminskii, V.S.; Sokolova, V.S.
1977-01-01
Laboratory data are presented on the degradation of polyoxyethylene during storage and under mechanical and chemical action. Provided the physico-chemical properties of the polymer are considered and conditions are adjusted to minimize its degradation during solution preparation, POE can be used as a highly effective flocculant for the commercial filtration of flotation concentrate.
Removal of iron ore slimes from a highly turbid water by DAF.
Faustino, L M; Braga, A S; Sacchi, G D; Whitaker, W; Reali, M A P; Leal Filho, L S; Daniel, L A
2018-05-30
This paper addresses Dissolved Air Flotation (DAF) process variables, such as the flocculation parameters and the recycle water addition, as well as the pretreatment chemical variables (coagulation conditions), to determine the optimal values for the flotation of iron ore slimes found in a highly turbid water sample from the Gualaxo do Norte River, a tributary of the Doce River Basin in Minas Gerais, Brazil. This work was conducted using a flotatest batch laboratory-scale device to evaluate the effectiveness of DAF for cleaning the water polluted by the Samarco tailings dam leakage and determine the ability of DAF to reduce the water turbidity from 358 NTU to values below 100 NTU, aiming to comply with current legislation. The results showed that the four types of tested coagulants (PAC, ferric chloride, Tanfloc SG and Tanfloc SL) provided adequate conditions for coagulation, flocculation and flotation (in the range of 90-99.6% turbidity reduction). Although the process variables were optimized and low residual turbidity vales were achieved, results revealed that a portion of the flocs settled at the bottom of the flotatest columns, which indicated that the turbidity results represented removal caused by a combination of flotation and sedimentation processes simultaneously.
Gonzalez-Torres, A; Putnam, J; Jefferson, B; Stuetz, R M; Henderson, R K
2014-09-01
Coagulation-flocculation (C-F) is a key barrier to cyanobacterial and algal cell infiltration in water treatment plants during seasonal blooms. However, the resultant cell floc properties, in terms of size, strength and density, which dominate under different coagulation conditions and govern cell removal, are not well understood. This paper investigated the floc properties produced during C-F of the cyanobacterium, Microcystis aeruginosa, under low and high doses of aluminium sulphate and ferric chloride coagulants and at different pH values, so as to promote charge neutralisation (CN) and sweep flocculation (SF) dominant conditions (or a combination of these). It was demonstrated that application of ferric chloride produced larger flocs that resulted in higher cell removal during jar testing. These flocs were also larger than those observed for natural organic matter (NOM) and kaolin, suggesting a role of algogenic organic matter (AOM) as an inherent bioflocculant. Under SF conditions, stronger flocs were produced; however, these had lower capacity for size recovery after exposure to high shear. Analysis of particle size distribution demonstrated that large scale fragmentation followed by erosion dominated for CN while erosion dominated under SF conditions. Overall, marked differences were observed dependent on the coagulation regime imposed that have implications for improving robustness of cell removal by downstream separation processes. While the cyanobacterium, M. aeruginosa, appeared to share general floc characteristics commonly observed for NOM and kaolin flocs, there were distinct differences in terms of size and strength, which may be attributed to AOM. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules
2017-03-23
In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.
Shen, Jian; Zhao, He; Cao, Hongbin; Zhang, Yi; Chen, Yongsheng
2014-02-01
Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6(3-)) after PFS-C flocculation (TCN < 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the flocs are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)6(3-) and negative flocs (Fe(CN)6(3-) adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal.
REMOVAL OF HUMICSUBSTANCES AND ALGAE BY DISSOLVED AIR FLOTATION
Dissolved air flotation (DAF) is used in place of conventional gravity settling as a means to separate low density floc particles from water. The following objectives were: (1) to compare DAF to conventional water treatment of coagulation-flocculation followed by gravity settling...
Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge
Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei
2015-01-01
The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132
Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping
2017-01-01
A coagulation-flocculation as pre-treatment combined with mFe/Cu/O 3 (CF-mFe/Cu/O 3 ) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al 2 (SO 4 ) 3 ·18H 2 O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O 3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O 3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O 3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O 3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O 3 process was about 1.83 USD t -1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harendra, Sivaram; Oryshcyhn, Danylo; Ochs, Thomas
2013-01-01
Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulatemore » water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.« less
Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian
2016-03-15
A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of alum and chickpea (cicer arietinum) in removing color from leachate
NASA Astrophysics Data System (ADS)
Zin, N. S. M.; Awang, N. H.; Akbar, N. A.
2018-04-01
Dual coagulant has the potential to improve the coagulation process. In leachate treatment coagulation/flocculation can be used as a main treatment method or as a polishing/tertiary treatment step. Application of natural coagulant as coagulant aids able to increase the formation of floc and the removal ability of the coagulation process. This study was focusing on the ability of dual coagulants made from chemical coagulant (Alum) and natural coagulant (Cicer Arietinum (CA)) in removing colour from leachate. Jar test was carried out to investigate the effect of dose and pH on the removal ability of the dual coagulant. The optimum pH and dose for dual coagulant were obtained at pH 6.0 with dose of Alum at 4 g/L and dose of CA at 0.6 g/L with 94% removal of colour. While the optimum removal of colour for single Alum (4 g/L) and single CA (1.4 g/L) were recorded as 88% and 22%, respectively. The removals obtained using single natural and chemical coagulants were not as good as those obtained by dual coagulant. Thus, addition of CA as a coagulant aid for alum, able to increase the removal of color from leachate and has the potential to be applied as a treatment method for leachate.
Application of acid mine drainage for coagulation/flocculation of microalgal biomass.
Salama, El-Sayed; Kim, Jung Rae; Ji, Min-Kyu; Cho, Dong-Wan; Abou-Shanab, Reda A I; Kabra, Akhil N; Jeon, Byong-Hun
2015-06-01
A novel application of acid mine drainage (AMD) for biomass recovery of two morphologically different microalgae species with respect to AMD dosage, microalgal cell density and pH of medium was investigated. Optimal flocculation of Scenedesmus obliquus and Chlorella vulgaris occurred with 10% dosage of AMD at an initial pH 9 for both 0.5 and 1.0 g/L cell density. The flocculation efficiency was 89% for S. obliquus and 93% for C. vulgaris. Zeta potential (ZP) was increased from -10.66 to 1.77 and -13.19 to 1.33 for S. obliquus and C. vulgaris, respectively. Scanning electron microscope with energy-dispersive X-ray of the microalgae floc confirmed the sweeping floc formation mechanism upon the addition of AMD. Application of AMD for the recovery of microalgae biomass is a cost-effective method, which might further allow reuse of flocculated medium for algal cultivation, thereby contributing to the economic production of biofuel from microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity.
McKie, Michael J; Taylor-Edmonds, Liz; Andrews, Susan A; Andrews, Robert C
2015-09-15
Disinfection by-products (DBPs) are formed when naturally occurring organic matter reacts with chlorine used in drinking water treatment, and DBPs formed in chlorinated drinking water samples have been shown to cause a genotoxic response. The objective of the current study was to further understand the principles of biofiltration and the resulting impacts on the formation of DBPs and genotoxicity. Pilot-scale systems were utilized to assess the performance of engineered biofilters enhanced with hydrogen peroxide, in-line coagulants, and nutrients when compared to passively operated biofilters and conventional treatment (coagulation, flocculation, sedimentation, non-biological filtration). Organic fractionation was completed using liquid chromatography-organic carbon detection (LC-OCD). Water samples were chlorinated after collection and examined for the removal of trihalomethane (THM), haloacetic acid (HAA), and adsorbable organic halide (AOX) precursors. Additionally, the formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), and genotoxicity was determined. Biofiltration was shown to preferentially remove more DBP precursors than dissolved organic carbon (DOC). Formation potential of the unregulated DBPs, including MX and MCA, and genotoxic response was shown to be correlated to THM formation. These results infer that monitoring for THMs and HAAs provide insight to the formation of more mutagenic DBPs such as halogenated furanones, and that biofiltration may preferentially remove precursors to DBPs at a rate exceeding the removal of DOC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan
2010-04-01
Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.
Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch
2015-11-01
The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.
Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio
2017-11-03
The aim of this study was to investigate the growth, nutrient removal and harvesting of a natural microalgae bloom cultivated in urban wastewater in a bubble column photobioreactor. Batch and continuous mode experiments were carried out with and without pH control by means of CO 2 dosage. Four coagulants (aluminium sulphate, ferric sulphate, ferric chloride and polyaluminium chloride (PAC)) and five flocculants (Chemifloc CM/25, FO 4498SH, cationic polymers Zetag (Z8165, Z7550 and Z8160)) were tested to determine the optimal dosage to reach 90% of biomass recovery. The maximum volumetric productivity obtained was 0.11 g SS L -1 d -1 during the continuous mode. Results indicated that the removal of total dissolved nitrogen and total dissolved phosphorous under continuous operation were greater than 99%. PAC, Fe 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 were the best options from an economical point of view for microalgae harvesting.
NASA Astrophysics Data System (ADS)
Pardede, Astrid; Budihardjo, Mochamad Arief; Purwono
2018-02-01
Oyster mushroom (Pleurotus ostreatus) can be utilized as biocoagulant since it has chitin cell wall. Chitin has characteristics of bioactivity, biodegradability, absorption and could bind the metal ions. In this study, Oyster Mushroom is micronized and mixed with wastewater to treat turbidity and Total Suspended Solid (TSS) using coagulation-flocculation process employed jartest method. Various doses of Oyster mushroom, 600 mg/l, 1000 mg/l, and 2000 mg/l were tested in several rapid mixing rates which were 100 rpm, 125 rpm, and 150 rpm for 3 minutes followed by 12 minutes of slow mixing at 45 rpm. The mixture then was settled for 60 minutes with pH level maintained at 6-8. The result showed that the Oyster mushroom biocoagulant was able to remove 84% of turbidity and 90% of TSS. These reductions were achieved with biocoagulant dose of 600 mg/ L at 150 rpm mixing rate.
Pourrezaei, Parastoo; Drzewicz, Przemysław; Wang, Yingnan; Gamal El-Din, Mohamed; Perez-Estrada, Leonidas A; Martin, Jonathan W; Anderson, Julie; Wiseman, Steve; Liber, Karsten; Giesy, John P
2011-10-01
Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates. Scanning electron microscope images revealed that the resultant flocs were compact. The CF process significantly reduced concentrations of naphthenic acids (NAs) and oxidized NAs by 37 and 86%, respectively, demonstrating the applicability of CF pretreatment to remove a persistent and toxic organic fraction from OSPW. Concentrations of vanadium and barium were decreased by 67-78% and 42-63%, respectively. Analysis of surface functional groups on flocs also confirmed the removal of the NAs compounds. Flocculation with cationic polymer compared to alum, caused toxicity toward the benthic invertebrate, Chironoums dilutus, thus application of the polymer should be limited.
Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza
2018-06-21
The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.
Analysis and optimization of coagulation and flocculation process
NASA Astrophysics Data System (ADS)
Saritha, V.; Srinivas, N.; Srikanth Vuppala, N. V.
2017-03-01
Natural coagulants have been the focus of research of many investigators through the last decade owing to the problems caused by the chemical coagulants. Optimization of process parameters is vital for the effectiveness of coagulation process. In the present study optimization of parameters like pH, dose of coagulant and mixing speed were studied using natural coagulants sago and chitin in comparison with alum. Jar test apparatus was used to perform the coagulation. The results showed that the removal of turbidity was up to 99 % by both alum and chitin at lower doses of coagulant, i.e., 0.1-0.3 g/L, whereas sago has shown a reduction of 70-100 % at doses of 0.1 and 0.2 g/L. The optimum conditions observed for sago were 6 and 7 whereas chitin was stable at all pH ranges, lower coagulant doses, i.e., 0.1-0.3 g/L and mixing speed—rapid mixing at 100 rpm for 10 min and slow mixing 20 rpm for 20 min. Hence, it can be concluded that sago and chitin can be used for treating water even with large seasonal variation in turbidity.
NASA Astrophysics Data System (ADS)
Rambe, AM; Pandia, S.; Ginting, MHS; Tambun, R.; Haryanto, B.
2018-02-01
This research is to know the influence of moringa seed as coagulant, pH of liquid waste textile industry (jeans wash), size of moringa seed particles to decrease of turbidity percentage. Measurements were made to Total Suspended Solid, Color Rate and Chemical Oxygen Demand for wastewater textile industry by coagulation - flocculation method. Variables of this study were conducted on dosage of moringa, with particle size 212 mesh. The results showed that moringa seeds as coagulant dose optimum is 1250 mg/L for the textile industry wastewater at pH 7.8. Moringa seed powder is about 212 mesh with a dose of 1250 mg/L can lower the turbidity of 77.77%, Total Suspended Solid amounted to 83.69% and Chemical Oxygen Demand amounted to 75.86%.
Colloids removal from water resources using natural coagulant: Acacia auriculiformis
NASA Astrophysics Data System (ADS)
Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.
2017-09-01
All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.
Coagulation pretreatment for ultrafiltration of deinking effluents containing flexographic inks
Bruno Chabot; Gopal A. Krishnagopalan; Said Abubakr
1999-01-01
This study was carried out to determine the potential of coagulation pretreatment with organic or inorganic coagulants to improve ultrafiltration performance during processing of wash deinking effluents containing flexographic inks. Wash filtrate effluents generated from mixtures of old flexographic and offset newspapers and old magazines were pretreated with a...
Sun, Cuizhen; Qiu, Jinwei; Zhang, Zhibin; Marhaba, Taha F; Zhang, Yanhao
2016-10-01
In this paper, flocculating performance and mechanisms of a new composite coagulant, poly-ferric aluminum chloride-polydimethyl diallylammonium chloride (PFAC-PD) with different OH - /(Fe 3+ + Al 3+ ) molar ratios, were investigated for humic acid (HA)-kaolin synthetic wastewater treatment. The impact of OH - /(Fe 3+ + Al 3+ ) molar ratios on the removal efficiencies of turbidity and dissolved organic carbon, specific UV absorbance, coagulation mechanisms and dynamics was explored during the coagulation process using composite coagulants. The coagulation experimental results revealed that the composite coagulants with lower OH - /(Fe 3+ + Al 3+ ) molar ratio exhibited better coagulation efficiency. When OH - /(Fe 3+ + Al 3+ ) molar ratio of the composite coagulant was 1.5, adsorption-bridging played a dominant role in coagulating HA-kaolin synthetic wastewater. The floc growth rate and floc size, increased with increasing OH - /(Fe 3+ + Al 3+ ) molar ratio and the highest peak height of the size distribution was obtained by PFAC-PD with OH - /(Fe 3+ + Al 3+ ) = 1.5. Also, the composite coagulants with higher OH - /(Fe 3+ + Al 3+ ) molar ratio formed more compact flocs, as reflected by the higher fractal dimension value. The flocs coagulated by PFAC-PD with basicity value of 1.0 gave strong strength and good recoverability.
1980-08-01
AD-AGAB 906 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC FIG 14/2 LABORATORY AND PILOT SCALE EVALUATION OF COAGULATION, CLARIFICA -ETC U...FILTRATION FOR LWGRADING JEWAGE LAGOON EFFLUENTS~ w IL j0 ( M John ullinane, Jr., Richard A. hafer (0 Environmental Laboratory gel U. S. Army Engineer ...Shafer 9. PERFORMING ORGANIZATION NAME AND ADORESS SO. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment
A new approach using coagulation rate constant for evaluation of turbidity removal
NASA Astrophysics Data System (ADS)
Al-Sameraiy, Mukheled
2017-06-01
Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.
Treatment of phosphate-containing oily wastewater by coagulation and microfiltration.
Zhang, Jin; Sun, Yu-xin; Huang, Zhi-feng; Liu, Xing-qin; Meng, Guang-yao
2006-01-01
The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 microm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.
ERIC Educational Resources Information Center
Arasmith, E. E.
The jar test is used to determine the proper chemical dosage required for good coagulation and flocculation of water. The test is commonly used in potable water, secondary effluent prior to advanced wastewater treatment, secondary clarifier influent, and sludge conditioning practice. Designed for individuals who have completed National Pollutant…
The Safe Drinking Water Act states that no drinking water facility is reuqired to fluoridate their water, however, any facility fluoridating their water is bound by the Maximum contaminant Level (MCL) of 4 mg/L. A survey of 600 large water utilities was conducted in conjunction w...
Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation-flocculation.
Rodríguez-Chueca, Jorge; Amor, Carlos; Fernandes, José R; Tavares, Pedro B; Lucas, Marco S; Peres, José A
2016-02-01
This work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time. Under the optimal conditions ([H2O2] = 5459 mg/L; [Fe(3+)] = 286 mg/L; time >180 min), a COD removal of 45, 64 and 74% was achieved after 360 min, using an irradiance of 23, 70 and 85 W/m(2) respectively. Then a combination of UV-A LED photo-Fenton with coagulation-flocculation-decantation attained a higher COD removal (80%), as well as almost total removal of turbidity (99%) and total suspended solids (95%). Subsequent biodegradability of treated effluents increased, allowing the application of a biological treatment step after the photochemical/CFD with 85 W/m(2). Copyright © 2015 Elsevier Ltd. All rights reserved.
A new pulping process for wheat straw to reduce problems with the discharge of black liquor.
Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G
2007-11-01
Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.
Luz, Luciana de Andrade; Silva, Mariana Cristina Cabral; Ferreira, Rodrigo da Silva; Santana, Lucimeire Aparecida; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Oliva, Maria Luiza Vilela; Paiva, Patricia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso
2013-07-01
Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein. Secondary structure content was estimated as 46% α-helix, 12% β-sheets, 17% β-turns and 25% unordered structures belonging to the α/β tertiary structure class. cMoL significantly prolonged the time required for blood coagulation, activated partial thromboplastin (aPTT) and prothrombin times (PT), but was not so effective in prolonging aPTT in asialofetuin presence. cMoL acted as an anticoagulant protein on in vitro blood coagulation parameters and at least on aPTT, the lectin interacted through the carbohydrate recognition domain. Copyright © 2013 Elsevier B.V. All rights reserved.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650
Liu, Guoliang; Zhang, Fusheng; Qu, Yuanzhi; Liu, He; Zhao, Lun; Cui, Mingyue; Ou, Yangjian; Geng, Dongshi
2017-09-01
The suspended solids in wastewater from Rekabak oilfield, Kazakhstan, were characterized and treated with flocculants to enhance settling. The wastewater contained a high concentration of total dissolved solids and calcium ion. Scanning electron microscopy and energy dispersive X-ray analyses showed that suspended solids were mainly composed of corrosion products (iron oxides) and silicon dioxide particles. Also, much salt deposition from wastewater caused a large increase in the suspended solids value. The settling of solid particles in wastewater was investigated by turbidity decrease within 60 min. The particle settling was enhanced by adding polyaluminum chloride (PAC) as coagulant and hydrolyzed polyacryamide (HPAM) or cationic polyacrylamide (CPAM) as flocculant. At optimal dose, the particle settling ability with PAC and CPAM was better than that with PAC and HPAM. Particle size analysis showed that HPAM or CPAM with high molecular weight played an important role for enlarging the particle size. The experiments with simulated wastewater showed that particle settling by using HPAM deteriorated significantly compared to that by CPAM at high calcium ion. This study provides further understanding about the effect of high salinity and Ca 2+ on solids formation, flocculant performance and particle settling. Meanwhile, the results are also helpful to develop novel flocculants used for high salinity wastewater.
Gaygadzhiev, Zafir; Corredig, Milena; Alexander, Marcela
2009-02-01
The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels. Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels. By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of kappa-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk. This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.
NASA Astrophysics Data System (ADS)
Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.
2014-06-01
MSWT-01, Mobile Surface Water Treatment, producing 1m3 per hour, is an alternative for providing clean water in flood disaster areas, and was developed at Bandung State Polytechnic for Manufacturing (Polman) as a part of institution research project. The combination of cartridge or membrane technology such as carbon block, MF, UF and filtration media is used for this machine, instead of coagulation-flocculation with chemical addition, due to emergency purposes related with its treatment processing time. The idea is that MSWT could be combined with Production Based Education (PBE) concept in Polman as a vocational education institution and students 'CSR', students social activities. With the number of implementation trials in real flood area condition, MSWT will be developed further based on the technical output result. The manufacturing process for improving or adding necessary features could be implemented as a student's project in PBE system. This might be an ideal combination alternative for such vocational institution that students get the product media for their PBE program and implement their work as a defined social activity. They will learn and experience related technical matters and more social interactions with the people and other disaster stakeholder as well.
Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.
Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X
2015-10-15
The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel
NASA Astrophysics Data System (ADS)
Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.
2018-02-01
All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants
Effects of low temperature on coagulation of kaolinite suspensions.
Xiao, Feng; Ma, Jun; Yi, Peng; Huang, Ju-Chang Howard
2008-06-01
In this study, coagulation of kaolinite suspensions at low temperatures is compared with that at an ambient temperature of 22 degrees C, and the process is examined with regard to the coagulation rate (CR) and chemical aspects of coagulation. Experiments using a photometric dispersion analyzer (PDA) show that coagulation of kaolinite suspensions can be taken as a two-phase process. Low temperature greatly reduces the CR of the first phase but not that of the second one. On the other hand, results show that low temperature did not serve to impede the hydrolysis of aluminum [Al(III)] within 1 min of alum addition. The measurements of electrophoretic mobility (EM) indicate that destabilization of kaolinite particles by hydrolyzed Al species was not hindered by low temperature within 1 min of alum addition. Slow coagulation at low temperature is due to the lowered CR but not the altered chemistry aspect of Al(III). Furthermore, the change in settled turbidity after 20-min flocculation as a function of coagulant dosage was more severe in the cold because of the low CR. Elongating floc-growth time, as observed, was able to counterbalance the retarded CR at low temperature and improve turbidity removal efficiency.
Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert
2015-02-01
Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gallium nitrate induces fibrinogen flocculation: an explanation for its hemostatic effect?
Bauters, A; Holt, D J; Zerbib, P; Rogosnitzky, M
2013-12-01
A novel hemostatic effect of gallium nitrate has recently been discovered. Our aim was to perform a preliminary investigation into its mode of action. Thromboelastography® showed no effect on coagulation but pointed instead to changes in fibrinogen concentration. We measured functional fibrinogen in whole blood after addition of gallium nitrate and nitric acid. We found that gallium nitrate induces fibrinogen precipitation in whole blood to a significantly higher degree than solutions of nitric acid alone. This precipitate is not primarily pH driven, and appears to occur via flocculation. This behavior is in line with the generally observed ability of metals to induce fibrinogen precipitation. Further investigation is required into this novel phenomenon.
Kim, Hyun-Chul; Timmes, Thomas C; Dempsey, Brian A
2015-01-01
The feasibility of using magnetic ion exchange (MIEX) treatment, in-line alum coagulation, and low-pressure membrane filtration was investigated for the simultaneous removal of total phosphorus (TP) and effluent organic matter (EfOM) from biologically treated wastewater. The focus was also placed on minimizing fouling of polyvinylidene fluoride and polyethersulfone membranes, which are the most commonly used low-pressure membranes in new and retrofit wastewater treatment plants. MIEX alone was effective for the removal of EfOM, and MIEX plus a small alum dose was very effective in removing both EfOM and TP. MIEX removed phosphorus, but organic acids in EfOM were preferentially removed, and the effects of competing anions on the removal of EfOM were insignificant. All the pretreatment strategies decreased the resistance to filtration. The greatest decrease in fouling was achieved by using MIEX (15 mL L⁻¹) plus a very low dose of alum (∼0.5 mg Al L⁻¹). Sweep floc coagulation using alum and without MIEX also significantly decreased fouling but did not effectively remove EfOM and produced high floc volume that could be problematic for inside-out hollow-fibre modules. The addition of these reagents into rapid mix followed by membrane filtration would provide operational simplicity and could be easily retrofitted at existing membrane filtration facilities.
Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G
2010-09-01
This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental analysis of the fractions, is important issue in the revealing of the quality and quantity characteristics of DOM. Systematic study composed from DOM fraction investigation and factorial analysis of the responsible parameters in the THM formation reaction can, after an evaluation of the adjustment of the models with the reality, serves well for the evaluation of the spatial and temporal variability in the THM formation in dependence of DOM. However, taking into consideration the natural complexity of DOM, different operations and a strict control of them (like coagulation/flocculation and filtration) has to be used to quantitatively remove DOM from the raw water. Assuming that this study represents a local case study, similar experiments can be easily applied and will supply with relevant information every local water treatment plant meeting problems with THM formation. The coagulation/flocculation and the filtration stages are the main mechanisms to remove DOM, particularly the colloidal DOM fraction. With the objective to minimize THMs generation, different unit operation designed to quantitatively remove DOM from water must be optimized.
Freita, Cristhyane M; Freita, Lidyane A; Tralli, Leticia F; Silva, Aline F; Mendes, Franciele Q; Teixeira, Vitor; Mutton, Marcia J R
2017-01-01
One of the most important steps is to clarify the juice, which are added synthetic polymer acrylamide base, aiming the fast settling of impurities present in the juice. However, this input is expensive and may have carcinogenic and neurotoxic actions to humans. The search for new natural flocculants that have similarity with the commercial product is of great value. A bioextract that may be promising and has coagulant action is the Moringa oleifera Lam. In this context, the objective of the research was to evaluate the consequences of the use of moringa seed extracts and various concentrations of commercial polymer, such as sedimentation aids in clarifying sugarcane juice in the ethanol production, comparing the efficiency of the bioextract moringa. In the treatment of the juice, excessive addition of flocculants can result in reduction of sugars. The bioflocculant moringa was similar in technological features and the fermentative viability compared to usual dose of commercial polymer in Brazil. The fermentation efficiency was also higher for this flocculant, followed by moringa extract. The results obtained in this research indicate potential to the moringa bioextract, particularly in countries where the doses of flocculants are higher than 5 mg.L-1.
Water Supply and Treatment Equipment. Change Notice 1
2014-08-05
Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis
Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G
2018-06-21
Tannin extracts from the bark of Acacia mearnsii and wood of Schinopsis balansae, commonly known as Quebracho, were employed. These were modified at laboratory sale via the Mannich aminomethylation with formaldehyde and dimethylamine hydrochloride. Some reaction conditions were varied, namely the formaldehyde dosage and reaction time, while keeping the Mannich solution activation time constant, and their influence on the shear viscosity of the created bio-coagulants was evaluated. The effect of the final pH of the products on their shear viscosity was also analyzed. Up-scaling of the Mannich reaction for tannin from South Africa was performed and the procedure developed at 1-L scale was reproducible in upscaled conditions. One example of a modified South Africa tannin and the modified Quebracho tannin was subsequently selected for the treatment of an industrial wastewater and tested for color and turbidity reduction in jar tests. The effluent treatment was carried out in a single and dual system with cationic synthetic flocculation agents of different charge degree. Good turbidity and decoloration results (93 and 89% reduction, respectively) were obtained with the simultaneous introduction of a cationic, 40% charged polyacrylamide, with minimal dosage (5 ppm) of the latter additive. The tannin-based coagulant from Acacia mearnsii was successfully applied in dual system with cationic polyacrylamide flocculant for industrial wastewater treatment at pilot plant scale. It was shown to satisfactorily treat the water and generate less sludge.
Controlling harmful algae blooms using aluminum-modified clay.
Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia
2016-02-15
The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-09-12
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199
Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny
2014-01-01
The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.
Technological Aspects of Waterworks Sludge Treatment
NASA Astrophysics Data System (ADS)
Belkanova, M. Yu; Nikolaenko, E. V.; Gevel, D. A.
2017-11-01
The water yielding capacity of the sludge in water-supply network treatment facilities is determined by the water quality in a water source and its treatment technology. The paper studies the sludge of water-supply network treatment facilities formed in the conditions of low turbidity and average water colour index in the water source. Such sludge has a low water yielding capacity and is subject to conditioning. The paper shows the influence of seasonal variations of turbidity, water colour index and temperature of the feed water on the specific sludge filtration resistance. It considers the specific features of sludge formation in different settling basins influencing its water yielding capacity. It is shown that the washwater return performed at one of the blocks of the facilities increases the feed water turbidity and leads to the formation of the sludge easily susceptible to conditioning. The paper studies the following methods of the reagent sludge treatment: polyacrylamide-based flocculant treatment, joint treatment with flocculant and vermiculite filler, lime treatment. The use of vermiculite allows to reduce the required flocculant dose. The author determines optimum doses of reagents allowing to direct the sludge for further mechanical dewatering after conditioning. It is shown that, when the sludge is processed with lime, the filtrate formed at dewatering can be reused as an alkalifying agent, which will allow one to cut the costs for the acquisition of reagents.
Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101.
Kim, Kyochan; Shin, Heewon; Moon, Myounghoon; Ryu, Byung-Gon; Han, Jong-In; Yang, Ji-Won; Chang, Yong Keun
2015-12-01
Five technologies, coagulation, electro-flotation (EF), electro-coagulation-flotation (ECF), centrifugation, and membrane filtration, were systematically assessed for their adequacy of harvesting Aurantiochytrium sp. KRS101, a heterotrophic microalgal species that has much higher biomass concentration than photoautotrophic species. Coagulation, EF, and ECF were found to have limited efficiency. Centrifugation was overly powerful to susceptible cells like Aurantiochytrium sp. KRS101, inducing cell rupture and consequently biomass loss of over 13%. Membrane filtration, in particular equipped with an anti-fouling turbulence generator, turned out to be best suited: nearly 100% of harvesting efficiency and low water content in harvested biomass were achieved. With rotation rate increased, high permeate fluxes could be attained even with extremely concentrated biomass: e.g., 219.0 and 135.0 L/m(2)/h at 150.0 and 203.0 g/L, respectively. Dynamic filtration appears to be indeed a suitable means especially to obtain highly concentrated biomass that have no need of dewatering and can be directly processed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
Ding, An; Wang, Jinlong; Lin, Dachao; Tang, Xiaobin; Cheng, Xiaoxiang; Li, Guibai; Ren, Nanqi; Liang, Heng
2017-12-01
Gravity-driven membrane filtration systems are promising for decentralized sewage treatment due to their low energy consumption and low maintenance. However, the low stable permeability/flux is currently limiting their wider application. With the ultimate goal of increasing permeability, the aim of this study was to evaluate the effect of coagulation (in situ coagulation and pre-coagulation) on the performance of a gravity-driven membrane bioreactor (GDMBR) during treatment of synthetic sewage. Results show that in situ coagulation significantly increased permeability (more than two-fold); however, no stabilization of permeability occurred over the whole operation, when non-coagulated and pre-coagulated reactors were compared. The high permeability observed was attributed to the accumulated aluminium floc in the reactor, which prevented formation of fluorescent microbial metabolites (aromatic and tryptophan proteins, as well as fulvic acids), and further avoided membrane pore blocking. In addition, the surface porosity of the fouling layer was improved (from 11.2% to 32.4% for non-coagulated and in situ coagulated reactors). The unstable permeability was possibly associated with lower biological processes within the fouling layer. These might include lower adenosine triphosphate (ATP) content and lower fluorescent metabolites from the extracellular polymeric substances (EPS) caused by the accumulated Al (compared with the control). On the other hand, pre-coagulation improved the level of stable permeability compared with the control (80 versus 40 L/m 2 h bar), mainly because pre-coagulation decreased the EPS content and also maintained high ATP content of the fouling layer. In addition, both coagulation processes reduced the total filtration resistance, mainly the hydraulically reversible resistance and cake layer resistance, which could lower the cleaning frequency. Overall, coagulation could greatly increase the removal efficiency and improve the GDMBR permeability, which would make the process suitable for decentralized wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Bo; Zhang, Lian-Jun; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Hua-Xu
2014-01-01
To optimize the pretreatment of Huanglian Jiedu decoction before ceramic membranes and verify the effect of different pretreatments in multiple model system existed in Chinese herb aqueous extract. The solution environment of Huanglian Jiedu decoction was adjusted by different pretreatments. The flux of microfiltration, transmittance of the ingredients and removal rate of common polymers were as indicators to study the effect of different solution environment It was found that flocculation had higher stable permeate flux, followed by vacuuming filtration and adjusting pH to 9. The removal rate of common polymers was comparatively high. The removal rate of protein was slightly lower than the simulated solution. The transmittance of index components were higher when adjust pH and flocculation. Membrane blocking resistance was the major factor in membrane fouling. Based on the above indicators, the effect of flocculation was comparatively significant, followed by adjusting pH to 9.
Wash water solids removal system study
NASA Technical Reports Server (NTRS)
1974-01-01
During wash water purification, surfactants tend to precipitate and foul the RO membranes, causing water flux decline and loss of salt rejection. The use of 165 to 190 ppm ferric chloride and optionally 0.25 to 1.0 ppm polymeric flocculate precipitates 92 to 96 percent of the surfactant from an Olive Leaf Soap based wash water. Crossflow filtration and pressure filtration yield good soap rejection at high water flux rates. Post-treatment of the chemically pretreated and filtered wash water with activated charcoal removes the residual soap down to an undetectable level.
[Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].
Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li
2011-05-01
Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.
Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans
2014-01-01
Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.
Isidro, J; Llanos, J; Sáez, C; Lobato, J; Cañizares, P; Rodrigo, M A
2018-09-15
This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min -1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lu, Zhibo; Lu, Rong; Zheng, Hongyuan; Yan, Jing; Song, Luning; Wang, Juan; Yang, Haizhen; Cai, Minghong
2018-04-01
We examined per- and polyfluoroalkyl substances (PFASs) in air from eight cities, and in water from six drinking-water treatment plants (DWTPs), in central eastern China. We analyzed raw and treated water samples from the DWTPs for 17 ionic PFASs with high-performance liquid chromatography/negative-electrospray-ionization tandem mass spectrometry (HPLC/(-)ESI-MS/MS), and analyzed the gas and particle phases of atmospheric samples for 12 neutral PFASs by gas chromatography-mass spectrometry (GC-MS). Perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the dominant compounds in drinking water, and fluorotelomer alcohols (FTOHs) dominated in atmospheric samples. Of all the compounds in the treated water samples, the concentration of PFOA, at 51.0 ng L -1 , was the highest. Conventional treatments such as coagulation (COA), flocculation (FOC), sedimentation (SED), and sand filtration (SAF) did not remove PFASs. Advanced treatments, however, including ultrafiltration (UF) and activated carbon (AC), removed the majority of PFASs except for shorter-chain PFASs such as perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPA). We also investigated human exposure to PFASs via drinking water and the atmosphere and found that the mean daily intake of PFASs was 0.43 ng kg -1 day -1 .
Julio, Flores R; Hilario, Terres-Peña; Mabel, Vaca M; Raymundo, López C; Arturo, Lizardi-Ramos; Ma Neftalí, Rojas-Valencia
2015-03-01
The disinfection of a continuous flow of an effluent from an advanced primary treatment (coagulation-flocculation-sedimentation) with or without posterior filtration, using either peracetic acid (PAA) or ultraviolet (UV) radiation was studied. We aimed to obtain bacteriological quality to comply with the microbiological standard established in the Mexican regulations for treated wastewater reuse (NOM-003-SEMARNAT-1997), i.e., less than 240 MPN (most probable number) FC/100 mL. The concentrations of PAA were 10, 15, and 20 mg/L, with contact times of 10, and 15 min. Fecal coliforms (FC) inactivation ranged from 0.93 up to 6.4 log units, and in all cases it reached the limits set by the mentioned regulation. Water quality influenced the PAA disinfection effectiveness. An efficiency of 91% was achieved for the unfiltered effluent, as compared to 99% when wastewater was filtered. UV radiation was applied to wastewater flows of 21, 30 and 39 L/min, with dosages from 1 to 6 mJ/cm². This treatment did not achieve the bacteriological quality required for treated wastewater reuse, since the best inactivation of FC was 1.62 log units, for a flow of 21 L/min of filtered wastewater and a UV dosage of 5.6 mJ/cm².
Fate and Transport of Hydrophobic and Hydrophilic ...
Cyanobacteria (also known as “blue-green algae”) are microscopic organisms that are found in most bodies of water, which can multiply to form harmful algal blooms (HABs) under favorable conditions (i.e., rich nutrients, strong sunlight, and high temperature). Many genera of cyanobacteria are known to produce cyanotoxins such as microcystins (MCs), cylindrospermopsin (CYN), saxitoxins, and anatoxin-a. HABs have been a major health and environmental issue in Europe, Asia as well as the United States. Cyanoxtoxins in water can be partitioned into two categories (i.e., intracellular and extracellular toxins). In most cases, cyanotoxins exist intracellularly in the cytoplasm of cyanobacteria. However, when the cells die or lyse, as well as in response to stressors in the environment, intracellular toxins may be released into the water, becoming extracellular cyanotoxins. According to literature, 95% of MCs are intracellular, but only 50% of CYN is typically intracellular under typical conditions.Cyanotoxins are relatively stable under a variety of water quality conditions and can be persistent in aquatic environments. Conventional drinking water treatment plants (DWTPs), which typically utilize coagulation/flocculation/sedimentation (C/F/S) and sand filtration (SF) have been considered as safe barriers for cyanobacteria and associated intracellular toxins. However, these conventional drinking water treatment processes are ineffective in removing hydrophilic disso
Formentini-Schmitt, Dalila Maria; Fagundes-Klen, Márcia Regina; Veit, Márcia Teresinha; Palácio, Soraya Moreno; Trigueros, Daniela Estelita Goes; Bergamasco, Rosangela; Mateus, Gustavo Affonso Pisano
2018-03-02
In this work, the coagulation/flocculation/sedimentation treatment of dairy wastewater samples was investigated through serial factorial designs utilizing the saline extract obtained from Moringa oleifera (Moringa) as a coagulant. The sedimentation time (ST), pH, Moringa coagulant (MC) dose and concentration of CaCl 2 have been evaluated through the response surface methodology in order to obtain the ideal turbidity removal (TR) conditions. The empirical quadratic model, in conjunction with the desirability function, demonstrated that it is possible to obtain TRs of 98.35% using a coagulant dose, concentration of CaCl 2 and pH of 280 mg L -1 , 0.8 mol L -1 and 9, respectively. The saline extract from Moringa presented its best efficiency at an alkaline pH, which influenced the reduction of the ST to a value of 25 min. It was verified that the increase in the solubility of the proteins in the Moringa stimulated the reduction of the coagulant content in the reaction medium, and it is related to the use of calcium chloride as an extracting agent of these proteins. The MC proved to be an excellent alternative for the dairy wastewater treatment, compared to the traditional coagulants.
Oxidation and coagulation of humic substances by potassium ferrate.
Graham, N J D; Khoi, T T; Jiang, J-Q
2010-01-01
Ferrate (FeO₄²⁻) is believed to have a dual role in water treatment, both as oxidant and coagulant. Few studies have considered the coagulation effect in detail, mainly because of the difficulty of separating the oxidation and coagulation effects. This paper summarises some preliminary results from laboratory-based experiments that are investigating the coagulation reaction dynamically via a PDA instrument, between ferrate and humic acid (HA) at different doses and pH values, and comparing the observations with the use of ferric chloride. The PDA output gives a comparative measure of the rate of floc growth and the magnitude of floc formation. The results of the tests show some significant differences in the pattern of behaviour between ferrate and ferric chloride. At pH 5 the chemical dose range (as Fe) corresponding to HA coagulation was much broader for ferrate than ferric chloride, and the optimal Fe dose was greater. Ferrate oxidation appears to increase the hydrophilic and electronegative nature of the HA leading to an extended region of charge neutralisation. A consequence of the ferrate oxidation is that the extent of HA removal was slightly lower ( approximately 5%) than with ferric chloride. At pH 7, in the sweep flocculation domain, ferrate achieved much greater floc formation than ferric chloride, but a substantially lower degree of HA removal.
Ebrahimi, Afshin; Amin, Mohammad Mehdi; Pourzamani, Hamidreza; Hajizadeh, Yaghoub; Mahvi, Amir Hossein; Mahdavi, Mokhtar; Rad, Mohammad Hassan Rabie
2017-08-01
In this study, the reclamation of clean water from spent filter backwash water (SFBW) was investigated through pilot-scale experiments. The pilot plant consisted of pre-sedimentation, coagulation, flocculation, clarification, and ultrafiltration (UF). Two coagulants of PAFCl and FeCl 3 were investigated with respect to their performance on treated SFBW quality and UF membrane fouling. At the optimum dose of PAFCl and FeCl 3 turbidity removal of 99.6 and 99.4% was attained, respectively. PAFCl resulted in an optimum UV 254 , TOC, and DOC removal of 80, 83.6, and 72.7%, respectively, and FeCl 3 caused the removal of those parameters by 76.7, 80.9, and 65.9%, respectively. PAFCl removed hydrophilic and transphilic constituent better than FeCl 3 , but FeCl 3 had, to some extent, higher affinities to a hydrophobic fraction. It was concluded that PAFCl showed a better coagulation performance in most cases and caused a lower membrane fouling rate compared to FeCl 3 . Finally, the treated SFBW with both coagulant-UF systems met the drinking water standards.
Evaluation of plant-based natural coagulants for municipal wastewater treatment.
Maurya, Sandhya; Daverey, Achlesh
2018-01-01
In this study, four plant-based natural coagulants (banana peel powder, banana stem juice, papaya seed powder and neem leaf powder) were evaluated for the removal of turbidity, chemical oxygen demand (COD) and total suspended solids (TSS) from municipal wastewater. The experiments were conducted at room temperature without adjusting the initial pH. The maximum turbidity removal was observed with banana peel powder (59.6%) at 0.4 g/L of dosage. Papaya seed powder and banana stem juice were the most effective for TSS removal (66.66%) and COD removal (66.67%), respectively. Significant linear relationships between turbidity and TSS ( R 2 = 0.67-0.88) and turbidity removals and COD removals ( R 2 = 0.68-0.8) were observed. Interestingly, all the natural coagulants tested in the study did not change the pH of the wastewater, which is an added advantage. FTIR analysis of banana peels revealed that functional groups such as carboxylic acid, hydroxyl and aliphatic amines might be responsible for promoting the coagulation-flocculation by neutralizing the charge on impurities in water. Overall, the results suggest the potential of low-cost natural coagulants in municipal wastewater treatment.
Eight pilot-scale in-line filtration trials were performed to evaluate the passage of cyanobacterial cells through drinking water filters after sudden increases in hydraulic loading rates. Trials were performed at 30 degrees C using two coagulant combinations (aluminum sulfate a...
Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang
2016-09-01
The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.
Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang
2017-01-01
Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ( 1 H NMR and 13 C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant M K and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10 12 m kg -1 ), respectively, at 40 mg L -1 of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leenheer, J.A.
2004-01-01
A comprehensive isolation, fractionation, and characterization research approach was developed for dissolved and colloidal organic matter (DOM) in water, and it was applied to various surface- and groundwaters to assess DOM precursors, DOM diagenesis, and DOM reactivity to water treatment processes. Major precursors for natural DOM are amino sugars, condensed tannins, and terpenoids. Amino sugar colloids derived from bacterial cell walls are incompletely removed by drinking water treatment and foul reverse osmosis membranes, but are nearly quantitatively removed by soil/aquifer treatment. When chlorinated, amino sugars produce low yields of regulated disinfection by-products (DBFs) but they produce significant chlorine demand that is likely caused by chlorination of free amino groups. Condensed tannins are major precursors for "blackwater" DOM such as that found in the Suwannee River. This DOM produces high yields of DBPs upon chorination, and is efficiently removed by coagulation/flocculation treatment. Terpenoid-derived DOM appears to be biologically refractory, infiltrates readily into groundwater with little removal by soil/aquifer treatment, gives low DBF-yields upon chlorination and is poorly removed by coagulation/flocculation treatments. Peptides derived from proteins are major components of the base DOM fraction (10% or less of the mass of DOM), and this fraction produces large yields of haloacetonitriles upon chorination.
Blel, Walid; Dif, Mehdi; Sire, Olivier
2015-05-15
Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coagulation chemistries for silica removal from cooling tower water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom
2010-02-01
The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants deliveredmore » promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.« less
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the Town of Felton, DE. The objectives of the project were to evaluate: (1) the effectiveness of Kinetico’s FM-348-AS coagulation...
Effect of Particle Association on 2,2'-Bipyridyl Adsorption onto Kaolinite.
Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G.
2000-05-15
The effect of particle concentration, in kaolin suspensions, on the adsorption of 2,2'-bipyridyl was studied. Adsorption expressed in units of micromoles per gram decreased as a result of the increase in particle concentration and also as a result of the presence of coagulant (0.25 M NaCl). Dispersion treatment with sodium hexametaphosphate increased the adsorption of bipyridyl. The decrease in adsorption with the increase in particle concentration suggests a possible relation between adsorption and flocculation phenomena. On the basis of classic flocculation theory a straight-line relation was obtained between the square root of the adsorption maximum (mmol/L) and particle concentration (g/L). It is concluded that particle association, which is a function of particle concentration, reduces the surface/aqueous interface and consequently the adsorption of bipyridyl. Copyright 2000 Academic Press.
Harif, T; Adin, A
2011-11-15
Electroflocculation (EF) is gaining recognition as an alternative process to conventional coagulation/flocculation. The electrical current applied in EF that generates the active coagulant species creates a unique chemical/physical environment in which competing redox reactions occur, primarily water electrolysis. This causes a transient rise in pH, due to cathodic formation of hydroxyl ions, which, in turn, causes a continuous shift in coagulation/flocculation mechanisms throughout the process. This highly impacts the formation of a sweep floc regime that relies on precipitation of metal hydroxide and its growth into floc. The size and structural evolution of kaolin-Al(OH)(3) flocs was examined using static light scattering techniques, in aim of elucidating kinetic aspects of the process. An EF cell was operated in batch mode and comprised of two concentric electrodes - a stainless steel cathode (inner electrode) and an aluminum anode (outer electrode). The cell was run at constant current between 0.042A and 0.22A, and analyses performed at pre-determined time intervals. The results demonstrate that EF is able to generate a range of flocs, exhibiting different growth rates and structural characteristics, depending on the conditions of operation. Growth patterns were sigmoidal and a linear correlation between growth rate and current applied was observed. The dependency of growth rate on current can be related to initial pH and aluminum dosing, with a stronger dependency apparent for initial optimal sweep floc regime. All flocs exhibited a fragile nature and undergo compaction and structural fluctuations during growth. This is the first time size and structural evolution of flocs formed in the EF process is reported. Copyright © 2011 Elsevier Ltd. All rights reserved.
Potential of tin (IV) chloride for treatment in Alor Pongsu as stabilized landfill leachate
NASA Astrophysics Data System (ADS)
Zainal, Sharifah Farah Fariza Syed; Aziz, Hamidi Abdul
2017-10-01
Leachate production from landfilling contributes crucial pollutants to the environment. This study examined the potential of tin (IV) chloride as coagulant that involved charge neutralization and sweep flocculation mechanisms. The negative charge of leachate is neutralized by adding tin (IV) chloride as cationic coagulant which resulted precipitation and swept most of the colloids and dissolved solids that entrapped in the settling as hydrous oxide floc. Parameters such as suspended solid (SS) content, color, and chemical oxygen demand (COD) were analyzed using standard jar test procedures. The best condition was observed at pH 8, with removal efficiencies of 75.99 %, 99.29 % and 98.36 % for COD, SS, and color, respectively. At optimum dosage, tin (IV) chloride successfully removed 98.40 % for color, 99.54 % for SS and 71.53 % for COD. These results indicated the satisfactory performance of tin (IV) chloride. Hence, tin (IV) chloride is a potential coagulant for the treatment of Alor Pongsu Landfill leachate.
Sozzi, Emanuele; Fabre, Kerline; Fesselet, Jean-François; Ebdon, James E; Taylor, Huw
2015-01-01
The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index. In Protocol A, the addition of hydrated lime resulted in wastewater disinfection and coagulation/flocculation of suspended solids. In Protocol B, disinfection was achieved by the addition of hydrochloric acid, followed by pH neutralization and coagulation/flocculation of suspended solids using aluminum sulfate. Removal rates achieved were: COD >99%; suspended solids >90%; turbidity >90% and thermotolerant coliforms >99.9%. The proposed approach is the first known successful attempt to disinfect wastewater in a disease outbreak setting without resorting to the alternative, untested, approach of 'super chlorination' which, it has been suggested, may not consistently achieve adequate disinfection. A basic analysis of costs demonstrated a significant saving in reagent costs compared with the less reliable approach of super-chlorination. The proposed approach to in situ sanitation in cholera treatment centers and other disease outbreak settings represents a timely response to a UN call for onsite disinfection of wastewaters generated in such emergencies, and the 'Coalition for Cholera Prevention and Control' recently highlighted the research as meriting serious consideration and further study. Further applications of the method to other emergency settings are being actively explored by the authors through discussion with the World Health Organization with regards to the ongoing Ebola outbreak in West Africa, and with the UK-based NGO Oxfam with regards to excreta-borne disease management in the Philippines and Myanmar, as a component of post-disaster incremental improvements to local sanitation chains.
Sozzi, Emanuele; Fabre, Kerline; Fesselet, Jean-François; Ebdon, James E.; Taylor, Huw
2015-01-01
The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index. In Protocol A, the addition of hydrated lime resulted in wastewater disinfection and coagulation/flocculation of suspended solids. In Protocol B, disinfection was achieved by the addition of hydrochloric acid, followed by pH neutralization and coagulation/flocculation of suspended solids using aluminum sulfate. Removal rates achieved were: COD >99%; suspended solids >90%; turbidity >90% and thermotolerant coliforms >99.9%. The proposed approach is the first known successful attempt to disinfect wastewater in a disease outbreak setting without resorting to the alternative, untested, approach of ‘super chlorination’ which, it has been suggested, may not consistently achieve adequate disinfection. A basic analysis of costs demonstrated a significant saving in reagent costs compared with the less reliable approach of super-chlorination. The proposed approach to in situ sanitation in cholera treatment centers and other disease outbreak settings represents a timely response to a UN call for onsite disinfection of wastewaters generated in such emergencies, and the ‘Coalition for Cholera Prevention and Control’ recently highlighted the research as meriting serious consideration and further study. Further applications of the method to other emergency settings are being actively explored by the authors through discussion with the World Health Organization with regards to the ongoing Ebola outbreak in West Africa, and with the UK-based NGO Oxfam with regards to excreta-borne disease management in the Philippines and Myanmar, as a component of post-disaster incremental improvements to local sanitation chains. PMID:26110821
Treatment of hydraulic fracturing wastewater by wet air oxidation.
Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli
2016-01-01
Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.
Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater.
Agbovi, Henry K; Wilson, Lee D
2018-06-01
An amphoteric flocculant (CMC-CTA) was synthesized by grafting 3-chloro-2-hydroxypropyl trimethylammonium chloride onto carboxymethyl chitosan (CMC). The turbidity and orthophosphate (P i ) removal properties of chitosan (CHI), CMC, and CMC-CTA were compared in the presence (and absence) of FeCl 3 coagulant. At a fixed FeCl 3 dosage, the effects of flocculant dosage, pH and settling time were evaluated. Turbidity removal (%) and optimal dosage (FeCl 3 ; mg/L) was determined: CMC-CTA (95.8%;5), CHI (88.8%;7.0) and CMC (68.8%;9.0). The corresponding P i removal (%) and dosage (mg/L) are listed: (93.4%;10), (90.6%;10), and (67.4%;5). Optimal turbidity and P i removal occurred at pH 4, where CMC-CTA had greater efficiency over CMC and CHI. The turbidity removal kinetics was described by the pseudo-second-order model, while P i removal followed the pseudo-first-order model. The removal process involves cooperative Coulombic interactions between the biopolymer/Fe(III)/P i and/or kaolinite colloids, along with polymer bridging effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
2007-01-01
polymers to achieve desired properties (such Chenu el al., 1979; Kimn el al., 2005). Among these as aggregation. dispersion ) without any structural...performed with and without Na pyrophosphate as a term ’aggregation’ broadly to include all processes that dispersant (25 mM) with shaking in a water...coagulation, at 25 mM was found to be optimal to disperse individual flocculation, agglutination, etc.). The results of this clay particles without
Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2015-11-01
In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2016-10-01
In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Precious Metals Recovery from Electroplating Wastewater: A Review
NASA Astrophysics Data System (ADS)
Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.
2018-05-01
Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.
Optimization of conventional water treatment plant using dynamic programming.
Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras
2015-12-01
In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. © The Author(s) 2013.
Multi-barrier approach for removing organic micropollutants using mobile water treatment systems.
Yu, Youngbeom; Choi, Yang Hun; Choi, Jaewon; Choi, Soohoon; Maeng, Sung Kyu
2018-05-20
The diversity of organic micropollutants (OMPs) in aquatic environments has been increasing rapidly during the last decade. Therefore, it is important to monitor and attenuate emerging contaminants before they can negatively affect the aquatic environment. However, due to the diversity and complexity of OMPs, there are limitations to using a single method for treating a combination of these pollutants. To address this issue, a mobile water treatment system (MWTS) equipped with different treatment units was designed to remove OMPs under field conditions. The MWTS was configured with various modular units including coagulation, flocculation, dissolved air flotation, membrane filtration, ozone oxidation, granular activated carbon, and UV disinfection. Each treatment unit could be operated either individually or in different combinations to identify the optimal configuration of treatment units for the removal of OMPs. To investigate the effectiveness of the MWTS, twelve OMPs were selected and introduced simultaneously into the feed water samples collected from different rivers throughout Korea. The current study proved that the MTWS is an effective solution to treat OMPs and is a time saving treatment system. The combined effects of the different treatment units removed over 99% of the selected OMPs, regardless of their physicochemical properties. Moreover, since the system is mobile, on-site analyses can be conducted to identify the most effective treatment method and configuration for each OMP. Copyright © 2018 Elsevier B.V. All rights reserved.
Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.
Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N
2013-01-01
Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.
The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.
Basibuyuk, M; Kalat, D G
2004-03-01
Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.
Miranda, Marcela; Noyma, Natália; Pacheco, Felipe S; de Magalhães, Leonardo; Pinto, Ernani; Santos, Suzan; Soares, Maria Fernanda A; Huszar, Vera L; Lürling, Miquel; Marinho, Marcelo M
2017-05-01
We tested the hypothesis that a combination of coagulant and ballast could be efficient for removal of positively buoyant harmful cyanobacteria in shallow tropical waterbodies, and will not promote the release of cyanotoxins. This laboratory study examined the efficacy of coagulants [polyaluminium chloride (PAC) and chitosan (made of shrimp shells)] alone, and combined with ballast (lanthanum modified bentonite, red soil or gravel) to remove the natural populations of cyanobacteria collected from a shallow eutrophic urban reservoir with alternating blooms of Cylindrospermopsis and Microcystis. PAC combined with ballast was effective in settling blooms dominated by Microcystis or Cylindrospermopsis. Contrary to our expectation, chitosan combined with ballast was only effective in settling Cylindrospermopsis-dominated blooms at low pH, whereas at pH≥8 no effective flocculation and settling could be evoked. Chitosan also had a detrimental effect on Cylindrospermopsis causing the release of saxitoxins. In contrast, no detrimental effect on Microcystis was observed and all coagulant-ballast treatments were effective in not only settling the Microcystis dominated bloom, but also lowering dissolved microcystin concentrations. Our data show that the best procedure for biomass reduction also depends on the dominant species. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of cationic polymers to reduce pathogen levels during dairy manure separation.
Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy
2016-01-15
Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Xu, G R; Fitzpatrick, C S B; Deng, L Y
2006-01-01
Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and especially particle breakthrough. Understanding the causes of breakthrough is essential, as the parasite cannot be destroyed by conventional disinfection with chlorine. Particle breakthrough depends on many factors. This research aims to investigate the influence of temperature, humic acid (HA) level and chemical dosing on particle breakthrough in filtration. A series of temperatures were set at 5 degrees C, 15 degrees C and 25 degrees C; humic acid level was 5 mg L(-1). Each was combined with a series of Al doses. A laser particle counter was used to assess the particle breakthrough online. Turbidity, zeta potential, and UV254 absorption were measured before and after filtration. The results showed that particle breakthrough was influenced significantly by temperature, humic acid and dosing. Particle breakthrough occurred earlier at lower temperature, while at higher temperature it was reduced at the same coagulant dose. With coagulants, even at low dose, particle breakthrough was significantly reduced. With HA 5 mg L(-1), particle breakthrough was earlier and the amount was much larger than without HA even at high temperature. There was an optimal dose in filtration and it was well correlated with zeta potential.
Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y
2010-04-01
Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Impact of organic polyelectrolytes on coagulation of source-separated black water.
Kozminykh, Pavlo; Heistad, Arve; Ratnaweera, Harsha C; Todt, Daniel
2016-01-01
Household wastewater is originated from common people's activities and has a potential harmful impact on the environment if discharged directly without proper treatment. Toilet wastewater or black water (BW) contains urine, faeces, toilet paper and flushing water and it contains the majority of pollutants obtained from a single household. In this study, the focus was on BW treatment using chemical methods. The main goal of current research was to define the possibility and applicability of conventional coagulants and flocculants in direct chemical treatment of vacuum-collected BW to remove particles, organic matter and phosphorous. After the definition of dosing ranges, based on the equivalent doses in conventional municipal and industrial wastewater treatment data, aluminium and iron coagulants, organic polyelectrolytes (polymers with anionic, neutral and cationic charge with different molecular weights) and their various combinations were tested using the well-known jar-test laboratory method to study aggregation and solid-liquid separation processes in raw BW. The most important process parameter during the coagulation was pH level, dependent on the type and doses of metal salts. Some side processes were found to occur while using iron-based coagulants. Dosing of either single coagulants or single polymers did not give satisfactory results, while a combination of aluminium salts and cationic polymers showed high removal rates in total suspended solids, total chemical oxygen demand and ortho-phosphates, reaching 97.8%, 92% and 98.6%, respectively, with the optimal doses of chemicals. Cationic polymers with the lowest molecular weight and highest charge density were the most efficient in combination with aluminium coagulants.
Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye
2014-02-01
This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Teng, Houkai; Wang, Yili; Zhang, Yuxin; Zhao, Chuanliang; Liao, Yong
2015-01-01
PO4 3- and SiO3 2- are often used as modifier to improve stability and aggregating ability of the iron-base coagulants, however, there are few reports about their detailed comparison between the coagulation performance and mechanisms. In this study, three coagulants—polyferric phosphoric sulfate (PFPS), polysilicon ferric sulfate (PFSS), and polyferric sulfate (PFS) were synthesized; their structure and morphology were characterized by Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and Scanning electron microscope (SEM). Alkali titration and Ferron species analysis were employed to investigate the hydrolysis performance and species distribution. Jar test was conducted to measure their coagulation behaviors at different dosage, pH, and temperatures in which the flocs properties were measured. The results showed that a number of new compounds were formed due to the presence of PO4 3- and SiO3 2-. Moreover, PFPS and PFSS had similar level in Fea as well as Feb. Among them, PFPS produced more multi-core iron atoms polymer and content of Feb, and the formed flocs were larger and denser. It exhibited superior coagulation performance in terms of turbidity reduction, UV254 removal and residual ferric concentration. Jar test and floc breakage/regrowth experiments indicated other than charge neutrality, the dominated mechanism involved in PFSS was the adsorption between polysilicic acid and solution particle, while PFPS was sweeping, entrapment/adsorption resulting from larger polymer colloid of Fe-P chemistry bond. PMID:26339902
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-01-01
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested. PMID:26703687
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-12-22
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.
Fate of cyanobacteria and their metabolites during water treatment sludge management processes.
Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle
2012-05-01
Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.
An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins
NASA Astrophysics Data System (ADS)
Fulton, Deborah Lee
1998-10-01
The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear-thinning behavior of the bodies also increased with increases in ion concentrations and conductivities. Bingham viscosities decreased as ionic concentrations increased. Brookfield buildup (BBU), plasticity index, yield stress, and pseudoplastic index generally increased as chemical additions increased. Softness and plastic behavior of the bodies increased with increasing concentrations of additive chemicals and with increasing conductivity. Calcium, sodium, and sulfate ions were primarily responsible for increasing conductivity. Calcium chloride was a more effective flocculant than magnesium sulfate.
Cui, Jinli; Jing, Chuanyong; Che, Dongsheng; Zhang, Jianfeng; Duan, Shuxuan
2015-06-01
Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. Copyright © 2015. Published by Elsevier B.V.
Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio
2015-10-15
This study evaluates the capacity of seven species and a Bloom of microalgae to grow in urban wastewater. Nutrient removal kinetics and biomass harvesting by means of centrifugation and coagulation-flocculation-sedimentation have been also tested. Results show that the best biomass productivities ranged from between 118 and 108 mgSS L(-1) d(-1) for the Bloom (Bl) and Scenedesmus obliquus (Sco). Regarding nutrient removal, microalgae were able to remove the total dissolved phosphorus and nitrogen concentrations by more than 80% and 87% respectively, depending on the species tested. The final total dissolved concentration of nitrogen and phosphorus in the culture media complies with the European Commission Directive 98/15/CE on urban wastewater treatment. Regarding harvesting, the results of coagulation-flocculation sedimentation using a 60 mg L(-1) dose of Ferric chloride were similar between species, exceeding the biomass removal efficiency by more than 90%. The results of centrifugation (time required to remove 90% of solids at 1000 rpm) were not similar between species, with the shortest time being 2.9 min for Sco, followed by the bloom (7.25 min). An overall analysis suggested that the natural bloom and Scenedesmus obliquus seem to be the best candidates to grow in pre-treated wastewater, according to their biomass production, nutrient removal capability and harvestability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pallier, Virginie; Feuillade-Cathalifaud, Geneviève; Serpaud, Bernard
2011-03-01
The aim of this study is to evaluate and understand the electrocoagulation/flocculation (ECF) process to remove arsenic from both model and natural waters with low mineral content and to compare its performances to the coagulation/flocculation (CF) process already optimized. Experiments were thus conducted with iron electrodes in the same specific treatment conditions (4≤current density (mAcm(-2))≤33) to study the influence of organic matter on arsenic removal in conditions avoiding the oxidation step usually required to improve As(III) removal. The process performance was evaluated by combining quantification of arsenic residual concentrations and speciation and dissolved organic carbon residual concentrations with zeta potential and turbidity measurements. When compared to CF, ECF presented several disadvantages: (i) lower As(V) removal yield because of the ferrous iron dissolved from the anode and the subsequent negative zeta potential of the colloidal suspension, (ii) higher residual DOC concentrations because of the fractionation of high molecular weight compounds during the treatment leading to compounds less prone to coagulate and (iii) higher residual turbidities because of the charge neutralization mechanisms involved. However, during this process, As(III) was oxidized to As(V) improving considerably its removal whatever the matrix conditions. ECF thus allowed to improve As(III) removal without applying an oxidation step that could potentially lead to the formation of toxic oxidation by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance
de Magalhães, Leonardo; Miranda, Marcela; Mucci, Maíra; van Oosterhout, Frank; Huszar, Vera L. M.; Marinho, Marcelo M.; Lima, Eduardo R. A.; Lürling, Miquel
2017-01-01
Cyanobacteria blooms are a risk to environmental health and public safety due to the potent toxins certain cyanobacteria can produce. These nuisance organisms can be removed from water bodies by biomass flocculation and sedimentation. Here, we studied the efficacy of combinations of a low dose coagulant (poly-aluminium chloride—PAC—or chitosan) with different ballast compounds (red soil, bauxite, gravel, aluminium modified zeolite and lanthanum modified bentonite) to remove cyanobacterial biomass from water collected in Funil Reservoir (Brazil). We tested the effect of different cyanobacterial biomass concentrations on removal efficiency. We also examined if zeta potential was altered by treatments. Addition of low doses of PAC and chitosan (1–8 mg Al L-1) to the cyanobacterial suspensions caused flock formation, but did not settle the cyanobacteria. When those low dose coagulants were combined with ballast, effective settling in a dose-dependent way up to 99.7% removal of the flocks could be achieved without any effect on the zeta potential and thus without potential membrane damage. Removal efficacy was influenced by the cyanobacterial biomass and at higher biomass more ballast was needed to achieve good removal. The combined coagulant-ballast technique provides a promising alternative to algaecides in lakes, ponds and reservoirs. PMID:28598977
de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla
2014-08-01
The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.
GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel
2017-04-15
In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3 at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abood, Alkhafaji R.; Thi Qar University, Nasiriyah; Bao, Jianguo, E-mail: bjianguo888@126.com
2014-02-15
Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio wasmore » 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.« less
Gao, Changfei; Liu, Lifen; Yang, Fenglin
2018-02-01
A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Overview of the Performance and Cost Effectiveness of Small Arsenic Removal Technologies
Presentation provides information on the performance and cost of primarily four arsenic removal technologies; adsorptive media, iron removal, coagulation/filtration and the combination system of iron removal followed by adsorptive media.
Treatment of car wash wastewater by UF membranes
NASA Astrophysics Data System (ADS)
Istirokhatun, Titik; Destianti, Puti; Hargianintya, Adenira; Oktiawan, Wiharyanto; Susanto, Heru
2015-12-01
The existence of car wash service facilitates car owners to remove dirt and grime from their vehicles. However, the dirt washed off vehicles as well as the cleaning materials themselves may be harmful to the environment if they are not properly managed and discharged. Many technologies have been proposed to treat car wash wastewater such as coagulation flocculation, tricking filter and flocculation-flotation. Nevertheless, these technologies have low efficiency to eliminate oil and small organic compounds. Ultrafiltration (UF) membranes were used in this study to treat car wash wastewater. This study investigated the performance of UF membranes under various pressures to remove COD, oil and grease, and also turbidity from car wash waste water. The membrane performance was examined by investigation of permeate flux and membrane rejection. The results meet the standard of environmental regulation and it is possible to be reused. The highest rejection was shown by PES10 (polyethersulfone 10 kDa) in 1 bar operation with complete rejection for both turbidity and oil and grace and 95% rejection for COD.
Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan
2013-06-12
A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.
Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao
2018-01-01
The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β-cyclocitral and β-ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum. The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll-a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs. PMID:29301296
Shang, Lixia; Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao
2018-01-02
The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β -cyclocitral and β -ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum . The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll- a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs.
What to do after nutrient removal?
van der Graaf, J H
2001-01-01
In the Netherlands, interest in advanced treatment is increasing now that almost all wastewater treatment plants apply full biological treatment and nutrient removal. The resulting effluents have an excellent quality which can be improved further by applying advanced treatment processes like flocculating filtration, membrane filtration, UV or activated carbon, and others. The treated effluent can be re-used for various purposes, as process water, household water, urban water, for groundwater suppletion and drinking water. Nowadays many applications are investigated. In order to confirm the applicability pilot test investigations are done at various WWTPs. The results are promising; the cost estimations show increasing prospects. This will finally lead to the maturity of the advanced treatment. It will certainly contribute to a more sustainable water cycle.
Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni
2005-10-01
This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID:26808048
Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products.
Process and system for treating waste water
Olesen, Douglas E.; Shuckrow, Alan J.
1978-01-01
A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.
Arsenic Treatment Residuals: Quantities, Characteristics and Disposal
This presentation provides information on the quantities, the characteristics and the disposal options for the common arsenic removal technologies. The technologies consist of adsorption media, iron removal, coagulation/filtration and ion exchange. The information for the prese...
RESIDUALS, QUANTITIES, CHARACTERISTICS AND DISPOSAL OPTIONS
Presentation will describe the characteristics and quantitites of residuals generated by the various arsenic removal technologies including adsorptive media, coagulation filtration and iron removal. Information is also presented on the disposal options for the various types of re...
Zhang, Ying; Zhang, Ning; Zhao, Peng; Niu, Zhiguang
2018-03-01
The characteristics of dissolved organic matter (DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products (DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight (MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes (pre-chlorination, coagulation, sand filtration, disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW <1kDa and fraction with MW 3-10kDa, and the DBP's generation ability of lower molecular weight DOM (<10kDa) was higher than that of higher molecular weight DOM. During different processes, pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes (THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids (HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration. Copyright © 2017. Published by Elsevier B.V.
Abboud, Salim E; Soriano, Stephanie; Abboud, Rayan; Patel, Indravadan; Davidson, Jon; Azar, Nami R; Nakamoto, Dean A
Preprocedural evaluation of patients in an interventional radiology (IR) clinic is a complex synthesis of physical examination and imaging findings, and as IR transitions to an independent clinical specialty, such evaluations will become an increasingly critical component of a successful IR practice and quality patient care. Prior research suggests that preprocedural evaluations increased patient's perceived quality of care and may improve procedural technical success rates. Appropriate documentation of a preprocedural evaluation in the medical record is also paramount for an interventional radiologist to add value and function as an effective member of a larger IR service and multidisciplinary health care team. The purpose of this study is to examine the quality of radiology resident notes for patients seen in an outpatient IR clinic at a single academic medical center before and after the adoption of clinic note template with reminders to include platelet count, international normalized ratio, glomerular filtration rate, and plan for periprocedural coagulation status. Before adoption of the template, platelet count, international normalized ratio, glomerular filtration rate and an appropriate plan for periprocedural coagulation status were documented in 72%, 82%, 42%, and 33% of patients, respectively. After adoption of the template, appropriate documentation of platelet count, international normalized ratio, and glomerular filtration rate increased to 96%, and appropriate plan for periprocedural coagulation status was documented in 83% of patients. Patient evaluation and clinical documentation skills may not be adequately practiced during radiology residency, and tools such as templates may help increase documentation quality by radiology residents. Copyright © 2017 Elsevier Inc. All rights reserved.
Arsenic removal from water using iron-coated seaweeds.
Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R
2017-05-01
Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wen-wu, Liu; Xiu-ping, Wang; Xue-yan, Tu; Chang-yong, Wang
2014-10-01
The coking wastewater generally comprises highly concentrated, recalcitrant, and toxic organic pollutants, so its treatment has been of great importance to prevent living beings and their environment from these hazardous contaminations. The treatment of pretreated coking wastewater by flocculation-coagulation, alkali out, air stripping, and three-dimensional (3-D) electrocatalytic oxidation was performed (gap between the used β-PbO2/Ti anode and titanium cathode, 12 mm; mass ratio of Cu-Mn/granular activated carbon (GAC) to effluent, 1:4; cell voltage, 7 V). The results showed that the pH adjusting from 3.7 to 6.1 was necessary for coagulants; alkali out played an important role because it brought up precipitation containing higher fatty acids as well as other contaminants to decrease the chemical oxygen demand (COD) in the effluent, and it had also forced the reduction of ammonia nitrogen (NH3-N) by incorporating with air stripping; for 3-D electrocatalytic oxidation with a bleaching liquid assisting, the initial pH 8.5 of effluent was suitable for Cu-Mn/GAC; moreover, it was considered that its Cu component was dedicated to the decrease of COD and NH3-N, while the Mn component specialized in the decay of NH3-N. The residual COD and NH3-N values in the final effluent with pH 6.5 were 95.8 and 8.8 mg/L, respectively, demonstrating that the whole processes applied were feasible and low in cost.
Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno
2017-06-15
In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Accumulation of Contaminants in the Distribution System.
Removal of arsenic from water using iron-related processes including coagulation with iron salts, iron removal with oxidation/filtration, and specific iron resins is established. These processes are effective because iron solids including minerals and chemical floc have strong ad...
Bjornson, H. S.; Hill, E. O.
1973-01-01
The effects of Bacteroides sp., Fusobacterium mortiferum, Bacteroides fragilis, and Sphaerophorus necrophorus on various parameters of blood coagulation in vivo and in vitro were determined and compared to the coagulation effects of Escherichia coli and Salmonella minnesota, wild type and R595. Intravenous injection of washed cells, culture filtrate, lipopolysaccharide, or lipid A of the anaerobic gram-negative microorganisms into mice resulted in acceleration of coagulation. Lipopolysaccharide and lipid A of the anaerobic microorganisms had no apparent effect on circulating platelets in mice or rabbits and did not cause aggregation of human platelets in vitro. Washed cells, lipopolysaccharide, and lipid A of Bacteroides sp. and F. mortiferum also significantly accelerated the clotting time of recalcified platelet poor normal human plasma and C6-deficient rabbit plasma. Lipid A, but not lipopolysaccharide, of E. coli and washed cells of S. minnesota R595 accelerated coagulation by a similar mechanism. These results indicated that Bacteroides sp. and F. mortiferum can accelerate blood coagulation in vivo and in vitro by a mechanism which does not involve platelets or terminal components of complement. PMID:4594118
Mancini, Giuseppe; Panzica, Michele; Fino, Debora; Cappello, Simone; Yakimov, Michail M; Luciano, Antonella
2017-12-01
In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl 3 ), Aluminium sulphate (Al 2 (SO 4 ) 3 ) and Polyaluminum chloride (Al 2 (OH 3 )Cl 3 ) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m 3 of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduction of Turbidity of Water Using Locally Available Natural Coagulants
Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir
2011-01-01
Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307
Schmidt, Carsten K; Brauch, Heinz-Jürgen
2008-09-01
Application and microbial degradation of the fungicide tolylfluanide gives rise to a new decomposition product named N,N-dimethylsulfamide (DMS). In Germany, DMS was found in groundwaters and surface waters with typical concentrations in the range of 100-1000 ng/L and 50-90 ng/L, respectively. Laboratory-scale and field investigations concerning its fate during drinking water treatment showed that DMS cannot be removed via riverbank filtration, activated carbon filtration, flocculation, and oxidation or disinfection procedures based on hydrogen peroxide, potassium permanganate, chlorine dioxide, or UV irradiation. Even nanofiltration does not provide a sufficient removal efficiency. During ozonation about 30-50% of DMS are converted to the carcinogenic N-nitrosodimethylamine (NDMA). The NDMA being formed is biodegradable and can at least partially be removed by subsequent biologically active drinking water treatment steps including sand or activated carbon filtration. Disinfection with hypochlorous acid converts DMS to so far unknown degradation products but not to NDMA or 1,1-dimethylhydrazine (UDMH).
Maeng, Sung Kyu; Timmes, Thomas C; Kim, Hyun-Chul
2017-10-01
Two different quaternary amine polymers were examined as primary coagulants for the removal of natural organic matter (NOM) and concurrent production of flocs favorable for downstream membrane separation. The primary issue explored was the relationship between various coagulation conditions on the floc characteristics and the subsequent performance of microfiltration when filtering coagulated NOM. The size distribution and morphological properties of flocs formed through the coagulation of NOM were characterized and the effects of polymer type and dose on these characteristics were also examined. Coagulation of NOM using polydiallyldimethyl-ammonium chloride (pDADMAC) produced looser and less settleable flocs compared to dosing the equivalent amount of epichlorohydrin/dimethylamine (epi/DMA). This was associated with the formation of a relatively denser cake layer on the top of the membrane for the filtration of NOM coagulated with epi/DMA. The charge neutralization coagulation condition with the polymers removed almost all of the fouling tendency that had occurred when filtering raw NOM. The median diameter and the fractal dimension of the flocs produced increased as the zeta potential approached zero, which resulted in the formation of a cake layer that was easily removed from the surface of the membrane.
Removal of cyanobacteria and cyanotoxins through drinking water treatment-full-scale studies?
This presentation covers the control of intact cyanobacterial cells through particulate removal processes such as coagulation, sedimentation and filtration. The control of cyanobacterial toxins through oxidation and adsorption processes including, but not limited to, chlorine, oz...
De Feo, G; Galasso, M; Landi, R; Donnarumma, A; De Gisi, S
2013-01-01
CAPS is the acronym for chemically assisted primary sedimentation, which consists of adding chemicals to raw urban wastewater to increase the efficacy of coagulation, flocculation and sedimentation. The principal benefits of CAPS are: upgrading of urban wastewater treatment plants; increasing efficacy of primary sedimentation; and the major production of energy from the anaerobic digestion of primary sludge. Metal coagulants are usually used because they are both effective and cheap, but they can cause damage to the biological processes of anaerobic digestion. Generally, biodegradable compounds do not have these drawbacks, but they are comparatively more expensive. Both metal coagulants and biodegradable compounds have preferential and penalizing properties in terms of CAPS application. The problem can be solved by means of a multi-criteria analysis. For this purpose, a series of tests was performed in order to compare the efficacy of several organic and mixed-organic polymers with that of polyaluminium chloride (PACl) under specific conditions. The multi-criteria analysis was carried out coupling the simple additive weighting method with the paired comparison technique as a tool to evaluate the criteria priorities. Five criteria with the following priorities were used: chemical oxygen demand (COD) removal > turbidity, SV60 > coagulant dose, and coagulant cost. The PACl was the best alternative in 70% of the cases. The CAPS process using PACl made it possible to obtain an average COD removal of 68% compared with 38% obtained, on average, with natural sedimentation and 61% obtained, on average, with the best PACl alternatives (cationic polyacrylamide, natural cationic polymer, dicyandiamide resin).
Multi-step process for concentrating magnetic particles in waste sludges
Watson, John L.
1990-01-01
This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.
Multi-step process for concentrating magnetic particles in waste sludges
Watson, J.L.
1990-07-10
This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.
Chekli, L; Corjon, E; Tabatabai, S A A; Naidu, G; Tamburic, B; Park, S H; Shon, H K
2017-10-01
During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl 4 ) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl 3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl 4 and PTC achieved better performance than FeCl 3 in terms of turbidity, UV 254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography - organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl 4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl 3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of Arsenic Treatment Techniques on Distribution Water Quality
This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...
EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL
The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...
Momeni, Meysam Mohammad; Kahforoushan, Davood; Abbasi, Farhang; Ghanbarian, Saeid
2018-04-01
One of the most important solid-liquid separation processes is coagulation and flocculation that is extensively used in the primary treatment of industrial wastewater. The biopolymers, because of biodegradable properties and low cost have been used as coagulants. In this study, chitosan as a natural coagulant of choice, was modified by (3-chloro 2-hydroxypropyl)trimethylammonium chloride and was used to remove the color and turbidity of industrial wastewater. To evaluate the effect of pH, settling time, the initial turbidity of wastewater, the amount of coagulant, and the concentration of dye (Melanoidin) were chosen to study their effects on removal of wastewater color and turbidity. The experiments were done in a batch system by using a jar test. To achieve the optimum conditions for the removal of color and turbidity, the response surface methodology (RSM) experimental design method was used. The results obtained from experiments showed that the optimum conditions for the removal of color were as: pH = 3, concentration of dye = 1000 mg/L, settling time = 78.93 min, and dose of coagulant = 3 g/L. The maximum color removal in these conditions was predicted 82.78% by the RSM model. The optimal conditions for the removal of turbidity of the waste water were as: pH = 5.66, initial turbidity = 60 NTU, settling time = 105 min, and amount of coagulant = 3 g/L. The maximum turbidity removal in these circumstances was predicted 94.19% by the model. The experimental results obtained in optimum conditions for removal of color and turbidity were 76.20% and 90.14%, respectively, indicating the high accuracy of the prediction model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif
2007-07-15
The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.
Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko
2018-01-01
Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of coagulation pretreatment of leachate by response surface methodology.
Lessoued, Ridha; Souahi, Fatiha; Castrillon Pelaez, Leonor
2017-11-01
Coagulation-flocculation is a relatively simple technique that can be used successfully for the treatment of old leachate by poly-aluminum chloride (PAC). The main objectives of this study are to design the experiments, build models and optimize the operating parameters, dosage m and pH, using the central composite design and response surface method. Developed for chemical organic matter (COD) and turbidity responses, the quadratic polynomial model is suitable for prediction within the range of simulated variables as it showed that the optimum conditions were m of 5.55 g/L at pH 7.05, with a determination coefficient R² at 99.33%, 99.92% and adjusted R² at 98.85% and 99.86% for both COD and turbidity. We confirm that the initial pH and PAC dosage have significant effects on COD and turbidity removal. The experimental data and model predictions agreed well and the removal efficiency of COD, turbidity, Fe, Pb and Cu reached respectively 61%, 96.4%, 97.1%, 99% and 100%.
NASA Astrophysics Data System (ADS)
Sun, Zhaonan; Liu, Zheng; Hu, Xiaomin
2017-05-01
The method of treating pharmaceutical wastewater by electro-coagulation with Al/Fe periodically reversing (ECPR) was proposed based on traditional electrochemical method. The principle of ECPR was generalized. Mechanism of ECPR to treat berberine pharmaceutical wastewater was investigated. Treatability and mechanism studies were conducted under laboratory conditions. For berberine wastewater (800 mg/L), decolourization efficiency and COD removal efficiency were highest to 98% and 95% respectively when voltage was 8V, reaction time was 60 min, alternating period was 10 S electrolyte concentration was 0.015 mol/L, stirring speed was 750 rpm, pH value was 3-10 and distance between two plates was 0.6 cm. For removal berberine, flocculation, floatation and oxidation provided 73%, 8% and 18% removal efficiency, which can be inferred by analysing UV-visible absorption spectrum, acidification experiment, EDTA shielding experiment, structure-activity relationship, oxidation and floatation. Meanwhile decolourization and COD removal conformed to apparent pseudo-first order and zero-order kinetics for 200mg/L and 400-1000 mg/L berberine wastewater respectively.
Wastewater Treatment: A Pilot Plant on the Move
ERIC Educational Resources Information Center
Environmental Science and Technology, 1974
1974-01-01
Reports that there are currently three companies that own mobile physical-chemical wastewater treatment vans that investigate such parameters as chemical coagulation, sedimentation, sand filtration and carbon adsorption. Information is provided regarding the potential of utilizing this type of facility and rental agreements. (MLB)
Yang, Liyang; Hur, Jin; Zhuang, Wane
2015-05-01
Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.
[Combined use of active chlorine and coagulants for drinking water purification and disinfection].
Rakhmanin, Iu A; Zholdakova, Z I; Poliakova, E E; Kir'ianova, L F; Miasnikov, I N; Tul'skaia, E A; Artemova, T Z; Ivanova, L V; Dmitrieva, R A; Doskina, T V
2004-01-01
The authors made an experimental study of the efficiency of water purification procedures based on the combined use of active chlorine and coagulants and hygienically evaluated the procedures. The study included the evaluation of water disinfection with various coagulants and active chlorine; the investigation of the processes of production of deleterious organic chlorine compounds; the assessment of the quality of water after its treatment. The coagulants representing aluminum polyoxychloride: RAX-10 (AQUA-AURATE 10) and RAX-18 (AQUA-AURATE 18), and aluminum sulfate, technically pure grade were tested. The treatment of river water with the coagulants RAX-10 and RAX-18, followed by precipitation, filtration, and chlorination under laboratory conditions, was shown to result in water disinfection to the levels complying with the requirements described in SanPiN 2.1.4.1074-01. RAX-18 showed the best disinfecting activity against total and heat-tolerant coliform bacteria, but also to the highly chlorine-resistant microrganisms--the spores of sulfite-reducing Clostridia, phages, and viruses. Since the coagulants have an increased sorptive capacity relative to humus and other organic substances, substitution of primary chlorination for coagulant treatment may induce a reduction in the risk of formation of oncogenically and mutagenically hazardous chlorinated hydrocarbons.
Cordelair, Jens; Greil, Peter
2003-09-15
A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.
Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review.
Nharingo, Tichaona; Moyo, Mambo
2016-01-15
Heavy metal ion, pesticide and dye wastewaters cause severe ecological contamination with conventional treatment methods proving inadequate, unsuccessful or expensive to apply. Several biomaterials have recently been explored for the biosorption and biocoagulation-flocculation of pollutants from wastewaters. In the past 10 years, there has been an extensive research output on the use of biological materials such as agricultural wastes, chitosan, Moringa Oleifera, Eichhornia crassipes, bacteria, algae, Cactus plants etc. in environmental remediation. The present paper reviews the scattered information about the green technology involving Opuntia ficus-indica derived biomaterials in wastewater decontamination. Its characterization, physicochemical compositions, its application in biosorption and flocculation of dyes, pesticides and metallic species focussing on equilibrium, kinetics and thermodynamic properties are reviewed. The main results obtained in the depollution of a variety of contaminated wastewaters using cladodes, fruit pulp and peels mucilage and electrolytes show very high and promising pollutant maximum sorption capacities and removal percentages in the range -125.4-1000 mg/g and 0.31-2251.56 mg/g for the biosorption of dyes and metallic species respectively and removal % ranges of 50-98.7%, 11-93.62% and 17-100% for turbidity, chemical oxygen demand and heavy metals respectively by coagulation-flocculation process. The biomaterials proved to be efficient in pollutant removal that there is need to explore the scaling up of the study from the laboratory scale to community pilot plants and eventually to industrial levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter
2015-12-15
This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kulichkov, S. V.; Avtomonov, E. G.; Andreeva, L. V.; Solomennik, S. F.; Nikitina, A. V.
2018-01-01
The paper provides a laboratory research of breaking natural water-oil emulsions: - by non-stabilized ASP; by stabilized ASP; by mixture of stabilized and non-stabilized ASP in different proportions and production of refinery water of the required quality with the use of IronGuard 2495 as flocculant. Oil-in-water emulsion is stable. Classic methods are not suitable for residual water treatment: sediment gravity flow; filtration; centrifuge test. Microemulsion formed after ASP application has low boundary tension and high pH. It contributes to transfer of oil phase into a water one, forming oil-in-water emulsion. Alkaline condition has adverse effect on demulsifying ability of agents, flocculation and boundary tension. For breaking of water-oil emulsion at EBU before the interchanger water or water-oil emulsion from the wells that were not APS-treated in ratio of 1:9 shall be delivered. Residual water after EBU must be prepared in water tanks by dilution in great volume.
Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F
2010-01-01
A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the initial steps of the treatment chain, no significant degradation of micropollutants was observed, and the high levels of dissolved organic carbon probably affected the outcome of the bioassays. The steps of coagulation/flocculation/dissolved air flotation/sand filtration and ozonation decreased the effect-based micropollutant burden significantly. (c) 2009 Elsevier Ltd. All rights reserved.
Arsenic Removal - Adsorptive Media and Coagulation/Filtration Case Studies - Slides
This presentation provides information on the results of three case studies from USEPA arsenic demonstration program. The first case study presented is on the Rimrock, AZ project that used an adsorptive media technology (E33 media) to remove arsenic. The second case study is o...
Arsenic Removal: Adsorptive Media and Coagulation/Filtration Case Studies
This presentation provides information on the results of three case studies from USEPA arsenic demonstration program. The first case study presented is on the Rimrock, AZ project that used an adsorptive media technology (E33 media) to remove arsenic. The second case study is on...
REMOVAL OF HEPATITIS A VIRUS AND ROTAVIRUS BY DRINKING WATER TREATMENT
The paper presents quantitative data from a two year study on the removability of rotavirus SA11 and hepatitis A virus added exogenously to Lake Houston raw water during treatment. Processes studied on laboratory and pilot scale included coagulation, filtration, softening and dis...
The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.
Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R
2010-09-15
Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.
Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K
2017-05-15
Here, we evaluated the efficacy of direct microfiltration (MF) and ultrafiltration (UF) to remove three representative human enteric viruses (i.e., adenovirus [AdV] type 40, coxsackievirus [CV] B5, and hepatitis A virus [HAV] IB), and one surrogate of human caliciviruses (i.e., murine norovirus [MNV] type 1). Eight different MF membranes and three different UF membranes were used. We also examined the ability of coagulation pretreatment with high-basicity polyaluminum chloride (PACl) to enhance virus removal by MF. The removal ratios of two bacteriophages (MS2 and φX174) and a plant virus (pepper mild mottle virus; PMMoV) were compared with the removal ratios of the human enteric viruses to assess the suitability of these viruses to be used as surrogates for human enteric viruses. The virus removal ratios obtained with direct MF with membranes with nominal pore sizes of 0.1-0.22 μm differed, depending on the membrane used; adsorptive interactions, particularly hydrophobic interactions between virus particles and the membrane surface, were dominant factors for virus removal. In contrast, direct UF with membranes with nominal molecular weight cutoffs of 1-100 kDa effectively removed viruses through size exclusion, and >4-log 10 removal was achieved when a membrane with a nominal molecular weight cutoff of 1 kDa was used. At pH 7 and 8, in-line coagulation-MF with nonsulfated high-basicity PACls containing Al 30 species had generally a better virus removal (i.e., >4-log 10 virus removal) than the other aluminum-based coagulants, except for φX174. For all of the filtration processes, the removal ratios of AdV, CV, HAV, and MNV were comparable and strongly correlated with each other. The removal ratios of MS2 and PMMoV were comparable or smaller than those of the three human enteric viruses and MNV, and were strongly correlated with those of the three human enteric viruses and MNV. The removal ratios obtained with coagulation-MF for φX174 were markedly smaller than those obtained for the three human enteric viruses and MNV. However, because MS2 was inactivated after contact with PACl during coagulation pretreatment, unlike AdV, CV, MNV, and PMMoV, the removal ratios of infectious MS2 were probably an overestimation of the ability of coagulation-MF to remove infectious AdV, CV, and caliciviruses. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses, whereas MS2 and φX174 do not, for the assessment of the efficacy of membrane filtration processes to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z
2000-01-01
A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan.
Applicability of dynamic membrane technology in anaerobic membrane bioreactors.
Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B
2014-01-01
This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
This presentation will first summarize the capital and operating cost of treatment systems by type and size of the systems. The treatment systems include adsorptive media (AM) systems, iron removal (IR), coagulation/filtration (CF), ion exchange (IX) systems, and point-of-use rev...
O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D
2016-10-15
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.
Shi, Zhi; Stone, Alan T
2009-05-15
Natural organic matter (NOM) is a diverse collection of molecules, each possessing its own reductant, complexant, and adsorption properties. Here, we are interested in the ability of NOM to bring about the reductive dissolution of Pb(IV)O2(s). Adding the coagulants FeCl3 or Al2(SO4)3 followed by membrane filtration is one way to remove a subset of NOM molecules from surface water samples. Another is to pass water samples through a granular activated carbon (GAC) column. Results from applying these treatments to Great Dismal Swamp water (DSW) and Nequasset Bog Water (NBW) can best be explained as follows: (i) GAC column treatment is more efficient at removing the NOM fraction most responsible for reductive dissolution. (ii) Coagulation/filtration, with either coagulant, is most efficient at removing a second, inhibitory fraction. Inhibition may arise from (i) adsorption at the mineral/water interface, which blocks approach of reductant molecules and (ii) a micelle-like aggregate nature, which provides hydrophobic pockets that capture reductantmolecules, again keeping them away from the mineral/water interface. Hypotheses regarding reductant and inhibitory fractions are further evaluated using representative low-molecular-weight compounds. Substituted hydroquinones are used as mimics of the reductant fraction, and malonic acid, quinic acid, trehalose, alginic acid, and polygalacturonic acid are used as mimics of the inhibitory fraction.
NASA Astrophysics Data System (ADS)
Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.
2017-08-01
The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.
Treatment of dairy effluents by electrocoagulation using aluminium electrodes.
Tchamango, Serge; Nanseu-Njiki, Charles P; Ngameni, Emmanuel; Hadjiev, Dimiter; Darchen, André
2010-01-15
This work sets out to examine the efficiency of an electrolytic treatment: electrocoagulation, applied to dairy effluents. The experiments were carried out using a soluble aluminium anode on artificial wastewater derived from solutions of milk powder. The flocks generated during this treatment were separated by filtration. The analysis of the filtrates showed that the chemical oxygen demand (COD) was reduced by up to 61% while the removal of phosphorus, nitrogen contents, and turbidity were 89, 81 and 100%, respectively. An analogous treatment applied to phosphate and lactose solutions revealed that lactose was not eliminated, a fact that could account for the rather poor lowering of the COD. Compared to the chemical coagulation treatment with aluminium sulphate, the efficiency of the electrocoagulation technique was almost identical. However the wastewaters treated by electrocoagulation differed by the fact that they exhibited a lower conductivity and a neutral pH value (by contrast to the acid nature of the solution treated by the chemical coagulation). This result (low conductivity, neutral pH) tends to show that it may be possible to recycle the treated water for some industrial uses. Moreover, the electrocoagulation process uses fewer reagents: the mass of the aluminium anode dissolved during the treatment is lower compared to the quantity of the aluminium salt used in chemical coagulation. These two observations clearly show that the electrocoagulation technique is more performing. Copyright 2009 Elsevier B.V. All rights reserved.
Zhou, Zhiwei; Yang, Yanling; Li, Xing
2015-11-01
Large amounts of drinking water treatment sludge (DWTS) are produced during the flocculation or flotation process. The recycling of DWTS is important for reducing and reclaiming the waste residues from drinking water treatment. To improve the coagulation step of the DWTS recycling process, power ultrasound was used as a pretreatment to disintegrate the DWTS and degrade or inactivate the constituents that are difficult to remove by coagulation. The effects of ultrasound pretreatment on the characteristics of DWTS, including the extent of disintegration, variation in DWTS floc characteristics, and DWTS dewaterability, were investigated. The capacity of the recycling process to remove particulates and organic matter from low-turbidity surface water compared to a control treatment process without DWTS was subsequently evaluated. The coagulation mechanism was further investigated by analyzing the formation, breakage, and re-growth of re-coagulated flocs. Our results indicated that under the low energy density applied (0.03-0.033 W/mL) for less than 15 min at a frequency of 160 kHz, the level of organic solubilization was less elevated, which was evidenced by the lower release of proteins and polysaccharides and lower fluorescence intensities of humic- and protein-like substances. The applied ultrasound conditions had an adverse effect on the dewaterability of the DWTS. Ultrasound pretreatment had no significant impact on the pH or surface charge of the DWTS flocs, whereas particle size decreased slightly and the specific surface area was moderately increased. The pollution removal capacity decreased somewhat for the recycled sonicated DWTS treatment, which was primarily ascribed to organic solubilization rather than variability in the floc characteristics of sonicated DWTS. The main coagulation mechanism was floc sweeping and physical adsorption. The breakage process of the flocs formed by the recycling process displayed distinct irreversibility, and the flocs were stronger and more resistant to breakage compared to those from the control treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H
2017-11-01
The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl 3 ) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl 3 , 8% - PACl), C2 (74% - FeCl 3 , 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.
Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin
2016-04-01
Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was also determined for gabapentin, an anticonvulsant drug recently detected in drinking water resources for which suitable removal technologies are still largely unknown. Gabapentin showed poor adsorptive removal, resulting in rapid concentration increases. Whereas previous studies classified gabapentin as not readily biodegradable, sustained removal was observed after prolonged operation and points at biological elimination of gabapentin within the GAC filter. The application of GAC as filter medium was compared to direct addition of powdered activated carbon (PAC) to deep-bed filtration as a direct process alternative. Both options yielded comparable OMP removals for most compounds at similar carbon usage rates, but GAC achieved considerably higher removals for biodegradable OMPs. Based on the results, the application of GAC in combination with coagulation/filtration represents a promising alternative to powdered activated carbon and ozone for advanced wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lavonen, Elin; Kothawala, Dolly; Tranvik, Lars; Köhler, Stephan
2014-05-01
Fluorescence spectroscopy has been widely used to characterize fluorescent dissolved organic matter (FDOM) in various waters including during drinking water production. Commonly used techniques for data treatment include peak picking, indexes calculated from 2D emission spectra and modelling of fluorescence components using parallel factor analysis (PARAFAC). However, peak picking and indexes only use limited information from the fluorescence EEMs and PARAFAC requires a larger dataset and experience to perform. Because DOM is a major issue in drinking water production, and personnel at water treatment plants usually have limited time for advanced analysis we have developed a simple way of assessing the treatability of DOM in different waters using differential fluorescence. With this approach the removed fraction of FDOM is calculated from samples taken before and after a particular treatment process and the percentage of removed material assessed. Samples have been collected from four large water treatment plants in Sweden and analyzed for 3Dfluorescence, absorbance and DOC. The selective removal of DOM during e.g. flocculation and slow sand filtration as well as differences in experienced treatability between the treatment plants was described with differential fluorescence. Chemical flocculation is selective towards FDOM with red-shifted emission across the entire EEM. Red-shift has earlier been connected to condensation (i.e. decrease in H/C) and positively correlated to molecular size indicating that larger, humified molecules are being preferentially removed. During the biological process of slow sand filtration compounds with blue-shifted emission are targeted demonstrating selective removal of more freshly produced, microbial material. Disinfection with UV/NH2Cl and NaOCl was found to only target material with protein-like fluorescence suggesting that FDOM of this nature could be responsible for unwanted consumption of disinfection agent. Targeted removal of this fraction prior to disinfection should optimize the process. Furthermore, the main process at all studied WTPs is flocculation and their experienced treatability could easily be explained through the percentage of FDOM with emission above 450 nm (p<0.0001).
Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai
2018-06-02
This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.
Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.
Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M
2017-08-01
This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of drinking water treatment for virus risk assessment.
Teunis, P F M; Rutjes, S A; Westrell, T; de Roda Husman, A M
2009-02-01
Removal or inactivation of viruses in drinking water treatment processes can be quantified by measuring the concentrations of viruses or virus indicators in water before and after treatment. Virus reduction is then calculated from the ratio of these concentrations. Most often only the average reduction is reported. That is not sufficient when treatment efficiency must be characterized in quantitative risk assessment. We present three simple models allowing statistical analysis of series of counts before and after treatment: distribution of the ratio of concentrations, and distribution of the probability of passage for unpaired and paired water samples. Performance of these models is demonstrated for several processes (long and short term storage, coagulation/filtration, coagulation/sedimentation, slow sand filtration, membrane filtration, and ozone disinfection) using microbial indicator data from full-scale treatment processes. All three models allow estimation of the variation in (log) reduction as well as its uncertainty; the results can be easily used in risk assessment. Although they have different characteristics and are present in vastly different concentrations, different viruses and/or bacteriophages appear to show similar reductions in a particular treatment process, allowing generalization of the reduction for each process type across virus groups. The processes characterized in this paper may be used as reference for waterborne virus risk assessment, to check against location specific data, and in case no such data are available, to use as defaults.
Pedersen, C O; Masse, L; Hjorth, M
2014-01-01
Solid-liquid separation with flocculation can be used as pre-treatment for reverse osmosis (RO) filtration as it produces a liquid fraction (LF) low in suspended solids (SS). However, residual polymers in the LF may foul the membrane. Membrane fouling during RO filtration of swine wastewater containing polymers was investigated with respect to polymer charge density (CD), effluent SS concentration and membrane surface charge. Effluents with 765 mg/L SS and without SS were spiked with low and medium CD polymers (0-40 mg/L effluent) then processed with RO membranes having low and high negative surface charges. Fouling intensity was evaluated by comparing permeate flux and water flux recovery of fouled and cleaned membranes. For effluents containing SS, the presence of polymer reduced permeate flux by 4-16% and water flux recovery of the fouled membrane by 0-18%, relative to effluents without polymer. The extent of the fouling was higher with the low than the medium CD polymer. The fouling was mostly reversible as cleaning allowed for over 95% flux recovery, but the membrane with high negative surface charge was more susceptible to irreversible fouling. Adding the low CD polymer to feed without SS had no effect on permeate flux or flux recovery. Membrane fouling thus appeared to be caused by the polymer changing SS-membrane interaction. If flocculation is applied to pre-treat manure, a medium CD polymer should be used to optimize SS removal and a membrane with low surface charge should be selected to minimize fouling.
This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Lidgerwood, North Dakota site. The objectives of the project were to evaluate: (1) the effectiveness of process modifications to an e...
Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment
ERIC Educational Resources Information Center
Cooper, Robert C.
1975-01-01
The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the United Water Systems’ facility in Arnaudville, LA. The objectives of the project were to evaluate: (1) the effectiveness of K...
This report documents the activities performed during and the results obtained from the U.S. Environmental Protection Agency (EPA) arsenic removal technology demonstration project at the City of Sandusky, MI facility. The objectives of the project were to evaluate: 1) the effect...
This report documents the activities performed and the results obtained from the arsenic removal drinking water treatment technology demonstration project at the Village of Waynesville, IL. The main objective of the project was to evaluate the effectiveness of the Peerless coagu...
Purification of pulp and paper mill effluent using Eichornia crassipes.
Yedla, S; Mitra, A; Bandyopadhyay, M
2002-04-01
Konark Pulp and Paper Industries Private Limited is a medium size industry producing 1600 m3 of wastewater a day. The existing water treatment system of the industry was found to be ineffective both in performance and economy. In the present study, a new system of treatment has been developed using water hyacinth Eichornia crassipes, coagulation by lime and alum, followed by rapid sand filtration. The performance efficiency of each unit viz. Eichornia treatment; coagulation with lime, with alum, and with lime:alum combinations, and filtration was studied. Water quality parameters considered were Biological Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolved Solids, turbidity, percentage transmission, and water colour. Based on the individual performance of each unit, a continuous system has been designed and was tested. The new system of treatment could treat the wastewater to the discharge standards and also was found economically feasible. Testing culture of fish (tilapia) proved that the treated water could be safely discharged into natural waters. All fish tested, survived and remained healthy throughout the period of testing. Culture of fish further improved the water quality.
Ritson, Jonathan P; Bell, Michael; Graham, Nigel J D; Templeton, Michael R; Brazier, Richard E; Verhoef, Anne; Freeman, Chris; Clark, Joanna M
2014-12-15
Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.
2003-04-01
Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration, dilution, sorption, and biodegradation that can significantly improve the raw water quality (Tufenkji et al, 2002; Kuehn and Mueller, 2000; Kivimaki et al, 1998; Stuyfzand, 1998). Transport through alluvial aquifers is associated with a number of water quality benefits, including removal of microbes, pesticides, total and dissolved organic carbon (TOC and DOC), nitrate, and other contaminants (Hiscock and Grischek, 2002; Tufenkji et al., 2002; Ray et al, 2002; Kuehn and Mueller, 2000; Doussan et al, 1997; Cosovic et al, 1996; Juttner, 1995; Miettinen et al, 1994). In comparison to most groundwater sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to exploit (shallow) and more highly productive for drinking water supplies (Doussan et al, 1997). Increased applications of RBF are anticipated as drinking water utilities strive to meet increasingly stringent drinking water regulations, especially with regard to the provision of multiple barriers for protection against microbial pathogens, and with regard to tighter regulations for disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs). In the above context, research was conducted to document the water quality benefits during RBF at three major river sources in the mid-western United States, specifically with regard to DBP precursor organic matter and microbial pathogens. Specific objectives were to: 1. Evaluate the merits of RBF for removing/controlling DBP precursors and certain other drinking water contaminants (e.g. microorganisms). 2. Evaluate whether RBF can improve finished drinking water quality by removing and/or altering natural organic matter (NOM) in a manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the treatment at the other two sites in terms of removal of organic carbon and DBP precursor material. Removals of TOC and DOC upon RBF at the three sites generally ranged from 30 to 70% compared to 20 to 50% removals upon bench-scale treatment of the river waters. Reductions in precursor material for a variety of DBP precursors for trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin upon RBF ranged from 50 to 100% using both the formation potential (FP) and the uniform formation conditions (UFC) tests (Standard Methods, 1998; Summers et al., 1996), while reductions upon bench-scale treatment were generally in the range of 40 to 80%. The significantly higher reductions of the DBP precursors relative to those of TOC and DOC indicate a preferential reduction upon ground passage in the NOM that reacts with chlorine to form DBPs. Upon both bench-scale conventional treatment and RBF, a shift was observed in DBP formation from the chlorinated to the more brominated species due to the removal of DOC relative to bromide upon treatment or RBF. As DOC is removed, the bromide:DOC ratio increases, leading to the formation of more brominated DBPs. The shift was more pronounced upon RBF due to the generally higher reductions in DOC. UFC testing with a constant chlorine:DOC:bromide ratio ruled out the possibility of any significant preferential removal of the NOM precursor material for the more chlorinated DBPs. These results highlight the importance of the bromide ion in the formation of DBPs in drinking water, especially in light of the higher theoretical cancer risk associated with the brominated DBPs. Risk calculations demonstrated the ability of RBF to reduce the theoretical excess cancer risk due to THMs formed upon chlorination, in all cases, and with substantially better performance than the bench-scale treatment train. The characterization studies were carried out to evaluate whether the observed removals of DBP precursor material upon RBF reflected a preferential removal of NOM of particular character. The results of this study indicate that RBF appears to be equally capable of removing material of different character. The different removal mechanisms in the subsurface (e.g. sorption, biodegradation, filtration) combine to provide similar removal of the operationally defined hydrophilic and hydrophobic fractions of organic material upon ground passage. Thus, the reductions in DBP formation upon RBF observed during the first two phases of this research are largely the result of a decrease in the NOM concentration rather than a major shift in the NOM character. Preliminary monitoring of a number of microorganisms indicates that RBF may also serve as a significant barrier for the removal of microbial contaminants, including human pathogens. The monitoring data demonstrated >3 log removal of Clostridium spores and >2 log removal of bacteriophage. Assuming that these indicator organisms can be used as surrogates for Giardia cysts and human enteric viruses, RBF at the three study sites surpassed the performance requirements in the United States for conventional coagulation, sedimentation, and filtration (e.g., 2.5 log removal for Giardia cysts and 2.0 log removal of viruses). References Cosovic, D.; Hrsak, V.; Vojvodic, V.; &Krznaric, D., 1996. Transformation of organic matter and bank filtration from a polluted stream. Wat. Res., 30:12:2921. Doussan, C.; Poitevin, G.; Ledoux, E.; &Detay, M., 1997. River bank filtration: Modeling of the changes in water chemistry with emphasis on nitrogen species, J. Contam. Hydrol., 25:129. Hiscock, K.M. &Grischek, T., 2002. Attenuation of Groundwater Pollution by Bank Filtration. Jour. Hydrol., 266:139. Juttner, F., 1995. Elimination of Terpenoid Odorous Compounds by Slow Sand and River Bank Filtration of the Ruhr River, Germany. Wat. Sci. Tech., 31:11:211. Kivimaki, A-L.; Lahti, K.; Hatva, T.; Tuominen, S.M.; &Miettinen, I.T., 1998. Removal of organic matter during bank filtration. Artificial Recharge of Groundwater (J.H. Peters, editor). A.A. Balkema. Rotterdam, Netherlands; Brookfield, VT. Kuehn, W. &Mueller, U., 2000. Riverbank filtration: an overview. Jour. AWWA, 92:12:60. Leenheer, J.A., 1981. Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewaters. Environ. Sci. Technol., 15:5:578. Miettinen, I.T.; Martikainen, P.J.; &Vartiainen, T., 1994. Humus Transformation at the Bank Filtration Water Plant. Wat. Sci. Tech., 30:10:179. Ray, C.; Grischek, T.; Schubert, J.; Wang, J.Z.; &Speth, T.F., 2002. A perspective of riverbank filtration. Jour. AWWA, 94:4:149. Standard Methods for the Examination of Water and Wastewater, 1998 (20th ed.). APHA, AWWA, and WEF, Washington. Stuyfzand, P.J., 1998. Fate of pollutants during artificial recharge and bank filtration in the Netherlands. Artificial Recharge of Groundwater (J.H. Peters, editor). A.A. Balkema. Rotterdam, Netherlands; Brookfield, Vermont. Summers, R.S.; Hooper, S.M.; Shukairy, H.M.; Solarik, G.; &Owen, D., 1996. Assessing DBP Yield: Uniform Formation Conditions. Jour. AWWA, 88:6:80. Thurman, E.M. &Malcolm, R.L., 1981. Preparative Isolation of Aquatic Humic Substances. Environ. Sci. Technol., 15:4:463. Tufenkji, N.; Ryan, J.N.; &Elimelech, M., 2002. The Promise of Bank Filtration. Envir. Sci. &Technol., 36:21:423A.
2017-01-01
The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported. PMID:29019943
Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.
Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami
2009-05-15
The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.
Calderón, Antonio José; González, Isaías
2017-10-11
The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported.
Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima
2016-07-01
Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.
Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha
2003-07-20
A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.
Occurrence of Cryptosporidium and Giardia in raw and finished drinking water in north-eastern Spain.
Ramo, Ana; Del Cacho, Emilio; Sánchez-Acedo, Caridad; Quílez, Joaquín
2017-02-15
This paper collects the first large-sample-size study on the presence of Cryptosporidium oocysts and Giardia cysts in drinking water plants at the 20 most populated towns in Aragón (north-eastern Spain). Samples of influent raw water and effluent finished water were collected from each plant during different seasons and processed according to USEPA Method 1623. Cryptosporidium oocysts and Giardia cysts were detected in samples collected from 55% and 70% plants, respectively, with nine plants being positive for both protozoa and only four plants being negative over the study period. Both parasites were identified in the raw water throughout the year, with a lower frequency in autumn and a peak in winter, at a mean concentration of 67±38 oocysts per 100l and 125±241 cysts per 100l. The turbidity of raw water was not related to the presence or concentration of (oo)cysts, and the (oo)cyst removal efficiency was not related to the type of water treatment. One or both pathogens were identified in the finished water in 7 out of 11 plants with a conventional treatment process (coagulation, flocculation, sedimentation, filtration, and disinfection processes) compared to 4 out of 9 plants that did not apply one of the pre-chlorination treatment steps. Protozoa were detected in the finished water of positive plants at a mean concentration of 88±55 oocysts per 100l and 37±41 cysts per 100l, and most of them excluded propidium iodide so were considered potentially viable. The ubiquity of these parasites in the drinking water sources and the inefficiency of conventional water treatment in reducing/inactivating them may present a serious public health issue in this geographical area. Copyright © 2016 Elsevier B.V. All rights reserved.
Hua, Wenyi; Bennett, Erin R; Letcher, Robert J
2006-07-01
The depletion and degradation of pharmacologically active compounds (PhACs) and pesticides as a function of ozonation in drinking water treatment processes is not well studied. The A.H. Weeks drinking water treatment plant (DWTP) serves the City of Windsor, Ontario Canada, and incorporates ozone treatment into the production of drinking water. This DWTP also operates a real-time, scaled down pilot plant, which has two parallel streams, conventional and ozone plus conventional treatments. In this study water samples were collected from key points in the two streams of the pilot plant system to determine the depletion and influence of seasonal changes in water processing parameters on eighteen major PhACs (and metabolites) and seven s-triazines herbicides. However, only carbamazepine (antiepileptic), caffeine (stimulant), cotinine (metabolite of nicotine) and atrazine were consistently detectable in the raw water intake (low to sub-ng/L level). Regardless of the seasonality, the flocculation-coagulation and dual media filtration steps without ozone treatment resulted in no decrease in analyte concentrations, while decreases of 66-100% (undetectable, method detection limits 0.05-1 ng/L) of the analyte concentrations were observed when ozone treatment was part of the water processing. These findings demonstrate that ozone treatment is highly effective in depleting carbamazepine, caffeine, cotinine, and atrazine, and thus is highly influential in the fate of these compounds in drinking water treatment regardless of the seasonal time frame. Currently very few Canadian DWTPs incorporate ozonation into conventional treatment, which suggests that human exposure to these compounds via drinking water consumption may be an issue in affected communities.
Method for processing aqueous wastes
Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.
1993-01-01
A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.
Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants
Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong
2014-01-01
The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394
Chon, Kangmin; Cho, Jaeweon; Kim, Seung Joon; Jang, Am
2014-12-01
A pilot study was conducted to assess the performance of a municipal wastewater reclamation plant consisting of a combined coagulation-disk filtration (CC-DF) process, microfiltration (MF) and reverse osmosis (RO) membranes, in terms of the removal of water contaminants and changes in characteristics of effluent organic matter (EfOM). The CC-DF and MF membranes were not effective for the removal of dissolved water contaminants. However, they could partially reduce the turbidity associated with the cake layer formation by particulate materials on the membrane surfaces. Furthermore, most of water contaminants were completely removed by the RO membranes. Although the CC-DF process could remove approximately 20% of turbidity, the aluminium concentrations considerably increased after the CC-DF process due to the residual coagulants complexed with both carboxylic acid and alcohol functional groups of EfOM. Those aluminium-EfOM complexes had a lower negative charge and higher molecular weight (>0.1 μm pore size of the MF membranes) compared to non-complexed EfOM. These results indicate that the control of the formation of the aluminium-EfOM complexes should be considered as a key step to use the CC-DF process as a pre-treatment of the MF and RO membranes for mitigation of membrane fouling in the tested pilot plant. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of water in slip casting
NASA Technical Reports Server (NTRS)
Mccauley, R. A.; Phelps, G. W.
1984-01-01
Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-01-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-03-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, L.; Lacy, W.J.; Dlugosz, J.J.
This book contains the Proceedings from an International Conference on Chemistry for the Protection of the Environment held in Lublin, Poland, September 4-7, 1989. It opens with a tribute to Andre Van Haute who was a member of the Committee on the title subject and who died in 1989. This is followed by a preface by the editors and 70 chapters, which are grouped under the following headings: General Problems; Monitoring Methods for Surface and Ground water and Analysis of Pollutants; Pathways of Chemicals in the Environment; Physicochemical Treatment: Ion Exchange; Physicochemical Treatment: Coagulation, Flocculation and Sorption; Physicochemical Treatment: Oxidation-Reductionmore » Processes; Physicochemical Treatment; Membrane Processes; and Miscellaneous Methods for Removal of Pollutants. There is a brief subject index.« less
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the Village of Pentwater, MI facility. The objectives of the project were to evaluate: (1) the effectiveness of Kinetico’s FM-260...
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the City of Okanogan, WA facility. The objectives of the project were to evaluate: (1) the effectiveness of Filtronics’ FH-13 Ele...
This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the City of Three Forks, MT facility. The objectives of the project were to evaluate: 1) the effectiveness of Kinetico’s FM-248-A...
This report documents the activities performed during and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the City of Sandusky, MI facility. The objectives of the project are to evaluate 1) the effectiveness of Siemen...
Tiwari, Sangya-Sangam K; Schmidt, Wolf-Peter; Darby, Jeannie; Kariuki, Z G; Jenkins, Marion W
2009-11-01
Measure effectiveness of intermittent slow sand filtration for reducing child diarrhoea among households using unimproved water sources in rural Kenya. A randomized controlled trail was conducted among populations meeting a high-risk profile for child diarrhoea from drinking river water in the River Njoro watershed. Intervention households (30) were provided the concrete BioSand Filter and instructed on filter use and maintenance. Control households (29) continued normal practices. Longitudinal monthly monitoring of diarrhoea (seven-day daily prevalence recall) and of influent, effluent, and drinking water quality for fecal coliform was conducted for 6 months. Intervention households had better drinking water quality than control households (fecal coliform geometric mean, 30.0 CFU vs. 89.0 CFU/100 ml, P < 0.001) and reported significantly fewer diarrhoea days (86 days over 626 child-weeks) compared to controls (203 days over 558 child-weeks) among children up to 15 (age-adjusted RR 0.46; 95 % CI = 0.22, 0.96). Greater child diarrhoea reduction due to the intervention (age-adjusted RR 0.23, 95 % CI = 0.10, 0.51) was observed among the sub-group using unimproved water sources all of the time. Intermittent slow sand filtration, a non-commercial technology, produces similar observed effects on child diarrhoea as commercial POU products, adding to the range of effective options for poor populations (chlorination, ceramic filtration, solar disinfection, flocculation/disinfection).
Christensen, Ekaterina; Nilsen, Vegard; Håkonsen, Tor; Heistad, Arve; Gantzer, Christophe; Robertson, Lucy J; Myrmel, Mette
2017-10-01
The present work evaluates the effect of contact filtration, preceded by coagulation with zirconium (Zr) and chitosan coagulants, on model microorganisms and waterborne pathogens. River water intended for potable water production was spiked with MS2 and Salmonella Typhimurium 28B bacteriophages, Escherichia coli, and Cryptosporidium parvum oocysts prior to coagulation. The hygienic performance demonstrated by Zr comprised 3.0-4.0 log 10 removal of viruses and 5.0-6.0 log 10 removal of E. coli and C. parvum oocysts. Treatment with chitosan resulted in a removal of 2.5-3.0 log 10 of viruses and parasites, and 4.5-5.0 log 10 of bacteria. A reference coagulant, polyaluminium chloride (PACl), gave a 2.5-3.0 log 10 removal of viruses and 4.5 log 10 of E. coli. These results indicate that both Zr and chitosan enable adequate removal of microorganisms from surface water. The present study also attempts to assess removal rates of the selected microorganisms with regard to their size and surface properties. The isoelectric point of the Salmonella Typhimurium 28B bacteriophage is reported for the first time. The retention of the selected microorganisms in the filter bed appeared to have some correlation with their size, but the effect of the charge remained unclear.
Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R
2017-03-01
The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.
Kosaka, Koji; Asami, Mari; Kobashigawa, Naoya; Ohkubo, Keiko; Terada, Hiroshi; Kishida, Naohiro; Akiba, Michihiro
2012-09-15
The presence of radionuclides at five water purification plants was investigated after an explosion at a nuclear power plant hit by the Great East Japan Earthquake on 11 March 2011. Radioactive iodine (¹³¹I) and cesium (¹³⁴Cs and ¹³⁷Cs) were detected in raw water in Fukushima and neighboring prefectures. ¹³¹I was not removed by coagulation-flocculation-sedimentation. ¹³¹I was removed by granular activated carbon (GAC) and powdered activated carbon (PAC) at a level of about 30%-40%, although ¹³¹I was not removed in some cases. This was also confirmed by laboratory-scale experiments using PAC. The removal percentages of ¹³¹I in river and pond waters by 25 mg dry/L of PAC increased from 36% to 59% and from 41% to 48%, respectively, with chlorine dosing before PAC. ¹³⁴Cs and ¹³⁷Cs were effectively removed by coagulation at both a water purification plant and in laboratory-scale experiments when turbidity was relatively high. In contrast, ¹³⁴Cs and ¹³⁷Cs in pond water with low turbidity were not removed by coagulation. This was because ¹³⁴Cs and ¹³⁷Cs in river water were present mainly in particulate form, while in pond water they were present mainly as cesium ions (¹³⁴Cs+ and ¹³⁷Cs+). However, the removal of ¹³⁴Cs and ¹³⁷Cs in pond water by coagulation increased markedly when ¹³⁴Cs and ¹³⁷Cs were mixed with sediment 24 h before coagulation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular fractionation of dissolved organic matter with metal salts.
Riedel, Thomas; Biester, Harald; Dittmar, Thorsten
2012-04-17
Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ∼9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ∼1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.
Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad
2014-09-01
Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.
Scheurer, Marco; Michel, Amandine; Brauch, Heinz-Jürgen; Ruck, Wolfgang; Sacher, Frank
2012-10-01
Metformin, an antidiabetic drug with one of the highest consumption rates of all pharmaceuticals worldwide, is biologically degraded to guanylurea in wastewater treatment plants. Due to high metformin influent concentrations of up to 100 μg/L and its high but incomplete degradation both compounds are released in considerable amounts of up to several tens of μg/L into recipient rivers. This is the first systematic study on their environmental fate and the effectiveness of treatment techniques applied in waterworks to remove metformin and guanylurea from surface water influenced raw waters. The concentrations in surface waters depend strongly on the respective wastewater burden of rivers and creeks and are typically in the range of about 1 μg/L for metformin and several μg/L for guanylurea but can reach elevated average concentrations of more than 3 and 20 μg/L, respectively. Treatment techniques applied in waterworks were investigated by an extended monitoring program in three facilities and accompanied by laboratory-scale batch tests. Flocculation and activated carbon filtration proved to be ineffective for removal of metformin and guanylurea. During ozonation and chlorination experiments with waterworks-relevant ozone and chlorine doses they were partly transformed to yet unknown compounds. The effectiveness of the treatment steps under investigation can be ordered chlorination > ozonation > activated carbon filtration > flocculation. However, most effective for removal of both compounds at the three full-scale waterworks studied proved to be an underground passage (riverbank filtration or artificial groundwater recharge). A biological degradation is most likely as sorption can be neglected. This is based on laboratory batch tests conducted with three different soil materials according to OECD guideline 106. Since such treatment steps were implemented in all three drinking water treatment plants, even traces of metformin and its metabolite guanylurea could not be detected at the end of the treatment trains. Both can only be expected in finished drinking water if surface influenced raw water is used by direct abstraction without underground passage. Copyright © 2012 Elsevier Ltd. All rights reserved.
This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Conneaut Lake Park (the Park) in Conneaut Lake, PA. The main objective of the project was to evaluate the effectiveness of AdEdge Techno...
Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan
2016-07-01
Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.
Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping
2016-05-15
Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered sludge cakes were obtained, with less small pores (1-10 nm) that contributed to water affinity, but with more large pores (>10 nm) that contributed to a permeable, rigid lattice structure. Morphology of the Fenton-conditioned sludge cake exhibited a porous structure. The estimated cost of the composite conditioner, Fenton's reagent and lime, is USD$ 43.8/t DS, which is less than that of ferric chloride and lime (USD$ 54/t DS). Furthermore, pH of the final filtrate using this composite conditioner is about 6.6. Comparatively, that using ferric chloride and lime is as high as 12.4. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ferguson, J H
1942-03-20
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (+/-0.2) pH in salt-containing buffer solutions and pH = 5.3 (+/-0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution.
Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.
Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A
2016-03-01
New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).
Otto, N; Platz, S; Fink, T; Wutscherk, M; Menzel, U
2016-01-01
One key technology to eliminate organic micropollutants (OMP) from wastewater effluent is adsorption using powdered activated carbon (PAC). To avoid a discharge of highly loaded PAC particles into natural water bodies a separation stage has to be implemented. Commonly large settling tanks and flocculation filters with the application of coagulants and flocculation aids are used. In this study, a multi-hydrocyclone classifier with a downstream cloth filter has been investigated on a pilot plant as a space-saving alternative with no need for a dosing of chemical additives. To improve the separation, a coarser ground PAC type was compared to a standard PAC type with regard to elimination results of OMP as well as separation performance. With a PAC dosing rate of 20 mg/l an average of 64.7 wt% of the standard PAC and 79.5 wt% of the coarse-ground PAC could be separated in the hydrocyclone classifier. A total average separation efficiency of 93-97 wt% could be reached with a combination of both hydrocyclone classifier and cloth filter. Nonetheless, the OMP elimination of the coarse-ground PAC was not sufficient enough to compete with the standard PAC. Further research and development is necessary to find applicable coarse-grained PAC types with adequate OMP elimination capabilities.
Characterization of water treatment sludge and its reuse as coagulant.
Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab
2016-11-01
Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.
Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe
2012-05-15
The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of bacteriophages removal showed significant differences, especially for GA bacteriophage. These results could provide recommendations for drinking water suppliers in terms of selection criteria for membranes. MS2 bacteriophage is widely used as a surrogate for pathogenic waterborne viruses in Europe and the United States. In this study, the choice of MS2 bacteriophage as the best surrogate to be used for assessment of the effectiveness of drinking water treatment in removal of pathogenic waterborne viruses in worst conditions is clearly challenged. It was shown that GA bacteriophage is potentially a better surrogate as a worst case than MS2. Considering GA bacteriophage as the best surrogate in this study, a chlorine disinfection step could guaranteed a complete removal of this model and ensure the safety character of drinking water plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Colindres, Romulo E; Jain, Seema; Bowen, Anna; Mintz, Eric; Domond, Polyana
2007-09-01
Tropical Storm Jeanne struck Haiti in September 2004, causing widespread flooding which contaminated water sources, displaced thousands of families and killed approximately 2,800 people. Local leaders distributed PūR, a flocculent-disinfectant product for household water treatment, to affected populations. We evaluated knowledge, attitudes, practices, and drinking water quality among a sample of PūR recipients. We interviewed representatives of 100 households in three rural communities who received PūR and PūR-related education. Water sources were tested for fecal contamination and turbidity; stored household water was tested for residual chlorine. All households relied on untreated water sources (springs [66%], wells [15%], community taps [13%], and rivers [6%]). After distribution, PūR was the most common in-home treatment method (58%) followed by chlorination (30%), plant-based flocculation (6%), boiling (5%), and filtration (1%). Seventy-eight percent of respondents correctly answered five questions about how to use PūR; 81% reported PūR easy to use; and 97% reported that PūR-treated water appears, tastes, and smells better than untreated water. Although water sources tested appeared clear, fecal coliform bacteria were detected in all sources (range 1 - >200 cfu/100 ml). Chlorine was present in 10 (45%) of 22 stored drinking water samples in households using PūR. PūR was well-accepted and properly used in remote communities where local leaders helped with distribution and education. This highly effective water purification method can help protect disaster-affected communities from waterborne disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoshaug, Eric P; Mohagheghi, Ali; Nagle, Nicholas J
Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid wasmore » recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.« less
Method for processing aqueous wastes
Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.
1993-12-28
A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.
Removal of Arsenic from Drinking Water by Adsorption and Coagulation
NASA Astrophysics Data System (ADS)
Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.
2013-12-01
Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment, Arsenic, Adsorption, Coagulation, Drinking Water, Bangladesh
Test of precoat filtration technology for treatment of swimming pool water.
Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup
2018-02-01
The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.
Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi
2015-12-01
Bee venom (BV) is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera) on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50), and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Blood samples were obtained from 10 rabbits, and the prothrombin time (PT) and the partial thromboplastin time (PTT) tests were conducted. The approximate lethal dose (LD) values of BV were determined. Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs) = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa), respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2) and melittin, and that can increase the blood clotting times in vitro.
Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka
2013-04-15
Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi
2015-01-01
Objectives: Bee venom (BV) is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera) on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50), and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Blood samples were obtained from 10 rabbits, and the prothrombin time (PT) and the partial thromboplastin time (PTT) tests were conducted. The approximate lethal dose (LD) values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs) = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa), respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2) and melittin, and that can increase the blood clotting times in vitro. PMID:26998384
Zhang, Xiang; Ma, Jun; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing
2015-12-30
Comparatively investigated the different effects of Fe2(SO4)3 coagulation-filtration and FeCl3 coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl3, Fe2(SO4)3 showed a higher Mo (VI) removal efficiency at pH 4.00-5.00, but an equal removal efficiency at pH 6.00-9.00. (2) The optimum Mo (VI) removal by Fe2(SO4)3 was achieved at pH 5.00-6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs. Copyright © 2015 Elsevier B.V. All rights reserved.
Research About the Corosive Effects of FeCl3 in the Aeration Wastewater Basin
NASA Astrophysics Data System (ADS)
Panaitescu, C.; Petrescu, M. G.
2018-01-01
Biological aeration of industrial wastewater is a very impressive process in the treatment of wastewater. The involvement of chemical reagents in this process, however, implies the intensification of the corrosion processes due to both pollutants in the wastewater and the chemical reactions that occur when the coagulation / flocculation reagents are added. This paper explores the action of ferric chloride (FeCl3) on metallic parts in the aeration basin. The most affected structures are metal. At the classical basins the aeration systems were made of P295GH materials. The corrosion produced is uneven. The analysis of the high degree of corrosion was done according to the national and international standards. Finally, the paper supports the replacement of the existing aeration system with an anticorrosive material.
Treatment of cotton textile wastewater using lime and ferrous sulfate.
Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K
2003-05-01
This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.
Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin
2015-01-01
Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.
Pollock, K G J; Young, D; Robertson, C; Ahmed, S; Ramsay, C N
2014-01-01
Previous evidence has suggested an association between cryptosporidiosis and consumption of unfiltered drinking water from Loch Katrine in Scotland. Before September 2007, the water was only micro-strained and chlorinated; however, since that time, coagulation and rapid gravity filtration have been installed. In order to determine risk factors associated with cryptosporidiosis, including drinking water, we analysed data on microbiologically confirmed cases of cryptosporidiosis from 2004 to 2010. We identified an association between the incidence of cryptosporidiosis and unfiltered Loch Katrine drinking water supplied to the home (odds ratio 1.86, 95% confidence interval 1.11-3.11, P = 0.019). However, while filtration appears to be associated with initially reduced rates of cryptosporidiosis, evidence suggests it may paradoxically make those consumers more susceptible to other transmission routes in the long-term. These findings support implementation of similar treatment for other unfiltered drinking-water supplies, as a means of reducing cryptosporidiosis associated with drinking water.
Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom
2017-03-01
Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.
Babaie, Mahdi; Zolfagharian, Hossein; Salmanizadeh, Hossein; Mirakabadi, Abbas Zare; Alizadeh, Hafezeh
2013-01-01
Many snake venoms comprise different factors, which can either promote or inhibit the blood coagulation pathway. Coagulation disorders and hemorrhage belong to the most prominent features of bites of the many vipers. A number of these factors interact with components of the human blood coagulation. This study is focused on the effect of Echis carinatus snake venom on blood coagulation pathway. Anticoagulant factors were purified from the Iranian Echis carinatus venom by two steps: gel filtration (Sephadex G-75) and ion-exchange (DEAE-Sephadex) chromatography, in order to study the anticoagulant effect of crude venom and their fractions. The prothrombin time was estimated on human plasma for each fraction. Our results showed that protrombin time value was increase from 13.4 s to 170 s for F2C and to 280 s for F2D. Our study showed that these fractions of the venom delay the prothrombine time and thus can be considered as anticoagulant factors. They were shown to exhibit proteolytic activity. The molecular weights of these anticoagulants (F2C, F2D) were estimated by SDS/PAGE electrophoresis. F2C comprises two protein bands with molecular weights of 50 and 79 kDa and F2D a single band with a molecular weight of 42 kDa.
Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.
Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel
2017-07-01
Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Structure-function characterization and optimization of a plant-derived antibacterial peptide.
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-09-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.
Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles
2017-02-01
Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.
Ferguson, John H.
1942-01-01
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (±0.2) pH in salt-containing buffer solutions and pH = 5.3 (±0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution. PMID:19873299
Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J
2017-06-01
Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.
Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-01-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062
Waterborne viral infections and their prevention
Chang, Shih L.
1968-01-01
Unless special measures are taken, community water supplies are likely to contain enteric viruses which may lead to sporadic cases, or even epidemics, of such diseases as infectious hepatitis or poliomyelitis. After a general discussion of waterborne viral infections, in which it is pointed out that subclinical infections may considerably outnumber clinical cases, the author proposes a method for the concentration and detection of enteric viruses in water by means of membrane filtration and growth on monkey-kidney-cell or other tissue cultures. The various methods of disinfection of water which can reduce the virus concentration to an acceptable level are discussed, and it is concluded that flocculation and filtration followed by chlorination, or ozonation followed by chlorination, are adequate methods where large volumes of water are to be treated. In developing countries where relatively small volumes of water have to be treated, iodination appears to offer certain advantages, allowing the construction of a simple water-treatment plant requiring little supervision. However, until the long-term effects of iodine, in particular on pregnant women and young children, are known iodination plants should be used only on an experimental basis. PMID:5302332
Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab
2013-12-19
Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0.-6 0 kg CO2 eq. /produced m3) are the process-units with higher environmental impacts.- Energy consumption is the main source of impacts on climate change.- Chemicals consumption (e.g. coagulants, oxidants) are the principle cause of impacts on the ozone layer depletion.- Conventional plants: pre-treatment has high GHG emissions due to chemicals consumption.
Importance of calcium and magnesium in water - water hardening
NASA Astrophysics Data System (ADS)
Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.
2017-10-01
Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower (< 1 mmol/L) and higher (> 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.
Pasaoglu, Mehmet Emin; Guclu, Serkan; Koyuncu, Ismail
Polyethersulfone (PES)/polyacrylonitrile (PAN) membranes have been paid attention among membrane research subjects. However, very few studies are included in the literature. In our study, asymmetric ultrafiltration (UF) membranes were prepared from blends of PES/PAN with phase inversion method using water as coagulation bath. Polyvinylpyrrolidone (PVP) with Mw of 10,000 Da was used as pore former agent. N,N-dimethylformamide was used as solvent. The effects of different percentage of PVP and PES/PAN composition on morphology and water filtration properties were investigated. Membrane performances were examined using pure water and lake water filtration studies. Performances of pure water were less with the addition of PAN into the PES polymer casting solutions. However, long-term water filtration tests showed that PES/PAN blend membranes anti-fouling properties were much higher than the neat PES membranes. The contact angles of PES/PAN membranes were lower than neat PES membranes because of PAN addition in PES polymer casting solutions. Furthermore, it was found that PES/PAN blend UF membranes' dynamic mechanical analysis properties in terms of Young's modules were less than neat PES membrane because of decreasing amount of PES polymer.
1983-09-01
tion of appropriate isotherm and rate model parameters for TOC and one SOC. - Evaluation of GAC design alternatives at different treatment...permits an estimate of corrosion rates , based on weight loss of pipe inserts maintained in continuous contact with the finished water. With respect to the...coagulation, sedimentation, recarbonation, gravity filtration, GAC adsorption at twice the contact time, ozone and chloramine for final disinfection. An
NASA Astrophysics Data System (ADS)
He, Dong; Liu, Jiao; Hao, Qiang; Ran, Lihua; Zhou, Bin; Tang, Xuexi
2016-03-01
Algal allelopathy is a manifold ecological/physiological phenomenon that is focused on chemical interactions and autotoxicity. We investigated the allelopathic interactions between Karenia mikimotoi and Dunaliella salina in laboratory cultures based on diff erent temperature (15°C, 20°C, and 25°C) and lighting (40, 80, and 160 μmol/(m2·s)) conditions. The growth of D. salina in bi-algae culture (1:1 size/density) was significantly restrained. The results of cell-free filtrate culture indicate that direct cell-tocell contact was not necessary in interspecific competition. Further experimental results demonstrated that allelochemicals released from K. mikimotoi were markedly influenced by both temperature ( P =0.013) and irradiance ( P =0.003), resulting in diff erent growth characteristics of D. salina in filtrate mediums. Compared with the plateau period, K. mikimotoi exudates in the exponential phase had a stronger short-term inhibition effect on D. salina in normal conditions. A clear concentration-dependent relationship was observed in the effect of allelochemicals released from K. mikimotoi with low-promoting and high-repressing effects on D. Salina in a short time-scale. In addition, allelopathic substances remain stable and effective under high temperature and pressure stress. Many flocculent sediments adhering with D. salina cells were observed in all filtrate mediums, while the quantity and color depended on the original culture conditions.
Chitosan use in chemical conditioning for dewatering municipal-activated sludge.
Zemmouri, H; Mameri, N; Lounici, H
2015-01-01
This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.
Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D
2015-11-01
The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (<50 μg L(-1)). Overall, the examined hybrid process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Srithep, Sirinthip; Phattarapattamawong, Songkeart
2017-06-01
The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ghazy, S E; Mahmoud, I A; Ragab, A H
2006-01-01
Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.
Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.
Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle
2016-09-15
In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.
Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela
2016-01-01
This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.
Yeast flocculation: New story in fuel ethanol production.
Zhao, X Q; Bai, F W
2009-01-01
Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.
Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture
NASA Technical Reports Server (NTRS)
1983-01-01
A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.
Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik
2011-01-01
Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.
Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K; Aochi, A
2017-03-15
We examined the removal of representative contaminant candidate list (CCL) viruses (coxsackievirus [CV] B5, echovirus type [EV] 11, and hepatitis A virus [HAV] IB), recombinant norovirus virus-like particles (rNV-VLPs), and murine norovirus (MNV) type 1 by coagulation. Water samples were subjected to coagulation with polyaluminum chloride (PACl, basicity 1.5) followed by either settling or settling and filtration. Together with our previously published results, the removal ratio order, as evaluated by a plaque-forming-unit method or an enzyme-linked immunosorbent assay after settling, was HAV>EV=rNV-VLPs≥CV=poliovirus type 1=MNV>adenovirus type 40 (range, 0.1-2.7-log 10 ). Infectious HAV was likely inactivated by the PACl and therefore was removed to a greater extent than the other viruses. A nonsulfated high-basicity PACl (basicity 2.1), removed the CCL viruses more efficiently than did two other sulfated PACls (basicity 1.5 or 2.1), alum, or ferric chloride. We also examined the removal ratio of two bacteriophages. The removal ratios for MS2 tended to be larger than those of the CCL viruses, whereas those for φX174 were comparable with or smaller than those of the CCL viruses. Therefore, φX174 may be a useful conservative surrogate for CCL viruses during coagulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent.
Lehman, S Geno; Liu, Li
2009-04-01
Membrane fouling is an inevitable problem when microfiltration (MF) and ultrafiltraion (UF) are used to treat wastewater treatment plant (WWTP) effluent. While historically the use of MF/UF for water and wastewater treatment has been almost exclusively focused on polymeric membranes, new generation ceramic membranes were recently introduced in the market and they possess unique advantages over currently available polymeric membranes. Ceramic membranes are mechanically superior and are more resistant to severe chemical and thermal environments. Due to the robustness of ceramic membranes, strong oxidants such as ozone can be used as pretreatment to reduce the membrane fouling. This paper presents results of a pilot study designed to investigate the application of new generation ceramic membranes for WWTP effluent treatment. Ozonation and coagulation pretreatment were evaluated to optimize the membrane operation. The ceramic membrane demonstrated stable performance at a filtration flux of 100 gfd (170LMH) at 20 degrees C with pretreatment using PACl (1mg/L as Al) and ozone (4 mg/L). To understand the effects of ozone and coagulation pretreatment on organic foulants, natural organic matter (NOM) in four waters - raw, ozone treated, coagulation treated, and ozone followed by coagulation treated wastewaters - were characterized using high performance size exclusion chromatography (HPSEC). The HPSEC analysis demonstrated that ozone treatment is effective at degrading colloidal NOMs which are likely responsible for the majority of membrane fouling.
Zhang, Bo; Chen, Sanfeng
2015-09-01
In this study, flocculation of Chlorella sorokiniana cultivated in swine manure wastewater, BG-11 medium and BG-11 medium supplemented with different organic matters (glucose, urea and tryptone) was investigated. The results demonstrated that the minimum amount of Al(3+) required for complete flocculation in wastewater would increase substantially, and flocculation efficiency became highly sensitive to pH. Tryptone could cause similar extent of inhibition on flocculation as in wastewater. Meanwhile, glucose could increase concentrations of Algogenic Organic Matter (AOM), inhibiting flocculation strongly at higher pH, including flocculation induced by Al(3+) and autoflocculation. However, urea had little effect on flocculation of C. sorokiniana. Moreover, the major factors: dilution times, pH and flocculants dosage, which had significant impact on flocculation efficiency of C. sorokiniana in piggery wastewater, were optimized using response surface methodology (RSM). The optimal flocculation efficiency (100%) was achieved at pH 8.5, 7-folds of dilution and 52.14 mg L(-1) of Al(3+). Copyright © 2015 Elsevier Ltd. All rights reserved.
Coagulation processes of kaolinite and montmorillonite in calm, saline water
NASA Astrophysics Data System (ADS)
Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.
2018-03-01
A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.
Henneberry, Yumiko K.; Kraus, Tamara; Krabbenhoft, David P.; Horwath, William R.
2015-01-01
The presence of mercury (Hg), particularly methylmercury (MeHg), is a concern for both human and ecological health as MeHg is a neurotoxin and can bioaccumulate to lethal levels in upper trophic level organisms. Recent research has demonstrated that coagulation with metal-based salts can effectively remove both inorganic mercury (IHg) and MeHg from solution through association with dissolved organic matter (DOM) and subsequent flocculation and precipitation. In this study, we sought to further examine interactions between Hg and DOM and the resulting organo-metallic precipitate (floc) to assess if (1) newly added IHg could be removed to the same extent as ambient IHg or whether the association between IHg and DOM requires time, and (2) once formed, if the floc has the capacity to remove additional Hg from solution. Agricultural drainage water samples containing ambient concentrations of both DOM and IHg were spiked with a traceable amount of isotopically enriched IHg and dosed with ferric sulfate after 0, 1, 5, and 30 days. Both ambient and newly added IHg were removed within hours, with 69–79 % removed. To a separate sample set, isotopically enriched IHg was added to solution after floc had formed. Under those conditions, 81–95 % of newly added Hg was removed even at Hg concentrations 1000-fold higher than ambient levels. Results of this study indicate coagulation with ferric sulfate effectively removes both ambient and newly added IHg entering a system and suggests rapid association between IHg and DOM. This work also provides new information regarding the ability of floc to remove additional Hg from solution even after it has formed.
Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua
2015-10-01
Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.
Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.
Wang, L; Wang, B
2000-01-01
The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.
Microbial Flocculant for Nature Soda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Peiyong; Zhang, Tong; Chen, Cuixian
2004-03-31
Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculantmore » was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.« less
Adsorption of heavy metal in freeway by asphalt block
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2017-08-01
Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.
Modeling Blood Filtration in the Treatment of Septic Shock
NASA Astrophysics Data System (ADS)
Foster, Glenn; Hubler, Alfred
2007-03-01
Sepsis, the overreaction of the inflammation and coagulation responses to infection, is the leading cause of death in non-coronary intensive care unit patients in the US. Anti-mediator drugs have been generally ineffective, but by considering the network of cytokine interactions, we illustrate how filtering the cytokines in the blood leads to a reduced response. We further illustrate by applying an appropriate filter to existing immune response models as well as discuss both practical and optimal filter parameters.
Flocculation of kaolin and lignin by bovine blood and hemoglobin
USDA-ARS?s Scientific Manuscript database
Polymeric flocculants are used extensively for water purification, inhibition of soil erosion, and reduction in water leakage from unlined canals. Production of highly active, renewable polymeric flocculants to replace synthetic flocculants is a priority. Using suspensions of kaolin, flocculation ...
Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae.
Soares, E V; Vroman, A
2003-01-01
To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.
Removal of pharmaceuticals during drinking water treatment.
Ternes, Thomas A; Meisenheimer, Martin; McDowell, Derek; Sacher, Frank; Brauch, Heinz-Jürgen; Haist-Gulde, Brigitte; Preuss, Gudrun; Wilme, Uwe; Zulei-Seibert, Ninette
2002-09-01
The elimination of selected pharmaceuticals (bezafibrate, clofibric acid, carbamazepine, diclofenac) during drinking water treatment processes was investigated at lab and pilot scale and in real waterworks. No significant removal of pharmaceuticals was observed in batch experiments with sand under natural aerobic and anoxic conditions, thus indicating low sorption properties and high persistence with nonadapted microorganisms. These results were underscored by the presence of carbamazepine in bank-filtrated water with anaerobic conditions in a waterworks area. Flocculation using iron(III) chloride in lab-scale experiments (Jar test) and investigations in waterworks exhibited no significant elimination of the selected target pharmaceuticals. However, ozonation was in some cases very effective in eliminating these polar compounds. In lab-scale experiments, 0.5 mg/L ozone was shown to reduce the concentrations of diclofenac and carbamazepine by more than 90%, while bezafibrate was eliminated by 50% with a 1.5 mg/L ozone dose. Clofibric acid was stable even at 3 mg/L ozone. Under waterworks conditions, similar removal efficiencies were observed. In addition to ozonation, filtration with granular activated carbon (GAC) was very effective in removing pharmaceuticals. Except for clofibric acid, GAC in pilot-scale experiments and waterworks provided a major elimination of the pharmaceuticals under investigation.
Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.
Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei
2017-09-01
In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stumpner, Elizabeth; Kraus, Tamara; Liang, Yan; Bachand, Sandra M.; Horwath, William R.; Bachand, Philip A.M.
2018-01-01
In many regions of the world, subsidence of organic rich soils threatens levee stability and freshwater supply, and continued oxidative loss of organic matter contributes to greenhouse gas production. To counter subsidence in the Sacramento-San Joaquin Delta of northern California, we examined the feasibility of using constructed wetlands receiving drainage water treated with metal-based coagulants to accrete mineral material along with wetland biomass, while also sequestering carbon in wetland sediment. Nine field-scale wetlands were constructed which received local drainage water that was either untreated (control), or treated with polyaluminum chloride (PAC) or iron sulfate (FeSO4) coagulants. After 23 months of flooding and coagulant treatment, sediment samples were collected near the inlet, middle, and outlet of each wetland to determine vertical accretion rates, bulk density, sediment composition, and carbon sequestration rates. Wetlands treated with PAC had the highest and most spatially consistent vertical accretion rates (~6 cm year-1), while the FeSO4 wetlands had similarly high accretion rates near the inlet but rates similar to the untreated wetland (~1.5 cm year-1) at the middle and outlet sites. The composition of the newly accreted sediment in the PAC and FeSO4 treatments was high in the added metal (aluminum and iron, respectively), but the percent metal by weight was similar to native soils of California. As has been observed in other constructed wetlands, the newly accreted sediment material had lower bulk densities than the native soil material (0.04-0.10 g cm-3 versus 0.2-0.3 g cm-3), suggesting these materials will consolidate over time. Finally, this technology accelerated carbon burial, with rates in PAC treated wetland (0.63 kg C m-2 yr-1) over 2-fold greater than the untreated control (0.28 kg C m-2 yr-1). This study demonstrates the feasibility of using constructed wetlands treated with coagulants to reverse subsidence by accreting the resulting organo-metal flocculent and storing carbon at rates exceeding untreated wetlands. Management and design questions remain for how to best integrate this technology into heavily subsided land to lower the risks and consequences associated with levee failure, improve water quality, and ultimately restore these lands to tidal wetlands.
Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.
Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862
Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
Ma, Xiaochen; Zheng, Hongli; Zhou, Wenguang; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2016-10-01
In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.
Doke, Suresh M; Yadav, Ganapati D
2014-12-01
In this study, titania nanoparticles were synthesized by combustion and used to make ultrafiltration membrane. Characteristics of titania membranes such as textural evaluation, surface morphology, pure water permeability and protein rejection were investigated. Titania membrane sintered at 450 °C showed pure water permeability 11 × 10−2 L h−1 m−2 kPa−1 and 76% protein rejection. The membrane presented good water flux and retention properties with regards to protein and methylene blue dye. Ultrafiltration process was operated at lower pressure (100 kPa) and showed 99% removal of methylene blue using adsorptive micellar flocculation at sodium dodecyl sulfate concentration below its critical micellar concentration. Ferric chloride was used as the coagulant. The method of making titania membrane and its use are new. These studies can be extended to other dyes and pollutants.
Removal of antibiotics from surface and distilled water in conventional water treatment processes
Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.
2002-01-01
Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.
2013-01-01
Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua). LCA requires both the identification and quantification of materials and energy used in all stages of the product’s life, when the inventory information is acquired, it will then be interpreted into the form of potential impact “ eco-indicators 99” towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts. Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that: – Pre-treatment, pumping and EDR (EDR: 0.-6 0 kg CO2 eq. /produced m3) are the process-units with higher environmental impacts. – Energy consumption is the main source of impacts on climate change. – Chemicals consumption (e.g. coagulants, oxidants) are the principle cause of impacts on the ozone layer depletion. – Conventional plants: pre-treatment has high GHG emissions due to chemicals consumption. PMID:24355378
Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.
Sun, Xuhui; Zhang, Qi; Liang, He; Ying, Li; Xiangxu, Meng; Sharma, Virender K
2016-12-05
Ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) is a greener oxidant in the treatment of drinking water and wastewater. The electrochemical synthesis of Fe(VI) may be considered environmentally friendly because it involves one-step process to convert Fe(0) to Fe(VI) without using harmful chemicals. Electrolysis was performed by using a sponge iron as an anode in NaOH solution at different ionic strengths. The cyclic voltammetric (CV) curves showed that the sponge iron had higher electrical activity than the grey cast iron. The optimum current density was 0.054mAcm(-2) in 10M NaOH solution, which is much lower than the electrolyte concentrations used in other electrode materials. A comparison of current efficiency and energy consumption was conducted and is briefly discussed. The generated ferrate solution was applied to degrade phenol in water at two levels (2mgL(-1) and 5mgL(-1)). The maximum removal efficiency was ∼70% and the optimum pH for phenol treatment was 9.0. Experiments on phenol removal using conventional coagulants (ferric chloride (FeCl3) and polyaluminium chloride (PAC)) were performed independently to demonstrate that removal of phenol by Fe(VI) occurred mainly by oxidative transformation. A combination of Fe(VI) and coagulant may be advantageous in enhancing removal efficiency, adjusting pH, and facilitating flocculation. Copyright © 2015 Elsevier B.V. All rights reserved.
Watson, Kalinda; Farré, Maria José; Birt, James; McGree, James; Knight, Nicole
2015-02-01
This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.
Investigation of Microgranular Adsorptive Filtration System
NASA Astrophysics Data System (ADS)
Cai, Zhenxiao
Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling in muGAF systems can occur both on the membrane surface and in the cake layer. Fouling caused by soluble NOM, like polysaccharides, occurs mostly on the membrane surface, and increasing the adsorbent surface loading (i.e., the thickness of the layer) can mitigate fouling by such molecules. By contrast, fouling by colloids and particulate matter occurs mostly on the surface or upstream portion of the pre-deposited adsorbent layer. Use of smaller adsorbent particles improves the capture of these contaminants but also exacerbates such fouling. Lastly, preliminary tests demonstrate that muGAF is also effective at reducing fouling caused by NOM in seawater, and that combining multiple adsorbents in muGAF is a potential approach to optimize overall system performance.
Sakai, Hiroshi; Tokuhara, Shunsuke; Murakami, Michio; Kosaka, Koji; Oguma, Kumiko; Takizawa, Satoshi
2016-01-01
Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by chloramination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin
2018-06-01
In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12 m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6 Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping
2015-12-01
Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)
Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim
2012-02-07
The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.
Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant
NASA Astrophysics Data System (ADS)
Rinanti, A.; Purwadi, R.
2018-01-01
This study is particularly expected to provide information on the diversity of microalgae as the flocculant agent that gives the highest biomass yield. Bioflocculation was done by using one of the flocculating microalgae i.e. Scenedesmus obliquus to concentrate on non-flocculating microalgae Chlorella vulgaris. The freshwater microalgae S. obliquus tested it ability to harvest other non-flocculating microalgae, increased sedimentation rate in the flocculation process and increased biomass yield. The flocculation of biomass microalgae with chemical flocculant as comparison was done by adding alum (K2SO4·Al2 (SO4)3·24H2O). The addition of alum (K2SO4·Al2 (SO4)3·24H2O) as flocculant at pH 11 and S. obliquus sp. as bioflocculant caused significant alteration of nutrition of microalgae. Overall, the essential content produced by flocculation method with addition of alum or with bioflocculation (%, mg/100 mg dry weight) are lipid 31,64; 38,69, protein 30,79; 38.50%, and chlorophyll 0.6253; 0.8420). Harvesting with bioflocculation methods conducted at the end of the cultivation period increase the amount of biomass significantly and can accelerate the settling time of biomass. Harvesting microalgae cells by bioflocculation method becomes an economically competitive harvesting method compared to alum as a chemical flocculant because of the cheaper cost of flocculant, not toxic so it does not require further water treatment after harvesting due to the use of alum as chemical flocculants.
Zhao, Chuanliang; Zheng, Huaili; Sun, Yongjun; Zhang, Shixin; Liang, Jianjun; Liu, Yongzhi; An, Yanyan
2018-05-30
Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 10 6 g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1 H/ 12 C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants. Copyright © 2018. Published by Elsevier B.V.
Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu
2014-07-01
High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V
2012-02-01
Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.
Eichler, Stefan; Christen, Richard; Höltje, Claudia; Westphal, Petra; Bötel, Julia; Brettar, Ingrid; Mehling, Arndt; Höfle, Manfred G.
2006-01-01
Bacterial community dynamics of a whole drinking water supply system (DWSS) were studied from source to tap. Raw water for this DWSS is provided by two reservoirs with different water characteristics in the Harz mountains of Northern Germany. Samples were taken after different steps of treatment of raw water (i.e., flocculation, sand filtration, and chlorination) and at different points along the supply system to the tap. RNA and DNA were extracted from the sampled water. The 16S rRNA or its genes were partially amplified by reverse transcription-PCR or PCR and analyzed by single-strand conformation polymorphism community fingerprints. The bacterial community structures of the raw water samples from the two reservoirs were very different, but no major changes of these structures occurred after flocculation and sand filtration. Chlorination of the processed raw water strongly affected bacterial community structure, as reflected by the RNA-based fingerprints. This effect was less pronounced for the DNA-based fingerprints. After chlorination, the bacterial community remained rather constant from the storage containers to the tap. Furthermore, the community structure of the tap water did not change substantially for several months. Community composition was assessed by sequencing of abundant bands and phylogenetic analysis of the sequences obtained. The taxonomic compositions of the bacterial communities from both reservoirs were very different at the species level due to their different limnologies. On the other hand, major taxonomic groups, well known to occur in freshwater, such as Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes, were found in both reservoirs. Significant differences in the detection of the major groups were observed between DNA-based and RNA-based fingerprints irrespective of the reservoir. Chlorination of the drinking water seemed to promote growth of nitrifying bacteria. Detailed analysis of the community dynamics of the whole DWSS revealed a significant influence of both source waters on the overall composition of the drinking water microflora and demonstrated the relevance of the raw water microflora for the drinking water microflora provided to the end user. PMID:16517632
Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.
Aljuboori, Ahmad H Rajab; Idris, Azni; Al-Joubory, Hamid Hussain Rijab; Uemura, Yoshimitsu; Ibn Abubakar, B S U
2015-03-01
In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reller, Megan E; Mendoza, Carlos E; Lopez, M Beatriz; Alvarez, Maricruz; Hoekstra, Robert M; Olson, Christy A; Baier, Kathleen G; Keswick, Bruce H; Luby, Stephen P
2003-10-01
We conducted a study to determine if use of a new flocculant-disinfectant home water treatment reduced diarrhea. We randomly assigned 492 rural Guatemalan households to five different water treatment groups: flocculant-disinfectant, flocculant-disinfectant plus a customized vessel, bleach, bleach plus a vessel, and control. During one year of observation, residents of control households had 4.31 episodes of diarrhea per 100 person-weeks, whereas the incidence of diarrhea was 24% lower among residents of households receiving flocculant-disinfectant, 29% lower among those receiving flocculant-disinfectant plus vessel, 25% lower among those receiving bleach, and 12% lower among households receiving bleach plus vessel. In unannounced evaluations of home drinking water, free chlorine was detected in samples from 27% of flocculant-disinfectant households, 35% of flocculant-disinfectant plus vessel households, 35% of bleach households, and 43% of bleach plus vessel households. In a setting where diarrhea was a leading cause of death, intermittent use of home water treatment with flocculant-disinfectant decreased the incidence of diarrhea.
Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar
2012-01-01
Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.
De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni
2013-01-01
The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.
Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.
Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A
2017-02-07
This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.
Maciel, P M F; Sabogal-Paz, L P
2016-06-01
Giardia and Cryptosporidium species are a serious problem if present in water supplies. The removal of these protozoans and the adaptation of existing protocols are essential for supplying drinking water to developing countries. Considering this, the aim of this study is to evaluate, on a bench level, the removal of Giardia spp. cysts and of Cryptosporidium spp. oocysts from water with high turbidity, using polyaluminium chloride as a coagulant. Filtration using mixed cellulose ester membranes, followed, or not, by purification through immunomagnetic separation (IMS) was used for detecting protozoans. By evaluating the adopted protocol, without using IMS, retrievals of 80% of cysts and 5% of oocysts were obtained, whereas by using IMS, recoveries of 31.5% of cysts and 5.75% of oocysts were reached. When analyzing the coagulant performance, a dosage of 65 mg L(-1) showed contamination from protozoans in all the samples of filtered water. A dosage of 25 mg L(-1) presented protozoans in 50% of the filtered water samples. The results showed an improved performance for the 25 mg L(-1) dosage; therefore, the control of coagulation and adaptation of detection protocols must be evaluated according to the features of raw water and availability of local resources.
Separation of whole blood into plasma and red cells by using a hollow-fibre filtration system.
Hornsey, V S; McColl, K; Drummond, O; Prowse, C V
2005-08-01
The aim of this study was to assess the separation of whole blood into red cells and plasma by using the Sangofer device, which is a gravity-fed, hollow-fibre system. The components would then be compared with those produced by the use of more elaborate technical equipment. Ten whole-blood units were leucoreduced by using a WBF2 filter and immediately separated into red cells and plasma by using the Sangofer blood-separation device. Red cells were stored in additive solution and tested on days 1 and 42. The plasma was assayed for levels of various coagulation factors and for markers of both coagulation and complement activation. The red-cell parameters were similar to those obtained when routine centrifugation methods were used. The filter did not cause haemolysis. Levels of plasma factor VIII and factor XI were lower than those seen in routinely produced leucoreduced plasma units but there was no evidence of activation of the coagulation and complement systems. The Sangofer device is simple and straightforward to use and eliminates the need for both centrifugation and automated separation steps during the processing of whole blood into red cells and plasma components. Minor changes are required to make the procedure easier to incorporate into routine use.
Westman, Johan O; Mapelli, Valeria; Taherzadeh, Mohammad J; Franzén, Carl Johan
2014-11-01
Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Characterisation of cellulose films regenerated from acetone/water coagulants.
Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua
2014-02-15
A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.
Tofalo, Rosanna; Perpetuini, Giorgia; Di Gianvito, Paola; Schirone, Maria; Corsetti, Aldo; Suzzi, Giovanna
2014-11-17
Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Zhan-Ying; Hu, Zhi-Quan; Wang, Tao; Chen, Yan-Ying; Zhang, Jianbin; Yu, Jing-Ran; Zhang, Tong; Zhang, Yong-Feng; Li, Yong-Li
2013-07-01
A microbial-flocculants-producing (MBF-producing) bacterium, named TG-1, was isolated from waste water of a starch factory, and identified as Klebsiella sp. TG-1. The microbial flocculants (MBF) produced by TG-1, named as MBF-TG-1, was applied to defecating the strong basic trona suspension in the trona industry. After optimizing medium and culturing conditions with single-factor and orthogonal designs, the highest flocculation rate of 86.9% was achieved. Chemical analysis showed that the purified microbial flocculants (MBF-TG-1) was mainly composed of polysaccharides (84.6%), with a small amount of protein or amino acid (11.1%). Bridging mechanism was supposed as the main flocculation mechanism by analyzing the flocculation process and the biochemistry properties of MBF-TG-1. The high flocculation rate (84%) was also achieved with a low-cost medium (the solid residue of tofu production from food industry). Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei
2016-10-01
Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-07-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
Yang, Zhen; Yang, Hu; Jiang, Ziwen; Cai, Tao; Li, Haijiang; Li, Haibo; Li, Aimin; Cheng, Rongshi
2013-06-15
In the current work, a series of amphoteric grafting chitosan-based flocculants (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was designed and prepared successfully. The flocculants were applied to eliminate various dyes from aqueous solutions. Among different graft copolymers, CMC-g-PAM11 with a PAM grafting ratio of 74% demonstrated the most efficient performance for removal of both the anionic dye (Methyl Orange, MO) and the cationic dye (Basic Bright Yellow, 7GL) under the corresponding favored conditions (80 mg/L of the flocculant at pH 4.0, and 160 mg/L at pH 11.0). In comparison with its precursors, chitosan and carboxymethyl chitosan, CMC-g-PAM11 showed higher removal efficiencies and wider flocculation windows. More importantly, the graft copolymer produced notably more compacted flocs based on image analysis in combination with fractal theory, which was of great significance in practical water treatment. Furthermore, the flocculation mechanism was discussed in detail. The grafted polyacrylamide chains were found to contribute much to the improved bridging and sweeping flocculation effects, but reduced charge neutralization flocculation for the effect of charge screening. Copyright © 2013 Elsevier B.V. All rights reserved.
Suzuki, Akiko; Ebinuma, Hiroyuki; Matsuo, Masanao; Miyazaki, Osamu; Yago, Hirokazu
2007-01-01
The presence of soluble fibrin (SF) provides evidence of thrombin activation in the blood; therefore, SF is a useful marker for diagnosing blood coagulation diseases such as disseminated intravascular coagulation (DIC). The antibody that specifically detects SF could be a useful tool for diagnosing thrombotic diseases. By using an acid-solubilized desAA-FM (fibrin monomer) as an immunogen, we developed a monoclonal antibody, namely J2-23, which specifically reacts with SF and FM. We examined the specificity of J2-23 by ELISA and immunoblotting and confirmed the reactivity of J2-23 with SF and FM by gel filtration. J2-23 specifically reacted with SF, but not with fibrinogen or plasmic fibrinogen-derived Fbg-X, Fbg-Y, Fbg-E, and D; thrombin-treated Fbn-X, Fbn-Y, and Fbn-E; and plasmic cross-linked fibrin (DD, XDP). The epitope recognized by J2-23 was located within the Aalpha 502-521 region on the C-terminal of the fibrinogen alpha-chain. The reactivity of J2-23 disappeared following the action of the fibrinolytic enzyme plasmin. Furthermore, J2-23 reacted not only with SF but also with FM in plasma from DIC patients. This indicated that J2-23 specifically detected coagulation without reflecting the plasmin action. We demonstrated the potential of J2-23 as a useful antibody for detecting SF for diagnosing blood coagulation.
Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Han, Songlin; Zhao, Qian; Liu, Xiaoli
2018-04-01
Cyanobacterial bloom causes the release of algal organic matter (AOM), which inevitably affects the treatment processes of natural organic matter (NOM). This study works on treating micro-polluted surface water (SW) by emerging coagulant, namely titanium sulfate (Ti(SO 4 ) 2 ), followed by Low Pressure Ultrafiltration (LPUF) technology. In particular, we explored the respective influence of extracellular organic matter (EOM) and intracellular organic matter (IOM) on synergetic EOM-NOM/IOM-NOM removal, functional mechanisms and subsequent filtration performance. Results show that the IOM inclusion in surface water body facilitated synergic IOM-NOM composite pollutants removal by Ti(SO 4 ) 2 , wherein loosely-aggregated flocs were produced, resulting in floc cake layer with rich porosity and permeability during LPUF. On the contrary, the surface water invaded by EOM pollutants increased Ti(SO 4 ) 2 coagulation burden, with substantially deteriorated both UV 254 -represented and dissolved organic matter (DOC) removal. Corresponded with the weak Ti(SO 4 ) 2 coagulation for EOM-NOM removal was the resultant serious membrane fouling during LPUF procedure, wherein dense cake layer was formed due to the compact structure of flocs. Although the IOM enhanced NOM removal with reduced Ti(SO 4 ) 2 dose and yielded mitigated membrane fouling, larger percentage of irreversible fouling was seen than NOM and EOM-NOM cases, which was most likely due to the substances with small molecular weight, such as microcystin, adhering in membrane pores. This research would provide theoretical basis for dose selection and process design during AOM-NOM water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alfano, Alberto; Corsuto, Luisana; Finamore, Rosario; Savarese, Maria; Ferrara, Filomena; Falco, Salvatore; Santabarbara, Giuseppe; De Rosa, Mario; Schiraldi, Chiara
2018-05-23
Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes. With specific focus on using technologies based on the application of ultra and nanofiltration membranes, the polyphenols fraction was extracted after an initial flocculation step. The nano-filtration permeate showed a reduction of about 95% of the organic load. The polyphenols recovery after two filtration steps was about 65% w / v . The nanofiltration retentate, dried using the spray dryer technique, was tested for cell viability after oxidative stress induction on human keratinocytes model in vitro and an improved cell reparation in the presence of this polyphenolic compound was demonstrated in scratch assays assisted through time lapse video-microscopy. The polyphenols recovered from these treatments may be suitable ingredients in cosmeceuticals and possibly nutraceutical preparations or functional foods.
Voulgaris, Ioannis; Chatel, Alex; Finka, Gary; Uden, Mark
2016-01-01
Ultra scale‐down (USD) methods operating at the millilitre scale were used to characterise full‐scale processing of E. coli fermentation broths autolysed to different extents for release of a domain antibody. The focus was on the primary clarification stages involving continuous centrifugation followed by depth filtration. The performance of this sequence was predicted by USD studies to decrease significantly with increased extents of cell lysis. The use of polyethyleneimine reagent was studied to treat the lysed cell broth by precipitation of soluble contaminants such as DNA and flocculation of cell debris material. The USD studies were used to predict the impact of this treatment on the performance and here it was found that the fermentation could be run to maximum productivity using an acceptable clarification process (e.g., a centrifugation stage operating at 0.11 L/m2 equivalent gravity settling area per hour followed by a resultant required depth filter area of 0.07 m2/L supernatant). A range of USD predictions was verified at the pilot scale for centrifugation followed by depth filtration. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 32:382–392, 2016 PMID:26698375
Safe water supply without disinfection in a large city case study: Berlin.
Grohmann, A; Petersohn, D
2000-01-01
Berlin's water supplies originate exclusively from groundwater. For sustainable water management, river water is treated by flocculation and filtration and used either for artificial groundwater recharge (rivers Spree and Havel) or for bank filtration (Nordgraben and Lake Tegel). Drinking water chlorination was abandoned in Berlin (West) in 1978, and in Berlin (East) in 1992, following German unification. Chlorine consumption for the purpose of weekly performance checks in the chlorination plants of Berlin's 11 waterworks and occasional chlorination within the pipe system following pipe burst events amounts to 2500 kg per year. Based on the annual water demand of 250 million cubic metres, this is equivalent to 0.01 mg of chlorine per litre. Microbiological monitoring at the 11 waterworks and at 383 sampling points within the pipe system shows CFU at less than 10/1 ml-1 and coliforms and E. coli invariably at 0/100 ml-1. In view of the low AOX content, a multiplication of bacteria within the pipe system can be expected to occur not at all or only to a small extent. Resource protection measures, filter backwashing and pipe system maintenance in observance of the relevant technical rules will continue to ensure that the quality of Berlin's drinking water meets stringent hygiene requirements without chlorination.
Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping
2014-01-01
Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629
Comparative assessment of the breakdown of high-molecular flocculants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baichenko, A.A.; Baichenko, A.A.; Kaminskii, V.S.
1977-01-01
In recent years, a much wider range of water-soluble polymer flocculants has come into use to accelerate the clarification of coal and clay-coal suspensions, in which the solid phase comprises flotation tailings or slurry. The major distinguishing feature in this development has been the switch from gel-type flocculants to granular or powder types. Difficulties arise in the use of flocculants, from the relative ease with which they break down during storage or solution preparation. Different polymers behave differently under the same mechanical or chemical forces. Failure to appreciate this often leads to erroneous conclusions regarding the specific effectiveness of variousmore » flocculants. Breakdown data are described on various high-molecular flocculants, showing that the major factors that influence the breakdown of polyoxyethylene (POE) can be traced in other polymer flocculants as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidic, Radisav
2015-01-24
This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desiredmore » water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be controlled by the addition of appropriate antiscalants.« less
Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud
2009-09-15
Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.
Fu, Ruijie; Yao, Kai; Zhang, Qisheng; Jia, Dongying; Zhao, Jiayuan; Chi, Yuanlong
2017-05-01
A series of collagen hydrolysates (CHs) were prepared from pigskin shavings by using pepsin (PCH), trypsin (TCH), Alcalase (ACH), HCl (HCH), and NaOH (NCH). Their physicochemical properties, including degree of collagen hydrolysis, molecular weight distribution, electric charge, and microstructure, were investigated, and their flocculation performance was evaluated in a kaolin suspension, at varied pHs and concentrations. PCH exhibited high flocculation capability under acidic and neutral conditions, and its efficiency for removing suspended particles was approximately 80% at a concentration of 0.05 g/L. TCH, ACH, HCH, and NCH showed almost no flocculation capability. The flocculation capability of PCH could be mainly due to a combination of optimal molecular weight distribution and electric charge. This study could provide an environment-friendly natural flocculant and also proposes a promising approach for the reuse of collagen wastes. Graphical Abstract ᅟ.
USDA-ARS?s Scientific Manuscript database
Whole blood is a highly complex substance. Hemoglobin, the most abundant blood protein, can function as a flocculant of colloidal clay; most of the other blood components exhibit poor flocculant activity. For the purpose of processing raw whole blood into a flocculant product, the practical value of...
Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric
2016-01-01
Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less
Whittington, P N; George, N
1992-08-05
The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Okoli, Stanley A; Mabinya, Leonard V; Okoh, Anthony I
2016-04-01
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up-to-date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation-independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.
Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J
2007-07-26
The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.
CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim
2015-08-01
Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G
Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2.
Zhang, J; Liu, Z; Wang, S; Jiang, P
2002-08-01
The marine myxobacterium strain NU-2, which can grow on high concentrations (up to 7%) of NaCl, was isolated from a salt soil sample collected from the coast of the Huanghai Sea, China. Morphological properties and 16S rDNA sequence analysis indicated that the isolate is a novel species related to the genus Nannocystis. Nannocystis sp. NU-2 produced a new kind of flocculating substance in a starch medium with a yield of 14.8 g l(-1). The NU-2 flocculant was composed of 40.3% proteins and 56.5% polysaccharides, of which glucose, mannose and glucuronic acid were the principal constituents in the relative proportions of 5:4:1. The flocculation activity of the NU-2 flocculant depends strongly on cations such as Fe(3+) and Al(3+). When a 30 mg l(-1) FeCl(3) solution is present in kaolin clay suspension, 30 mg l(-1)of the flocculant produced a high flocculating activity value of 90%, which remained unchanged over an extensive pH range (pH 2.0-13.0). The flocculant was tested for its ability to bleach dyeing liquors, and the bleaching activities were 98.2% for acid red in 100 mg l(-1)of the flocculant and 99.0% for direct emerald blue in 50 mg l(-1)of the flocculant under test conditions. Use of the flocculant to bleach basic pink and cation emerald blue liquors was not effective.
NASA Astrophysics Data System (ADS)
Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md
2017-10-01
Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.
Review of cost versus scale: water and wastewater treatment and reuse processes.
Guo, Tianjiao; Englehardt, James; Wu, Tingting
2014-01-01
The US National Research Council recently recommended direct potable water reuse (DPR), or potable water reuse without environmental buffer, for consideration to address US water demand. However, conveyance of wastewater and water to and from centralized treatment plants consumes on average four times the energy of treatment in the USA, and centralized DPR would further require upgradient distribution of treated water. Therefore, information on the cost of unit treatment processes potentially useful for DPR versus system capacity was reviewed, converted to constant 2012 US dollars, and synthesized in this work. A logarithmic variant of the Williams Law cost function was found applicable over orders of magnitude of system capacity, for the subject processes: activated sludge, membrane bioreactor, coagulation/flocculation, reverse osmosis, ultrafiltration, peroxone and granular activated carbon. Results are demonstrated versus 10 DPR case studies. Because economies of scale found for capital equipment are counterbalanced by distribution/collection network costs, further study of the optimal scale of distributed DPR systems is suggested.
Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.
Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna
2014-02-01
The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Conversation with James J. Morgan
NASA Astrophysics Data System (ADS)
Morgan, James J.; Newman, Dianne K.
2015-05-01
In conversation with professor Dianne Newman, Caltech geobiologist, James "Jim" J. Morgan recalls his early days in Ireland and New York City, education in parochial and public schools, and introduction to science in Cardinal Hayes High School, Bronx. In 1950, Jim entered Manhattan College, where he elected study of civil engineering, in particular water quality. Donald O'Connor motivated Jim's future study of O2 in rivers at Michigan, where in his MS work he learned to model O2 dynamics of rivers. As an engineering instructor at Illinois, Jim worked on rivers polluted by synthetic detergents. He chose to focus on chemical studies, seeing it as crucial for the environment. Jim enrolled for PhD studies with Werner Stumm at Harvard, who mentored his research in chemistry of particle coagulation and oxidation processes of Mn(II) and (IV). In succeeding decades, until retirement in 2000, Jim's teaching and research centered on aquatic chemistry; major themes comprised rates of abiotic manganese oxidation on particle surfaces and flocculation of natural water particles, and chemical speciation proved the key.
Brilhante, Raimunda Sâmia Nogueira; Sales, Jamille Alencar; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; de Souza Sampaio, Célia Maria; de Araújo Neto Paiva, Manoel; Santos, João Bosco Feitosa Dos; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2017-07-01
Moringa oleifera Lam (Moringaceae) is a plant with high nutritional and medicinal value. Native to India, it is now widely distributed throughout tropical and subtropical regions of the world. Its different parts are sources of proteins, vitamins and minerals and present different pharmacological and biotechnological potential. Moreover, M. oleifera seeds are widely used in water and effluent treatment, for their coagulation, flocculation and sedimentation properties, their ability of improving water quality, by reducing organic matter and microbial load, with special applicability in intensive animal production systems, such as aquaculture. In addition, due to its high nutritional value and several medicinal properties, this tree may act as a nutritional and medical alternative for socially neglected populations. In this context, this review gathers information on M. oleifera, emphasizing its chemical constituents, nutritional, pharmacological and antimicrobial properties, applications in the treatment of water effluents, and ecological and social aspects. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Aggregate formation affects ultrasonic disruption of microalgal cells.
Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih
2015-12-01
Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment of variable and intermittently flowing wastewaters.
Kocasoy, Günay
1993-11-01
The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.
NASA Astrophysics Data System (ADS)
Wolska, Małgorzata; Szerzyna, Sławomir; Machi, Justyna; Mołczan, Marek; Adamski, Wojciech; Wiśniewski, Jacek
2017-11-01
The presence of organic substances in the water intaken for consumption could be hazardous to human health due to the potential formation of disinfection by-products (TOX). The study were carried out in the pilot surface water treatment system consisting of coagulation, sedimentation, filtration, ozonation, adsorption and disinfection. Due to continuous operation of the system and interference with the parameters of the processes it was possible not only assess the effectiveness of individual water treatment processes in removing TOX, but also on factors participating on the course of unit processes.
Occurrence and removal of pharmaceuticals and hormones through drinking water treatment.
Huerta-Fontela, Maria; Galceran, Maria Teresa; Ventura, Francesc
2011-01-01
The occurrence of fifty-five pharmaceuticals, hormones and metabolites in raw waters used for drinking water production and their removal through a drinking water treatment were studied. Thirty-five out of fifty-five drugs were detected in the raw water at the facility intake with concentrations up to 1200 ng/L. The behavior of the compounds was studied at each step: prechlorination, coagulation, sand filtration, ozonation, granular activated carbon filtration and post-chlorination; showing that the complete treatment accounted for the complete removal of all the compounds detected in raw waters except for five of them. Phenytoin, atenolol and hydrochlorothiazide were the three pharmaceuticals most frequently found in finished waters at concentrations about 10 ng/L. Sotalol and carbamazepine epoxide were found in less than a half of the samples at lower concentrations, above 2 ng/L. However despite their persistence, the removals of these five pharmaceuticals were higher than 95%. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua
2015-12-01
In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.
Dogan, Bugce; Kerestecioglu, Merih; Yetis, Ulku
2010-01-01
In the present study, several water recovery and end-of-pipe wastewater treatment alternatives were evaluated towards the evaluation of Best Available Techniques (BATs) for the management of wastewaters from a denim textile mill in accordance with the European Union's Integrated Pollution Prevention and Control (IPPC) Directive. For this purpose, an assessment that translates the key environmental aspects into a quantitative measure of environmental performance and also financial analysis was performed for each of the alternatives. The alternatives considered for water recovery from dyeing wastewaters were nanofiltration (NF) with coagulation and/or microfiltration (MF) pre-treatment, ozonation or peroxone and Fenton oxidation. On the other hand, for the end-of-pipe treatment of the mill's mixed wastewater, ozonation, Fenton oxidation, membrane bioreactor (MBR) and activated sludge (AS) process followed by membrane filtration technologies were evaluated. The results have indicated that membrane filtration process with the least environmental impacts is the BAT for water recovery. On the other side, MBR technology has appeared as the BAT for the end-of-pipe treatment of the mill's mixed wastewater. A technical and financial comparison of these two BAT alternatives revealed that water recovery via membrane filtration from dyeing wastewaters is selected as the BAT for the water and wastewater management in the mill.
Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling
Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa
2016-01-01
The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Lischeske, James J.; Biddy, Mary J.
Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less
Car wash wastewater treatment and water reuse - a case study.
Zaneti, R N; Etchepare, R; Rubio, J
2013-01-01
Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.
Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam
2012-08-15
The potential of brewer's spent grain (BSG), a common waste from the brewing industry, as a support-substrate for laccase production by the well-known laccase producer Trametes versicolor ATCC 20869 under solid-state fermentation conditions was assessed. An attempt was made to improve the laccase production by T. versicolor through supplementing the cultures with inducers, such as 2,2-azino bis(3-ethylbenzthiazoline-6-sulfonic acid), copper sulfate, ethanol, gallic acid, veratryl alcohol, and phenol. A higher laccase activity of 13506.2 ± 138.2 IU/gds (gram dry substrate) was obtained with a phenol concentration of 10 mg/kg substrate in a tray bioreactor after 12 days of incubation time. The flocculation properties of the laccase treated crude beer samples have been studied by using various parameters, such as viscosity, turbidity, ζ potential, total polyphenols, and total protein content. The present results indicated that laccase (25 IU/L) showed promising results as a good flocculating agent. The laccase treatment showed better flocculation capacity compared to the industrial flocculation process using stabifix as a flocculant. The laccase treatments (25 IU/L) at 4 ± 1 °C and room temperature have shown almost similar flocculation properties without much variability. The study demonstrated the potential of in-house produced laccase using brewer's spent grain for the clarification and flocculation of crude beer as a sustainable alternative to traditional flocculants, such as stabifix and bentonite.
Kato, Ryuichi; Asami, Tatsuya; Utagawa, Etsuko; Furumai, Hiroaki; Katayama, Hiroyuki
2018-04-01
To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log 10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log 10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log 10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log 10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Michałowicz, Jaromir; Stufka-Olczyk, Jadwiga; Milczarek, Anna; Michniewicz, Małgorzata
2011-08-01
Chlorophenols are widely represented, toxic, and persistent environmental pollutants. In this work, we analyzed annual fluctuations in the content of phenol, guaiacol, chlorophenols, chlorocatechols, and chlorinated methoxyphenols in drinking water collected in Warsaw and Tomaszów Mazowiecki (Poland). Moreover, the effect of dissolved organic matter content on the occurrence of phenolic compounds in drinking water was studied. The compounds were adsorbed on octadecyl C18 solid-phase discs, separated by the use of gas chromatography, and analyzed using mass spectrometry. The content of organic matter was evaluated by the analysis of UV absorption at 254 nm by water samples. In Warsaw, raw water (derived from infiltration intakes situated in the Vistula River) and treated water (subjected to coagulation, filtration, and disinfection with chlorine dioxide) were collected in order to analyze phenols. In Tomaszów Mazowiecki, raw water (taken directly form the river) and treated water (subjected to coagulation, sand filtration, ozonation, and disinfection with gaseous chlorine) were taken to determine phenolic substances. The obtained results showed the occurrence of phenol, guaiacol, 2,4,6-trichlorophenol (2,4,6-TCP), tetrachlorophenol (TeCP), and pentachlorophenol in drinking water of both cities. Occasionally, in the waters studied, the appearance of chloroguaiacols, 3-chlorosyringol, and some chlorocatechols were noted. It was also observed that the content of dissolved organic matter in river waters may have contributed to the formation of some phenols, e.g., phenol, guaiacol, 2,4,6-TCP, and TeCP in drinking water. Finally, it was found that there were no annual (seasonal) fluctuations in phenolic compounds contents in drinking waters examined.
Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun
2017-05-15
In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun
2015-02-01
Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.
Ebeling, J.M.; Rishel, K.L.; Sibrell, P.L.
2005-01-01
As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation-flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99% via settling, with final TSS values ranging from as low as 10-17 mg/L. Although not intended to be used for reactive phosphorus (RP) removal, RP was reduced by 92-95% by removing most of the TSS in the wastewater to approximately 1 mg/L-P. Dosage requirements were fairly uniform, requiring between 15 and 20 mg/L of polymer. Using these dosages, estimated costs range from $4.38 to $13.08 per metric tonne of feed. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Gao, B.; Steenhuis, T. S.
2008-12-01
Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.
Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming
2014-08-01
This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of angle effect on particle flocculation in branch flow
NASA Astrophysics Data System (ADS)
Prasad, Karthik; Fink, Kathryn; Liepmann, Dorian
2014-11-01
Hollow point microneedle drug delivery systems are known to be highly susceptible to blockage, owing to their very small structures. This problem has been especially noted when delivering suspended particle solutions, such as vaccines. Attempts to reduce particle flocculation in such devices through surface treatments of the particles have been largely unsuccessful. Furthermore, the particle clog only forms at the mouths of the microneedle structures, leaving the downstream walls clear. This implies that the sudden change in length scales alter the hydrodynamic interactions, creating the conditions for particle flocculation. However, while it is known that particle flocculation occurs, the physics behind the event are obscure. We utilize micro-PIV to observe how the occurrence and formation of particle flocculation changes in relation to the angle encountered by particle laden flow into microfluidic branch structures. The results offer the ability to optimize particle flocculation in MEMS devices, increasing device efficacy and longevity.
Fan, Jianhua; Zheng, Lvhong; Bai, Yunpeng; Saroussi, Shai; Grossman, Arthur R.
2017-01-01
Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90%) at an elevated pH of the medium (pH 11) upon the addition of divalent cations such as calcium and magnesium (>5 mM). The trivalent ferric cation (at 10 mM) proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5), with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions) used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass. PMID:29209355
Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu
2017-05-01
China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of DEXTRAN-graft-POLYACRYLAMIDE Internal Structure on Flocculation Process Parameters
NASA Astrophysics Data System (ADS)
Bezugla, T.; Kutsevol, N.; Shyichuk, A.; Ziolkowska, D.
2008-08-01
Dextran-graft-Polyacrylamide copolymers (D-g-PAA) of brush-like architecture were tested as flocculation aids in the model kaolin suspensions. Due to expanded conformation the D-g-PAA copolymers are more effective flocculants than individual PAA with close molecular mass. The internal structure of D-g-PAA copolymers which is determined by number and length of grafted PAA chains, the distance between grafts, etc., has the significant influence on flocculation behavior of such polymers.
Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo
2016-09-15
Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.
Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G
2016-06-01
Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.
Buyel, Johannes F; Fischer, Rainer
2015-02-10
The use of synthetic polymers as flocculants can increase filter capacity and thus reduce the costs of downstream processing during the production of plant-derived biopharmaceutical proteins, but this may also attract regulatory scrutiny due to the potential toxicity of such compounds. Therefore, we investigated the efficacy of three non-toxic natural flocculants (chitosan, kaolin and polyphosphate) alone and in combination with each other or with a synthetic polymer (Polymin P) during the clarification of tobacco leaf extracts. We used a design-of-experiments approach to determine the impact of each combination on filter capacity. We found that Polymin P was most effective when used on its own but the natural flocculants were more effective when used in combination. The combination of chitosan and polyphosphate was the most effective natural flocculant, and this was identified as a potential replacement for Polymin P under neutral and acidic extraction conditions independent of the conductivity, even though the efficiency of flocculation was lower than for Polymin P. None of the tested flocculants reduced the concentration of total soluble protein in the feed stream or the recovery of the model fluorescent protein DsRed. Copyright © 2014 Elsevier B.V. All rights reserved.
Moreno, Patricio A; Reed, Gregory D
2007-05-01
The difference in performance of three differently designed circular secondary clarifiers in the same wastewater treatment plant was analyzed in this paper. Data obtained using flocculated suspended solids and disperse suspended solids tests were analyzed using statistical tools. The conventional clarifier showed more variability in the average effluent suspended solids concentration when compared with the flocculator-clarifiers. Furthermore, a difference in performance among the two different flocculator-clarifiers was found.
Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned
2008-03-03
Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.
A simple shear limited, single size, time dependent flocculation model
NASA Astrophysics Data System (ADS)
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Silva, P G; Silva, H J
2007-02-01
The influence of mineral nutrients on the growth and self-flocculation of Tolypothrix tenuis was studied. The identification of possible limiting nutrients in the culture medium was performed by the biomass elemental composition approach. A factorial experimental design was used in order to estimate the contribution of macronutrients and micronutrients, as well as their interactions. Iron was identified to be limiting in the culture medium. The micronutrients influenced mainly cellular growth without effects on self-flocculation. Conversely, the self-flocculation capacity of the biomass increased at higher concentrations of macronutrients. The optimization of mineral nutrition of T. tenuis allowed a 73% increase in the final biomass level and 3.5 times higher flocculation rates.
NASA Astrophysics Data System (ADS)
Ferland, Pierre; Malito, John T.; Phillips, Everett C.
Alcan International Ltd. in collaboration with Ondeo Nalco Company have carried out a fundamental study on the dissolution and performance of a 100% anionic polymer. The effects of method of preparation, solvent composition, temperature and exposure time on flocculent activity under conditions relevant to both atmospheric and pressure decantation were investigated. Flocculent activity was determined using static and dynamic settling tests, and the results were correlated with the reduced specific viscosity (RSV). For any given method of preparation of the flocculent solutions (makeup/dilution) the RSV tended to decrease with increasing solution ionic strength, independent of ionic speciation. While a significant loss in flocculent activity occurred with long exposure of the solution to high temperature, only a minor loss occurred in the short time required to flocculate and settle the mud in a decanter operating at 150 °C. Recent results in an actual plant pressure decanter appear to validate this conclusion.
Flocculation of high purity wheat straw soda lignin.
Piazza, G J; Lora, J H; Garcia, R A
2014-01-01
In industrial process, acidification causes non-sulfonated lignin insolubility. The flocculants poly(diallyldimethylammonium chloride) (pDADMAC) and bovine blood (BB) also caused lignin insolubility while cationic polyacrylamide, chitosan, and soy protein PF 974 were ineffective. Turbidity determined optimal flocculant, but turbidity magnitude with BB was greater than expected. pDADMAC caused negative lignin Zeta potential to became positive, but BB-lignin Zeta potential was always negative. Insoluble lignin did not gravity sediment, and flocculant-lignin mixtures were centrifuged. Pellet and supernatant dry mass and corrected spectroscopic results were in good agreement for optimal pDADMAC and BB. Spectroscopy showed 87-92% loss of supernatant lignin. Nitrogen analysis showed BB concentrated in the pellet until the pellet became saturated with BB. Subtracting ash and BB mass from pellet and supernatant mass confirmed optimal BB. Low levels of alum caused increased lignin flocculation at lower levels of pDADMAC and BB, but alum did not affect optimal flocculant. Published by Elsevier Ltd.
Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoh, Anthony I
2013-10-16
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2-10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment.
Okaiyeto, Kunle; Nwodo, Uchechukwu U.; Mabinya, Leonard V.; Okoh, Anthony I.
2013-01-01
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2–10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment. PMID:24135818
Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H; Yusoff, Mohd Kamil
2012-01-01
A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie
2017-10-06
Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dunaliella spp. Under Environmental Stress: Enhancing Lipid Production and Optimizing Harvest
NASA Astrophysics Data System (ADS)
Mixson, Stephanie Marie
Agricultural crops including corn, sugar cane, and oil palm have been investigated as potential sources for biofuel; however, they produce only a fraction of the oil percent biomass as compared to that of microalgae. Growth and lipid production by microalgae is regulated by a variety of environmental factors, including light intensity, availability of nutrients, temperature regime and salinity. We assessed 14 strains of the saltwater algae Dunaliella spp. (Teodoresco) in unialgal cultures within four species to determine a best strain or strain(s) as potential feedstock for biofuels. The taxonomy of these 14 strains was elucidated by comparing both physiological characteristics and the ITS2 and 18S regions. After careful analysis, the data suggest that the 14 strains grouped within four species: D. tertiolecta, D. pseudosalina, D. salina, and D. viridis. In addition, the isolation and accurate quantification of neutral lipids in Dunaliella was developed from existing techniques. Nile Red was optimized as a qualitative stain to rapidly screen and visualize neutral lipids. Direct transesterification was determined to be the best quantitative method because it yielded high amounts of neutral lipids with precise and reproducible results when compared to conventional extraction methods. Seven strains were selected for further efforts to enhance lipid production using salinity stress, nutrient limitation, pH stress, continuous light, and bubbling with carbon dioxide (CO2). High salinity yielded the maximum total fatty acid (FA) content (up to 65% by dry weight) in comparison to controls (˜10-25% total FAs). High pH x low salinity, low pH, and continuous light x CO2 yielded near maximum FA content (56%, 43%, and 42%, respectively). Nitrogen and/or phosphorus limitation and 12:12 (light:dark photoperiod) x CO 2 did not significantly enhance FA production (23% and 31%, respectively). Results were strain-specific with high intraspecific variation observed within each environmental stressor. Glycerol production, a known mechanism of osmoregulation in Dunaliella, was measured in a short-term salinity stress experiment and found to significantly increase 30 min to 24 hr after exposure. In addition, the glycerol biosynthesis gene, glycerol-3-phosphate dehydrogenase or GPDH, was significantly expressed 30 min to 2 hr in response to hyperosmotic stress. The data suggest that Dunaliella strains may incorporate a proportion of glycerol as triacylglycerol (TAG) under short-term, high-salinity stress. High lipid-producing strains were grown in mass culture, but at this time the commercialization of harvesting has not been proven economically feasible. Autoflocculation, electro-flocculation, and hollow-fiber filtration were compared as potential harvesting mechanisms for the mass culture of Dunaliella spp. Hollow-fiber filtration (>99% biomass recovery) as harvesting mechanism offers many attractive advantages (i.e. reuse of filtrate as culture medium) when compared to auto-flocculation and indirect electroflocculation (>95% biomass recovery). This research provides evidence that Dunaliella can be used as a source of biofuel because these strains can be mass-cultured; their lipids enhanced through a simple high-salinity adjustment; and commercially harvested.
Flocculation of high purity wheat straw soda lignin
USDA-ARS?s Scientific Manuscript database
Flocculant action on lignocellulose mixtures has been studied, but flocculant action on purified sulfur-free lignin has not been reported. In the last step of the industrial process, the purified lignin solution is acidified with sulfuric acid which causes the lignin to become insoluble. The feasi...
Wang, Shuo; Ma, Cong; Zhu, Yin; Yang, Yangkun; Du, Guocheng; Li, Ji
2018-06-15
FeCl 3 , quick lime, and cationic polyacrylamide (CPAM) were used for excess sludge conditioning from wastewater treatment plant (WWTP) and the dewatering performance by different chemical conditioners was investigated. Experimental results showed that FeCl 3 could make small and concentrated sludge particles. Furthermore, new mineral phase structures for building a dewatering framework were obtained by the addition of quick lime, and the coagulation capacity was enhanced by the formation of colloid hydroxyl polymer, which was induced due to the alkaline environment. In addition, the floc particle size significantly increased after the CPAM dosage. The bound water could be released with the stripping of tightly bound extracellular polymeric substance (EPS). Therefore, the dewatering performance and efficiencies were improved and subsequently the hypothetical sludge deep dewatering process was depicted in accordance with the variation of EPS. However, high-strength refractory organics in sludge filtrates caused by quick lime pyrolysis could lead to the unstable operation of the WWTP, because the relatively high concentrations of organic compounds with benzene were dominant in sludge dewatering filtrates.
Wan, Chun; Alam, Md Asraful; Zhao, Xin-Qing; Zhang, Xiao-Yue; Guo, Suo-Lian; Ho, Shih-Hsin; Chang, Jo-Shu; Bai, Feng-Wu
2015-05-01
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gravitational sedimentation of flocculated waste activated sludge.
Chu, C P; Lee, D J; Tay, J H
2003-01-01
The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.
Flocculation and antimicrobial properties of a cationized starch.
Liu, Zhouzhou; Huang, Mu; Li, Aimin; Yang, Hu
2017-08-01
In this study, a series of cationized starch-based flocculants (starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, St-CTA) containing various quaternary ammonium salt groups on the starch backbone were prepared using a simple etherification reaction. All of the prepared starch-based flocculants show effective performance for the flocculation of kaolin suspension, two bacterial (Escherichia coli and Staphylococcus aureus) suspensions, and two contaminant mixtures (kaolin and each bacterium) under most pH conditions. St-CTA with a high substitution degree of CTA demonstrates improved contaminant removal efficiency because of the strong cationic nature of the grafted quaternary ammonium salt groups and the charge naturalization flocculation effect. The antibacterial effects of St-CTA were also evaluated, considering that many quaternary ammonium salt compounds elicit bactericidal effects. Three-dimensional excitation-emission matrix spectra and direct cell morphological observation under scanning electron microscopy reveal that the starch-based flocculants exhibit better antibacterial effects on the Gram-negative bacterium E. coli than on the Gram-positive bacterium S. aureus. The thicker cell wall due to the presence of abundant peptidoglycan and teichoic acids of S. aureus than E. coli explains the uneasy breakage of S. aureus cell wall after being attacked by the cationized starch-based flocculants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen
2010-03-01
Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.
Furukawa, Yoko; Reed, Allen H; Zhang, Guoping
2014-01-03
Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth.
2014-01-01
Background Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Results Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Conclusions Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth. PMID:24386944