Science.gov

Sample records for coal combustion ash

  1. MERCURY CAPTURE ON COAL COMBUSTION FLY ASH. (R827649)

    EPA Science Inventory

    A study was performed at the Energy and Environmental Research Center (EERC) to test the hypotheses that (1) different carbon types contained in coal combustion fly ash have variable sorption capabilities relative to mercury and (2) the inorganic fraction of coal combustion fl...

  2. Simulation of coal ash deposition under pulverized coal combustion conditions

    SciTech Connect

    Yilmaz, S.; Cliffe, K.R.

    1994-12-31

    The deposition of coal ash onto the superheater tubes of a pulverized fuel fired boiler is simulated by injecting soda lime silica glass, SLSG, particles into hot combustion gases produced from the combustion of natural gas and by measuring the amount of deposit formed on a probe in a horizontally fired furnace. The effect of various parameters, including gas and probe surface temperatures, gas velocity, particle size and composition on deposit formation were investigated. The results showed that operating parameters, namely the gas temperature and probe surface temperature are of primary importance since deposition rates doubled over the range investigated. The deposition rate of 6 and 8 {mu}m particles was constant and considered to be controlled by their transport to the probe surface while that of larger particles showed an asymptotic behavior which suggested the deposition rate was controlled by the stickiness of the deposit surface on the probe. The addition of NaCl to SLSG particles increased deposition rates by approximately 100%, while addition of CACO{sub 3} showed no influence on the deposition rate of the SLSG particles. The addition of NaCl to CACO{sub 3} formed less deposit than CaCO{sub 3} particles on their own. Similarly, the deposition rate of SLSG and CaCO{sub 3} was lowered by addition of NaCl into it. This was probably caused by formation of some high melting point compounds between NaCl and CACO{sub 3}.

  3. Preparation and combustion of high ash coal tailing slurry

    SciTech Connect

    Zhang Ziping; Zhang Wenfu; Fu Xiaoheng; Wang Zuna; Li Hui

    1998-12-31

    Flotation tailings from a coal preparation plant are known for their high ash, low heating value, high moisture content even after thickening and filtration, and difficult handability. However, they can be easily converted into a slurry fuel for boilers. Two flotation tailings, containing ash of 31.89% and 41.87% respectively, have been converted into slurry fuel with the following properties: solid content being 70.4% and 74.4% respectively; low heating value, 13,694kj/kg and 10,970kj/kg; and viscosity, 379 mPa.s and 180 mPa.s at a shear rate of 100s{sup {minus}1}. An eccentric slant jet coal slurry burner was installed at the boiler. Slurry atomizing nozzle operated at low pressure. Both slurries gave stable combustion without supporting fuel under the condition of cool air supply. A new way of flotation tailing utilization was demonstrated. China has more than 200 coal preparation plants washing more than 300 million tons of coal annually. These preparation plants generate more than 10 million tons of tailing annually, most of which is not currently being used, causing great environmental pollution and waste management difficulties for the enterprises. Comprehensive utilization of coal washer tailings is one of the key issues of environmental protection and energy saving in China.

  4. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  5. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  6. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.

    PubMed

    Li, X G; Lv, Y; Ma, B G; Jian, S W; Tan, H B

    2011-10-01

    The thermal behavior of high-ash anthracite coal, tobacco residue and their blends during combustion processes was investigated by means of thermogravimetric analysis (20 K min(-1), ranging from ambient temperature to 1273 K). Effects of the mixed proportion between coal and tobacco residue on the combustion process, ignition and burnout characteristics were also studied. The results indicated that the combustion of tobacco residue was controlled by the emission of volatile matter; the regions were more complex for tobacco residue (four peaks) than for coal (two peaks). Also, the blends had integrative thermal profiles that reflected both tobacco residue and coal. The incorporation of tobacco residue could improve the combustion characteristics of high-ash anthracite coal, especially the ignition and burnout characteristics comparing with the separate burning of tobacco residue and coal. It was feasible to use the co-combustion of tobacco residue and high-ash anthracite coal as fuel.

  7. EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY

    EPA Science Inventory

    The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...

  8. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  9. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.

  10. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Boavida, Dulce; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2009-10-30

    The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1+1) of this coal and a stabilized SS (Biogran) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test. Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.

  11. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  12. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    EPA Pesticide Factsheets

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  13. SPECIATION OF MERCURY IN THE PRESENCE OF COAL AND WASTE COMBUSTION FLY ASHES

    EPA Science Inventory

    The paper gives results of a study that focused on the oxidation of elemental mercury (Hgo) in the presence of both complex, four-component, model fly ashes, and actual coal combustion fly ashes collected from a pilot plant. Steady-state oxidation of Hgo promoted by the four-com...

  14. Recovery curve analyses defining carbon-ash beneficiation for coal combustion ash

    SciTech Connect

    Jiang, X.K.; Ban, H.; Stencel, J.M.

    1998-12-31

    The authors describe and quantify recovery curve analysis methods that are applied to the dry beneficiation of coal combustion fly ash. Data from a batch-feed, analytical triboelectrostatic beneficiation system are coupled with data from a continuous-feed, laboratory-scale triboelectrostatic beneficiation system. In the analytical system, a recovery analysis of the beneficiated products is facilitated by obtaining samples from continuous product distributions. In the laboratory system, only three products can be obtained, including a low ({approximately}2%) LOI product, a high ({approximately}45%) LOI product, and an intermediate LOI product that is similar to the feed ash. By using these three products, only a three data point recovery curve would be generated. In contrast, the continuous distribution of products from the analytical system has enabled a recovery curve analysis containing a minimum of ten data points. To enhance the precision and applicability of the laboratory-scale data, two-stage processing was initiated from which a nine data point recovery curve has been generated. This two stage processing has also provided beneficiation information about the intermediate LOI products and, ultimately, has been meaningful for process scale-up. As in float-sink testing for washability, the potential of dry beneficiation processing can be quantitatively defined for the processing of combustion fly ash.

  15. The structure of submicron ash from combustion of pulverized South African and Colombian coals

    SciTech Connect

    Kauppinen, E.I.; Lind, T.M.; Valmarui, T.; Ylaetalo, S.; Jokiniemi, J.K.; Powell, Q.; Gurav, A.S.; Kodas, T.T.; Mohr, M.

    1996-12-31

    The formation of submicron ash particles during the utility-scale pulverized combustion of South African Klein Kopie and Colombian El Dorado coals was studied by measuring the ash particle number and mass size distributions in the size range 0.01--1 {micro}m upstream of the electrostatic precipitator (ESP). Ash morphology, composition and microstructure were studied by high resolution scanning and transmission electron microscopes (SEM and TEM). The authors propose new mechanisms for the formation of submicron agglomerated ash particles in pulverized coal-fired boiler flames.

  16. TENORM: Coal Combustion Residuals

    EPA Pesticide Factsheets

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  17. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    SciTech Connect

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B.

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

  18. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  19. Solid by-products of coal combustion: Fly ash as a source of industrial minerals

    SciTech Connect

    Bhagwat, S.B.; Rapp, D.M.; Bukowski, J.M.

    1996-12-31

    Fly ash is one of the most important by-products of coal combustion. It is a complex mix of cenospheres, reactive glasses, magnetite and carbon, in addition to minor quantities of other minerals. Fly ash components are determined by the type of coal, the combustion technology, material collection system and the temperature of combustion. The changing mix of coal burned in power plants is increasingly making the fly ash characteristics independent of the locally mined coal. Fly ash is thus becoming a raw material independent of the existence of a local coal mining industry. Currently, about 65 million tons of fly ash are generated annually in the United States. This is equivalent to the crushed stone production of such highly industrialized states as Illinois. Only about twenty percent of the total fly ash are currently used, mostly in low value applications such as road building materials and concrete additions. The fly ash currently represents an environmental and financial liability to electric utilities. The increasingly competitive and boundaryless electricity market in the US increases the incentive to look at fly ash in terms of its individual components and recognize their potential as industrial minerals in the production of value added materials. For example, zeolites and other adsorbents could be produced from reactive glasses, magnetite could be used in pigments and ferrite manufacture, activated carbon could serve in pollution control and cenospheres could be used to make lightweight ceramics. If one begins to look at fly ash as a source of industrial minerals and not as a waste product, this change in perspective could turn a financial and environmental liability into an economic opportunity.

  20. A comparison study of ash formation during pilot-scale combustion of pulverized coal and coal-water slurry fuels

    SciTech Connect

    Miller, S.F.

    1992-01-01

    The objective of this study was to investigate the effect of fuel form. specifically pulverized coal and coal-water slurry fuel (CWSF), on the particle size distribution (PSD) and inorganic composition of the ash formed during combustion. Three areas of primary interest were fuel particle and droplet size distribution, mineral matter PSD, and the composition and occurrence of inorganics in the fuel. The reactions of pyrite, silicates, aluminosilicates, and alkali and alkaline earth elements during combustion are traced. Two coals, a West Virginia Elk Creek high volatile A bituminous coal and the North Dakota Beulah lignite, were fired as a standard utility grind pulverized fuel and a CWSF at 316.2 MJ/h at 20% excess air in the Penn State Combustion Laboratory down-fired combustor. Fuel PSD and droplet size distribution of the pulverized coal and CWSF are important in determining the PSD of the respective ash when the PSD of the mineral matter and the composition and occurrence of the inorganics in the two fuels are similar, as in the case of the Elk Creek fuels. The mechanism for ash formation in both Elk Creek fuels was coalescence and agglomeration of the inorganics in the coal. The Elk Creek CWSF ash was coarser than the pulverized coal ash due to the larger CWSF char size formed during atomization. The average diameter of the inorganic particles identified in the pulverized coal ash was 2.6 times smaller than those identified in the fuel. The mechanism for ash formation in the Beulah CWSF was coalescence and agglomeration of inherent mineral matter. The average diameter of the inorganic particles identified in the CWSF ash was 3.3 times larger than those identified in the fuel.

  1. Activation of immune complement by fly ash particles from coal combustion. [Dogs

    SciTech Connect

    Hill, J.O.; Rothenberg, S.J.; Kanapilly, G.M.; Hanson, R.L.; Scott, B.R.

    1982-06-01

    The interaction of immune complement with fly ash particles from coal combustion was studied in vitro. Fly ash from different coal combustors was incubated for 1 hr with pooled normal dog serum at 37/sup 0/C. The serum supernatants were assayed for complement by a 505 hemolytic (CH/sub 50/) endpoint method. Ash produced by burning one type of coal activated complement with up to 70% of the complement activated at 10 mg ash/ml serum. This activation was concentration dependent and a linear dose-response curve was obtained. Heat treatment and surface area measurements, as well as immunofluorescence studies, suggest that the active component(s) is volatile or heat labile, found on the surface of the particles, and removed by saline or water extraction.

  2. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  3. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  4. Melting behavior of ashes from the co-combustion of coal and straw

    SciTech Connect

    S. Arvelakis; F.J. Frandsen

    2007-09-15

    Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures. 25 refs., 4 figs., 3 tabs.

  5. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    USGS Publications Warehouse

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes

  6. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.

    PubMed

    Fan, Yun; Zhang, Fu-Shen; Zhu, Jianxin; Liu, Zhengang

    2008-05-01

    The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.

  7. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples.

    PubMed

    Roper, Angela R; Stabin, Michael G; Delapp, Rossane C; Kosson, David S

    2013-03-01

    Coal combustion residues from coal-fired power plants can be advantageous for use in building and construction materials. These by-products contain trace quantities of naturally occurring radionuclides from the uranium and thorium series, as well as other naturally occurring radionuclides such as K. Analysis was performed on samples of coal fly ash, flue gas desulfurization, gypsum and scrubber sludges, fixated scrubber sludges, and waste water filter cakes sampled from multiple coal-fired power plants in the United States. The radioactive content of U and Th decay series nuclides was determined using gamma photopeaks from progeny Pb at 352 keV and Tl at 583 keV, respectively; K specific activities were determined using the 1,461 keV photopeak. The samples were hermetically sealed to allow for secular equilibrium between the radium parents and the radon and subsequent progeny. Samples were analyzed in a common geometry using two high purity germanium photon detectors with low energy detection capabilities. The specific activities (Bq kg) were compared to results from literature studies including different building materials and fly ash specific activities. Fly ash from bituminous and subbituminous coals had U specific activities varying from 30-217 Bq kg (mean + 1 s.d. 119 ± 45 Bq kg) and 72-209 Bq kg (115 ± 40 Bq kg), respectively; Th specific activities from 10-120 Bq kg (73 ± 26 Bq kg) and 53-110 Bq kg (81 ± 18 Bq kg), respectively; and K specific activities from 177 to 928 Bq kg (569 ± 184 Bq kg) and 87-303 Bq kg (171 ± 69 Bq kg), respectively. Gypsum samples had U, Th, and K specific activities approximately one order of magnitude less than measured for fly ash samples.

  8. Utilization of coal ash/coal combustion products for mine reclamation

    SciTech Connect

    Dolence, R.C.; Giovannitti, E.

    1997-09-01

    Society`s demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations.

  9. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  10. Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete

    SciTech Connect

    Scott, A.N.; Thomas, M.D.A.

    2007-01-15

    An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

  11. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.

    PubMed

    Alvarez-Ayuso, E; Querol, X; Plana, F; Alastuey, A; Moreno, N; Izquierdo, M; Font, O; Moreno, T; Diez, S; Vázquez, E; Barra, M

    2008-06-15

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 degrees C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut für Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80

  12. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    SciTech Connect

    Dyartanti, Endah Retno; Jumari, Arif Nur, Adrian; Purwanto, Agus

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  13. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  14. ON TRIMODAL PARTICLE SIZE DISTRIBUTIONS IN FLY ASH FROM PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 micrometers, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Whereas classical theories regarding coal combustion suggest that ...

  15. Generating a representative signal of coal ash content to anticipate combustion control in a thermal power station.

    PubMed

    Prieto-Fernández, Ismael; Santurio-Díaz, José M; Folgueras-Díaz, Belén; López-Bobo, M Rosario; Fernández-Viar, Pedro

    2004-05-01

    This paper describes the possibilities of continuously measuring coal ash in the boiler feeding circuit of a thermal power station so that the measurement can be used as a signal for the boiler combustion control system. An installation was designed, at semi-industrial scale, that could faithfully reproduce the operation of a belt feeder. In order to measure the ash content, a natural radioactivity meter was installed and a large number of coal samples with different ranks and grain sizes were tested, eventually showing the possibility of achieving the objective.

  16. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.

    PubMed

    Montes-Hernandez, G; Pérez-López, R; Renard, F; Nieto, J M; Charlet, L

    2009-01-30

    The increasing CO(2) concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO(2). In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. second, the spontaneous carbonation of calcium hydroxide suspension. A significant CaO-CaCO(3) chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2h of reaction at 30 degrees C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO-CaCO(3) conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO(2) (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature "20-25", 30 and 60 degrees C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO(2) transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 < or = saturation index < or = 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester up to 26 kg of CO(2), i.e. 38.18 ton of fly-ash per ton of CO(2) sequestered. This confirms the possibility to use this

  17. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology.

    PubMed

    Koukouzas, Nikolaos; Ward, Colin R; Papanikolaou, Dimitra; Li, Zhongsheng; Ketikidis, Chrisovalantis

    2009-09-30

    The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO(2) is the dominant oxide in the fly ashes, with CaO, Al(2)O(3) and Fe(2)O(3) also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples.

  18. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.

    PubMed

    Kosson, David S; Garrabrants, Andrew C; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.

  19. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    PubMed

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist.

  20. Influence of coal nature and structure on ash size formation characteristic and related pollutant emissions during CFB combustion

    NASA Astrophysics Data System (ADS)

    Qian, Min; Boelle, Arnaud; Jaud, Philippe; Na, Yongjie; Lu, Qinggang; Bao, Shaolin; Cui, Ping; Jiao, Weihong; Zhao, Huanming

    2000-09-01

    The size distribution of coal particles in a Circulating Fluidized Bed (CFB) boiler plays a crucial role in the complicated combustion, heat exchange and pollutant emissions in such a plant. Therefore, it is fundamental to study the different factors having influence on the size distribution of coal particles. Above all, the coal itself and in particular, the coal comminution phenomenon is a very influent factor. In the frame of this work, the coal nature (elementary composition) and coal internal structure (mineral components) are studied in detail. At this intermediary stage, experiments on three typical Chinese coals on a 1.5 MWt CFBC pilot plant have been made. Some primary fragmentation tests have also been made in a small lab scale fluidized bed reactor. The results from the hot pilot test show i) the variation of coal ash distributions and other CFB performance data due to the cyclone and the coal characteristics and ii) the variation of desulfurization efficiency with limestone. Whereas the bench scale primary fragmentation test, likely linked to the caking propriety of a coal, does not seem to change considerably the char size distribution.

  1. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    PubMed

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards.

  2. Ash from the combustion of Ekibastuzsk coals - a raw material for obtaining glasses and aluminium

    SciTech Connect

    Suleimenov, S.T.

    1984-01-01

    The ash content of the Ekibastuzsk coal deposit is up to 45%. The ash contains 26-30% Al2O3, 60-65% SiO2 and at least 4-5% coke. It was mixed with 20-30% slag from the phosphorus industry and 4-5% sodium sulphate for the making of glass ceramic tiles. The good acid resistance of these tiles makes them suitable for lining the equipment in which Al is extracted from the same ash for producing aluminium sulphate.

  3. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  4. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  5. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  6. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    SciTech Connect

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-07

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  7. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler

    SciTech Connect

    Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan

    2007-12-15

    The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

  8. Ash particulate formation from pulverized coal under oxy-fuel combustion conditions.

    PubMed

    Jia, Yunlu; Lighty, JoAnn S

    2012-05-01

    Aerosol particulates are generated by coal combustion. The amount and properties of aerosol particulates, specifically size distribution and composition, can be affected by combustion conditions. Understanding the formation of these particles is important for predicting emissions and understanding potential deposition. Oxy-fuel combustion conditions utilize an oxygen-enriched gas environment with CO(2). The high concentration of CO(2) is a result of recycle flue gas which is used to maintain temperature. A hypothesis is that high CO(2) concentration reduces the vaporization of refractory oxides from combustion. A high-temperature drop-tube furnace was used under different oxygen concentrations and CO(2) versus N(2) to study the effects of furnace temperature, coal type, and gas phase conditions on particulate formation. A scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were utilized for particle size distributions ranging from 14.3 nm to 20 μm. In addition, particles were collected on a Berner low pressure impactor (BLPI) for elemental analysis using scanning electron microscopy and energy dispersive spectroscopy. Three particle size modes were seen: ultrafine (below 0.1 μm), fine (0.1 to 1.0 μm), and coarse (above 1 μm). Ultrafine mass concentrations were directly related to estimated particle temperature, increasing with increasing temperature. For high silicon and calcium coals, Utah Skyline and PRB, there was a secondary effect due to CO(2) and the hypothesized reaction. Illinois #6, a high sulfur coal, had the highest amount of ultrafine mass and most of the sulfur was concentrated in the ultrafine and fine modes. Fine and coarse mode mass concentrations did not show a temperature or CO(2) relationship. (The table of contents graphic and abstract graphic are adapted from ref 27.).

  9. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  10. Mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes from coal combustion

    SciTech Connect

    Yongchun Zhao; Junying Zhang; Junmin Sun; Xiangfei Bai; Chuguang Zheng

    2006-08-15

    Fourteen samples of coal and ferrospheres, which were recovered by dry magnetic separation from fly ashes, were collected from five power plants in China. The mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes have been studied by optical microscopy, X-ray diffraction (XRD), Moessbauer spectroscopy, and field emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FSEM-EDX). Iron in ferrospheres mainly occurs as Fe{sub 3}O{sub 4}, {alpha}Fe{sub 2}O{sub 3}, {gamma}Fe{sub 2}O{sub 3}, MgFe{sub 2}O{sub 4}, and Fe{sup 3+}-glass, ferrian spinel, and so on. On the basis of iron content, the ferrospheres in fly ashes are classified into four groups, namely ferrooxides, aluminosilicate-bearing ferrooxides, high-ferriferous aluminosilicates, and ferroaluminosilicates . Ferrooxides are derived from the oxidation of iron-bearing minerals, whereas aluminosilicate-bearing ferrooxides, high-ferriferous aluminosilicates, and ferroaluminosilicates are formed by the fusion of different proportions of inherent iron-bearing minerals and clay minerals. According to their microstructure, the ferrospheres in fly ashes are classified into seven groups, namely sheet ferrospheres, dendritic ferrospheres, granular ferrospheres, smooth ferrospheres, ferroplerospheres, porous ferrospheres, and molten drop ferrospheres. Sheet ferrospheres are derived from the oxidation of iron-bearing minerals immediately; smooth ferrospheres, molten drop ferrospheres, ferroplerospheres, and porous ferrospheres are the complex eutectic of inherent iron-bearing minerals and clay minerals; dendritic ferrospheres and granular ferrospheres are formed by the conglutination after the oxidation of iron-bearing minerals. Ferrooxides and aluminosilicate-bearing ferrooxides are important sources of the initial layer that occurs in deposits formed in coal-burning systems. 78 refs., 11 figs., 4 tabs.

  11. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    SciTech Connect

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  12. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    SciTech Connect

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  13. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants

    SciTech Connect

    I. Surez-Ruiz; J.C. Hower; G.A. Thomas

    2007-01-15

    In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

  14. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  15. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  16. [Distribution of fluoride in the combustion products of coal].

    PubMed

    Liu, Jianzhong; Qi, Qingjie; Zhou, Junhu; Cao, Xinyu; Cen, Kefa

    2003-07-01

    The static distribution characteristic of fluoride in the combustion products of coal was studied by ashing procedure of coal, and the dynamic distribution characteristics of fluorine in the combustion products of coal in pulverized-coal-fired boiler and layer-burning boiler were investigated. Experimental results identified that fluorine in coal belong to volatile elements, fluorine in fly ash and bottom ash were non-rich. About 94.5% of the fluorine in coal emitted as gaseous-fluorine during coal combustion in pulverized-coal-fired boiler, and about 80% of the fluorine in coal emitted as gaseous-fluorine during coal combustion in layer-burning boiler. 55%-60% of the fluorine in fly ash of pulverized-coal-fired boiler were distributed in fly ash particles with a diameter of 74 microns-104 microns.

  17. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  18. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  19. Mercury removal from coal combustion flue gas by modified fly ash.

    PubMed

    Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei

    2013-02-01

    Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.

  20. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  1. Oxy-coal Combustion Studies

    SciTech Connect

    Wendt, J.; Eddings, E.; Lighty, J.; Ring, T.; Smith, P.; Thornock, J.; Y Jia, W. Morris; Pedel, J.; Rezeai, D.; Wang, L.; Zhang, J.; Kelly, K.

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  2. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-04-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analysed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01-0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3 % of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation.

  3. Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Smoliński, Adam; Stempin, Marek; Howaniec, Natalia

    2016-02-01

    The aim of the experimental works presented in this paper was to develop a method using wavelength dispersive X-ray fluorescence spectrometry (WDXRF) in order to determine the content of 16 rare earth elements (REEs) and the concentration of the said elements in 169 samples of combustion ash of coals coming from ten Polish coal mines, as well as to validate the method. It was found out that there is a clear diversity in the levels and ranges of the variability of REEs occurrence in coal ashes. The average content of cerium, lanthanum, and scandium amounts to 198.8 μg • g- 1, 76.5 μg • g- 1, and 52.4 μg • g- 1 respectively, whereas for such metals as europium, holmium, lutetium, terbium, and thulium, the average content does not exceed the level of 5 μg • g- 1 (the average content for these metals amounts to 1.2 μg • g- 1, 1.4 μg • g- 1, 0.3 μg • g- 1, 1.3 μg • g- 1, and 0.6 μg • g- 1, respectively). In addition, this paper presents an analysis of data obtained by means of hierarchical clustering analysis. Simultaneous interpretation of the dendrogram of objects (coal ash samples) and the color map of the experimental data allowed a more in-depth analysis of the relationships between the clustered coal ash samples from different coal mines and the content of the rare earth elements.

  4. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-07-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analyzed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01--0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3% of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation. At three operation condition (nominal output, 70% and 40% respectively) emission factors of heavy metals have been estimated for 35 MW stoker-fired boiler. Ba, Pb, Sb and Zn increased their emission factors and Cr and Mn decreased when output was decreased. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal, other possibilities (metals extraction from the coal, changes of condition in the flame) are rather limited.

  5. Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas.

    PubMed

    Bartonová, Lucie; Cech, Bohumír; Ruppenthalová, Lucie; Majvelderová, Vendula; Juchelková, Dagmar; Klika, Zdenek

    2012-01-01

    The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone. The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements. Except of S (with significant association with CaO) and Rb and Pb (with major affinity to Al2O3) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959), Cl (0.957), Cu (0.916), Se (0.898), Ni (0.866), As (0.861), Zn (0.742), Ge (0.717), and Ga (0.588) content. The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.

  6. Impacts of combustion and post-combustion NO{sub x} reduction technologies on the properties and utilization potential of coal fly ash

    SciTech Connect

    Venta, G.J.; Hemmings, R.T.; Golden, D.M.

    1995-12-31

    The paper describes the findings of a study in progress being carried out by Radian Corporation for the Electric Power Research Institute under EPRI RP3176-17. The purpose of the study is to provide utilities with vital information on the impact of current NO{sub x} control technologies on coal ash quality, how it impacts the reuse options, and to explore process options for improving the ash quality. The study also addresses other ash use options that do not require a low carbon content and/or are not sensitive to ammonia-related chemical impurities.

  7. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  8. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  9. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  10. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.; Jones, J. M.; Lea-Langton, A. R.; Malkin, T. L.; O'Sullivan, D.; Neve, L.; Plane, J. M. C.; Williams, A.

    2015-05-01

    Ice-nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice-nucleating particles, but the ice-nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.

  11. Fundamental Study of Low NOx Combustion Fly Ash Utilization

    SciTech Connect

    E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

    1997-05-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  12. Coal ash behavior in reducing environments

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Brekke, D.W.; Folkedahl, B.C.; Tibbetts, J.E.; Nowok, J.W.

    1994-10-01

    This project is a four-year program designed to investigate the transformations and properties of coal ash in reducing environment systems. This project is currently midway through its third year. The work to date has emphasized four areas of research: (1) the development of quantitative techniques to analyze reduced species, (2) the production of gasification-type samples under closely controlled conditions, (3) the systematic gasification of specific coals to produce information about their partitioning during gasification, and (4) the study of the physical properties of ashes and slags under reducing atmospheres. The project is organized into three tasks which provide a strong foundation for the project. Task 1, Analytical Methods Development, has concentrated on the special needs of analyzing samples produced under a reducing atmosphere as opposed to the more often studied combustion systems. Task 2, Inorganic Partitioning and Ash Deposition, has focused on the production of gasification-type samples under closely controlled conditions for the study of inorganic partitioning that may lead to deposition. Task 3, Ash and Slag Physical Properties, has made large gains in the areas of sintering and strength development of coal ashes under reducing atmospheres for the evaluation of deposition problems. Results are presented for all three tasks.

  13. The recycling of the coal fly ash in glass production

    SciTech Connect

    Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A.

    2006-09-15

    The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

  14. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.; Moreno Gutiérrez, M.

    2015-06-01

    The aim of this work was apply 57Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe2+ and Fe3+ crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe2+ and Fe3+ noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion.

  15. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  16. Coal combustion research

    SciTech Connect

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  17. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  18. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  19. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station.

    PubMed

    Bartoňová, Lucie; Klika, Zdeněk

    2014-07-01

    This work was conducted to evaluate whether Ca-bearing additives used during coal combustion can also help with the retention of some other elements. This work was focused on the evaluation of bottom ashes collected during four full-scale combustion tests at an operating thermal fluidized-bed power station. Bottom ashes were preferred to fly ashes for the study to avoid interference from condensation processes usually occurring in the post-combustion zone. This work focused on the behaviors of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W, and Pb. Strong positive correlations with CaO content in bottom ashes were observed (for all four combustion tests) for S, As, Cl and Br (R=0.917-0.999). Strong inverse proportionality was calculated between the contents of Pb, Zn, Ni, Cr and Mn and CaO, so these elements showed association to materials other than Ca-bearing compounds (e.g., to aluminosilicates, organic matter, etc.). Somewhat unclear behaviors were observed for W, Cu, and V. Their correlation coefficients were evaluated as statistically "not significant", i.e., these elements were not thought to be significantly associated with CaO. It was also discovered that major enrichment of CaO in the finest bottom ash fractions could be advantageously used for simple separation of elements strongly associated with these fractions, mainly S and As, but also Cl or Br. Removal of 5% of the finest ash particles brings about a decrease in As concentration down to 77%-80% of its original bulk ash content, which can be conveniently used e.g., when high As content complicates further ash utilization.

  20. Evaluation of tubular ceramic heat exchanger materials in acidic coal ash from coal-oil-mixture combustion. [Sialon; alumina; CVD, sintered, and siliconized SiC

    SciTech Connect

    Ferber, M.K.; Tennery, V.J.

    1981-12-01

    Tubes of five ceramic materials were exposed to the hot combustion gases from a coal-oil-mixture (COM) fuel in the Ceramic Recuperator Analysis Facility (CRAF) at about 1200/sup 0/C for about 500 h. Siliconized SiC, sintered ..cap alpha..-SiC, and chemically vapor deposited (CVD) SiC survived the long-term exposure with no major visible degradation. The alumina and sialon tubes were cracked extensively. Acidic coal slag deposited extensively on the upstream surface of all tubes. During cooldown, the slag did not strongly bond to any of the silicon carbide tubes, but a strong bond was developed with the alumina and sialon tubes. The silicon carbides corroded by a micropitting oxidation at the carbide-slag interface. The SiC and Si phases of siliconized SiC corroded at essentially the same rate. Exposure to hot coal slag increased the room-temperature helium permeability of all the SiC-based tubes. For KT and CVD SiC, both upstream and downstream sides exhibited expansion increases up to about 17% at 1000/sup 0/C. Sintered ..cap alpha..-SiC had much smaller increases. Al/sub 2/O/sub 3/ had an expansion increase of about 14% on the upstream side at 1000/sup 0/C but the downstream side was unchanged. 65 figures, 22 tables.

  1. Predicting slag viscosity from coal ash composition

    SciTech Connect

    Laumb, J.; Benson, S.A.; Katrinak, K.A.; Schwalbe, R.; McCollor, D.P.

    1999-07-01

    Management of slag flow from cyclone-fired utility boilers requires accurate prediction of viscosity. Cyclones tend to build up slag when the cyclone combustion temperature is less than the temperature required to melt and tap the ash from the coal being fired. Cyclone-fired boilers designed for lignite are equipped with predry systems, which remove 6-9% of the moisture from the coal. Cyclones tend to slag when the as-received heating value of the fuel is less than 6350 Btu/lb and T250 (temperature where viscosity equals 250 poise) is greater than 2350 F. The T250 value, as well as the rest of the viscosity-temperature relationship, can be predicted using models based on coal ash composition. The focus of this work is to evaluate several models in terms of their agreement with measured viscosities. Viscosity measurements were made for ten samples, including nine lignite coals and one lignite-derived slag. Model performance is related to the SiO{sub 2}, CaO, and Fe{sub 2}O{sub 3} contents of the slag. The Sage and McIlroy and Kalmanovitch models worked best for high SiO{sub 2} and low Fe{sub 2}O{sub 3} fuels. The Senior model worked best when Fe{sub 2}O{sub 3} content was moderate to high.

  2. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  3. PILOT DEMONSTRATION OF TECHNOLOGY FOR THE PRODUCTION OF HIGH VALUE MATERIALSFROM THE ULTRA-FINE (PM2.5)FRACTION OF COAL COMBUSTION ASH

    SciTech Connect

    T.L. Robl; J.G. Groppo

    2004-01-31

    Dry fly ash samples were collected from 6 of the7 largest power plants operated by Louisville Gas and Electric Company (LG&E). Samples were taken from individual ESP hoppers in a continuous flow through stages of particulate collection. A total of 41 samples were taken from 16 operating units. The samples were thoroughly characterized for pertinent physical and chemical composition. The fly ash samples contained 10 to 50% -10{micro}m material, with higher concentrations of finer particles located in the latter stages of particulate collection. Flotation evaluation was conducted on a continuous flow though a single unit at each power station to assess the viability of using froth flotation to reduce the LOI in the fly ash to very low levels (i.e. 0.5% LOI) in order to enable eventual use as fillers. Ash from all of the units tested responded favorably with the exception of the ash from Henderson Station, which is attributed to a significant proportion of un-combusted or partially-combusted petroleum coke in the ash at this station, Bulk samples of dry ash and pond ash were also collected from Mill Creek, Trimble County, E.W. Brown and Coleman power plants and evaluated for carbon removal by froth flotation. Release analyses showed that flotation could effectively reduce carbon to acceptable levels for most of the substrates tested. The exception was the Mill Creek ashes. The cause of this exception will be further investigated.

  4. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  5. Process for removing ash from coal

    SciTech Connect

    Harada, K.; Nakanishi, T.; Ogino, E.; Yoshida, N.

    1983-06-21

    A process for removing ash from coal comprising the steps of pulverizing the coal to fine particles, admixing water with the finely divided coal to prepare an ash-containing slurry of finely divided coal, mixing with the slurry an oil and seeds in the form of oleophilic solid grains and serving as granulating nuclei to granulate the finely divided coal, separating the resulting granules from the mixture and washing the granules with water to remove the ash, and disintegrating the washed granules to obtain a deashed coal and recover the seeds for reuse.

  6. Coal combustion science. Quarterly progress report, April 1993--June 1993

    SciTech Connect

    Hardesty, D.R.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Combustion properties of micronized coal for high intensity combustion applications

    SciTech Connect

    Freihaut, J.D.; Proscia, W.; Knight, B.; Vranos, A.; Hollick, H.; Wicks, K.

    1989-04-19

    Results are presented of an investigation of combustion related properties of micronized coal feeds (all particles less than 40 microns), mixing characteristics of centrifugally driven burner devices, and aerodynamic characteristics of micronized coal particles related to centrifugal mixing for high intensity combustion applications. Combustion related properties investigated are the evolution of fuel bound nitrogen and coal associated mineral matter during the initial stages of combustion. Parent and beneficiated micronized coal samples, as well as narrow size cut samples from a wide range of coal ranks, were investigated using a multireactor approach. The multireactor approach allowed the experimental separation of different aspects of the fuel nitrogen evolution process, enabling a comprehensive understanding of FBN to be formulated and empirical rate constants to be developed. A specially designed on-line gas analysis system allowed nitrogen balance to be achieved. A combined nitrogen and ash tracer technique allowed the quantitative determination of tar yields during rapid devolatilization. Empirical kinetic rates are developed for the evolution of FBN with tar at low temperatures and the appearance of HCN from tar and char species at high temperatures. A specially designed phase separation system, coupled to separate aerosol and char segregation trains, allowed the possible formation of ash aerosol by rapid devolatilization to be monitored. Compensated thermocouple, hot wire anemometry, and digital imaging techniques are employed to characterize the mixing properties of a centrifugally driven combustor. Analytical and experimental investigations of the fidelity of micronized coal particles to gas stream trajectories in the strong centrifugal fields are performed. Both spherical and nonspherical particle morphologies are considered analytically. 14 refs., 141 figs., 34 tabs.

  8. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  9. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  10. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  11. Isotopic signature of atmospheric phosphate emitted from coal combustion

    NASA Astrophysics Data System (ADS)

    Weinberger, Roi; Weiner, Tal; Angert, Alon

    2016-07-01

    Atmospheric deposition of phosphorus (P) serves as an important nutrient input for many terrestrial, marine and freshwater ecosystems, influencing their biogeochemistry and primary production. Fossil fuel combustion, principally coal, is estimated to be a major source of atmospheric-P in industrialized regions. In this research, we aim to find a distinct isotopic signature for fly coal ash, the by-product of coal combustion that is emitted to the atmosphere. This signature could be used to identify coal's contribution to atmospheric-P. For this aim, ten fly coal ash samples from different coal sources, collected by power station filters, were analyzed for P concentrations and stable oxygen isotopic composition (δ18OP). Two inorganic phosphate fractions were analyzed: HCl-extractable and resin-extractable (bioavailable P). High HCl-P concentrations of up to 3500 μg P/g ash were found with a distinct δ18OP range of 17.1-20.5‰. The resin-P concentrations were substantially lower (<8 μg/g) with a wider and significantly lower δ18OP range of 10.6-16.5‰. The ash samples were found to have HCl-P δ18OP higher in ∼0-∼9‰ relative to the source coal. Similar isotopic values were found for ash with the same coal source country, regardless of the power station. Despite the low bioavailable P concentrations, fly ash could still be an important atmospheric P source to the biosphere since these combustion products likely acidify in the atmosphere to become bioavailable. This is also supported by our finding that smaller particles, which are more indicative of the particles actually emitted to the atmosphere, are significantly P-richer. Natural dust sources' δ18OP overlap fly ash's range, complicating the assessment of coal's contribution. Nonetheless, our results provide a new tool for identification of fossil fuel combustion sources in local and global atmospheric P deposition.

  12. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  13. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  14. Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed

    SciTech Connect

    A.Y. Maistrenko; V.P. Patskov; A.I. Topal; T.V. Patskova

    2007-09-15

    A numerical analysis of the process of 'wet' gasification of high-ash coal under pressure in a low-temperature fluidized bed has been performed. The applicability of the previously developed computational model, algorithm, and program for the case under consideration has been noted. The presence of 'hot spots' (short-time local heatings) at different points of the bed has been confirmed.

  15. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  16. THE ROLE OF COAL PROPERTIES AND COMBUSTION CONDITIONS IN THE CAPTURE OF MERCURY BY FLY ASH AND SORBENTS

    EPA Science Inventory

    The U. S. fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be the major anthropogenic source of domestic mercury (Hg) emissions. As such, in March 2005, the U. S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury R...

  17. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Quarterly report, March 15, 1988--June 15, 1988

    SciTech Connect

    Akan-Etuk, A.; Niksa, S.; Kruger, C.H.

    1988-08-01

    The primary topics in this program are the size distribution of particulates from pulverized coal firing and the thermochemical transformations of pyrite at typical p. f. firing conditions. In the laboratory, both of these aspects involve representative sampling of particulates from a high temperature combustor, as well as synthetic model fuels with specified pore structure and pyrite loadings. During the period March 15, 1988 through June 15, 1988 we continued to develop the components for representative sampling of particulates in our one-dimensional coal flow reactor, and also began to synthesize carbons with controlled porosity and pyrite loadings. The first element in the collection and analysis train, the extraction probe for solid samples, is complete. In shakedown evaluations, the probe met all design specifications and is ready for use. A housing for the probe was designed and is now being fabricated. This component supports the sampling probe at specified positions in the Stanford Coal Flow Reactor (SCFR), and also collects and quenches the effluent from the reactor, and transports it to the laboratory exhaust system. We have synthesized carbons from furfuryl alcohol, according to the procedure developed by Senior and Flagan at Caltech. These carbons are virtually identical to samples prepared at Caltech, and SEM-photomicrographs confirmed that the carbon is glassy with no large pores.

  18. 2007 American Coal Ash Association membership directory as of June 21, 2007

    SciTech Connect

    2007-07-01

    A listing of names, addresses, contact numbers and websites is given for 101 members of the American Coal Ash Association. Honorary members are also named. Included are power generation companies, combustion by-product manufacturers and university departments.

  19. Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash.

    PubMed

    Medunić, Gordana; Ahel, Marijan; Mihalić, Iva Božičević; Srček, Višnja Gaurina; Kopjar, Nevenka; Fiket, Željka; Bituh, Tomislav; Mikac, Iva

    2016-10-01

    This paper presents the levels of sulphur, polycyclic aromatic hydrocarbons (PAHs), and potentially toxic trace elements in soils surrounding the Plomin coal-fired power plant (Croatia). It used domestic superhigh-organic-sulphur Raša coal from 1970 until 2000. Raša coal was characterised by exceptionally high values of S, up to 14%, making the downwind southwest (SW) area surrounding the power plant a significant hotspot. The analytical results show that the SW soil locations are severely polluted with S (up to 4%), and PAHs (up to 13,535ng/g), while moderately with Se (up to 6.8mg/kg), and Cd (up to 4.7mg/kg). The composition and distribution pattern of PAHs in the polluted soils indicate that their main source could be airborne unburnt coal particles. The atmospheric dispersion processes of SO2 and ash particles have influenced the composition and distribution patterns of sulphur and potentially toxic trace elements in studied soils, respectively. A possible adverse impact of analysed soil on the local karstic environment was evaluated by cytotoxic and genotoxic methods. The cytotoxicity effects of soil and ash water extracts on the channel catfish ovary (CCO) cell line were found to be statistically significant in the case of the most polluted soil and ash samples. However, the primary DNA-damaging potential of the most polluted soil samples on the CCO cells was found to be within acceptable boundaries.

  20. Immersion freezing of different kinds of combustion ashes

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Grawe, Sarah; Hellner, Lisa; Wex, Heike; Pettersson, Jan B. C.; Stratmann, Frank

    2015-04-01

    Ice particles in the atmosphere influence both, weather and climate. Therefore it is important to know which kind of particles can act as ice nucleating particles (INP) under atmospheric conditions. In the last years, a lot of effort has been made to investigate the freezing abilities of natural INPs such as dusts and biological particles (Murray et al., 2012, Hoose and Möhler, 2012). However, there are only a few investigations concerning the ice nucleation ability of combustion ashes, which are the remains of fossil fuel and wood combustion and thus a possible source for anthropogenic INPs. Ash particles have similar compositions as mineral dust particles. However, the actual contribution of combustion ash particles to the atmospheric ice nucleation is rather unclear. A recent study by Umo et al. (2014) showed that combustion ashes could have a significant impact on the ice nucleation in clouds and thus should be the focus of further research. Ash particles can be lifted to the atmosphere by wind (bottom ashes) or directly during the combustion process (fly ashes). In the present study we investigated the freezing behavior of bottom ash particles which originated from wood as well as from coal. Additionally we investigated particles from fly ash from a coal-fired power plant. Particles were generated by dry dispersion and afterwards size selected with a differential mobility analyzer (DMA). The immersion freezing ability of the different ash particles was quantified utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011), where exactly one size segregated ash particle is immersed in a droplet. We found significant differences between the freezing abilities of the different ash types. Particles from wood bottom ashes initiate freezing at rather low temperatures near the homogenous freezing point (around -36°C). Particles from coal bottom ashes show significant higher ice nucleation abilities than the wood bottom ash, with

  1. Coal Combustion Science. Quarterly progress report, October--December 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  2. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion: Quarterly report, June 15, 1988--September 15, 1988

    SciTech Connect

    Akan-Etuk, A.; Niksa, S.; Kruger, C.H.

    1988-10-01

    We perfected the synthesis of carbons with controlled macroporosity and pyrite loadings. Lycopodium spores were found to be ideal formers of macroporosity, being monodisperse, spherical, and nontoxic. They are added as a powder during the furfuryl alcohol polymerization, so the number density of voids is easily controlled. They are almost completely volatilized during curing, and leave no ash or residue. Our procedure generates nominally uniform, 16 micron spherical voids in a microporous carbon matrix. Pyrite inclusions are generated by adding sized pyrite particles during the furfuryl alcohol polymerization. However, the pyrite loading was found to be difficult to control. Due to its high density, the pyrite tends to settle throughout the synthesis. We must rely on ultracentrifugation using a range of liquids with controlled specific gravity to segregate samples with controlled pyrite loadings. 3 figs.

  3. Catalyzing the Combustion of Coal

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Dokko, W.

    1982-01-01

    Reaction rate of coal in air can be increased by contacting or coating coal with compound such as calcium acetate. The enhanced reaction rate generates more heat, reducing furnace size. Increase in combustion rate is about 26 percent, and internal pollutants in powerplant are reduced.

  4. Coal-ash spills highlight ongoing risk to ecosystems

    SciTech Connect

    Chatterjee, R.

    2009-05-01

    Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

  5. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention.

  6. Utilization of coal fly ash. Master's thesis

    SciTech Connect

    Openshaw, S.C.

    1992-01-01

    Coal-fired power plants produce approximately 80 million tons of fly ash each year. Efforts to use fly ash have reached only a twenty to thirty percent reutilization rate. A literature review was performed to provide a consensus of the available information regarding fly ash. Fly ash is highly variable depending on the coal source, plant operations, and several other parameters. The various fly ash characteristics are discussed including classifications, physical characteristics, chemical properties and chemical compositions. Although extensive research has been performed on the use of fly ash, very little of this research has monitored any environmental impacts. The environmental concerns addressed include mobilization of toxic elements, biota impact, microbial impact, handling dangers, and pertinent regulations. Finally, the various disposal and reutilization options for fly ash are examined. A recommendation is provided for further research to cover deficiencies found in the literature.

  7. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to

  8. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  9. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  10. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  11. THE USE OF A PRB TO TREAT GROUNDWATER IMPACTED BY COAL-COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The burning of coal for the production of electricity generates combustion by-products such as boiler bottom ash and fly ash. These ashes have the potential to release arsenic (As), boron (B), chromium (Cr), molybdenum (Mo), selenium (Se), vanadium (V), and zinc (Zn) to the envi...

  12. [Lead emission amount from coal combustion and its environment effect in Xi'an City].

    PubMed

    Luo, Kunli; Wang, Douhu; Tan, Jianan; Wang, Lizheng; Feng, Fujian; Li, Ribang

    2002-01-30

    For study the lead emission amount from coal combustion and its environment effect, the lead content of coal, ash and cinder of power station and coal-fired boiler, the lead content of dusts in the period of heating time and the non-heating time in Xi'an City were studied in this paper. The results show that amount of lead emission from 1 ton coal combustion, which lead content in coal was 30 g, was 20 g in atmosphere. The rate of lead emission of coal combustion was about 66%. About 10 million tons of coal was straight burning every year in Xi'an City and suburb, those coal mainly come from Permo-Carboniferous coal in Weibei coal mine, Shaanxi, their average lead content was 30 mg/kg. So the total lead emission from coal combustion to atmosphere was about 200 t annually in Xi'an City.

  13. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  14. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

  15. Coal combustion by wet oxidation

    SciTech Connect

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  16. Spectroscopic research on infrared emittance of coal ash deposits

    SciTech Connect

    Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan; Vucicevic, Biljana; Goricanec, Darko; Stevanovic, Zoran

    2009-11-15

    This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces

  17. Stimulation of Mercury Methylation by Coal Ash in Anaerobic Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Schwartz, G.; Hsu-Kim, H.; Redfern, L.; Gunsch, C.; Vengosh, A.

    2015-12-01

    Coal combustion products (coal ash) represent one of the largest industrial waste streams in the United States. Coal ash contains elevated levels of toxic, bioaccumulative elements such as mercury (Hg), yet the majority of coal ash waste is stored in unlined impoundments and landfills. These impoundments have a long history of environmental degradation, including: groundwater contamination, surface water contamination through impoundment effluent discharge, and impoundment failures resulting in catastrophic ash release events. The fate of toxic elements associated with coal ash is greatly influenced by environmental parameters, such as redox potential and microbial activity, which induce transformations and leaching of contaminants. Here we used anaerobic sediment-ash microcosms to determine how coal ash impacts methyl mercury (MeHg) production in a simulated benthic aquatic environment. We used two coal ash types in the microcosms: a weathered ash with low sulfate/Hg content and a fresh fly ash that was relatively enriched in sulfate/Hg compared to the weathered ash. Two different sediments were used in the microcosms: one was a pristine sediment (containing 0.03 mg/kg Hg) and the other was a relatively Hg-contaminated sediment (containing 0.29 mg/kg Hg). Results showed that microcosms amended with the low sulfate/low Hg ash had no net MeHg production. In contrast, microcosms amended with high sulfate/high Hg ash showed increases in MeHg concentrations that were 2 to 3 times greater than control microcosms without ash, indicating that coal ash can stimulate MeHg production by providing spikes of Hg and labile sulfate to the aquatic system. MeHg production in ash-amended microcosms containing contaminated sediment was no greater than in the ash-amended pristine sediment microcosms. This may indicate that Hg associated with coal ash is more bioavailable than the Hg present in historically contaminated sediments. Illumina sequencing is underway to investigate the

  18. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  19. Trace and major element pollution originating from coal ash suspension and transport processes.

    PubMed

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  20. A clean coal combustion technology-slagging combustors

    SciTech Connect

    Chang, S. L.; Berry, G. F.

    1989-03-01

    Slagging combustion is an advanced clean coal technology technique characterized by low NOx and SOx emission, high combustion efficiency, high ash removal, simple design and compact size. The design of slagging combustors has operational flexibility for a wide range of applications, including retrofitting boilers, magnetohydrodynamic combustors, coal-fired gas turbines, gasifiers and hazardous waste incinerators. In recent years, developers of slagging combustors have achieved encouraging progress toward the commercialization of this technology. Although there is a diversity of technical approaches among the developers, they all aim for a compact design of pulverized coal combustion with high heat release and sub-stoichiometric combustion regimes of operation to suppress NOx formation, and most aim to capture sulfur by using sorbent injection in the combustor. If the present pace toward commercialization continues, retrofitting boilers of sizes ranging from 20 to 250 MMBtu/hr (5.9 to 73 MWt) may be available for commercial use in the 1990's. 18 refs., 2 figs.

  1. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-08-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  2. INVESTIGATION OF PRIMARY FINE PARTICULATE MATTER FROM COAL COMBUSTION BY COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...

  3. The occurrence of quartz in coal fly ash particles

    SciTech Connect

    Meij R.; Nagengast S.; Winkel H.T.

    2000-10-15

    Quartz is present in both coal and residual ash. Ash originates from combustion of pulverised coal and, once removed from the flue gases by electrostatic precipitators (ESPs), it is called pulverized fuel ash (PFA). Thus, occupational exposure to PFA could also include exposure to silica. However, epidemiological studies did not show evidence of progressive massive fibrosis (PMF). In vitro tests demonstrated that PFA is less toxic than silica, and in vivo data of PFA did not support the importance of silica content for toxicity. Commissioned by the Dutch coal-fired power plants, KEMA has started a research project to determine the quartz content in coal and the corresponding PFA. It appears that on average 50% of the alpha-quartz in coal is found again in the total fraction of PFA (D50(ae) 31 {mu}m, where D50(ae) is the aerodynamically mass median diameter), whereas 16% is found in an even finer fraction (D50(ae) 10 {mu}m). The remaining part of the quartz is embedded in a glass phase. Scanning electron microscopy (SEM) with x-ray microanalyses (XMA) of cross-sections of 11,130 ash particles showed that quartz in PFAis present as unmelted sand particles. These quartz particles are angularly shaped. However, two types are to be distinguished: free coarse angular quartz particles (not respirable) and small angular quartz particles within the PFA particles. From the SEM/XMA results, it has to be concluded that the quartz in the respirable fraction is predominantly present within the original molten PFA particle. Since the effects of quartz are surface related, this elucidates the negative results of quartz-related effects of PFA in epidemiological, in vitro and in vivo studies. Besides, the amount of the total alpha-quartz in the respirable fraction of the ashes studied is less than 0.2%, so probably the Dutch occupational quartz standard of 0.075 mg m{sup 3} will not be exceeded.

  4. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    DOEpatents

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  5. Coal Ash Resources Research Consortium. Annual report and selected publications, 1 July 1992--30 June 1993

    SciTech Connect

    Pflughoeft-Hassett, D.F.; Dockter, B.A.; Eylands, K.E.; Hassett, D.J.; O`Leary, E.M.

    1994-04-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced cars), formerly the Western Fly Ash Research, Development, and Data Center (WFARDDC), has continued fundamental and applied scientific and engineering research focused on promoting environmentally safe, economical use of coal combustion fly ash. The research tasks selected for the year included: (1) Coal Ash Properties Database Maintenance and Expansion, (2) Investigation of the High-Volume Use of Fly Ash for Flowable Backfill Applications, (3) Investigation of Hydrated Mineralogical Phases in Coal Combustion By-Products, (4) Comparison of Department of Transportation Specifications for Coal Ash Utilization, (5) Comparative Leaching Study of Coal Combustion By-Products and Competing Construction Materials, (6) Application of CCSEM for Coal Ash Characterization, (7) Determination of Types and Causes of Efflorescence in Regional Concrete Products, and (8) Sulfate Resistance of Fly Ash Concrete: A Literature Review and Evaluation of Research Priorities. The assembly of a database of information on coal fly ash has been a focus area for CARRC since its beginning in 1985. This year, CARRC members received an updated run time version of the Coal Ash Properties Database (CAPD) on computer disk for their use. The new, user-friendly database management format was developed over the year to facilitate the use of CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members will be beneficial to each company`s utilization efforts, to CARRC, and to the coal ash industry in general. Many additions and improvements were made to CAPD during the year, and a three-year plan for computer database and modeling related to coal ash utilization was developed to guide both the database effort and the research effort.

  6. Coal combustion byproducts and environmental issues

    SciTech Connect

    Sajwan, K.S.; Twardowska, I.; Punshon, T.; Alva, A.K.

    2006-07-01

    The book addresses the major implications and critical issues surrounding coal combustion products and their impact upon the environment. It provides essential information for scientists conducting research on coal and coal combustion products, but also serves as a valuable reference for a wide variety of researchers and other professionals in the energy industry and in the fields of public health, engineering, and environmental sciences.

  7. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  8. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Durant, J.F.; Griffith, B.F.; Miemiec, L.S.; Levasseur, A.A.; Teigen, B.C.

    1987-07-01

    The ash deposition and performance behavior of a cross-section of coal-water fuels (CWFs) were investigated during comprehensive pilot-scale testing under Task 5 of the Department of Energy's Combustion and Fuel Characterization of Coal-Water Fuels project. The key results from this effort including combustion, furnace slagging, convective pass fouling, fly ash erosion and electrostatic precipitator collection characteristics of the test fuels, are summarized in this report. Data were obtained on twelve different CWFs as well as three baseline pulverized coals. Three coal types were fired at different levels of coal beneficiation to assess the effects of coal cleaning on performance. Five CWFs prepared from the same feed coal by different manufactures were tested to assess the effects of slurry processing. CWFs prepared from both standard grind and microfine grind coals were evaluated. In addition a microfine CWF was fired at fuel temperatures up to 220{degree}F to evaluate the effect of thermal atomization on performance. 8 refs., 16 figs., 12 tabs.

  9. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  11. Combustion of Illinois coals and chars with natural gas

    SciTech Connect

    Buckius, R.O.

    1991-01-01

    There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary volatiles'' to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.

  12. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  13. The partitioning of trace elements during pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Seames, Wayne Stewart

    The environmental impact resulting from the release of trace elements during coal combustion is an important issue for the coal-fired electric utility industry. Trace elements exit the combustor by partitioning between the flue gas and the fly ash particles. A comprehensive study has been conducted to investigate the mechanisms governing the partitioning of trace elements during pulverized coal combustion. The behavior of seven trace elements (arsenic, selenium, antimony, cobalt, cesium, thorium, and cerium) in six pulverized coals were studied under commercially relevant conditions in a well-described laboratory combustion environment. The partitioning of trace elements is governed by the extent of volatilization during combustion, the form of occurrence in the flue gas, and the mechanisms controlling vapor-to-solid phase transformation to fly ash particle surfaces. The most common vapor-to-solid phase partitioning mechanism for semi-volatile trace elements is reaction with active fly ash surfaces. Trace elements that form oxy-anions upon volatilization (e.g. arsenic, selenium, antimony) will react with active calcium and iron cation fly ash surface sites. Trace elements that form simple oxides upon volatilization (e.g. cobalt, cesium) will react with active aluminum oxy-anion fly ash surface sites. The maximum combustion temperature affects the availability of active calcium and iron surface sites but not aluminum sites. Sulfur inhibits the reactivity of oxy-anions with iron surface sites. For coals with high sulfur contents (>1 wt % as SO 2), volatilized trace elements that form oxy-anions will partition by reaction with calcium surface sites if sufficient sites are available. For coals with low sulfur contents, volatilized trace elements that form oxy-anions, will partition by reaction with iron surface sites. Volatilized trace elements that form oxy-anions will not partition by reaction if the coal sulfur content is high and the calcium content is low (<3 wt

  14. Design and testing controlled low-strength materials (CLSM) using clean coal ash

    SciTech Connect

    Naik, T.R.; Kraus, R.N.; Sturzl, R.F.; Ramme, B.W.

    1998-10-01

    The major objective of this project was to develop mixture proportions for controlled low-strength material (CLSM) using clean coal ash obtained from atmospheric fluidized bed combustion (AFBC). A clean coal ash is defined as the ash derived from SO{sub x} and NO{sub x} control technologies. The specific ashes used for this project were: (1) circulating fluidized bed boiler fly ash and bottom ash and (2) stoker-type boiler fly ash and bottom ash. These two coal ash samples were characterized for physical and chemical properties. Chemical properties and water leaching tests were also performed on the hardened CLSM. Many initial CLSM mixtures were developed by blending the two types of ash. Tests conducted on the final three selected CLSM mixtures included compressive strength, bleeding, setting and hardening, settlement, length change of hardened CLSM, permeability, mineralogy, and chemical water leach testing. Results show that acceptable CLSM material can be developed by blending the fluidized bed boiler ash with the stoker boiler ash. Recommendations for a pilot scale manufacturing application of the three CLSM mixtures were made based upon the lab test results.

  15. Thermodynamic assessment of the possibility of emission of submicron particles in the process of coal combustion

    NASA Astrophysics Data System (ADS)

    Lebedeva, L. N.; Kortsenshtein, N. M.; Samuilov, E. V.

    2014-12-01

    Methods of chemical thermodynamics of multicomponent reactive systems are used to study the distribution of the most volatile components (potassium and sodium) in the products of combustion of 15 types of coal. The effect of the mineral part of coals and various potassium and sodium compounds on the temperature of their transition into the gas phase is investigated. It is shown that the distribution of potassium and sodium in the products of coal combustion depends on the speciation of these elements in the initial coal; the mineral part composition; the ash content of coals; and the sulfur, potassium, and sodium content of the initial coals.

  16. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect

    Manowitz, B.

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  17. Modeling the behavior of selenium in Pulverized-Coal Combustion systems

    SciTech Connect

    Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel

    2010-11-15

    The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

  18. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  19. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.

    1996-12-31

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  20. Desulfurization Characteristics of Fly Ash Recirculation and Combustion in the Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, S. F.; Fang, M. X.; Yu, B.; Wang, Q. H.; Luo, Z. Y.

    The experiments of the fly ash recycle combustion using Guizhou anthracite were carried out in a bench scale circulating fluidized bed (CFB) combustor. Effects of some key operating parameters such as recycle ash to coal mass ratio (Ca to S molar ratio), temperature, reactivation modeof fly ash, circulation rateand fluidization velocity on the desulfurization efficiency were intensively investigated. It is shown that thelimestone utilization efficiency could be improved about 30% with the following operating conditions: the mass ratio of fly ash (reactivated by water and dried at 90°C) to coal was 0.45, the furnace temperature was 880°C, the water to ash mass ratio was 4.5% (the water-to-calcium molar ratio was 0.55) and circulation rate was 18.

  1. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  2. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  3. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  4. The release of iron during coal combustion. Milestone report

    SciTech Connect

    Baxter, L.L.

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  5. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    SciTech Connect

    Hardesty, D.R.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  6. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of

  7. Fly-ash products from biomass co-combustion for VOC control.

    PubMed

    Kwong, C W; Chao, C Y H

    2010-02-01

    Experiments were conducted in a continuous flow reactor at room temperature to evaluate the elimination of low-concentration toluene in the gas phase to verify if fly-ash products from biomass combustion in an ozonation system could be used in the removal of volatile organic compounds. The fly-ash products from pure biomass combustion (Ash(100)) demonstrated the highest ozonation activities upon the removal of low-concentration toluene (1.5 ppmv), followed by the fly-ash products from co-combustion (Ash(30)) and the coal combustion (Ash(0)). Kinetic experiments showed that the activation energy of the toluene elimination process was substantially reduced with the use of ozone and the reaction intermediates, such as formic acids, aldehydes, etc. Results also showed that the intermediates were reduced with increasing humidity level. The combined use of fly-ash products and zeolite 13X enhanced the removal of toluene to above 90% and suppressed the release of residual ozone and intermediates by holding them in the adsorbed phase.

  8. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  9. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  10. Characterization of Coal Combustion Residues from Electric Utilities--Leaching and Characterization Data

    EPA Science Inventory

    This report evaluates changes in composition and constituent release by leaching that may occur to fly ash and other coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants. The addition of flue-gas desulfurization (FG...

  11. Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis

    EPA Science Inventory

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  12. RELATIONSHIPS BETWEEN COMPOSITION AND PULMONARY TOXICITY OF PROTOTYPE PARTICLES FROM COAL COMBUSTION AND PYROLYSIS (MONTREAL, CANADA)

    EPA Science Inventory

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  13. VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE

    EPA Science Inventory

    The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...

  14. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2003-12-31

    The primary objective of the CCP Extension Program is to promote the responsible uses of Ohio CCPs that are technically sound, environmentally safe, and commercially competitive. A secondary objective is to assist other CCP generating states (particularly neighboring states) in establishing CCP use programs within their states. The goal of the CCP extension program at OSU is to work with CCP stakeholders to increase the overall CCP state utilization rate to more than 30% by the year 2005. The program aims to increase FGD utilization for Ohio to more than 20% by the year 2005. The increased utilization rates are expected to be achieved through increased use of CCPs for highway, mine reclamation, agricultural, manufacturing, and other civil engineering uses. In order to accomplish these objectives and goals, the highly successful CCP pilot extension program previously in place at the university has been expanded and adopted by the university as a part of its outreach and engagement mission. The extension program is an innovative technology transfer program with multiple sponsors. The program is a collaborative effort between The Ohio State University (College of Engineering and University Extension Service), United States Department of Energy's National Energy Technology Laboratory, Ohio Department of Development's Coal Development Office, and trade associations such as the American Coal Ash Association as well as the Midwest Coal Ash Association. Industry co-sponsors include American Electric Power, Dravo Lime Company, and ISG Resources. Implementation of the proposed project results in both direct and indirect as well as societal benefits. These benefits include (1) increased utilization of CCPs instead of landfilling, (2) development of proper construction and installation procedures, (3) education of regulators, specification-writers, designers, construction contractors, and the public, (4) emphasis on recycling and decrease in the need for landfill space, (5

  15. The immersion freezing behavior of ash particles from wood and brown coal burning

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike

    2016-11-01

    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  16. Balancing act creating the right regulation for coal combustion waste

    SciTech Connect

    Manuel, J.

    2009-11-15

    The December 2008 collapse of a coal ash pond in Tennessee threw safe management of coal combustion waste (CCW) into the spotlight. Millions of tons of CCW are produced in the United States each year, and a large percentage of that is recycled. The US Environmental Protection Agency is pursuing a host of initiatives that could directly or indirectly affect the disposition of CCW. States, too, are taking a look at how they regulate CCW. Among the options is the possibility of regulating CCW under the Resource Conservation and Recovery Act, a move that could have far-reaching implications for both the recycling and the disposal of this waste.

  17. Distribution of coal combustion derived heavy metals on croplands in China

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Ying, S.; Bu, J.; Weiss, D. J.; Gan, Y.; Wilcox, J.; Lambin, E.; Fendorf, S.

    2013-12-01

    As the world's number one consumer of energy derived from coal, China produces massive amounts of coal combustion by-products annually, including fly ash, which can then be transported and deposited onto agricultural lands. To explore the impact of fly ash as a point source of heavy metals to crops, we use a combination of spatial, thermodynamic, and coal combustion models and field measurements to determine the amount and composition of fly ash that is distribute over different land cover types around a power plant in China. First, a database of Chinese coal compositions was created to determine the range in chemical concentrations of heavy metals in coals. Using this information, we then determined the amount of fly ash produced by a typical power plant by applying the Integrated Environmental Control Model (IECM). An estimate of the composition of fly ash (based on the coal composition) is then predicted by thermodynamic equilibrium calculations. The resulting information regarding the concentration of As, Pb, and Cd in the fly ash is entered into an atmospheric transport model which determines the mass of fly ash deposited as a function of distance from the stack. Transport modeling results, land cover data, and topographic information are incorporated using GIS to determine the croplands affected by fly ash deposition. Furthermore, we determine the Pb206/Pb207 isotopic ratios of coal and fly ash taken from Yangluo Power Plant in Wuhan, Hubei Province, China, and compare the values to those measured in soils collected within a 10 km radius around the power plant. Ultimately, the results of this project can be utilized in a comprehensive model that can determine the amount and distribution of heavy metals from fly ash produced by coal-fired power plants based on coal composition and power plant specifications.

  18. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  19. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations.

    PubMed

    Suriyawong, Achariya; Magee, Rogan; Peebles, Ken; Biswas, Pratim

    2009-05-01

    During the past decade, there has been substantial interest in recovering energy from many unwanted byproducts from industries and municipalities. Co-combustion of these products with coal seems to be the most cost-effective approach. The combustion process typically results in emissions of pollutants, especially fine particles and trace elements. This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic [As], barium [Ba], cadmium [Cd], chromium [Cr], copper [Cu], cobalt [Co], manganese [Mn], molybdenum [Mo], nickel [Ni], lead [Pb], mercury [Hg], vanadium [V], and zinc [Zn]) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter [dp] > 0.5 microm), a submicrometer-mode ash (dp < 0.5 microm), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion.

  20. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect

    Senior, C.L.; Huggins, F.E.; Huffman, G.P.; Shan, N.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Swenson, S.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.; Mroczkowski, S.; Helble, J.; Mamani-Paco, R.; Sterling, R.; Dunham, G.; Miller, S.

    2000-08-17

    The final program review meeting of Phase II was held on June 22 in Salt Lake City. The goals of the meeting were to present work in progress and to identify the remaining critical experiments or analyses, particularly those involving collaboration among various groups. The information presented at the meeting is summarized in this report. Remaining fixed bed, bench-scale experiments at EERC were discussed. There are more ash samples which can be run. Of particular interest are high carbon ash samples to be generated by the University of Arizona this summer and some ash-derived sorbents that EERC has evaluated on a different program. The use of separation techniques (electrostatic or magnetic) was also discussed as a way to understand the active components in the ash with respect to mercury. XAFS analysis of leached and unleached ash samples from the University of Arizona was given a high priority. In order to better understand the fixed bed test results, CCSEM and Moessbauer analyses of those ash samples need to be completed. Utah plans to analyze the ash from the single particle combustion experiments for those major elements not measured by INAA. USGS must still complete mercury analyses on the whole coals and leaching residues. Priorities for further work at the SHRIMP-RG facility include arsenic on ash surfaces and mercury in sulfide minerals. Moessbauer analyses of coal samples from the University of Utah were completed; samples from the top and bottom layers of containers of five different coals showed little oxidation of pyrite in the top relative to the bottom except for Wyodak.

  1. Impact of nongray multiphase radiation in pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  2. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  3. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  4. Task 5.9 - use of coal ash in recycled plastics and composite materials

    SciTech Connect

    Hassett, D.J.; Dockter, B.A.; Eylands, K.E.; Pflughoeft-Hassett, D.F.

    1995-07-01

    The goal of this research project by the Energy & Environmental Research Center (EERC) was to determine the potential for coal ash to serve as a {open_quote}functional filler{close_quotes} in plastics and other composite materials, with special emphasis on recycled plastics. The term functional filler is intended to indicate that the material added to the plastic does more than take up space and extend the use of the polymer. Determining the functional filler potential of ash was not the only intent of this project, since another prime objective was to find a use for materials currently considered waste. The term functional filler also opened a door to the use of cenospheres, which are currently marketed and for which there is sufficient market demand that they do not fit the category of a waste even though they are a product of coal combustion. Cenospheres, hollow spherical ash particles, were selected because of their unique properties. Although they currently have commercial applications, the unique nature of these materials make them an excellent candidate for use as a functional filler in composites. The ability to produce a commercially viable product from waste streams and a recycled material is a positive step toward reducing solid waste. The first task, since there are numerous types of coal ash, was to select suitable ash types for use in this project. Three basic types of material were selected: fly ash, a bottom ash, and a unique form of coal ash known as cenospheres.

  5. Task 5.9 use of coal ash in recycled plastics and composite materials. Topical report

    SciTech Connect

    Hassett, D.J.; Dockter, B.A.; Eylands, K.E.; Pflughoeft-Hassett, D.F.

    1995-11-01

    The goal of this research project by the Energy & Environmental Research Center (EERC) was to determine the potential for coal ash to serve as a {open_quotes}functional filler{close_quotes} in plastics and other composite materials, with special emphasis on recycled plastics. The term functional filler is intended to indicate that the material added to the plastic does more than take up space and extend the use of the polymer. Determining the functional filler potential of ash was not the only intent of this project, since another prime objective was to find a use for materials currently considered waste. The term functional filler also opened a door to the use of cenospheres, which are currently marketed and for which there is sufficient market demand that they do not fit the category of a waste even though they are a product of coal combustion. Cenospheres, hollow spherical ash particles, were selected because of their unique properties. Although they currently have commercial applications, the unique nature of these materials make them an excellent candidate for use as a functional filler in composites. The ability to produce a commercially viable product from waste streams and a recycled material is a positive step toward reducing solid waste. The first task, since there are numerous types of coal ash, was to select suitable ash types for use in this project. Three basic types of material were selected: fly ash, a bottom ash, and a unique form of coal ash known as cenospheres.

  6. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  7. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  8. Influence of DOM and redox potential on the leaching of As and Cr from coal fly ash

    NASA Astrophysics Data System (ADS)

    Deonarine, A.; Kolker, A.; Huggins, F.; Foster, A. L.

    2012-12-01

    Coal ash, a byproduct of coal-fired power plants, contains toxic trace elements such as arsenic (As) and chromium (Cr). Coal ash has recently been scrutinized as a potential source of toxic trace elements to aquatic systems and potable water sources, and the legislation pertinent to coal ash management is currently under revision. Coal ash is currently stored in surface impoundments and landfills that are poorly regulated and at risk of failure. Impoundment failure can result in the mobilization of coal ash and leachates into aquatic systems and potable water-sources. The current understanding of the environmental fate (i.e., transformation, toxicity and mobility) of As and Cr in coal ash is largely limited to leaching protocols that are not environmentally relevant, as they exclude parameters such as redox potential and dissolved organic matter (DOM) that are prevalent in aquatic systems. Furthermore, the relationship between coal-ash particle size and the speciation and leaching behavior of As and Cr has not been well investigated. The size of host particles may influence the speciation and coordination environment of trace elements, and may be a critical factor in the leaching/dissolution behavior of As and Cr from coal ash into solution. In this study, coal ash samples from three different coal-fired power plants using different coal sources and different combustion processes were segregated into size fractions (< 1 mm to ≥ 100 μm, < 100 μm to ≥ 10 μm, < 10 μm to ≥ 1 μm, and < 1 μm) using a combination of dry sieving and particle impaction. Coal ash size fractions were examined using synchrotron x-ray absorption spectroscopy (XANES/ EXAFS) to determine whether there were any differences in As and Cr concentration and speciation/coordination environment as a function of particle size. Coal-ash size fractions were also exposed to a buffered solution (pH ~7) with varying DOM concentration (1 to 30 mg/L) and redox potential (reducing, oxic). Dissolved

  9. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 18, July--September 1993

    SciTech Connect

    Chow, O.K.; Hargrove, M.J.

    1993-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Continued with data and sample analysis from the pilot-scale tests of Upper Freeport feed coal, air-dried and mulled microagglomerate products; air-dried Pittsburgh No. 8 as-is and mulled products for upcoming Task 3 combustion testing; and prepared two abstracts for presentation for the March 1 994 Coal Utilization and Fuel Systems Conference.

  11. Evaluation of leachates from coal refuse blended with fly ash at different rates.

    PubMed

    Stewart, B R; Daniels, W L; Zelazny, L W; Jackson, M L

    2001-01-01

    There is great interest in returning coal combustion products to mining sites for beneficial reuse as liming agents. A column study examined the effects of blending two coal fly ashes with an acid-forming coal refuse (4% pyritic S). Both fly ashes were net alkaline, but had relatively low neutralizing capacities. One ash with moderate alkalinity (CRF) was bulk blended with coal refuse at 0, 20, and 33% (w/w), while another lower alkalinity ash (WVF) was blended at 0, 5, 10, 20, and 33% (w/w). The columns were leached (unsaturated) weekly with 2.5 cm of simulated precipitation for >150 wk. Where high amounts of ash alkalinity (>20% w/w) were mixed with the coal refuse, pyrite oxidation was controlled and leachate pH was >7.0 with low metal levels throughout the study. At lower rates of alkalinity loading, trace metals were sequentially released from the WVF ash as the 5, 10, and 20% treatments acidified due to pyrite oxidation. Lechate metals increased in proportion to the total amounts applied in the ash. In this strongly acidic environment, metals such as Mn, Fe, and Cu were dissolved and leached from the ash matrix in large quantities. If ash is to be beneficially reused in the reclamation of acid-producing coal refuse, the alkalinity and potential acidity of the materials must be balanced through the appropriate addition of lime or other alkaline materials to the blend. Highly potentially acidic refuse material, such as that used here, may not be suitable for ash/refuse codisposal scenarios.

  12. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    NASA Astrophysics Data System (ADS)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  13. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.

    PubMed

    Li, Jin; Gao, Xiaobing; Goeckner, Bryna; Kollakowsky, Dave; Ramme, Bruce

    2005-03-01

    The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.

  14. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    PubMed

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  15. SPONTANEOUS COAL COMBUSTION; MECHANISMS AND PREDICTION.

    USGS Publications Warehouse

    Herring, James R.; Rich, Fredrick J.

    1983-01-01

    Spontaneous ignition and combustion of coal is a major problem to the coal mining, shipping, and use industries; unintentional combustion causes loss of the resource as well as jeopardy to life and property. The hazard to life is especially acute in the case of underground coal mine fires that start by spontaneous ignition. It is the intention of this research to examine previously suggested causes of spontaneous ignition, to consider new evidence, and to suggest an experimental approach to determine which of these suggested causes is relevant to western U. S. coal. This discussion focuses only on causes and mechanism of spontaneous ignition.

  16. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    SciTech Connect

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU

  17. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    SciTech Connect

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  18. Mechanical Properties of Composite Material Using Coal Ash and Clay

    NASA Astrophysics Data System (ADS)

    Fukumoto, Isao; Kanda, Yasuyuki

    Coal ash is industry waste exhausted lots of amount by electric power plant. The particle sizes of coal ash, especially coal fly ash are very fine, and the chemical component are extremely resemble with Okinawa-Kucha clay. From the point of view that clay is composed of particles of micro meter size in diameter, we should try the application for fabrication of composite material using coal fly ash and clay. The comparison of the mechanical properties of composite material using coal fly ash and clay were performed during electric furnace burning and spark plasma sintering. As a result, the bending strength of composite material containing the coal ash 10% and fired at 1423K using the electric furnace after press forming at 30 MPa showed the highest value of 47 MPa. This phenomenon suggests a reinforcement role of coal ash particles to clay base material. In spark plasma sintering process, the bending strength of the composite material containing the clay 5-10% to fly ash base material fired at 1473K and pressured at 20 MPa showed the highest value of 88 MPa. This result indicates a binder effect of clay according to the liquid phase sintering of melted clay surrounding around coal fly ash particles surface.

  19. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  20. Combustion of Coal/Oil/Water Slurries

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.

    1982-01-01

    Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

  1. Trophic structure and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals

    SciTech Connect

    Otter, Ryan; Bailey, Frank; Fortner, Allison M; Adams, Marshall

    2012-01-01

    On December 22, 2008 a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Plant near Kingston Tennessee USA failed and resulted in the largest coal ash spill in U.S. history. Coal ash, the by-product of coal combustion, is known to contain multiple contaminants of concern, including arsenic and selenium. The purpose of this study was to investigate the bioaccumulation of arsenic and selenium and to identify possible differences in trophic dynamics in feral fish at various sites in the vicinity of the Kingston coal ash spill. Elevated levels of arsenic and selenium were observed in various tissues of largemouth bass, white crappie, bluegill and redear sunfish from sites associated with the Kingston coal ash spill. Highest concentrations of selenium were found in redear sunfish with liver concentrations as high as 24.83 mg/kg dry weight and ovary concentrations up to 10.40 mg/kg dry weight at coal ash-associated sites. To help explain the elevated selenium levels observed in redear sunfish, investigations into the gut pH and trophic dynamics of redear sunfish and bluegill were conducted which demonstrated a large difference in the gut physiology between these two species. Redear sunfish stomach and intestinal pH was found to be 1.1 and 0.16 pH units higher than in bluegill, respectively. In addition, fish from coal ash-associated sites showed enrichment of 15N & 13C compared to no ash sites, indicating differences in food web dynamics between sites. These results imply the incorporation of coal ash-associated compounds into local food webs and/or a shift in diet at ash sites compared to the no ash reference sites. Based on these results, further investigation into a broader food web at ash-associated sites is warranted.

  2. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1991-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Studies to be carried out in this project include: (1) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (2) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (3) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (4) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of surface roughness'' of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles; (5) Identification of the major products of chemical transformation of PAHs on coal ash particles, and examination of any effects that may exist of the nature of the coal ash surface on the identities of PAH transformation products; and (6) Studies of the influence of other sorbed species on the chemical behavior of PAHs and PAH derivatives on fly ash surfaces. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  3. The coal slime slurry combustion technology

    SciTech Connect

    Li, Y.; Xu, Z.

    1997-12-31

    This paper presents the coal slime slurry combustion technology in circulating fluidized bed (CFB) boilers. The technique is that the slurry-based flow from the concentrator in the coal washery plant directly feeds into the fluidized bed by pump for combustion after a simple filtration and enrichment to an approximate concentration of 50% of coal. The coal slime slurry can burn in a CFB boiler alone or jointly with coal refuse. The technique has been used in a 35 t/h (6MWe) CFB for power generation. The result shows that the combustion efficiency is over 96% and boiler thermal efficiency is over 77%. As compared with burning coal refuse alone, the thermal efficiency was improved by 3--4 percent. This technology is simple, easy to operate and reliable. It is an effective way to utilize coal slime slurry. It has a practical significance for saving coal resources and reducing environmental pollution near coal mine areas. As a clean coal technology, it will result in great social, environmental and economic benefits.

  4. Multinuclear NMR approach to coal fly ash characterization

    SciTech Connect

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  5. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec; Joseph M. Okoh

    2002-01-31

    Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with

  6. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  7. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  8. Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2010-08-01

    The aim of this work was to apply the LIBS technique for the analysis of fly ash and bottom ash resulting from the coal combustion in a coal fired power plant. The steps of presented LIBS analysis were pelletizing of powdered samples, firing with laser and spectroscopic detection. The analysis "on tape" was presented as an alternative fast sampling approach. This procedure was compared with the usual steps of normalized chemical analysis methods for coal which are coal calcination, fluxing in high temperature plasma, dilution in strong acids and analyzing by means of ICP-OES and/or AAS. First, the single pulse LIBS approach was used for determination and quantification of elemental content in fly ash and bottom ash on the exit of the boiler. For pellet preparation, ash has to be mixed with proper binder to assure the sample resistance. Preparation of the samples (binder selection and pressing/pelletizing conditions) was determined and LIBS experimental conditions optimized. No preparation is necessary in "on tape" sampling. Moreover, double-pulse approach in orthogonal reheating configuration was applied to enhance the repeatability and precision of the LIBS results and to surpass the matrix effect influencing the calibration curves in case of some elements. Obtained results showed that LIBS responses are comparable to the normalized analytical methods. Once optimized the experimental conditions and features, application of LIBS may be a promising technique for combustion process control even in on-line mode.

  9. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects.

    PubMed

    Silva, Luis F O; da Boit, Kátia M

    2011-03-01

    Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al-Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.

  10. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  11. Coal slurry combustion and technology. Volume 2

    SciTech Connect

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  12. Proceedings: 13. international symposium on use and management of coal combustion products (CCPs). Volume 2

    SciTech Connect

    1999-01-01

    The objective of the 1999 International Symposium on the Management and Use of Coal Combustion Products (CCPs), the thirteenth in a series since 1967, is to publicize innovations in coal ash use technology. These symposia support the mission of the American Coal Ash Association (established originally as the National Ash Association after the first symposium) to promote coal ash technology transfer and commercial utilization. The three-volume publication contains 91 papers, presented in 15 sessions during the January 1999 event. Volume 1 contains papers related to waste aggregates, agricultural uses, beneficiation/quality, and building products. Volume 2 covers the growing market in concrete, environmental performance, FGD material, filler applications, flowable fill, and international perspectives. Volume 3 contains papers on mining applications, regional and State perspectives, stabilized road bases, structural fills, and vitrification/solidification.

  13. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  14. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons.

  15. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  16. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    T.L. Robl; J.G. Groppo; Robert Rathebone

    2005-12-14

    Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

  17. PILOT DEMONSTRATION OF TECHNOLOGY FOR THE PRODUCTION OF HIGH VALUE MATERIALS FROM THE ULTRA-FINE (PM 2.5) FRACTION OF COAL COMBUSTION ASH

    SciTech Connect

    T.L. Robl; K.R. Henke; J.G. Groppo

    2004-09-01

    Broad range dispersants, including naphthalene sulfonate-formaldehyde condensates (NSF) and polycarboxylate based products, were tested on both wet and dry fly ash samples from the LG&E Energy Corp. plants in the study. Tests included both total adsorption and measurement of sedimentation rate via time density relationships. A wide range of dosages were required, ranging from 0.3 to 10 g/kg. In general the ponded ash required less dispersant. Leaching tests of 5% ash solutions by weight revealed a wide range of soluble salts to be present in the ash, and found a relationship between calcium ion concentration and dispersant dosage requirement. Other parameters measured included SO{sub 4}, Cl, F, NO{sub 3}, PO{sub 4}, Al, Ca, Mg, K, Na and alkalinity. An assessment was made of the available software to digitally model the overall process circuit. No prefabricated digital model was found for hydraulic classification or froth flotation. Work focused on building a model for hydraulic classification in an Excel spread sheet based on Stokes Law. A pilot plant scale hydraulic classifier was fabricated and operated. The performance of the hydraulic classifier was found to be forecastable within reasonable bounds, and work to improve both are ongoing.

  18. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.

    PubMed

    Qadir, Sami Ullah; Raja, Vaseem; Siddiqui, Weqar A

    2016-07-01

    The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS).

  19. STRUCTURE-BASED PREDICTIVE MODEL FOR COAL CHAR COMBUSTION

    SciTech Connect

    CHRISTOPHER M. HADAD; JOSEPH M. CALO; ROBERT H. ESSENHIGH; ROBERT H. HURT

    1998-06-04

    During the past quarter of this project, significant progress continued was made on both major technical tasks. Progress was made at OSU on advancing the application of computational chemistry to oxidative attack on model polyaromatic hydrocarbons (PAHs) and graphitic structures. This work is directed at the application of quantitative ab initio molecular orbital theory to address the decomposition products and mechanisms of coal char reactivity. Previously, it was shown that the �hybrid� B3LYP method can be used to provide quantitative information concerning the stability of the corresponding radicals that arise by hydrogen atom abstraction from monocyclic aromatic rings. In the most recent quarter, these approaches have been extended to larger carbocyclic ring systems, such as coronene, in order to compare the properties of a large carbonaceous PAH to that of the smaller, monocyclic aromatic systems. It was concluded that, at least for bond dissociation energy considerations, the properties of the large PAHs can be modeled reasonably well by smaller systems. In addition to the preceding work, investigations were initiated on the interaction of selected radicals in the �radical pool� with the different types of aromatic structures. In particular, the different pathways for addition vs. abstraction to benzene and furan by H and OH radicals were examined. Thus far, the addition channel appears to be significantly favored over abstraction on both kinetic and thermochemical grounds. Experimental work at Brown University in support of the development of predictive structural models of coal char combustion was focused on elucidating the role of coal mineral matter impurities on reactivity. An �inverse� approach was used where a carbon material was doped with coal mineral matter. The carbon material was derived from a high carbon content fly ash (Fly Ash 23 from the Salem Basin Power Plant. The ash was obtained from Pittsburgh #8 coal (PSOC 1451). Doped

  20. Classification of Indian coals for combustion

    SciTech Connect

    Gopalakrishnan, V.; Vasudevan, R.

    1996-12-31

    In annual coal production India ranks fourth in the world, behind China, USA and Russia, with an estimated production of 225 million tons in 1995-96. The utilities burn nearly 60% of the mined coal while industries consume 25-30% of the coal for captive power generation and process heat. The remaining 10-15% goes for the production of coke and miscellaneous applications. Combustion is thus the most important use of coal in India or for that matter, anywhere in the world. Countries like USA have national coal sample banks and databases. The Pennsylvania state (PENN) coal sample bank and database are well known, which are also used by the US Department of Energy (DOE). The Argonne National Laboratory has used 200 samples from the PENN coal database and using cluster analysis, has identified 8 representative samples among American coals. Similar exercises have been carried out by Illinois Coal Development Board, US DOE`s Pittsburgh Energy Technology Center and several universities. The need for a similar coal data bank/database for India and the lack of it at present have been highlighted by Nandakumar and Gopalakrishnan. Especially, for the design of combustion equipment, it will be highly helpful if one can come up with a set of typical Indian coals.

  1. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    SciTech Connect

    Achariya Suriyawong; Rogan Magee; Ken Peebles; Pratim Biswas

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5 {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.

  2. TOXIC SUBSTANCES FROM COAL COMBUSTION A COMPREHENSIVE ASSESSMENT

    SciTech Connect

    A KOLKER; AF SAROFIM; CA PALMER; FE HUGGINS; GP HUFFMAN; J LIGHTY; JJ HELBLE; JOL WENDT; MR AMES; N YAP; R FINKELMAN; R. MAMANI-PACO; SJ MROCZKOWSKY; T PANAGIOTOU; W SEAMES

    1999-01-28

    The technical objectives of this project are: (a) To identify the effect of the mode-of-occurrence of toxic elements in coal on the partitioning of these elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal, (b) To identify the mechanisms governing the post-vaporization interaction of toxic elements and major minerals or unburnt char, (c) To determine the effect of combustion environment (i.e., fuel rich or fuel lean) on the partitioning of trace elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal, (d) To model the partitioning of toxic elements among various chemical species in the vapor phase and between the vapor phase and complex aluminosilicate melts, (e) To develop the new Toxics Partitioning Engineering Model (ToPEM), applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x} combustion systems, and new power generation plants. A description of the work plan for accomplishing these objectives is presented in Section 2.1 of this report. The work discussed in this report covers the reporting period from 1 October 1998 to 31 December 1998. During this quarter, basic coal testing at USGS was completed. Total sulfur contents range from 0.43 wt-% in the Wyodak to 2.68 wt-% in the Ohio sample. In the North Dakota and Ohio samples, about half of the total sulfur is pyritic and half is organic. The North Dakota sample also contains a minor amount of sulfate, consistent with the presence of barite in this sample. In the Wyodak sample, the majority of the sulfur is organic. Preliminary mineralogy of the three Phase II coals was determined by SEM/EDX. The Ohio coal contains all of the five most common major phases: quartz, illitic clay, kaolinitic clay, pyrite and calcite. Based on this preliminary work, the North Dakota sample appears to lack both kaolinite and calcite, and the Wyodak sample appears to lack calcite. Subsequent SEM work will attempt to reconfirm

  3. Combustion reactivity of low rank coal chars

    SciTech Connect

    Young, B.C.

    1983-08-01

    For many years the CSIRO has been involved in studies on the combustion kinetics of coal chars and related materials. Early work included studies on a char produced from a Victorian brown coal. More recently, the combustion kinetics of chars produced during the flash pyrolysis of sub-bituminous coals have been determined. Data are given for the combustion reactivities of four flash pyrolysis chars. Their reactivities are compared with the results for chars produced from low and high rank coals, and petroleum coke. Reactivity is expressed as the rate of combustion of carbon per unit external surface area of the particle, with due correction being made for the effect of the mass transfer of oxygen to the particle. It has been shown that the reactivities to oxygen of chars produced from Millmerran sub-bituminous coal decrease with increasing pyrolysis temperature but are similar in magnitude to the reactivities of chars derived from a brown and a bituminous coal and to the reactivities of anthracites and semi-anthracites. However, Wandoan char, also of sub-bituminous origin, exhibits about twice the reactivity of Millmerran char and about ten times the reactivity of petroleum coke. On the basis of observed activation energy values, particle size and particle density behaviour it is concluded that the combustion rates of Millmerran and Wandoan chars are controlled by the combined effects of pore diffusion and chemical reaction.

  4. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

    1987-06-01

    Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  6. Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    R. S. Perrone; J. G. Groppo; T. L. Robl

    2006-07-20

    Three types of chemically and functionally different thermoplastic polymers have been chosen for evaluation with the fly ash derived filler: high density polyethylene (HDPE), thermoplastic elastomer (TPE) and polyethylene terephthalate (PET). The selections were based on volumes consumed in commercial and recycled products. The reference filler selected for comparison was 3 {micro}m calcium carbonate, a material which is commonly used with all three types of polymers. A procedure to prepare filled polymers has been developed and the polymer/filler blends have been prepared. Selected samples of filled polymers were subjected to SEM analysis to verify that the fly ash derived filler and the calcium carbonate were well dispersed. Material taken from a utility ash pond was classified using a novel combination of hydraulic and lamellar classifiers to produce an ultra-fine ash product. This product was dried and used in a series of tests to determine its potential as a filler in plastics. The general properties of the ultra-fine ash from several runs are as follows: D{sub 50}: 3-5 {micro}m; Specific gravity: {approx}2.41; Loss on ignition: 2-3%; Carbon content: 1-2%; Color: dark grey on content: 1-2%; and Morphology: spherical. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, with the addition of CaCO{sub 3} and fly ash, the alterations are small, and more importantly, transition temperatures are not altered. A utility patent on the design of the hydraulic

  7. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  8. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 11, October--December 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1992-03-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of beneficiated coal-based fuels (BCFs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors perform parts of the test work are the Massachusetts Institute of Technology Physical Science, Inc. Technology Company and the University of North Dakota Energy and Environmental Research Center. Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for full-scale tests. Approximately nine BCFs will be in dry ultra fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of three Freeport Pittsburgh 8 fuels; conducted pilot-scale combustion and ash deposition tests of a fresh batch of Upper Freeport parent coal in the CE fireside Performance Test Facility; and completed editing of the fourth quarterly report and sent it to the publishing office.

  9. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  10. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  11. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    T.L. Robl; J.G. Groppo; Robert Rathbone

    2006-05-12

    During this reporting period, efforts focused on improving our understanding of the basic operating principles of the lamella classifier. It was determined from testing that product grade is primarily a function of the classifier configuration and operation and the feed grade has relatively minor influence. Additionally, within the range of the testing conducted, the feed density did not seem to have an impact of the yield. Thus, the product composition will not be strongly influenced by the variability of the feed, an important consideration for heterogeneous ponded fly ash. Three types of chemically and functionally different thermoplastic polymers have been chosen for evaluation with the fly ash derived filler: high density polyethylene, thermoplastic elastomer, and polyethylene terphthalate. The selections were based on volumes consumed in commercial and recycled products. The reference filler selected for comparison was 3 {micro}m calcium carbonate, a material which is commonly used with all three types of polymers. A procedure to prepare filled polymers has been developed and most ({approx}80%) of the polymer/filler blends have been prepared. Selected samples of filled polymers were subjected to SEM analysis to verify that the fly ash derived filler and the calcium carbonate were well dispersed. A stainless steel mold with cooling capabilities was built in-house to prepare 1 mm thick films for tensile strength and Dynamic Modulus testing. Procedures are being developed to insure a minimum of air voids in the films, which will eventually be evaluated for a variety of physical and mechanical properties.

  12. Health impacts of domestic coal combustion

    SciTech Connect

    Finkelman, R.B.

    1999-07-01

    The US Environmental Protection Agency (EPA) has concluded that, with the possible exception of mercury, there is no compelling evidence to indicate that emissions from coal-burning electric utility generators cause human health problems. The absence of detectable health problems is in part due to the fact that the coals burned in the US generally contain low to modest concentrations of potentially toxic trace elements and that many coal-burning utilities employ sophisticated pollution control systems that efficiently reduce the emissions of hazardous elements. This is not so in many developing countries, especially in homes where coal is used for heating and cooking. Domestic use of coal can present serious human health problems because the coals are generally mined locally with little regard to their composition and the coals are commonly burned in poorly vented or unvented stoves directly exposing residents to the emissions. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal's in the region contain up to 35,000 ppm arsenic. Chili peppers dried over these high-arsenic coal fires absorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is due to eating corn dried over burning briquettes made from high-fluorine coals and high-fluoring clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion has also caused selenium poisoning and possibly mercury poisoning

  13. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1992-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. During the past year the following specific aspects of this broad problem area have been investigated: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) The use of gas-solid chromatography to measure heats of sorption of PAHS, and PAH derivatives, on coal fly ashes and ash fractions. (c) Identification of the major photoproduct(s) of the photodecomposition of one PAH (benz[a]anthracene) sorbed on model adsorbents; (d) Estimation of fractal dimensions'' of coal fly ash particles by use of specific surface area measurements, with an ultimate objective of using these measurements to assess the importance of inner-filter effects'' on the photodecomposition of PAHs sorbed on fly ash particles. (e) The photochemical transformation of a representative nitro-PAH derivative (1-nitropyrene) sorbed on fly ash. (f) Development of techniques for studying the nonphotochemical reactions of hydroxyl radicals (and other atmospheric constituents) with PAHs sorbed on fly ash. Progress achieved, and problems encountered, in each of these major areas of emphasis is described below.

  14. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view.

    PubMed

    Kronbauer, Marcio A; Izquierdo, Maria; Dai, Shifeng; Waanders, Frans B; Wagner, Nicola J; Mastalerz, Maria; Hower, James C; Oliveira, Marcos L S; Taffarel, Silvio R; Bizani, Delmar; Silva, Luis F O

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO₃ versus Al₂O₃ determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates.

  15. TOXIC SUBSTANCES FROM COAL COMBUSTION: A COMPREHENSIVE ASSESSMENT

    SciTech Connect

    C.L. Senior; T. Panagiotou; J.O.L. Wendt; W. Seames; F.E. Huggins; G.P Huffman; N. Yap; M.R. Ames; I.Olmez; T. Zeng; A.F. Sarofim; A. Kolker; R. Finkelman; J.J. Helble

    1998-07-16

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, the Massachusetts Institute of Technology (MIT), the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (W) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x} combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from the submission of the draft Phase 1 Final Report through the end of June, 1998. During this period two of the three Phase 2 coals were procured and pulverized samples were distributed to team members. Analysis of Phase 1 X-Ray Absorption Fine Structure (XAFS) data, particularly of mercury in sorbent samples, continued. An improved method for identifying mercury compounds on sorbents was developed, leading to a clearer understanding of forms of mercury in char and sorbents exposed to flue gas. Additional analysis of Phase 1 large scale combustion data was performed to investigate mechanistic information related to the fate of the radionuclides Cs, Th, and Co. Modeling work for this period was focused on building and testing a sub-model for vaporization

  16. Fluidized bed combustion of low-grade coal and wastes: Research and development

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M.; Dobkin, S.M.; Telegin, E.M.

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  17. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.

    PubMed

    Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P

    2015-09-01

    The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated.

  18. The simulation of influence of different coals on the circulating fluidized bed Boiler's combustion performance

    NASA Astrophysics Data System (ADS)

    Yong, Yumei; Lu, Qinggang

    2003-05-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  19. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special

  20. Evidence for Coal Ash Ponds Leaking in the Southeastern United States.

    PubMed

    Harkness, Jennifer S; Sulkin, Barry; Vengosh, Avner

    2016-06-21

    Coal combustion residuals (CCRs), the largest industrial waste in the United States, are mainly stored in surface impoundments and landfills. Here, we examine the geochemistry of seeps and surface water from seven sites and shallow groundwater from 15 sites in five states (Tennessee, Kentucky, Georgia, Virginia, and North Carolina) to evaluate possible leaking from coal ash ponds. The assessment for groundwater impacts at the 14 sites in North Carolina was based on state-archived monitoring well data. Boron and strontium exceeded background values of 100 and 150 μg/L, respectively, at all sites, and the high concentrations were associated with low δ(11)B (-9‰ to +8‰) and radiogenic (87)Sr/(86)Sr (0.7070 to 0.7120) isotopic fingerprints that are characteristic of coal ash at all but one site. Concentrations of CCR contaminants, including SO4, Ca, Mn, Fe, Se, As, Mo, and V above background levels, were also identified at all sites, but contamination levels above drinking water and ecological standards were observed in 10 out of 24 samples of impacted surface water. Out of 165 monitoring wells, 65 were impacted with high B levels and 49 had high CCR-contaminant levels. Distinct isotope fingerprints, combined with elevated levels of CCR tracers, provide strong evidence for the leaking of coal ash ponds to adjacent surface water and shallow groundwater. Given the large number of coal ash impoundments throughout the United States, the systematic evidence for leaking of coal ash ponds shown in this study highlights potential environmental risks from unlined coal ash ponds.

  1. Partitioning of sodium, chlorine and sulfur during coal and char combustion in a fluid bed

    SciTech Connect

    Bhattacharya, S.P.; He, Y.

    1998-12-31

    Advanced power generation technologies (IGCC, Advanced PFBC) using high moisture low-rank coals require gasification of coal followed by combustion of char in a fluid bed. A study was undertaken to investigate the bed behaviour of char during combustion in a fluid bed. Three high moisture Australian low-rank coals, which are currently used in Victorian power stations, were chosen for this study. These were air dried, ground and sieved to 1--4 mm size. Char was prepared from these coals by devolatilising in a 76-mm diameter spouted bed at 700 C in presence of nitrogen. Char samples were combusted in the same spouted bed under hydrodynamic conditions similar to that in an atmospheric circulating fluid bed at temperatures of 800 C and 900 C. The three coal samples were also combusted under similar conditions to compare with the combustion behaviour of the char. No significant agglomeration problems were observed during combustion of these coals for periods of up to four hours. For one char, the bed defluidized 70 minutes after combustion at 900 C, while the two remaining chars didn`t present any significant agglomeration during the test period of four hours. Ultimate and inorganic analyses were carried out for the coal and char samples before the tests. The bed materials and cyclone ash after each combustion test were analyzed for inorganics and phases using chemical analysis, XRD and DTA techniques. A significant separation of the sodium and chlorine in coal was observed during pyrolysis of the coal to char. During combustion of char, most of the sodium (in char) was captured in the bed materials. This information was used to explain the bed behaviour observed during char combustion. This paper discusses the results and suggest strategies for mitigation of defluidization, that are currently under trial.

  2. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  3. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee.

    PubMed

    Carriker, Neil E; Jones, Daniel S; Walls, Suzanne J; Stojak, Amber R

    2015-01-01

    The Tennessee Valley Authority conducted a Baseline Ecological Risk Assessment (BERA) for the Kingston Fossil Plant ash release site to evaluate potential effects of residual coal ash on biota in Watts Bar Reservoir, Tennessee. The BERA was in response to a release of 4.1 million m(3) of coal ash on December 22, 2008. It used multiple lines of evidence to assess risks for 17 different ecological receptors to approximately 400000 m(3) of residual ash in the Emory and Clinch rivers. Here, we provide a brief overview of the BERA results and then focus on how the results were used to help shape risk management decisions. Those decisions included selecting monitored natural recovery for remediation of the residual ash in the Emory and Clinch rivers and designing a long-term monitoring plan that includes adaptive management principles for timely adjustment to changing conditions. This study demonstrates the importance of site-specific ecological data (e.g., tissue concentrations for food items, reproductive data, and population data) in complex ecological risk assessments. It also illustrates the value of the US Environmental Protection Agency's (USEPA) data quality objectives process in building consensus and identifying multiple uses of results. The relatively limited adverse effects of this likely worst-case scenario for ash-related exposures in a lotic environment provide important context for the USEPA's new coal combustion residue disposal rules.

  4. Coal combustion aerothermochemistry research. Final report

    SciTech Connect

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  5. A relevant study on characteristic parameters of coal combustion and boiler structure

    SciTech Connect

    Zhang, Z.; Zhao, L.; Wun, Y.; Lu, F.

    1997-12-31

    This paper analyzes over 40 power plant coal-fired utility boilers with capacities of more than 200MW and 300MW for its coal particle combustion characteristics, boiler structural parameters and actual condition of boiler performance. Two kinds of parameters of coal particle combustion characteristic and boiler structure are given. They are pulverized coal air jets ignition stability index (Mw), coal-ash slagging index (Mz), coal burn-out index (Mj) as well as boiler structural stability index (Lw), boiler structural slagging index (Lz), boiler structural burn-out index (Lj). The relevant relations between them of Mw-Lw, Mz-Lz and Mj-Lj are set up by interpolation function. This paper also describes a boiler design predicting expert system, with which the design parameters of power plant coal-fired utility boilers with large capacity may be calculated based on coal characteristics parameters and the boiler`s performance be predicted to guarantee power plant coal-fired utility boilers` stable combustion, less slagging and higher combustion efficiency. According to its application to an actual power plant coal-fired utility boiler, the result of prediction is accurate and reliable.

  6. Filling abandoned mines with fluidized bed combustion ash grout

    SciTech Connect

    Gray, D.D.; Reddy, T.P.; Black, D.C.; Ziemkiewicz, P.F.

    1998-10-01

    The hydraulic backfilling of abandoned room and pillar coal mines with ash-based grout holds promise as an environmentally beneficial method of ash disposal, capable of preventing acid mine drainage and subsidence. For this scheme to be economically viable, the grout must be sufficiently flowable so that mines can be filled from a small number of boreholes. This paper describes the development and testing of a water-ash-bentonite grout using ash from a coal and gob burning atmospheric pressure fluidized bed combustor. Bentonite was needed to prevent settling which would limit the ability of the grout to spread. Laboratory techniques were devised to measure the rheological parameters of the grout. A static model was developed to predict the maximum distance of spread due to gravity. A field injection of 765 m{sup 3} of grout into an inactive mine panel showed that the grout flows well enough to make hydraulic backfilling feasible.

  7. Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996

    SciTech Connect

    Zygarlicke, C.J.; McCollor, D.P.

    1997-08-01

    With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

  8. Pilot Demonstration of Technology fo the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    SciTech Connect

    T.L. Robl; J.G. Groppo; K.R. Henke

    2005-06-27

    Work on the project primarily focused on the design and testing of different hydraulic classifier configurations. A four cell, open channel, cross flow classifier with and without weirs separating the cells was evaluated. Drawbacks to this configuration included thick sediment compression zones and relatively low throughput. The configuration was redesigned with inclined lamellae plates, to increase sedimentation area and decreased sediment compression zone thickness. This configuration resulted in greater throughput for any given product grade and enhanced product recovery. A digital model of a hydraulic classifier was also constructed based upon Stokes law and the configurations of the tests units. When calibrated with the size of the ash used in the tests, it produced a reasonable approximation of the size, yield and recovery of the actual product. The digital model will be useful to generate test data, at least on a relative basis, of conditions that are hard to generate in the laboratory or at larger scale. Test work on the dispersant adsorption capacity, settling tests and leaching test were also conducted on materials collected from the Coleman power station pond.

  9. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose

    PubMed Central

    dos Santos, Ricardo Pires; Martins, Jorge; Gadelha, Carlos; Cavada, Benildo; Albertini, Alessandro Victor; Arruda, Francisco; Vasconcelos, Mayron; Teixeira, Edson; Alves, Francisca; Lima Filho, José; Freire, Valder

    2014-01-01

    Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa) and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction) and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g) and amount of immobilized enzyme per g of support (76.6 mg/g). In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81%) even after nine reuses and 30 days' storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose. PMID:25110726

  10. 2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO TANK AT RIGHT, THEN DROPPED INTO RAIL CARS FOR REMOVAL - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  11. Combustion of sponge iron plant wastes -- Char and fly ash in FBC boilers

    SciTech Connect

    Rajavel, M.; Muthukrishnan, M.; Banerjee, M.; Natarajan, R.

    1997-12-31

    Coal based sponge iron plants generate large quantity of waste materials in the form of kiln char and fly ash. This material has a very little fuel value owing to the fact that it contains a large percentage of ash and it is almost free from volatiles. Added to this, wide size range of the kiln rejects makes it practically impossible to burn in conventional firing. However, it is realized that the overall economy of the sponge iron plant is likely to be greatly enhanced if the char, the fly ash and a considerable quantity of coal fines, separated in the coal preparation plant, can be utilized. The only possible way to gainfully use these fuels is by fluidized bed combustion. Extensive tests were conducted with these fuels in bubbling fluidized bed combustion test facilities at BHEL, Tiruchirapalli, India. The presentation highlights the experience gained with the above waste fuels in BHEL test facilities and discusses the findings which were subsequently used to design large size FBC boilers.

  12. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 10, July--September 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport fuels; completed editing of the first three quarterly reports and sent them to the publishing office; presented the project results at the Annual Contractors` Conference.

  13. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  14. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste.

    PubMed

    Muthuraman, Marisamy; Namioka, Tomoaki; Yoshikawa, Kunio

    2010-04-01

    In this work, thermogravimetric analysis was used to investigate the co-combustion characteristics of wood and municipal solid waste (MSW) with Indian coal. Combustion characteristics like volatile release, ignition were studied. Wood presented an enhanced reaction rate reflecting its high volatile and low ash contents, while MSW enhanced ignition behavior of Indian coal. The results indicate that blending of both, wood and MSW improves devolatization properties of coal. Significant interaction was detected between wood and Indian coal, and reactivity of coal has improved upon blending with wood. On the other hand, MSW shows a good interaction with Indian coal leading to significant reduction in ignition temperature of coal and this effect was more pronounced with higher blending ratio of MSW. Hence MSW blending could more positively support the combustion of low quality Indian coal as compared to wood, due to its property of enhancement of ignition characteristics.

  15. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  16. Beneficiation of coal pond ash by physical separation techniques.

    PubMed

    Lee, Sung-Joo; Cho, Hee-Chan; Kwon, Ji-Hoe

    2012-08-15

    In this study, investigations to develop a beneficiation process for separating coal pond ash into various products were undertaken. To this end, coal pond ash samples with different particle size ranges were tested in terms of their washability characteristics in a float-and-sink analysis. It was found that coal pond ash was heterogeneous in nature consisting of particles that varied in terms of their size and composition. However, it can be made more homogenous using a gravity separation method. Therefore, the possibility of separating coal pond ash was tested on standard equipment typically used for gravity concentration. To increase the separation efficiency, coal ash was separated according to the size of the particles and each size fraction was tested using equipment appropriate for the corresponding sizes. A hindered-settling column and a shaking table were tested for their ability to treat the 1.19 × 0.074 mm size fraction, and a Falcon concentrator was evaluated for its ability to treat the -0.074 mm size fraction. The results showed that various marketable products, such as lightweight aggregate, sand and high-carbon fuel, can be recovered from coal pond ash using simple physical separation techniques.

  17. Combustion of Illinois coals and chars with natural gas. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Buckinus, R.O.; Peters, J.E.; Krier, H.

    1992-08-01

    The combined combustion of coal and natural gas offers advantageous compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined Illinois coal and natural gas combustion provide particle ignition, burnout rates and ash characterization, helping clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms. The Drop Tube Furnace Facility allows detailed measurements of coal particle combustion under well-controlled conditions. The combustion characteristics of single coal particles are determined through a novel set of diagnostic techniques including in situ simultaneous measurements of particle morphology, temperature and velocity. The emphasis of the effort in the second quarter of this project was on the understanding of the ignition enhancement, burning rate processes during cofiring, and sulfur retention in the ash.

  18. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  19. Volatile metal species in coal combustion flue gas.

    PubMed

    Pavageau, Marie-Pierre; Pécheyran, Christophe; Krupp, Eva M; Morin, Anne; Donard, Olivier F X

    2002-04-01

    Metals are released in effluents of most of combustion processes and are under intensive regulations. To improve our knowledge of combustion process and their resulting emission of metal to the atmosphere, we have developed an approach allowing usto distinguish between gaseous and particulate state of the elements emitted. This study was conducted on the emission of volatile metallic species emitted from a coal combustion plant where low/medium volatile coal (high-grade ash) was burnt. The occurrence of volatile metal species emission was investigated by cryofocusing sampling procedure and detection using low-temperature packed-column gas chromatography coupled with inductively coupled plasma-mass spectrometry as multielement detector (LT-GC/ICP-MS). Samples were collected in the stack through the routine heated sampling line of the plant downstream from the electrostatic precipitator. The gaseous samples were trapped with a cryogenic device and analyzed by LT-GC/ICP-MS. During the combustion process, seven volatile metal species were detected: three for Se, one for Sn, two for Hg, and one for Cu. Thermodynamic calculations and experimental metal species spiking experiments suggest that the following volatile metal species are present in the flue gas during the combustion process: COSe, CSSe, CSe2, SeCl2, Hg0, HgCl2, CuO-CuSO4 or CuSO4 x H2O, and SnO2 or SnCl2. The quantification of volatile species was compared to results traditionally obtained by standardized impinger-based sampling and analysis techniques recommended for flue gas combustion characterization. Results showed that concentrations obtained with the standard impinger approach are at least 10 times higher than obtained with cryogenic sampling, suggesting the trapping microaerosols in the traditional methods. Total metal concentrations in particles are also reported and discussed.

  20. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the

  1. REDUCTION OF NOx VIA COAL COMBUSTION CATALYSIS

    SciTech Connect

    George Ford; Stan Harding; Jeff Hare

    2003-04-28

    The primary objective of this investigation is to determine the effect of different iron catalysts on the production of NO{sub x} during fuel-rich and fuel-lean combustion of coal. Iron in various forms and quantities will be introduced with the pulverized coal and tested in a laboratory-scale combustion furnace. The testing protocol is based on simulation of the near burner region in a full-scale boiler. This semi-annual report describes the selection of the iron catalysts used in the program as well as catalyst preparation. A detailed description of the combustion reactor and ancillary equipment is provided combined with a discussion of the test procedures. The first preliminary data have been collected and are presented followed by the plans to complete the project over the next six months.

  2. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-06-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

  3. Transformations of inorganic coal constituents in combustion systems. Volume 2, Sections 6 and 7: Final report

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  4. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  5. The catalytic and photocatalytic activity of coal fly ashes

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Güsten, Hans

    Great differences in the catalytic and photocatalytic activity of two samples of fly ash from two different coal-fired power plants have been demonstrated to exist for two reactions of environmental significance, namely, the heterogeneous SO 2 oxidation in a smog chamber and the photochemical degradation of two polynuclear aromatic hydrocarbons adsorbed onto the fly ashes. At a relative humidity (r.h.) of 80%, the reaction rate for the heterogeneous SO 2 oxidation on an acidic fly ash (pH 5.65) is ten times higher than for the oxidation on a fly ash of pH 9.3. Compared to silica gel, the 'acidic' fly ash gives rise to a faster photocatalytic degradation of anthracene and phenanthrene, while the same aromatic hydrocarbons are highly resistant to photodegradation when adsorbed on the fly ash of pH 9.3. Possible explanations and environmental consequences of the differing catalytic activity of fly ashes are discussed.

  6. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

  7. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  8. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 5, May 1990--June 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-08-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  9. Natural attenuation of coal combustion waste in river sediments.

    PubMed

    Markwiese, James T; Rogers, William J; Carriker, Neil E; Thal, David I; Vitale, Rock J; Gruzalski, Jacob G; Rodgers, Erin E; Babyak, Carol M; Ryti, Randall T

    2014-08-01

    The weathering of coal combustion products (CCPs) in a lotic environment was assessed following the Tennessee Valley Authority (Kingston, TN) fly ash release of 2008 into surrounding rivers. Sampled materials included stockpiled ash and sediment collected from 180 to 880 days following the release. Total recoverable concentrations of heavy metals and metalloids in sediment were measured, and percent ash was estimated visually or quantified by particle counts. Arsenic and selenium in sediment were positively correlated with percent ash. For samples collected 180 days after the release, total concentrations of trace elements downstream of the release were greater than reference levels but less than concentrations measured in stockpiled ash. Total concentrations of trace elements remained elevated in ash-laden sediment after almost 2.5 years. A sequential extraction procedure (SEP) was used to speciate selected fractions of arsenic, copper, lead, nickel, and selenium in decreasing order of bioavailability. Concentrations of trace elements in sequentially extracted fractions were one to two orders of magnitude lower than total recoverable trace elements. The bulk of sequentially extractable trace elements was associated with iron-manganese oxides, the least bioavailable fraction of those measured. By 780 days, trace element concentrations in the SEP fractions approached reference concentrations in the more bioavailable water soluble, ion exchangeable, and carbonate-bound fractions. For each trace element, the percentage composition of the bioavailable fractions relative to the total concentration was calculated. These SEP indices were summed and shown to significantly decrease over time. These results document the natural attenuation of leachable trace elements in CCPs in river sediment as a result of the loss of bioavailable trace elements over time.

  10. Chemical Fixation of Trace Elements in Coal Fly Ash using Ferrous Sulfate Treatment

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.

    2008-12-01

    Coal fired electric power plants produce 50% of the electricity consumed in the US and generate large volumes of fly ash and other coal combustion by-products (CCBs). The majority of the CCB materials are disposed of in surface impoundments and landfills located throughout the US. Fly ash contains trace elements such as As, B, Cr, Mo, Ni, Se, Sr and V which can have a negative impact on the environment due to leaching by acid rain and groundwater with time. The potential release of these toxic trace elements into the environment is a big concern for the US power industry due to the high cost involved in lining the old and existing ash disposal sites. As a result, simple and effective treatment techniques are needed to stabilize the coal combustion by-products produced by power plants in the ash disposal sites and also to increase the use of coal fly ash for beneficial purposes. This paper reports the results of batch experiments designed to chemically treat coal fly ash with ferrous sulfate solution by promoting the formation of insoluble iron oxy- hydroxide phases that immobilize the toxic trace elements. Four fly ash samples, three acidic (HA, HB and MA) and one alkaline (PD), were treated with a ferrous sulfate (FS) solution (322 ppm Fe) and a ferrous sulfate + calcium carbonate (FS+CC) solution (322 ppm Fe and 28 ppm CaCO3) at solid:liquid ratios of 1:3 and 1:30. The effectiveness of this treatment technique was evaluated by the batch sequential leaching of treated and untreated coal fly ash samples using a synthetic acid rain (SAR) solution (USEPA Method 1312B) and also by a 7-step sequential chemical extraction procedure (SCEP) to understand the mechanism of treatment. The unbuffered FS solution at the 1:30 ratio was highly successful in reducing the mobility of the oxyanionic trace elements As (24-91%), Cr (82-97%), Mo (79-100%), Se (41-87%) and V (55-100%). However, the unbuffered FS treatment failed to reduce the mobility of B, Ni and Sr for the acidic fly

  11. Removal of pollutants from wastewater by coal bottom ash.

    PubMed

    Lin, Chiu-Yue; Yang, Dong-Hao

    2002-09-01

    Coal bottom ash produced from a thermal power plant was used in a batch experiment to investigate the adsorption characteristic of this bottom ash. The adsorbate solutions were synthetic wastewaters contained copper (Cu2+) or COD and a sanitary landfill leachate. The influences of various factors, such as contact time, pH, initial adsorbate concentration and temperature on the sorption have been studied. Experimental results show that coal bottom ash had a good adsorption capacity for copper and COD and could reduce the concentrations of various pollutants in the leachate. The adsorption capacities of each gram of coal bottom ash were 0.48 mg Cu (at pH 4 and temperature 25 degrees C) and 7.5 mg COD (at pH 5 and temperature 25 degrees C); their adsorption behaviors conformed to Freundlich's adsorption model. In treating leachate, the removal efficiencies of COD, NH3--N, total Kjeldah nitrogen, phosphorus, Fe3+, Mn2+ and Zn2+ were 47, 39.4, 31.1, 92.9, 96.5, 94.3 and 82.2%, respectively. Based on these results we can conclude that it is possible to use coal bottom ash for removing pollutants from wastewaters. The adsorption capacities of coal bottom ash for pollutants were also determined.

  12. Present status and future initiatives regarding coal ash utilization in the United States

    SciTech Connect

    Blackstock, T.H.; Tyson, S.S.

    1996-11-01

    The American Coal Ash Association, Inc., (ACAA) has represented the coal combustion byproduct (CCB) industry in the US since 1968. ACAA`s mission is to advance the management and use of CCBs in ways that are technically sound, commercially competitive and environmentally safe. ACAA conducts an annual survey of coal-burning electric utilities in the US to determine the quantities of CCBs that are produced and used. In 1994 approximately 80.8 million metric tons (89.0 million short tons) of CCBs were produced in the US in the form of fly ash, bottom ash, boiler slag and flue gas desulfurization (FGD) material. About 25% of the combined production of these CCBs was used, while the remainder was disposed. Quantities for CCB production and use in the US for calendar-year 1994 are summarized. In 1994 fly ash production alone amounted to 49.7 million metric tons (54.8 million short tons), and of that amount approximately 24%, some 11.7 million metric tons (12.9 million short tons), was used. The major applications for fly ash were: cement and concrete products (57.0%); structural fill (9.4%); road base (5.5%); flowable fill (5.0%); waste solidification and stabilization (1.9%); mineral filler applications (1.0%); mining applications (0.7%); and various other applications (19.5%). This information is shown.

  13. How toxic is coal ash? A laboratory toxicity case study

    SciTech Connect

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authority (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.

  14. Illinois basin coal fly ashes. 1. Chemical characterization and solubility

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.

    1984-01-01

    Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.

  15. How toxic is coal ash? A laboratory toxicity case study

    DOE PAGES

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  16. Toxic substances from coal combustion -- A comprehensive assessment. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.

    1997-01-31

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI`s existing Engineering Model for Ash Formation (EMAF). During the past quarter the final program coal, from the Wyodak seam in the Powder River Basin, was acquired and distributed. Extensive coal characterization and laboratory work is underway to develop and test new sub-models. Coal characterization in the past quarter included direct identification of the modes of occurrence of various trace inorganic species in coal and ash using unique analytical techniques such as XAFS analysis and selective leaching. Combustion testing of the bituminous coals continued and additional data were obtained on trace element vaporization in the combustion zone. Studies of post-combustion trace element transformations, such as mercury speciation in the flue gas, were also begun in the last quarter.

  17. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    PubMed Central

    Herndon, J. Marvin

    2015-01-01

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction. PMID:26270671

  18. Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey.

    PubMed

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika

    2010-12-15

    An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

  19. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    PubMed

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  20. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-12-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since {sigma}/k is about 10{sup {minus}6}. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  1. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-01-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since [sigma]/k is about 10[sup [minus]6]. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  2. Chromium speciation in coal and biomass co-combustion products.

    PubMed

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  3. Naturally Occurring Radioactive Materials in Coals and Coal Combustion Residuals in the United States.

    PubMed

    Lauer, Nancy E; Hower, James C; Hsu-Kim, Heileen; Taggart, Ross K; Vengosh, Avner

    2015-09-15

    The distribution and enrichment of naturally occurring radioactive materials (NORM) in coal combustion residuals (CCRs) from different coal source basins have not been fully characterized in the United States. Here we provide a systematic analysis of the occurrence of NORM ((232)Th, (228)Ra, (238)U, (226)Ra, and (210)Pb) in coals and associated CCRs from the Illinois, Appalachian, and Powder River Basins. Illinois CCRs had the highest total Ra ((228)Ra + (226)Ra = 297 ± 46 Bq/kg) and the lowest (228)Ra/(226)Ra activity ratio (0.31 ± 0.09), followed by Appalachian CCRs (283 ± 34 Bq/kg; 0.67 ± 0.09), and Powder River CCRs (213 ± 21 Bq/kg; 0.79 ± 0.10). Total Ra and (228)Ra/(226)Ra variations in CCRs correspond to the U and Th concentrations and ash contents of their feed coals, and we show that these relationships can be used to predict total NORM concentrations in CCRs. We observed differential NORM volatility during combustion that results in (210)Pb enrichment and (210)Pb/(226)Ra ratios greater than 1 in most fly-ash samples. Overall, total NORM activities in CCRs are 7-10- and 3-5-fold higher than NORM activities in parent coals and average U.S. soil, respectively. This study lays the groundwork for future research related to the environmental and human health implications of CCR disposal and accidental release to the environment in the context of this elevated radioactivity.

  4. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.

    PubMed

    Huggins, Frank E; Senior, Constance L; Chu, Paul; Ladwig, Ken; Huffman, Gerald P

    2007-05-01

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO3(2-)) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO4(3-)) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the postcombustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  5. Producing a synthetic zeolite from secondary coal fly ash.

    PubMed

    Zhou, Chunyu; Yan, Chunjie; Zhou, Qi; Wang, Hongquan; Luo, Wenjun

    2016-11-01

    Secondary coal fly ash is known as a by-product produced by the extracting alumina industry from high-alumina fly ash, which is always considered to be solid waste. Zeolitization of secondary coal fly ash offers an opportunity to create value-added products from this industrial solid waste. The influence of synthesis parameters on zeolite NaA such as alkalinity, the molar ratio of SiO2/Al2O3, crystallization time and temperature was investigated in this paper. It was found that the types of synthetic zeolites produced were to be highly dependent on the conditions of the crystallization process. Calcium ion exchange capacity and whiteness measurements revealed that the synthesized product meets the standard for being used as detergent, indicating a promising use as a builder in detergent, ion-exchangers or selective adsorbents. Yield of up to a maximum of 1.54 g/g of ash was produced for zeolite NaA from the secondary coal fly ash residue. This result presents a potential use of the secondary coal fly ash to obtain a high value-added product by a cheap and alternative zeolitization procedure.

  6. Developing a coal quality expert: The prediction of ash deposit effects on boiler performance

    SciTech Connect

    Thornock, D.E.; Borio, R.W. ); Mehta, A.K. )

    1991-01-01

    The overall objective of the Coal Quality Expert (CQE) Clean Coal I Program is the development of a Coal Quality Expert -- a comprehensive PC based expert system for evaluating the potential for coal cleaning, blending and switching options to reduce emissions while producing the lowest cost electricity. A key part of the CQE model will be the development of a sub-model to predict the effects of ash deposition on boiler performance under various operating conditions. To facilitate sub-model development, a combination of full, pilot, and bench scale testing has been carried out on a series of coals and coal blends which were of interest to the Public Service of Oklahoma (PSO) at their Northeastern Station. A series of full-scale tests were also performed on PSO's Northeastern Unit {number sign}4 to characterize boiler performance when firing a baseline coal'' (their normal or desired fuel feed stock) and two blends comprised of the baseline coal blended with various amounts of an alternate coal. Actual furnace conditions were then closely matched during a series of tests performed in Combustion Engineering's pilot scale combustor, the Fireside Performance Test Facility (FPTF). Pilot scale testing allowed in-depth analyses of furnace deposits during and after formation under well-controlled conditions. Ash deposit properties were characterized during pilot scale furnace operation and in subsequent bench scale analyses. Determination of deposit behavior as a function of important operating parameters during the FPTF testing has permitted the prediction of expected performance for various coal/coal blends in PSO's Northeastern Units and allows a prediction of boiler performance for other units firing these fuels.

  7. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    PubMed

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  8. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  9. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  10. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.

    PubMed

    Low, Fiona; Zhang, Lian

    2012-11-15

    In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant.

  11. Coal-fired open cycle MHD combustion plasmas - Chemical equilibrium and transport properties workshop results

    NASA Astrophysics Data System (ADS)

    Sullivan, L. D.; Klepeis, J. E.; Coderre, W. J.; Fischer, W. H.

    1980-01-01

    For electrical power generation utilizing a high temperature alkali-seeded coal combustion plasma, the certainty of high electrical conductivity in the presence of coal ash and trace impurities is vitally important, especially for use in extrapolation of existing designs to higher power levels, as envisioned for commercial applications. The paper surveys the results of the workshop which provides an industry wide overview of the computational methods and analyses that are currently in use. Attention is given to uncertainty bands for plasma electrical conductivity. Also discussed are other issues such as coal, slag, seed, and conductivity. Finally, the paper gives suggested areas for further work.

  12. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  13. Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS).

    PubMed

    Geng, Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-06-15

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 degrees C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method.

  14. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  15. Community views about the health and exposure of children living near a coal ash storage site.

    PubMed

    Zierold, Kristina M; Sears, Clara G

    2015-04-01

    Coal ash, a waste product generated from burning coal, is composed of small particles comprised of highly toxic elements. Coal ash particles contain heavy metals such as arsenic, lead, and mercury, as well as polyaromatic hydrocarbons and radioactive elements. Most coal ash is stored in landfills and ponds, often located in close proximity to low income communities. Currently, there are no federal regulations governing the storage and transport of coal ash; however the Environmental Protection Agency proposed a coal ash rule in 2010, which could designate coal ash as a hazardous waste. This is the first article to assess community impact from coal ash storage, by exploring parents' perceptions of their children's health and its relationship to chronic exposure to coal ash. This was a community-based study involving four neighborhoods adjacent to a large coal ash storage facility. Focus groups were conducted with community members and the transcripts were analyzed to identify themes regarding children's health, children's exposure to coal ash, and behaviors done to protect children from exposure. The majority of parents (85 %) reported that their children suffered from health conditions; specifically respiratory and emotional and behavioral disorders. Parents highlighted ways in which their children were exposed to coal ash, although many felt they were constantly exposed just by living in the area. Parents felt strongly that exposure to coal ash from the landfill is affecting the health and well-being of their children. Some parents attempted protective behaviors, but most parents felt helpless in reducing children's exposure.

  16. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of

  17. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama

    USGS Publications Warehouse

    Zielinski, R.A.; Foster, A.L.; Meeker, G.P.; Brownfield, I.K.

    2007-01-01

    An arsenic-rich (As = 55 ppm) bituminous feed coal from the Black Warrior Basin, Alabama and its derivative fly ash (As = 230 ppm) were selected for detailed investigation of arsenic residence and chemical forms. Analytical techniques included microbeam analysis, selective extraction, and As K-edge X-ray absorption fine-structure (XAFS) spectroscopy. Most As in the coal is contained in a generation of As-bearing pyrite (FeS2) that formed in response to epigenetic introduction of hydrothermal fluids. XAFS results indicate that approximately 50% of the As in the coal sample occurs as the oxidized As(V) species, possibly the result of incipient oxidation of coal and pyrite prior to our analysis. Combustion of pyrite and host coal produced fly ash in which 95% of As is present as As(V). Selective extraction of the fly ash with a carbonate buffer solution (pH = 10) removed 49% of the As. A different extraction with an HCl-NH2OH mixture, which targets amorphous and poorly crystalline iron oxides, dissolved 79% of the As. XAFS spectroscopy of this highly acidic (pH = 3.0) fly ash indicated that As is associated with some combination of iron oxide, oxyhydroxide, or sulfate. In contrast, a highly alkaline (pH = 12.7) fly ash from Turkey shows most As associated with a phase similar to calcium orthoarsenate (Ca3(AsO4)2). The combined XAFS results indicate that fly ash acidity, which is determined by coal composition and combustion conditions, may serve to predict arsenic speciation in fly ash.

  18. Catalytic combustion of coal-derived liquids

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested with three grades of SRC 2 coal derived liquids, naphtha, middle distillate, and a blend of three parts middle distillate to one part heavy distillate. A petroleum derived number 2 diesel fuel was also tested to provide a direct comparison. The catalytic reactor was tested at inlet temperatures from 600 to 800 K, reference velocities from 10 to 20 m/s, lean fuel air ratios, and a pressure of 3 x 10 to the 5th power Pa. Compared to the diesel, the naphtha gave slightly better combustion efficiency, the middle distillate was almost identical, and the middle heavy blend was slightly poorer. The coal derived liquid fuels contained from 0.58 to 0.95 percent nitrogen by weight. Conversion of fuel nitrogen to NOx was approximately 75 percent for all three grades of the coal derived liquids.

  19. Performance of PAHs emission from bituminous coal combustion.

    PubMed

    Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa

    2004-12-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  20. Magnetic susceptibility measurements to detect coal fly ash from the Kingston Tennessee spill in Watts Bar Reservoir.

    PubMed

    Cowan, Ellen A; Seramur, Keith C; Hageman, Steven J

    2013-03-01

    An estimated 229,000 m(3) of coal fly ash remains in the river system after dredging to clean-up the 2008 Tennessee Valley Authority (TVA) spill in Kingston, Tennessee. The ash is heterogeneous with clear, orange and black spheres and non-spherical amorphous particles. Combustion produces iron oxides that allow low field magnetic susceptibility (χ(LF)) and percent frequency dependent susceptibility (χ(FD)%) to be used to discriminate between coal fly ash and sediments native to the watershed. Riverbed samples with χ(LF) greater than 3.0 × 10(-6) m(3)/kg, have greater than 15% ash measured by optical point counting. χ(LF) is positively correlated with total ash, allowing ash detection in riverbed sediments and at depth in cores. The ratio of ash sphere composition is altered by river transport introducing variability in χ(LF). Measurement of χ(LF) is inexpensive, non-destructive, and a reliable analytical tool for monitoring the fate of coal ash in this fluvial environment.

  1. Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion

    SciTech Connect

    Andrew Lucero

    2005-04-01

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

  2. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  3. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect

    Wagner, J.C.; Bhatty, J.I.; Mishulovich, A.

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  4. Co-combustion of sludge with coal or wood

    SciTech Connect

    Leckner, B.; Aamand, L.-E.

    2004-07-01

    There are several options for co-combustion of biomass or waste with coal. In all cases the fuel properties are decisive for the success of the arrangement: contents of volatile matter and of potential emission precursors, such as sulphur, nitrogen, chlorine, and heavy metals. The content of alkali in the mineral substance of the fuel is important because of the danger of fouling and corrosion. Research activities at Chalmers University of Technology include several aspects of the related problems areas. An example is given concerning emissions from co-combustion in circulating fluidized beds with coal or wood as base fuels, and with sewage sludge as additional fuel. Two aspects of the properties of sludge are studied: emissions of nitrogen and sulphur oxides as well as of chlorine, because the contents of the precursors to these emissions are high. The possibility of utilizing the phosphorus in sludge as a fertilizer is also discussed. The results show that emissions can be kept below existing emission limits if the fraction of sludge is sufficiently small but the concentration of trace elements in the sludge ash prevents the sludge from being used as a fertilizer. 15 refs., 9 figs., 2 tabs.

  5. Structural and thermal behavior of coal combustion and gasification by-products

    SciTech Connect

    Valimbe, P.S.; Malhotra, V.M.; Banerjee, D.

    1995-12-31

    We have initiated studies which attempt to convert coal combustion and coal gasification by-products into high-value composite materials. However, before conversion strategies can be put in place, the raw materials must be characterized. Therefore, we undertook systematic microscopy and spectroscopy measurements on PCC fly ash, FBC fly ash, FBC spent bed ash, and scrubber sludge. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure does not exactly match either conventional gypsum or hannebachite. SEM images indicate that unlike PCC fly ash particles, which are mainly spherical, the FBC fly ash and FBC spent bed ash particles are irregularly shaped and show considerable fusion. FBC fly ashes are mainly composed of anhydrite, lime, portlandite, calcite, hematite, magnetite and various glass phases. The DTA and DSC data suggest that the PCC fly ash is thermally stable up to 1100{degrees}C. However, this is not the case for FBC residue.

  6. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer.

    PubMed

    Li, Jing; Zhuang, Xinguo; Font, Oriol; Moreno, Natalia; Vallejo, V Ramon; Querol, Xavier; Tobias, Aurelio

    2014-01-30

    This study focuses on the synthesis of merlinoite from Chinese coal fly ashes by KOH direct conversion method, with special emphasis on the application of synthetic merlinoite as fertilizer. These fly ashes were collected from two pulverized-coal combustion (PCC) power plants in Xinjiang, Northwest China. The synthesis results are influenced by fly ash characteristics and different synthesis conditions (KOH solution concentrations, activation temperature, time, and KOH/fly ash ratios). A high quality merlinoite-rich product was synthesized under optimal activation conditions (KOH concentration of 5M, activation temperature of 150°C, activation time of 8h and KOH/fly ash ratio of 2l/kg), with a cation exchange capacity (CEC) of 160cmolkg(-1). The synthetic merlinoite is proved to be an efficient slow release K-fertilizer for plant growth, indicating that it can be widely used for high-nutrient demanding crops growing in nutrient-limited soils and for large-area poor soil amendment in opencast coal mine areas around the power plants that will substantially grow with the increasing coal combustion in Xinjiang in the near future.

  7. Task 6.4 - the use of coal ash in ceramics. Topical report, July--December 1995

    SciTech Connect

    1996-03-01

    Previous empirical tests at the Energy & Environmental Research Center (EERC) have indicated that coal combustion by-products are a viable starting material for the production of a variety of ceramic products, including brick, tile, and high-flexural-strength ceramics. The EERC has focused on high-temperature properties of coal ashes and has provided valuable insight into ash transformations, fouling, and stagging for the utility industry. It is proposed to utilize the information generated in these past projects to develop material selection criteria and product manufacturing techniques based on scientific and engineering characteristics of the ash. Commercialization of the use of coal combustion by-products in ceramics is more likely to become viable if a quality-assured product can be made, and predictive materials selection is a key component of a quality-assured product. The objective of this work was to demonstrate the development and production of a ceramic material utilizing coal ash as a key component. Chemical and high-temperature properties of ash were carefully determined with the objective of identifying criteria for materials selection and manufacturing options for ceramic production.

  8. Char crystalline transformations during coal combustion and their implications for carbon burnout

    SciTech Connect

    Hurt, R.H.

    1999-03-11

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  9. Coal combustion: Science and technology of industrial and utility applications

    SciTech Connect

    Junkai, F.

    1988-01-01

    This reference source offers material on theoretical research (including mathematical modeling, low NO/sub x/ combustion, and studies of sulfur), applications of the newest technologies, and actual experience of low-grade coal combustion.

  10. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction

    NASA Astrophysics Data System (ADS)

    Grasby, Stephen E.; Sanei, Hamed; Beauchamp, Benoit

    2011-02-01

    During the latest Permian extinction about 250Myr ago, more than 90% of marine species went extinct, and biogeochemical cycles were disrupted globally. The cause of the disruption is unclear, but a link between the eruption of the Siberian Trap flood basalts and the extinction has been suggested on the basis of the rough coincidence of the two events. The flood basalt volcanism released CO2. In addition, related thermal metamorphism of Siberian coal measures and organic-rich shales led to the emission of methane, which would have affected global climate and carbon cycling, according to model simulations. This scenario is supported by evidence for volcanic eruptions and gas release in the Siberian Tunguska Basin, but direct indicators of coal combustion have not been detected. Here we present analyses of terrestrial carbon in marine sediments that suggest a substantial amount of char was deposited in Permian aged rocks from the Canadian High Arctic immediately before the mass extinction. Based on the geochemistry and petrology of the char, we propose that the char was derived from the combustion of Siberian coal and organic-rich sediments by flood basalts, which was then dispersed globally. The char is remarkably similar to modern coal fly ash, which can create toxic aquatic conditions when released as slurries. We therefore speculate that the global distribution of ash could have created toxic marine conditions.

  11. Comparative analysis of methods for determination of arsenic in coal and coal ash

    SciTech Connect

    Vukasinovic-Pesic, V.L.; Blagojevic, N.Z.; Rajakovic, L.V.

    2009-07-01

    In this paper the comparative analysis of different methods for the preparation and analysis of arsenic content in coal and coal ash have been presented. The suggested method is coal digestion method, i.e., coal ash digestion using the mixture of acids: nitric and sulphuric in presence of vanadium-pentoxide as catalyzer. The comparative analysis of different recording techniques (AAS-GH, AAS-GF and ICP-AES) has also been presented. For arsenic recording the suggested technique is AAS-GF technique. The obtained results show that the method of high precision, high sensitivity and high reproductivity has been obtained.

  12. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel.

    PubMed

    Fernandez, Art; Wendt, Jost O L; Wolski, Natacha; Hein, Klaus R G; Wang, Shengjun; Witten, Mark L

    2003-06-01

    This paper is concerned with health effects from the inhalation of particulate matter (PM) emitted from the combustion of coal, and from the co-combustion of refuse derived fuel (RDF) and pulverized coal mixtures, under both normal and low NO(x) conditions. Specific issues focus on whether the addition of RDF to coal has an effect on PM toxicity, and whether the application of staged combustion (for low NO(x)) may also be a factor in this regard. Ash particles were sampled and collected from a pilot scale combustion unit and then re-suspended and diluted to concentrations of approximately 1000 microg/m(3). These particles were inhaled by mice, which were held in a nose-only exposure configuration. Exposure tests were for 1 h per day, and involved three sets (eight mice per set) of mice. These three sets were exposed over 8, 16, and 24 consecutive days, respectively. Pathological lung damage was measured in terms of increases in lung permeability. Results show that the re-suspended coal/RDF ash appeared to cause very different effects on lung permeability than did coal ash alone. In addition, it was also shown that a "snapshot" of lung properties after a fixed number of daily 1-h exposures, can be misleading, since apparent repair mechanisms cause lung properties to change over a period of time. For the coal/RDF, the greatest lung damage (in terms of lung permeability increase) occurred at the short exposure period of 8 days, and thereafter appeared to be gradually repaired. Ash from staged (low NO(x)) combustion of coal/RDF appeared to cause greater lung injury than that from unstaged (high NO(x)) coal/RDF combustion, although the temporal behavior and (apparent) repair processes in each case were similar. In contrast to this, coal ash alone showed a slight decrease of lung permeability after 1 and 3 days, and this disappeared after 12 days. These observations are interpreted in the light of mechanisms proposed in the literature. The results all suggest that the

  13. Tests and specifications pertinent to coal ash utilization

    SciTech Connect

    Manz, O.

    1994-12-31

    Fortunately, in the United States, most of the test methods and specifications for the use of coal ash in cement, concrete, lime, or soil-related products are found in the American Society for Testing and Materials (ASTM) books of standards. Many of the same or slightly different specifications are also found in the American Association of State Highway and Transportation Officials (AASHTO) books of standards, as well as those of the various Departments of Transportation (DOTs). Other specifications for selected uses are found in publications of the American Petroleum Institute (API), the Sulfur Institute, the mineral wool industry, and West Virginia University. It is difficult to keep up with the most recent printed specifications, particularly in ASTM, since the committees meet twice yearly and have many time-consuming ballots. This paper summarizes the critical engineering properties required to assess the utilization applications of coal ash products. For most uses, both physical and chemical limits are specified. There are specifications for blended cement containing fly ash, for sulfate resistance, and for alkali aggregate reaction, also for fly ash for use in concrete, in oil well cement, and in grout. Coal ash is specified for use in ash-lime stabilization, as lightweight aggregate, and for mineral filler, as well as for structural fill and flowable fill. Other uses include sulfur concrete, high flexural strength ceramics, mineral wool, brick, cenospheres, and filler.

  14. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion.

    PubMed

    Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao

    2016-09-15

    Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal.

  15. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  16. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect

    C.L. Senior; T. Panagiotou; F.E. Huggins; G.P. Huffman; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F Sarofim; J. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowsky; J.J. Helble; R. Mamani-Paco

    1999-11-01

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1999 to 30 September 1999. During this period the MIT INAA procedures were revised to improve the quality of the analytical results. Two steps have been taken to reduce the analytical errors. A new nitric acid leaching procedure, modified from ASTM procedure D2492, section 7.3.1 for determination of pyritic sulfur, was developed by USGS and validated. To date, analytical results have been returned for all but the last complete round of the four-step leaching procedure. USGS analysts in Denver have halted development of the cold vapor atomic fluorescence technique for mercury analysis procedure in favor of a new direct analyzer for Hg that the USGS is in the process of acquiring. Since early June, emphasis at USGS has been placed on microanalysis of clay minerals in project coals in preparation

  17. Structure formation of aerated concrete containing waste coal combustion products generated in the thermal vortex power units

    NASA Astrophysics Data System (ADS)

    Ivanov, A. I.; Stolboushkin, A. Yu; Temlyanstev, M. V.; Syromyasov, V. A.; Fomina, O. A.

    2016-10-01

    The results of fly ash research, generated in the process of waste coal combustion in the thermal vortex power units and used as an aggregate in aerated concrete, are provided. It is established that fly ash can be used in the production of cement or concrete with low loss on ignition (LOI). The permitted value of LOI in fly ash, affecting the structure formation and operational properties of aerated concrete, are defined. During non-autoclaved hardening of aerated concrete with fly ash aggregate and LOI not higher than 2%, the formation of acicular crystals of ettringite, reinforcing interporous partitions, takes place.

  18. Simultaneous combustion of waste plastics with coal for pulverized coal injection application

    SciTech Connect

    Sushil Gupta; Veena Sahajwalla; Jacob Wood

    2006-12-15

    A bench-scale study was conducted to investigate the effect of simultaneous cofiring of waste plastic with coal on the combustion behavior of coals for PCI (pulverized coal injection) application in a blast furnace. Two Australian coals, premixed with low- and high-density polyethylene, were combusted in a drop tube furnace at 1473 K under a range of combustion conditions. In all the tested conditions, most of the coal blends including up to 30% plastic indicated similar or marginally higher combustion efficiency compared to those of the constituent coals even though plastics were not completely combusted. In a size range up to 600 {mu}m, the combustion efficiency of coal and polyethylene blends was found be independent of the particle size of plastic used. Both linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are shown to display similar influence on the combustion efficiency of coal blends. The effect of plastic appeared to display greater improvement on the combustion efficiency of low volatile coal compared to that of a high volatile coal blend. The study further suggested that the effect of oxygen levels of the injected air in improving the combustion efficiency of a coal-plastic blend could be more effective under fuel rich conditions. The study demonstrates that waste plastic can be successfully coinjected with PCI without having any adverse effect on the combustion efficiency particularly under the tested conditions. 22 refs., 12 figs., 2 tabs.

  19. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot

  20. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  1. Development and evaluation of coal/water mixture combustion technology. Final report

    SciTech Connect

    Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

    1981-08-01

    The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

  2. [Predicting low NOx combustion property of a coal-fired boiler].

    PubMed

    Zhou, Hao; Mao, Jianbo; Chi, Zuohe; Jiang, Xiao; Wang, Zhenhua; Cen, Kefa

    2002-03-01

    More attention was paid to the low NOx combustion property of the high capacity tangential firing boiler, but the NOx emission and unburned carbon content in fly ash of coal burned boiler were complicated, they were affected by many factors, such as coal character, boiler's load, air distribution, boiler style, burner style, furnace temperature, excess air ratio, pulverized coal fineness and the uniformity of the air and coal distribution, etc. In this paper, the NOx emission property and unburned carbon content in fly ash of a 600 MW utility tangentially firing coal burned boiler was experimentally investigated, and taking advantage of the nonlinear dynamics characteristics and self-learning characteristics of artificial neural network, an artificial neural network model on low NOx combustion property of the high capacity boiler was developed and verified. The results illustrated that such a model can predicate the NOx emission concentration and unburned carbon content under various operating conditions, if combined with the optimization algorithm, the operator can find the best operation condition of the low NOx combustion.

  3. A preliminary study on zero solid waste generation from pulverised coal combustion (PCC).

    PubMed

    Wang, Wenlong; Luo, Zhongyang; Shi, Zhenglun; Cen, Kefa

    2003-06-01

    How to completely utilise the solid residues from pulverised coal combustion (PCC) has been a hard problem so far. On the basis of a first feasibility analysis and a preliminary experimental research, this study creates an innovative idea how to realise zero generation of solid waste from PCC. By adding some quick lime as well as some other mineralisers to the coal and grinding together before combustion, the mineral composition and property of ashes could be changed significantly. The formation of some cement minerals, such as Belite, would convert the ashes from solid waste into a kind of product that is similar to cement clinker. And this technology would have great effect on energy utilisation as well as environmental protection.

  4. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    USGS Publications Warehouse

    Warwick, Peter; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  5. Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand

    SciTech Connect

    1997-05-01

    In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

  6. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  7. Coal ash usage in environmental restoration at the Hanford Site

    SciTech Connect

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1995-09-01

    This paper discusses the use of coal ash from Hanford Nuclear Reservation steam plants as codisposal waste rock, landfill, or tank stabilization material; usage as a fuel source for energy recovery, as pipe or foundation backfill, or as an ornamental brick additive; and as aquarium rock, jewelry, or oyster bed stabilization material. Reducing the amount of waste produced is also discussed.

  8. Economics of coal combustion residue transportation

    SciTech Connect

    Sevim, H.; Gwamaka, S.

    1995-12-31

    A group of researchers at the Southern Illinois University is engaged in a research project whereby technical, environmental, and economic feasibility of coal combustion residue disposal into old underground coal mines is being investigated. Safe and economic transportation of residues from power plants to mine sites is an important segment of this project. A number of transportation alternatives have been examined, and among these, pneumatic trucks, pressure differential rail cars, and collapsible intermodal containers have been found to be promising. In this paper, all three alternatives are applied to hypothetical cases pertaining to central and southern Illinois. The operating scenarios are described and a comparative economic analysis is conducted using After-Tax Cost method. Each alternative is evaluated for varying distances and tonnages to reveal its favorable operating range.

  9. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination

    SciTech Connect

    Srogi, K.

    2007-01-15

    The aim of this paper is to review microwave-assisted digestion of coal and coal fly ash. A brief description of microwave heating principles is presented. Microwave-assisted digestion appears currently to be the most popular preparation technique, possibly due to the comparatively rapid sample preparation and the reduction of contamination, compared to the conventional hot-plate digestion methods.

  10. The safety and economics of high ash anthracite fired mixing with petroleum-coke in pulverized coal-fired furnace

    SciTech Connect

    Zhang, Z.; Sun, X.; Li, F.

    1996-12-31

    Petroleum-coke was fired only in CFB because of its content of high S and low volatile matter. It will bring environmental and flame stability problems if petroleum-coke is fired in a pulverized coal-fired furnace. Low rank anthracite is fired in many pulverized coal-fired furnaces without flame stability problems. Here the authors blend high ash anthracite with petroleum-coke as the fuel for a pulverized coal-fired furnace to decrease the ash content in the fuel. Experimental results had shown that in mixing with petroleum-coke, the combustion behavior of the blended fuel was improved and ash deposition characteristic would not change compared with high ash anthracite. Using coal/petroleum-coke as the fuel for furnace can bring great benefits for the environment and furnace. But S content in blended fuel must be controlled under the regulation of S content in coal and the volatile content should not decrease too low for the coal-fired furnace design to avoid the environmental and flame stability problems.

  11. Quantitative geochemical modelling using leaching tests: application for coal ashes produced by two South African thermal processes.

    PubMed

    Hareeparsad, Shameer; Tiruta-Barna, Ligia; Brouckaert, Chris J; Buckley, Chris A

    2011-02-28

    The present work focuses on the reactivity of coal fly ash in aqueous solutions studied through geochemical modelling. The studied coal fly ashes originate from South African industrial sites. The adopted methodology is based on mineralogical analysis, laboratory leaching tests and geochemical modelling. A quantitative modelling approach is developed here in order to determine the quantities of different solid phases composing the coal fly ash. It employs a geochemical code (PHREEQC) and a numerical optimisation tool developed under MATLAB, by the intermediate of a coupling program. The experimental conditions are those of the laboratory leaching test, i.e. liquid/solid ratio of 10 L/kg and 48 h contact time. The simulation results compared with the experimental data demonstrate the feasibility of such approach, which is the scope of the present work. The perspective of the quantitative geochemical modelling is the waste reactivity prediction in different leaching conditions and time frames. This work is part of a largest research project initiated by Sasol and Eskom companies, the largest South African coal consumers, aiming to address the issue of waste management of coal combustion residues and the environmental impact assessment of coal ash disposal on land.

  12. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1993-09-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses (1). The specific objectives of the demonstration project are as follows: To characterize the material generated from dry FGD processes; to demonstrate the utilization of dry FGD by-products as an soil amendment material on agricultural lands and on abandoned and active surface coal mines in Ohio; to demonstrate the use of dry FGD by-product as an engineering material for soil stabilization; to determine the quantities of dry FGD material than can be utilized in each of these applications; to determine the environmental and economic impact of utilizing the material.

  13. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.

    PubMed

    Otero-Rey, José R; López-Vilariño, José M; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío

    2003-11-15

    As, Hg, and Se are the most volatile elements in the flue gas from a coal-fired power plant. Significant amounts of these elements cause an undesired direct gaseous emission, which leads to a serious environmental health risk. The main focus of this study is to evaluate the possibility of simultaneous sampling of these volatile elements using an accurate official method for Hg (the most volatile element). A study of As, Hg, and Se emissions from a 1400 MW coal-fired power plant equipped with electrostatic precipitators (ESPs) was carried out for the combustion of a mixture of two types of coal. Simultaneous sampling of coal, bottom ash, fly ash, flue gas, and particles associated with the gas phase has been performed. Flue gas has been sampled by the Ontario Hydro Method Sampling Train, an ASTM method for Hg speciation. This sampling method was tested for As and Se sampling. As and Se determinations have been performed by HG-AAS, and Hg has been determined by CV-AAS. The results were used to examine the following: overall mass balances, relative distribution of these elements in the coal-fired power plant; As, Hg, and Se concentrations in coal and combustion residues; and predominant oxidation state for Hg in flue gas. The mass balances obtained for As, Hg, and Se were satisfactory in all cases; nevertheless, relative enrichment values in fly ash for As and Se were low; therefore, we concluded that As sampling in flue gas can be conducted by application of the Ontario Hydro Method; nevertheless Se released in the gas phase is not completely collected by this sampling train. Application of this sampling method allowed for performance of Hg speciation. The results indicated that Hg(II) was the predominant species in flue gas. It has also been proved that 24%, more than 99.8%, and 90% for As, Hg, and Se in the stack emissions, respectively, were in the gaseous phase.

  14. Production of low ash coal by high efficiency coal preparation

    SciTech Connect

    Horsfall, D.W.

    1995-10-01

    The washability of South African coals is described and the problems encountered in washing at low densities, to make premium products, are enumerated. The measures taken to overcome those problems, when low density separations became a commercial necessity, are described in detail. The descriptions of processes are with specific reference to the three sizes commonly treated separately in coal preparation namely coarse coal, small coal, and fine coal. Some information is given on the performance characteristics of the plants erected to meet market requirements.

  15. Coal face and stockpile ash analyser for the coal mining industry.

    PubMed

    Borsaru, M; Dixon, R; Rojc, A; Stehle, R; Jecny, Z

    2001-09-01

    A portable nucleonic instrument was developed for the determination of coal ash on the coal face or the surface of coal stockpiles. The instrument employs the backscattered gamma-gamma technique. There are two gamma-ray sources used in this instrument: a 1.1 MBq 133Ba source as the primary source of radiation and a 37 kBq 137Cs for gain stabilization. The instrument is commercially available.

  16. Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization.

    PubMed

    Medina, Adriana; Gamero, Prócoro; Querol, Xavier; Moreno, Natalia; De León, Beatriz; Almanza, Manuel; Vargas, Gregorio; Izquierdo, María; Font, Oriol

    2010-09-15

    The properties of coal fly ash are strongly dependent on the geological origin and the combustion process of the coal. It is important to characterize regional fly ash in detail to ascertain its potential uses as raw material in the production of high value products. The physicochemical properties of fly ash coming from the "Jose Lopez Portillo" coal-fired power plant, Coahuila, Mexico (MFA), are presented in this work. A detailed study of trace elements, the chemical composition of the amorphous phase, thermal stability and the leaching of contaminant elements under different conditions are included. MFA is composed of mullite, quartz, calcite, magnetite and an amorphous phase. This material contains mainly silica (59.6%), alumina (22.8%) and magnetite (5.6%). Its amorphous phase (78.3%) has a high silica (49.4%) and alumina (14.4%) content. According to its mineralogical and chemical composition, MFA is potentially useful as a raw material for making cement, silica, and alumina, as well as low silica/alumina ratio zeolites. Deleterious elements could be removed during the zeolitization process or with an additional acid treatment. Because of its morphological properties and structural and thermal stability, MFA can be used in thermal isolation and refractory materials and as a support for heterogeneous catalysts.

  17. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  18. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  19. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  20. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  1. Char particle fragmentation and its effect on unburned carbon during pulverized coal combustion. Quarterly report, October 1--December 31, 1994

    SciTech Connect

    Mitchell, R.E.

    1995-03-01

    The project is intended to satisfy, in part, PETC`s research efforts to understand the chemical and physical processes that govern coal combustion. The work is pertinent to the char oxidation phase of coal combustion and focuses on how the fragmentation of coal char particles affects overall mass loss rates and how char fragmentation phenomena influence coal conversion efficiency. The knowledge and information obtained will allow the development of engineering models that can be used to predict accurately char particle temperatures and total mass loss rates during pulverized coal combustion. The overall objectives of the project are: (1) to characterize fragmentation events as a function of combustion environment, (2) to characterize fragmentation with respect to particle porosity and mineral loadings, (3) to assess overall mass loss rates with respect to particle fragmentation, and (4) to quantify the impact of fragmentation on unburned carbon in ash. The knowledge obtained during the course of this project will be used to predict accurately the overall mass loss rates of coals based on the mineral content and porosity of their chars. The work will provide a means of assessing reasons for unburned carbon in the ash of coal fired boilers and furnaces.

  2. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  3. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.

    PubMed

    Galhetas, Margarida; Lopes, Helena; Freire, Márcia; Abelha, Pedro; Pinto, Filomena; Gulyurtlu, Ibrahim

    2012-04-01

    This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used. The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks. The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks. Fluidized bed combustion was applied to char residues. Above 700°C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO(2) during its oxidation was lower than for the parent coal, while for NO(X) emissions, the trend was observed to increase NO(X) formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion.

  4. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash.

    PubMed

    Sun, Yong; Parikh, Vinay; Zhang, Lian

    2012-03-30

    The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO(2) capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO(2) capture capacity of fly ash under mild conditions has been confirmed. The CO(2) was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60°C and a CO(2) partial pressure above 3 bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7 kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO(2) capture capacity of this system has also proven to reach maximum 264 kg CO(2)/ton fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to cement and in the paper and pulp industry.

  5. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    SciTech Connect

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  6. Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite.

    PubMed

    Neupane, Ghanashyam; Donahoe, Rona J

    2012-08-30

    Potential leaching of trace elements from older, unlined fly ash disposal facilities is a serious threat to groundwater and surface water contamination. Therefore, effective methods for containing the pollutant elements within the unlined coal combustion products (CCPs) disposal facilities are required to minimize any potential impact of leachate emanating from such facilities into the nearby environment. Because surfactant-modified zeolite (SMZ) has the potential to sequester both cationic and anionic trace elements from aqueous solutions, bench-scale batch and column experiments were performed to test its ability to remediate trace elements in leachates generated from both alkaline and acidic fly ash samples. Fly ash leachate treatment results showed the potential application of SMZ as an effective permeable reactive barrier (PRB) material to control the dispersion of heavy metals and metalloids from ash disposal sites. Quantitative comparison of the elemental composition of SMZ-treated and untreated leachates indicated that SMZ was effective in decreasing the concentrations of trace elements in fly ash leachates. Similarly, SMZ treatment column experiments showed the delayed peak leaching events and overall reductions in leachate concentrations of trace elements. The effectiveness of SMZ column treatments, however, decreased with time potentially due to the saturation of sorption sites.

  7. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.

  8. Speciation and mobility of cadmium in straw and wood combustion fly ash.

    PubMed

    Hansen, H K; Pedersen, A J; Ottosen, L M; Villumsen, A

    2001-10-01

    Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils.

  9. Toxic Substances from Coal Combustion: A Comprehensive Assessment: Quarterly report, 1 July 1996-30 September 1996

    SciTech Connect

    Bool, L.E.; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.; Wendt, J.O.L.; Peterson, T.W.; Sarofim, A.F.; Olmez, I.; Zeng, T.; Crowley, S.; Finkelman, R.

    1996-10-01

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPS) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Pittsburgh Energy Technology Center (PETC), the Electric Power Research Institute (EPRI), and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x}, combustion systems, and new power generation plants. Development of ToPEM will be based on PSI`s existing Engineering Model for Ash Formation (EMAF). Extensive coal characterization and laboratory work has begun in order to develop and test new sub-models. Trace element concentrations in the Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 coals, and in size/density fractions of these coals, were completed. Coal characterization in the past quarter also included direct identification of the modes of occurrence of various trace inorganic species in coal and ash using unique analytical techniques such as XAFS analysis and selective leaching. Combustion testing of these two coals was begun and preliminary data obtained on trace element 0301 vaporization in the combustion zone. Modeling efforts in the past quarter include the development on a preliminary model to assess mercury speciation in combustion systems.

  10. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Harb, J.N.

    1996-05-01

    Progress during the tenth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an algorithm to distinguish between ash particles that are associated with char particles (included) and ash particles which are excluded. This algorithm was used to determine the extent to which pyrite transformations are influenced by whether the pyrite grains are included or excluded. The results indicate that pyrite oxidation is slower for included pyrite grains. Replicate experiments were also performed for the Pittsburgh No. 8 coal (washed) under both staged and conventional conditions. An objective of these experiments was to validate the effect of staged combustion on the size distribution of ash particles as reported for the previous quarter. Analysis of the new samples and repeat analyses of previous samples showed no significant difference in the ash particle size for samples collected at stoichiometric ratios of 0.75 (before the stage) and 1.04. The number of points in the new analyses was considerably higher than in previous analyses, resulting in greater confidence. The similarity in the ash composition for samples collected under staged and conventional conditions was also verified this quarter with replicate samples and analyses. The net result is that staged combustion does not appear to have a significant impact on either ash size or composition for the Pittsburgh No. 8 coal. Finally, numerical simulations of the temperature distribution in the laboratory combustor were performed and evaluated. Also, a paper documenting the classification algorithm developed last quarter was presented at the March ACS meeting in New Orleans and published in the ACS Division of Fuel Chemistry Preprints.

  11. Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction

    SciTech Connect

    Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya

    2009-05-15

    The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

  12. Numerical study of bituminous coal combustion in a boiler furnace with bottom blowing

    NASA Astrophysics Data System (ADS)

    Zroychikov, N. A.; Kaverin, A. A.

    2016-11-01

    Results obtained by the numerical study of a solid fuel combustion scheme with bottom blowing using Ekibastuz and Kuznetsk bituminous coals of different fractional makeup are presented. Furnace chambers with bottom blowing provide high-efficiency combustion of coarse-grain coals with low emissions of nitrogen oxides. Studying such a combustion scheme, identification of its technological capabilities, and its further improvement are topical issues. As the initial object of study, we selected P-57-R boiler plant designed for burning of Ekibastuz bituminous coal in a prismatic furnace with dry-ash (solid slag) removal. The proposed modernization of the furnace involves a staged air inflow under the staggered arrangement of directflow burners (angled down) and bottom blowing. The calculation results revealed the specific aerodynamics of the flue gases, the trajectories of solid particles in the furnace chamber, and the peculiarities of the fuel combustion depending on the grinding fineness. It is shown that, for coal grinding on the mill, the overall residue on the screen plate of 90 µm ( R 90 ≤ 27% for Ekibastuz coal and R 90 ≤ 15% for Kuznetsk coal) represents admissible values for fuel grind coarsening in terms of economic efficiency and functional reliability of a boiler. The increase in these values leads to the excess of regulatory heat losses and unburned combustible losses. It has been established that the change in the grade of the burned coal does not significantly affect the flow pattern of the flue gases, and the particles trajectory is essentially determined by the elemental composition of the fuel.

  13. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    SciTech Connect

    K. Ladwig; B. Hensel; D. Wallschlager; L. Lee; I Murarka

    2005-10-19

    Field leachate samples are being collected from coal combustion product (CCP) management sites from several geographic locations in the United States to provide broad characterization of major and trace constituents in the leachate. In addition, speciation of arsenic, selenium, chromium, and mercury in the leachates is being determined. Through 2003, 35 samples were collected at 14 sites representing a variety of CCP types, management approaches, and source coals. Samples have been collected from leachate wells, leachate collection systems, drive-point piezometers, lysimeters, the ash/water interface at impoundments, impoundment outfalls and inlets, and seeps. Additional sampling at 23 sites has been conducted in 2004 or is planned for 2005. First-year results suggest distinct differences in the chemical composition of leachate from landfills and impoundments, and from bituminous and subbituminous coals. Concentrations of most constituents were generally higher in landfill leachate than in impoundment leachate. Sulfate, sodium, aluminum, molybdenum, vanadium, cadmium, mercury and selenium concentrations were higher in leachates for ash from subbituminous source coal. Calcium, boron, lithium, strontium, arsenic, antimony, and nickel were higher for ash from bituminous source coal. These variations will be explored in more detail when additional data from the 2004 and 2005 samples become available.

  14. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  15. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  16. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.

    PubMed

    Messinger, Max; Silman, Miles

    2016-11-01

    Unmanned aerial vehicles (UAVs) offer new opportunities to monitor pollution and provide valuable information to support remediation. Their low-cost, ease of use, and rapid deployment capability make them ideal for environmental emergency response. Here we present a UAV-based study of the third largest coal ash spill in the United States. Coal ash from coal combustion is a toxic industrial waste material present worldwide. Typically stored in settling ponds in close proximity to waterways, coal ash poses significant risk to the environment and drinking water supplies from both chronic contamination of surface and ground water and catastrophic pond failure. We sought to provide an independent estimate of the volume of coal ash and contaminated water lost during the rupture of the primary coal ash pond at the Dan River Steam Station in Eden, NC, USA and to demonstrate the feasibility of using UAVs to rapidly respond to and measure the volume of spills from ponds or containers that are open to the air. Using structure-from-motion (SfM) imagery analysis techniques, we reconstructed the 3D structure of the pond bottom after the spill, used historical imagery to estimate the pre-spill waterline, and calculated the volume of material lost. We estimated a loss of 66,245 ± 5678 m(3) of ash and contaminated water. The technique used here allows rapid response to environmental emergencies and quantification of their impacts at low cost, and these capabilities will make UAVs a central tool in environmental planning, monitoring, and disaster response.

  17. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    NASA Astrophysics Data System (ADS)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy

  18. Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge

    SciTech Connect

    Cenni, R.; Gerhardt, T.; Spliethoff, H.; Hein, K.R.G.; Frandsen, F.

    1998-12-31

    In Germany, the feasibility of co-combustion of sewage sludge in power plants is under evaluation. A study of the influence of co-firing of dry municipal sewage sludge on the behavior of the metals Cr, Hg, Mn, Ni, Pb, zn during pulverized coal combustion is presented. Sewage sludge contains higher concentrations of the metals listed above than the reference coal, but a lower concentration of Cl, that enhances the volatility of many metals. Experiments were performed in a semi-industrial scale pulverized fuel combustion chamber. Ash was collected at four locations: bottom hopper, air preheater, cyclone, and bag filter. From the bottom hopper to the filter, the particle size decreased and ash particles were progressively enriched in volatile elements. Mass balances of the metals were performed and the enrichment trends on the ash collected at the different locations were calculated. Increasing the sewage sludge share in the blend caused a significant increase in the recovery rate in the solid phase. In spite of that, the calculated concentrations in the flue gas of Hg and zn increased. Sewage sludge co-firing influences the combustion process and the post-combustion environment in many ways. This study focuses on the effect of the different flue gas composition on the condensation temperature of metal species. The system was modeled by assuming thermodynamic equilibrium. The results indicated that the increasing recovery of Zn might be caused by enhanced condensation and the increasing recovery of Hg by adsorption on ash particles. The increasing recovery of the other metals seemed referable to failure in vaporization and it cannot be studied with an equilibrium approach.

  19. Ash level meter for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  20. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative liquid fuel. Final quarterly report, September 26-December 31, 1980

    SciTech Connect

    Dooher, J.P.

    1981-01-01

    Combustion tests were performed using a Cleaver-Brooks 350 hp fire-tube boiler-furnace to determine the efficiency of sulfur dioxide removal using soda ash and micronized additives. A high sulfur, 4% western Kentucky coal, pulverized to 78% through 200 mesh was mixed with medium weight No. 4 oil and water to form the emulsions. Soda ash and micronized limestone and hydrated lime were added to the emulsion for SO/sub 2/ removal. Baseline combustion tests were first conducted on emulsions without additives. Thermal efficiencies of over 88% were obtained. The best SO/sub 2/ removal was with soda ash, with 80% and 78% removal. There were problems with ash deposition in pass 2 during these tests. Fuel preparation problems were encountered with high particle content micronized limestone and hydrated lime emulsions. The successful fuels had poor SO/sub 2/ removal results.

  1. Exposure-Reducing Behaviors among Residents Living near a Coal Ash Storage Site

    ERIC Educational Resources Information Center

    Zierold, Kristina M.; Sears, Clara G.; Brock, Guy N.

    2016-01-01

    Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods,…

  2. Enhancement of pulverized coal combustion by plasma technology

    SciTech Connect

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  3. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form.

    PubMed

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2016-07-01

    Increased sewage sludge production and disposal, as well as the properties of sewage sludge, are currently affecting the environment, which has resulted in legislation changes in Poland. Based on the Economy Minister Regulation of 16 July 2015 (Regulation of the Economy Minister, 2015) regarding the criteria and procedures for releasing wastes for landfilling, the thermal disposal of sewage sludge is important due to its gross calorific value, which is greater than 6MJ/kg, and the problems that result from its use and application. Consequently, increasingly restrictive legislation that began on 1 January 2016 was introduced for sewage sludge storage in Poland. Sewage sludge thermal utilisation is an attractive option because it minimizes odours, significantly reduces the volume of starting material and thermally destroys the organic and toxic components of the off pads. Additionally, it is possible that the ash produced could be used in different ways. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies of the mechanisms and kinetics of sewage sludge, coal and biomass combustion and their co-combustion in spherical-pellet form. Compared with biomass, a higher temperature is required to ignite sewage sludge by flame. The properties of biomass and sewage sludge result in the intensification of the combustion process (by fast ignition of volatile matter). In contrast to coal, a combustion of sewage sludge is determined not only burning the char, but also the combustion of volatiles. The addition of sewage sludge to hard coal and lignite shortens combustion times compared with coal, and the addition of sewage sludge to willow Salix viminalis produces an increase in combustion time compared with willow alone.

  4. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  5. A technique for sequential leaching of coal and fly ash resulting in good recovery of trace elements.

    PubMed

    Norris, Pauline; Chen, Chien-Wei; Pan, Wei-Ping

    2010-03-17

    Coal and fly ash contain many elements. These elements exist in different forms which may change throughout the coal combustion process. There are several processes, including X-ray techniques and leaching techniques by which studies have attempted to assess the form of a particular element in a sample. This work focuses on determining the leachability of selected elements sequentially leached in four extraction solutions: water, 1M ammonium acetate, 3M hydrochloric acid and 50% hydrofluoric acid. The emphasis is on evaluating the steps involved in the leaching process with the mass recovery for each element being the basis for evaluation. The total amount of each element that will leach out under the given extraction condition is presented as a fraction of the total present in the material. The materials evaluated were NIST coal and fly ash standards. The elements measured in this study include aluminum, barium, beryllium, calcium, chromium, cobalt, iron, magnesium, manganese, nickel, potassium, sodium, strontium, vanadium and zinc.

  6. Coal devolatilization and char combustion study using FTIR spectroscopy

    SciTech Connect

    Raines, T.S.; Brown, R.C.

    1995-12-31

    The goal of this research is to characterize coals during the normal operation of an industrial-scale circulating fluidized bed (CFB) boiler. The method determines coal properties based on the analysis of transient CO and CO{sub 2} emissions from the boiler. Fourier Transform Infrared (FTIR) spectroscopy is used to qualitatively and quantitatively analyze the gaseous products of combustion. The method is non-intrusive and is performed under realistic combustion conditions. Preliminary data suggest that coal devolatilization is complete before char combustion commences in a circulating fluidized bed boiler.

  7. Thermally induced structural changes in coal combustion

    SciTech Connect

    Flagan, R.C.; Gavalas, G.R.

    1992-01-01

    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

  8. In situ analysis of ash deposits from black liquor combustion

    SciTech Connect

    Bernath, P. |; Sinquefield, S.A. |; Baxter, L.L.; Sclippa, G.; Rohlfing, C.; Barfield, M. |

    1996-05-01

    Aerosols formed during combustion of black liquor cause a significant fire-side fouling problem in pulp mill recovery boilers. The ash deposits reduce heat transfer effectiveness, plug gas passages, and contribute to corrosion. Both vapors and condensation aerosols lead to the formation of such deposits. The high ash content of the fuel and the low dew point of the condensate salts lead to a high aerosol and vapor concentration in most boilers. In situ measurements of the chemical composition of these deposits is an important step in gaining a fundamental understanding of the deposition process. Infrared emission spectroscopy is used to characterize the composition of thin film deposits resulting from the combustion of black liquor and the deposition of submicron aerosols and vapors. New reference spectra of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} pure component films were recorded and compared with the spectra of the black liquor deposit. All of the black liquor emission bands were identified using a combination of literature data and ab initio calculations. Ab initio calculations also predict the locations and intensities of bands for the alkali vapors of interest. 39 refs., 9 figs.

  9. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    SciTech Connect

    Helena Lopes, M.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  10. Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material.

    PubMed

    Cenni, R; Janisch, B; Spliethoff, H; Hein, K R

    2001-01-01

    For the economy of any co-firing process, it is important that the common waste management options of ash remain practical. Ash from bituminous coal combustion is typically handed to the construction industry. This paper describes the current European legislation on use of ash for construction purposes. Also, it presents an experimental study on the suitability of fly ash from combustion of mixtures of bituminous coal and municipal sewage sludge as additive to cement and concrete, and for use in open-air construction works, based on the ash chemical composition and the characteristics of the extract of the ash. Presently, two European standards forbid the use of ash from co-firing as additive to cement or concrete. This study shows that ash derived from coal and sewage sludge co-firing contains generally less unburned carbon, alkali, magnesium oxide, chlorine, and sulfate than coal ash. Only the concentration of free lime in mixed ash is higher than in coal, even though, at least up to 25% of the thermal input, still below the requirements of the standards. This ash also meets the requirements for the use of fly ash in open-air construction works--concentration and mobility of few elements--although this management option is forbidden to ash from co-firing. The leaching of Cd, Cr, Cu, Ni, Pb and Zn was investigated with three leaching tests. The concentration of these metals in the extracts was below the detection limit in most cases. The concentration of Cu and Zn in the extract from fly ash was found to increase with increasing share of sewage sludge in the fuel mixture. However, the concentration of these two metals in the extract is not regulated. This study indicates that excluding a priori the use of ash from co-firing as a suitable additive for construction material could cause an unnecessary burden on the environment, since probably ash would have to be disposed of in landfill. However, allowing this requires the modification of current European standards

  11. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  12. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  13. Plasma-supported coal combustion in boiler furnace

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  14. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  15. Assessing Risk Posed By Land Application Of Ash From The Combustion Of Wood And Tires

    EPA Science Inventory

    The total and leachable metal concentrations in ash from the combustion of waste wood and vehicle tires (WT ash) were characterized. These data were then used to examine a variety of issues associated with determining whether the WT ash could be beneficially used outside of a la...

  16. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  17. Non traditional uses of coal ash: Steel industry applications

    SciTech Connect

    Hauke, D.

    1997-09-01

    Coal fly ash is used by the steel industry as an insulating cover to retain heat in ladles of molten steel and as a slag foamer in electric arc furnaces (EAFs) to prolong the life of consumable components and to aid extraction of impurities from the molten steel. The fly ashes that are used in the steel industry are generated from stoker boilers and have a relatively wide particle-size distribution. The powder-type materials used by steel mills to insulate ladles of molten metal include rice hull ash, a heat treated montmorillonite clay mineral (calcined clay), a fly ash from a stoker boiler called LadleJacket, and coke breeze. These ladle insulators should be flowable, coarse, and have a wide particle-size distribution. A study to compare the insulating characteristics of ladle insulators, conducted by the American Foundrymen`s Society Cast Metals Institute, indicated that the ladle insulated with LadleJacket exhibited a lower rate of heat loss than either the rice hull ash or calcined clay. To prolong the life of carbon electrodes and refractory in EAFs and to promote extraction of contaminants from the steel, carbon-based ingredients are injected into the slag to cause it to foam. Typically, high-carbon products such as coke breeze (coke fines) are used as slag foamers. A new product called Carbon Plus, which is a coarse, high-carbon fly ash from a coal-fired stoker boiler, is now being used as a slag foamer in the steel industry.

  18. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    SciTech Connect

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  19. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  20. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems.

  1. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    SciTech Connect

    Kyriacos Zygourakis

    2000-10-31

    The completed research project has made some significant contributions that will help us meet the challenges outlined in the previous section. One of the major novelties of our experimental approach involves the application of video microscopy and digital image analysis to study important transient phenomena (like particle swelling and ignitions) occurring during coal pyrolysis and combustion. Image analysis was also used to analyze the macropore structure of chars, a dominant factor in determining char reactivity and ignition behavior at high temperatures where all the commercial processes operate. By combining advanced experimental techniques with mathematical modeling, we were able to achieve the main objectives of our project. More specifically: (1) We accurately quantified the effect of several important process conditions (like pyrolysis heating rate, particle size, heat treatment temperature and soak time) on the combustion behavior of chars. These measurements shed new light into the fundamental mechanisms of important transient processes like particle swelling and ignitions. (2) We developed and tested theoretical models that can predict the ignition behavior of char particles and their burn-off times at high temperatures where intraparticle diffusional limitations are very important.

  2. The formation and emission of particulate matter during the combustion of density separated coal fractions

    SciTech Connect

    Xiaowei Liu; Minghou Xu; Hong Yao; Dunxi Yu; Dangzhen Lv; Ke Zhou

    2008-11-15

    A Chinese bituminous coal was separated into three density fractions using the float-sink method: heavy , medium and light Combustion and pyrolysis ofcoal with different density fractions were carried out in a laboratory-scale drop tube furnace to understand the formation mechanism of inhalable particulate matter, PM10 and PM1. The results indicated that the light fraction of the coal produced 44 wt % of total PM10 and 45 wt % of total PM1. The medium fraction of the coal contributed 52 wt % of total PM10 and 49 wt % of total PM1. The heavy fraction contributed 4 wt % of total PM10 and 6 wt % of total PM1. The light fraction and the medium fraction of the coal contained mostly included mineral and the heavy fraction contained largely excluded minerals. The PM10 and PM1 contents formed by the excluded minerals were very low compared to those formed primarily from included minerals. The proportion of the minerals in the light density fraction converted into PM1 and PM10 was the highest, with their weight percentages being 9.59% and 43.49%, respectively. One reason for this was the mineral particle size. The median mineral size in the light density fraction coal was smallest. Another reason was mineral transformation during combustion. The light fraction and the medium fraction of the coal contained mostly included minerals, and the heavy fraction contained largely excluded minerals. The transformations of included and excluded minerals were largely different and played a different role during coal combustion. The last reason was char fragmentation. Char formed by the light coal fraction was easier to fragment and subsequently formed more fine ash particles. This was because the swelling ratio, BET surface area, and total pore volume of char decreased with increasing parent coal density. 37 refs., 10 figs., 3 tabs.

  3. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  4. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  5. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    SciTech Connect

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-15

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  6. Combustion of anthracite-bituminous coal blends in a spreader stoker boiler at Holston Army Ammunition Plant. Final report

    SciTech Connect

    Harmon, J.A.; Davidson, J.E.; Hartsock, D.K.

    1988-11-01

    A test program was conducted at the Holston Army Ammunition Plant near Kingsport, TN to evaluate the combustion of an anthracite-bituminous coal blend in a spreader stoker boiler designed for bituminous coal only. The test program was structured to evaluate different percentages of anthracite and bituminous in the blend at different operating loads on the boiler. Blends of 15, 22, 30, and 42% anthracite were combusted at loads of 62.5, 50, and 37.5% of the maximum continuous rating (MCR) boiler capacity. Stack testing and ash sampling were performed to monitor combustion performance, in addition to visually inspecting the ash bed. The testing disclosed no technical reasons why anthracite-bituminous blending could not be performed on a long-term basis to meet targeted Army anthracite consumption tonnages.

  7. Effect of inhalation of coal fly ash on vitamin A distribution in organs of the rat.

    PubMed

    Chauhan, S S; Banerjee, R; Misra, U K

    1985-01-01

    Fly ash contains several polycyclic aromatic hydrocarbons. The effect of inhalation of coal fly ash on vitamin A distribution in various organs of rat has been studied. Inhalation of fly ash for 6 h daily, for 15 d, decreased vitamin A content in liver. The absorption of orally given [3H]retinyl acetate was decreased and so was its localization in liver of rats inhaling coal fly ash.

  8. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.

    PubMed

    Deonarine, Amrika; Bartov, Gideon; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    The Tennessee Valley Authority Kingston coal ash spill in December 2008 deposited approximately 4.1 million m(3) of fly ash and bottom ash into the Emory and Clinch River system (Harriman, Tennessee, U.S.A.). The objective of this study was to investigate the impact of the ash on surface water and sediment quality over an eighteen month period after the spill, with a specific focus on mercury and methylmercury in sediments. Our results indicated that surface water quality was not impaired with respect to total mercury concentrations. However, in the sediments of the Emory River near the coal ash spill, total mercury concentrations were 3- to 4-times greater than sediments several miles upstream of the ash spill. Similarly, methylmercury content in the Emory and Clinch River sediments near the ash spill were slightly elevated (up to a factor of 3) at certain locations compared to upstream sediments. Up to 2% of the total mercury in sediments containing coal ash was present as methylmercury. Mercury isotope composition and sediment geochemical data suggested that elevated methylmercury concentrations occurred in regions where native sediments were mixed with coal ash (e.g., less than 28% as coal ash in the Emory River). This coal ash may have provided substrates (such as sulfate) that stimulated biomethylation of mercury. The production of methylmercury in these areas is a concern because this neurotoxic organomercury compound can be highly bioaccumulative. Future risk assessments of coal ash spills should consider not only the leaching potential of mercury from the wastes but also the potential for methylmercury production in receiving waters.

  9. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    EPA Pesticide Factsheets

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  10. Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O2/N2 and O2/CO2 atmospheres

    DOE PAGES

    Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; ...

    2016-08-01

    In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO2 and H2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolution of themore » number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O2/N2 and O2/CO2 atmospheres .« less

  11. Potential application of coal-fuel oil ash for the manufacture of building materials.

    PubMed

    Cioffi, R; Marroccoli, M; Sansone, L; Santoro, L

    2005-09-30

    In this paper coal-fuel oil ash has been characterized in terms of leaching behaviour and reactivity against lime and gypsum in hydratory systems for the manufacture of building materials. Its behaviour was also compared to that of coal ash. Metal release was measured in a dynamic leaching test with duration up to 16 days. The results have shown that coal-fuel oil ash behaves very similarly to coal ash. The reactivity of coal-fuel oil ash against lime and gypsum was measured in mixtures containing only lime and in mixtures containing both lime and gypsum. These systems were hydrated at 25 and 40 degrees C under 100% R.H. The results have shown that the main hydration products are the same as those that are usually formed in similar coal ash-based systems. That is, calcium silicate hydrate in coal-fuel oil ash/lime systems and calcium silicate hydrate plus calcium trisulphoaluminate hydrate in coal-fuel oil ash/lime/gypsum systems. From the quantitative point of view, hydration runs showed that the amounts of both chemically combined water and reacted lime measured in the case under investigation are very similar to those found in similar coal ash-based systems. Finally, the measurement of unconfined compressive strength proved that the systems have potentiality for the manufacture of pre-formed building blocks.

  12. Pulverized coal torch combustion in a furnace with plasma-coal system

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.; Askarova, A. S.; Nagibin, A. O.

    2010-09-01

    Combustion of a pulverized coal torch has been numerically simulated on the basis of the equations of multicomponent turbulent two-phase flows. The results of three-dimensional simulation of conventional and plasma activated coal combustion in a furnace are presented. Computer code Cinar ICE was verified at coal combustion in the experimental furnace with thermal power of 3 MW that was equipped with plasma-fuel system. Operation of the furnace has been studied at the conventional combustion mode and with plasma activation of coal combustion. Influence of plasma activation of combustion on thermotechnical characteristics of the torch and decrease of carbon loss and nitrogen oxides concentration at the furnace outlet has been revealed.

  13. Field studies of the leachability of aged brown coal ash.

    PubMed

    Mudd, G M; Kodikara, J

    2000-09-15

    The environmental management of ash produced from the brown coal power stations of the Latrobe Valley region of Australia has been studied. Current practice consists of slurrying fly and bottom ash, a short distance to an ash disposal pond. However, storage facilities are approaching capacity and alternative ash management strategies are required in the near future. Initially, the ash produced within the power stations is known to possess a large soluble mass, which can leach rapidly to generate a saline leachate with minor trace metal content. After slurrying and deposition within the ash pond, it has been demonstrated that the soluble mass is significantly lower and the ash can be considered as aged or "leached" ash - a more benign waste that meets the criteria for fill material. In order to assess the long-term behaviour of the leached ash and its suitability for co-disposal in engineered sites within overburden dumps, two field cells were constructed and monitored over a period of 1 year. Each cell was 5 x 5 m in area, 3-m deep and HDPE lined with a coarse drainage layer and leachate collection pipe. The first cell only collected natural rainfall and was known as the Dry Cell. The second cell had an external tank of 5000 l installed (200-mm rainfall equivalent) and water was spray-irrigated regularly to simulate higher rainfall and accelerate the leaching process. The cumulative inflow and outflow for each cell has been calculated using a linear relationship and the leachate quality was monitored over time. The results demonstrate that the ash behaves as an unsaturated porous material, with the effect of evaporation through the profile being dominant and controlling the production of leachate. The leachate quality was initially moderately saline in both cells, with the concentration dropping by nearly 95% in the Wet Cell by the end of the field study. The leachate chemistry has been analysed using the PHREEQC geochemical model. The log activity plots of various

  14. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    PubMed

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere.

  15. Arsenic in coal of the Thar coalfield, Pakistan, and its behavior during combustion.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H

    2015-06-01

    The aim of the current study is to evaluate the occurrence of arsenic in coal collected from Thar coalfield, Pakistan, and its behavior during the combustion. Fractionation of arsenic (As) in coal samples was carried out by Community Bureau of Reference sequential extraction scheme (BCR-SES) and single-step-based BCR method (BCR-SS). These methods are validated using the certified reference material of sediment BCR 701 and standard addition method. The stepwise fractions of As in laboratory-made ash (LMA) have been also investigated. The extractable As content associated with different phases in coal and LMA samples were analyzed by electrothermal atomic absorption spectrophotometer. The extraction efficiency of As by BCR-SS was slightly higher than BCR-SES, while the difference was not significant (p < 0.05). The BCR-SS method is a time-saving method because it can reduce the extraction time from 51 to 22 h. The As contents in LMA revealed that during combustion of the coal, >85 % of As may be released into atmosphere. The relative mobility of As in the coal samples was found in increasing order as follows: oxidizable fraction < reducible fraction < acid soluble fraction. The total and extractable As obtained by BCR-SES and BCR-SS were higher in coal samples of block III as compared to block V (p > 0.05).

  16. Cofiring coal-water slurry in cyclone boilers: Some combustion issues and considerations

    SciTech Connect

    Carson, W.R.; Tillman, D.

    1997-07-01

    Coal-water slurry (CWS) has become a fuel of opportunity with the ability to impact fuel cost at selected power plants; at the same time it has the potential to reduce emissions of oxides of nitrogen (NO{sub x}) by driving specific combustion mechanisms. CWS, produced from selected fines generated during coal cleaning operations, has been fired extensively at the Seward Generating Station of General Public Utilities (GPU), and testing has been initiated at cyclone plants as well. Initial combustion modeling of cyclones has shown that the critical issues associated with CWS firing in cyclones include the following: (1) the impact of CWS on fuel chemistry, with particular attention to fuel ash chemistry; (2) the impact of CWS on combustion temperatures; (3) the impact of CWS, and the consequent increased gas flow in the cyclones, on combustion processes in the cyclone barrel and potentially on combustion in the primary furnace as well; (4) the consequence of combustion process changes on patterns of heat release in the cyclone barrel and in the primary furnace; (5) the ability of the CWS to impact NO{sub x} emissions in the cyclone; and (6) the impact of CWS on the formation of trace metal emissions. This paper reviews the results of cyclone boiler modeling, and also reviews some results of initial cyclone testing related to the results of the modeling efforts.

  17. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion.

  18. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Harb, J.N.

    1996-02-07

    Progress during the ninth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an enhanced method for classification of CCSEM data. This classification algorithm permits grouping and comparison of particles previously labeled as ``unclassifiable.`` A second analytical advancement, also made this quarter, provides more detailed information on the distribution of minerals in the coal and the potential for coalescence. This new multiple analysis technique is also applicable to ash and will permit identification of heterogeneous ash particles. Additional analyses of ash samples were also performed and it was found that the firing of Pittsburgh {number_sign}8 under staged combustion conditions yields an ash with a significantly larger particle size distribution than that obtained under conventional firing conditions, but without a significant change in composition. the size difference was noted previously, but the new classification algorithm allowed a detailed comparison of all composition groups, including unclassifiable particles, in the ashes. A mechanistic explanation for this behavior has been developed and is provided in the report. Finally, a paper documenting the new classification algorithm has been prepared and is scheduled for presentation at the March ACS meeting in New Orleans.

  19. Transformation of substances containing trace elements in coal combustion

    NASA Astrophysics Data System (ADS)

    Samuilov, E. V.; Lebedeva, L. N.; Faminskaya, M. V.; Pokrovskaya, L. S.

    2010-12-01

    A new complex approach to simulation of phase and chemical transformation of substances containing trace elements in coal burning units is proposed; this approach unites capabilities of geochemistry, chemical thermodynamics, and physical-chemical kinetics. Processes of transformation of these substances in the flow of combustion products of Moscow basin coals along the flow path of the P-59 boiler are studied.

  20. Mathematical modeling of MILD combustion of pulverized coal

    SciTech Connect

    Schaffel, N.; Mancini, M.; Weber, R.; Szlek, A.

    2009-09-15

    MILD (flameless) combustion is a new rapidly developing technology. The IFRF trials have demonstrated high potential of this technology also for N-containing fuels. In this work the IFRF experiments are analyzed using the CFD-based mathematical model. Both the Chemical Percolation Devolatilization (CPD) model and the char combustion intrinsic reactivity model have been adapted to Guasare coal combusted. The flow-field as well as the temperature and the oxygen fields have been accurately predicted by the CFD-based model. The predicted temperature and gas composition fields have been uniform demonstrating that slow combustion occurs in the entire furnace volume. The CFD-based predictions have highlighted the NO{sub x} reduction potential of MILD combustion through the following mechanism. Before the coal devolatilization proceeds, the coal jet entrains a substantial amount of flue gas so that its oxygen content is typically not higher than 3-5%. The volatiles are given off in a highly sub-stoichiometric environment and their N-containing species are preferentially converted to molecular nitrogen rather than to NO. Furthermore, there exists a strong NO-reburning mechanism within the fuel jet and in the air jet downstream of the position where these two jets merge. In other words, less NO is formed from combustion of volatiles and stronger NO-reburning mechanisms exist in the MILD combustion if compared to conventional coal combustion technology. (author)

  1. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    PubMed Central

    Hartuti, Sri; Kambara, Shinji; Takeyama, Akihiro; Kumabe, Kazuhiro; Moritomi, Hiroshi

    2012-01-01

    A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier) and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow) gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b), which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%. PMID:23251836

  2. Phytostabilization of a landfill containing coal combustion waste.

    SciTech Connect

    Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

    2005-12-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

  3. Combustion of Illinois coals and chars with natural gas. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Buckius, R.O.

    1991-12-31

    There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.

  4. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    NASA Astrophysics Data System (ADS)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred

  5. Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986

    SciTech Connect

    Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

    1986-06-01

    Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

  6. Combustion of coal/water mixtures with thermal preconditioning. Final report

    SciTech Connect

    Novack, M.; Roffe, G.; Miller, G.

    1985-12-01

    Thermal preconditioning is a process in which coal/water mixtures are vaporized to produce coal/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of an experimental program in which thermally preconditioned coal/water mixture was successfully burned with a stable flame in a gas turbine combustor test rig. Tests were performed at a mixture flowrate of 300 lb/hr and combustor pressure of 8 atmospheres. The coal/water mixture was thermally preconditioned and injected into the combustor over a temperature range from 350 to 600/sup 0/F, and combustion air was supplied at between 600 to 725/sup 0/F. Test durations generally varied between 10 to 20 minutes. Major results of the combustion testing were that: a stable flame was maintained over a wide equivalence ratio range, between phi = 2.4 (rich) to 0.2 (lean); and, combustion efficiency of over 99% was achieved when the mixture was preconditioned to 600/sup 0/F and the combustion air preheated to 725/sup 0/F. Measurements of ash particulates captured in the exhaust sampling probe located 20 inches from the injector face, show typical sizes collected to be about 1 micron, with agglomerates of these particulates to be not more than 8 microns. The original mean coal particle size for these tests, prior to preconditioning was 25 microns. System studies indicate that preconditioning can be incorporated into either stationary or mobile power plant designs without system derating. On the basis of these results, thermal pretreatment offers a practical alternative to fuel atomization in gas turbine applications. 20 figs., 4 tabs.

  7. Chemicl-looping combustion of coal with metal oxide oxygen carriers

    SciTech Connect

    Siriwardane, R.; Tian, H.; Richards, G.; Simonyi, T.; Poston, J.

    2009-01-01

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.

  8. Chemical-looping combustion of coal with metal oxide oxygen carriers

    SciTech Connect

    Ranjani Siriwardane; Hanjing Tian; George Richards; Thomas Simonyi; James Poston

    2009-08-15

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe{sub 2}O{sub 3}, CO{sub 3}O{sub 4}, NiO, and Mn{sub 2}O{sub 3} were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO{sub 2}), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500{sup o}C and complete the full combustion at 700{sup o}C. In addition, the reduced copper can be fully reoxidized by air at 700{sup o}C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO{sub 2} and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 {sup o}C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers. 22 refs., 12 figs., 2 tabs.

  9. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are

  10. Combustion of dense streams of coal particles. Final report, August 29, 1990--February 28, 1994

    SciTech Connect

    Annamalai, K.; Gopalakrishnan, C.; Du, X.

    1994-05-01

    The USA consumes almost 94 quads of energy (1 quad = 10{sup 15} BTU or 1.05 {times} 10{sup 15} KJ). The utilities account for about 30 quads of fossil energy where coal is predominantly used as energy source. The coal is ground to finer size and fired into the boiler as dense suspension. Under dense conditions, the particles burn at slower rate due to deficient oxygen within the interparticle spacing. Thus interactions exist amongst the particles for dense clouds. While the earlier literature dealt with combustion processes of isolated particles, the recent research focusses upon the interactive combustion. The interactive combustion studies include arrays consisting of a finite number of particles, and streams and clouds of a large number of particles. Particularly stream combustion models assume cylindrical geometry and predict the ignition and combustion characteristics. The models show that the ignition starts homogeneously for dense streams of coal particles and the ignition time show a minimum as the stream denseness is increased, and during combustion, there appears to be an inner flame within the stream and an outer flame outside the stream for a short period of time. The present experimental investigation is an attempt to verify the model predictions. The set-up consists of a flat flame burner for producing hot vitiated gases, a locally fluidizing feeder system for feeding coal particles, a particle collection probe for collecting particles and an image processing system for analyzing the flame structure. The particles are introduced as a stream into the hot gases and subsequently they ignite and burn. The ash % of fired and collected particles are determined and used to estimate the gasification efficiency or burnt fraction. The parametric studies include gas temperature, oxygen % in gases, residence time, and A:F ratio of the stream.

  11. Cadmium contamination in Tianjin agricultural soils and sediments: relative importance of atmospheric deposition from coal combustion.

    PubMed

    Wu, Guanghong; Yang, Cancan; Guo, Lan; Wang, Zhongliang

    2013-06-01

    Cadmium (Cd) in coal, fly ash, slag, atmospheric deposition, soils and sediments collected from Tianjin, northern China, were measured to provide baseline information and determine possible Cd sources and potential risk. The concentrations of Cd in coal, fly ash and atmospheric deposition were much higher than the soil background values. Fallout from coal-fired thermal power plants, heating boilers and industrial furnaces has increased the Cd concentration in soils and sediments in Tianjin. The concentrations of Cd in soils of suburban areas were significantly higher than in rural areas, suggesting that coal burning in Tianjin may have an important impact on the local physical environment. Cd from coal combustion is readily mobilized in soils. It is soluble and can form aqueous complexes and permeate river sediments. The high proportion of mobile Cd affects the migration of Cd in soils and sediments, which may pose an environmental threat in Tianjin due to the exposure to Cd and Cd compounds via the food chain. This study may provide a window for understanding and tracing sources of Cd in the local environment and the risk associated with Cd bioaccessibility.

  12. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  13. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect

    J.A. Withum; J.E. Locke; S.C. Tseng

    2005-03-01

    There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to

  14. Compilation of Sandia coal char combustion data and kinetic analyses

    SciTech Connect

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  15. Sorption and chemical transformation of PAHs on coal fly ash. Technical progress report No. 8

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1993-12-01

    The objective of this work is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Specific investigations directed toward this overall objective include: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (c) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (d) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of {open_quotes}surface roughness{close_quotes} of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  16. Sorption and chemical transformation of PAHs on coal fly ash. Final technical report

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1995-02-01

    The objectives of this work were to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAH`s) and their derivatives, and to attempt to understand the influence of surface properties of coal ash in the chemical transformations of PAH`s.

  17. The effecting factors of sulfur evolution during coal combustion

    SciTech Connect

    Liu Zechang; Yu Hongguan; Wang Li

    1997-12-31

    Three kinds of bituminous coal and one kind of anthracite have been used to investigate the factors affecting sulfur evolution during coal combustion by means of improved automatic sulfur analyzer. In this paper the sulfur evolution index, that is, the relative quantity of sulfur evolution (Vs), the final quantity of sulfur evolution (Va), the rate of sulfur evolution and delay time, are selected to describe the sulfur evolution. The results show that the rate and quantity of sulfur evolution is affected by the temperature, retention time, type of coal, sulfur forms, calcium-based content in coal, oxygen concentration and flow velocity of air. The study can provide some knowledge for selecting sorbent for coal combustion.

  18. Illinois basin coal fly ashes. 2. Equilibria relationships and qualitative modeling of ash-water reactions

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1984-01-01

    Alkaline and acidic Illinois Basin coal fly ash samples were each mixed with deionized water and equilibrated for about 140 days to simulate ash ponding environments. Common to both equilibrated solutions, anhydrite solubility dominated Ca2+ activities, and Al3+ activities were in equilibrium with both matrix mullite and insoluble aluminum hydroxide phases. Aqueous silica activities were controlled by both mullite and matrix silicates. The pH of the extract of the acidic fly ash was 4.1 after 24 h but increased to a pH value of 6.4 as the H2SO4, assumed to be adsorbed to the particle surfaces, was exhausted by the dissolution of matrix iron oxides and aluminosilicates. The activities of aqueous Al3+ and iron, initially at high levels during the early stages of equilibration, decreased to below analytical detection limits as the result of the formation of insoluble Fe and Al hydroxide phases. The pH of the extract of the alkaline fly ash remained above a pH value of 10 during the entire equilibration interval as a result of the hydrolysis of matrix oxides. As with the acidic system, Al3+ activities were controlled by amorphous aluminum hydroxide phases that began to form after about 7 days of equilibration. The proposed mechanisms and their interrelations are discussed in addition to the solubility diagrams used to deduce these relationships. ?? 1984 American Chemical Society.

  19. Mineralogical characterization of Sasol feed coals and corresponding gasification ash constituents

    SciTech Connect

    Aivo B. Hlatshwayo; Ratale H. Matjie; Zhongsheng Li; Colin R. Ward

    2009-05-15

    Feed coal and coarse ash particles (heated rock fragments and clinkers), produced from Sasol-Lurgi gasifier tests under different operating conditions, have been characterized by quantitative X-ray diffraction, electron microprobe analysis, and associated chemical techniques, as a basis for better understanding of the relations between the mineralogical and physical properties of the ash particles. Crystalline phases in the ashes include quartz particles inherited directly from the feed coal, as well as anorthite, mullite, and diopside, derived from solid-state reactions or crystallization of a silicate melt during the gasification process. Glass, cooled from the melt, is also abundant in the ash materials. The abundance of large particles of hard minerals in the coal or the ash, such as quartz, anorthite, pyrite, and diopside, has been correlated with a laboratory-determined abrasion index and may contribute significantly to wear on mechanical equipment during coal- or ash-handling operations. 21 refs., 3 figs., 9 tabs.

  20. Microanalysis of metals in coal and coal ash using the Stanford/USGS SHRIMP-RG ion microprobe[Sensitive High-Resolution Ion MicroProbe--Reversed Geometry

    SciTech Connect

    Kolker, A.; Zielinski, R.A.; Wooden, J.L.; Persing, H.M.

    2000-07-01

    The capability of the SHRIMP-RG ion microprobe to determine the micro-distribution of selected trace metals in coal and coal ash was investigated as part of a larger study of the behavior of air toxic metals during coal combustion. Initial work, reported here, used the oxygen (O) ion source for in-situ determination of Cr and other elements in illite/smectite, a major inorganic constituent of the coals analyzed. This was followed by tests of the applicability of the SHRIMP-RG for trace-metal analysis of fly ash from a Kentucky power plant, in which U and Pb concentrations were determined in the coarse (63--150 micrometer) fraction of the fly ash. The results for illite/smectite confirm that it is an important source of chromium that may be emitted during coal burning. Results for fly-ash show that the {sup 75}As peak is resolvable from potential interferences in glass standards and partially resolvable in the fly ash, indicating that the SHRIMP-RG may be useful in characterizing the distribution of leachable metals condensed on fly ash surfaces.

  1. Sorption and chemical transformation of PAH`s on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1995-05-09

    The major objective of this work was to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHS) and their derivatives, and to attempt to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Our studies have concentrated on the photochemical behavior of PAHs sorbed form the vapor phase on coal fly ashes, and compositional subfractions obtained therefrom. The PAHs are deposited onto the fly ash substrates from the vapor phase, using apparatus and techniques developed in this laboratory in order to simulate, as closely as possible under laboratory conditions, the processes by which PAHs deposit onto fly ash particles in the atmosphere. In this report phototransformation of pyrene sorbed on fly ash fractions, and phototransformations of 1-nitropyrene sorbed on fly ash fractions are discussed.

  2. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and

  3. Sodium and oxygen in Nigerian coals: Possible effects on ash fouling

    SciTech Connect

    Ewa, I.O.B.; Elegbe, S.B.; Adetunji, J.

    1996-09-01

    Ash fouling during heat transfers in coal power-plants has been known to be an engineering problem caused by high sodium levels of the feed-coals. Instrumental Neutron Activation Analysis (INAA) was used in determining the concentration of some alkali elements (Na, Ca, Mg) associated with ash fouling for eight Nigerian coals mined at Onyeama, Ogbete, Enugu, Gombe, Okaba, Afikpo, Lafia and Asaba. Sodium levels were generally low (0.001-0.036%). Oxygen concentrations considered as an indicative measure of the wettability of each of the coals were determined. The possible effects of the concentration of these elements on ash fouling were discussed. 8 refs., 3 tabs.

  4. Direct synthesis of carbon nanofibers from South African coal fly ash

    PubMed Central

    2014-01-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings. PMID:25177215

  5. Direct synthesis of carbon nanofibers from South African coal fly ash.

    PubMed

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-01-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  6. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report presents the Phase II results of a combustion program designed to assess the feasibility of utilizing coal/oil/water (COW) emulsions as a fuel for fire tube package boilers. Also examined was the effect of the addition of alkaline absorbents to the fuel for sulfur dioxide capture. Presented are the findings of testing involving optimizing sulfur dioxide removal while still maintaining a rheologically favorable fuel. Overall performance of COW as a boiler fuel was evaluated over long term operation. Emphasis was placed on burner design as well as coal characteristics. Three different bituminous coals were used during this program. Results indicate that COW emulsions may be a feasible alternative for oil in industrial fire tube boilers if the major problem, deposition buildup, can be resolved. This appears possible with a proper soot blower design. Soda ash is a viable means for obtaining at least 80% removal, using a 1:1 molar ratio. However, the deposition problem with soda ash indicated that stack injection may be a more feasible approach.

  7. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    PubMed

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just <1% of the total concentrations. Log-log plots of concentration and cumulative release of Fe versus time based on tank leaching data showed that leaching was dominated by diffusion. Overall, the risk of Zn, Pb, Mn, Cu and Fe leaching from coal ash and its concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents.

  8. Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant

    SciTech Connect

    Izquierdo,M.; Font, O.; Moreno, N.; Querol, X.; Huggins, F.; Alvarez, E.; Diez, S.; Otero, P.; Ballesteros, J.; Gimenez, A.

    2007-01-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

  9. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant.

    PubMed

    Izquierdo, Maria; Font, Oriol; Moreno, Natalia; Querol, Xavier; Huggins, Frank E; Alvarez, Esther; Diez, Sergi; Otero, Pedro; Ballesteros, Juan Carlos; Gimenez, Antonio

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

  10. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  11. Mathematical modelling of physical and chemical processes of coal combustion in chamber furnaces of boiler aggregates based on the package of applied programs FIRE 3D

    NASA Astrophysics Data System (ADS)

    Gil, A. V.; Starchenko, A. V.

    2012-09-01

    The furnace processes of the combustion of poly-fraction high-ashes Ekibastuz coal in the furnace chamber of the boiler aggregate PK-39 and of the combustion of highly humid brown Berezov's coal in the furnace of the BKZ-210-140 boiler are investigated by mathematical modeling using the package of applied programs FIRE 3D [1-3]. Results of the numerical modeling of the processes of aerodynamics, heat exchange, and combustion in the furnace volume and their comparison with the results of nature tests are presented.

  12. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  13. Test plan for valveless ash removal from pressurized fluid bed combustion systems

    SciTech Connect

    Hauserman, W.B.

    1989-07-01

    This is a test plan to demonstrate a method of ash removal from pressurized fluid bed combustion (PFBC) systems through small beds of crushed rock rather than conventional pressure let-down valves and lock hoppers. The economic advantage of such a method is that process-inherent erosive damage will be inflicted upon the cheaply replaceable crushed rock, rather than upon expensive, fabricated valve trim components. The concept to be tested is an extension of the gravel bucket'' principle in which an erosive, high pressure slurry stream passes through a bed of crushed rock with an adjustable flow path and cross-section. The original gravel bucket concept was inspired by the costly valve erosion problems projected for coal liquefaction plants. This project extends the same approach to systems where solids are to be removed from PFBC systems, with more limited possibilities of application to some coal gasification processes. If proven successful, a hot-gas gravel bucket could offer an economic alternative to a lock hopper plus a pair of expensive block valves. 6 refs., 10 figs., 1 tab.

  14. Combustion characteristics of coal and refuse from passenger trains.

    PubMed

    Fu-min, Ren; Feng, Yue; Ming, Gao; Min, Yu

    2010-07-01

    Refuse from passenger trains is becoming a significant issue with the development of the Chinese railway. Co-firing is regarded as a promising thermal technology, both environmentally and economically, in reducing the quantity of refuse. The co-firing property of passenger train refuse with coal, however, may differ due to the differences in the composition of the refuse. In the present study, combustion properties of refuse from passenger train samples and the mixture of refuse with coal were studied in a tube furnace. Thermo analysis methods, such as thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis (DTA) and derivative thermogravimetry (DTG) analyses were employed to evaluate combustion performance. We found that the mixture of passenger train refuse and coal at a ratio of 1:1 has a lower ignition and burnout temperature than the coal-only sample. Moreover, refuse from railway passenger trains has more reactive combustion properties than the coal-only sample, and the addition of railway passenger train refuse to coal can promote the reactivity of coal.

  15. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash.

    PubMed

    Sahu, S K; Tiwari, M; Bhangare, R C; Pandit, G G

    2014-12-01

    Coal fired thermal power contributes 70% of power in India. Coal fired power generation results in huge amounts of fly ash and bottom ash of varying properties. Coal, which contains the naturally occurring radionuclides, on burning results in enrichment of these radionuclides in the ashes. In the present study, coal, bottom ash and fly ash samples collected from six coal-fired power plants in India were measured for (210)Po using alpha spectrometry and for natural U, (226)Ra, (232)Th and (40)K by an HPGe γ-ray spectrometer. (210)Po in fly ash ranged from 25.7 to 70 Bq/kg with a mean value of 40.5 Bq/kg. The range and mean activities of (238)U, (226)Ra, (232)Th, (40)K in fly ash were 38.5-101 (78.1), 60-105.7 (79), 20-125 (61.7) and 43.6-200 (100) Bq/kg respectively. Fly ash and bottom ash contains two to five times more natural radionuclides than feed coal. The results were compared with the available data from earlier studies in other countries. The effect of particle size on enrichment factor of the nuclides in fly ash was studied. (210)Po showed the largest size dependence with its concentration favoring the smaller particle size while (232)Th showed least size dependence. (238)U and (226)Ra showed behavior intermediate to that of (210)Po and (232)Th. Also the correlation between sulfur content of the feed coal and activity of (210)Po was investigated. Increased sulfur content in feed coal enhanced enrichment of (210)Po in ash.

  16. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  17. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  18. Improved low NOx firing systems for pulverized coal combustion

    SciTech Connect

    McCarthy, K.; Laux, S.; Grusha, J.; Rosin, T.; Hausman, G.L.

    1999-07-01

    More stringent emission limits or the addition of post combustion NOx control create the need for improvements of NOx emissions from pulverized coal boilers. Many boilers retrofitted with Low NOx technology during Phase 1 and Phase 2 of the CAAA fail or marginally meet their requirements. Technical solutions range from addition of overfire air and state-of-the-art low NOx burners to low cost additions of combustion enhancements. Regardless of the combustion NOx control method used, stoichiometries local to the burners must be maintained at the designed values at all times to provide high NOx performance at low efficiency loss due to unburned fuel. This paper describes Foster Wheeler's approach to NOx emission improvements for existing low NOx firing systems. The technology to measure air and coal flow individually for each burner and to control the parameters for optimum combustion are presented and discussed. Field experience shows the installation and advantages of the technology.

  19. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium.

  20. Application of leaching tests for toxicity evaluation of coal fly ash

    SciTech Connect

    Tsiridis, V.; Samaras, P.; Kungolos, A.; Sakellaropoullos, G.P.

    2006-08-15

    The toxic properties of coal fly ash samples obtained from various coal combustion power plants were evaluated in this work using physicochemical analyses and bioassays. Physicochemical analyses showed that heavy metals present in solid samples included Cr, Cu, Mn, Ni, Pb, and Zn. The results of the chemical analysis of eluates deduced by the application of standard leaching tests according to EN 12457-2 and Toxicity Characteristic Leaching Procedure (TCLP) methods indicated that the compounds contained in fly ashes could potentially be transferred to the liquid phase depending upon the leaching method used. Heavy metal concentrations were higher in TCLP eluates, indicating that the initial pH value of the leaching medium significantly affected the transfer of these elements to the liquid phase. Tests conducted with the photobacterium Vibrio fischeri (Microtox test), the crustacean Daphnia magna, and the rotifer Brachionus calyciflorus were used to assess toxicity of eluates obtained by both leaching tests. Daphnia magna was the most sensitive test organism. The EN 12457-2 method proved to be more reliable for toxicity evaluation of eluates. In contrast, the TCLP method showed some interference owing to acetic acid toxicity, and precipitation occurred after pH adjustment of eluates from acid to neutral range. The toxicity of both fly ashes and the corresponding solid leaching residues of EN 12457-2 and TCLP leaching tests was also measured using the Microtox Basic Solid phase Test. The results generated with this bioassay indicated that toxicity was greatly influenced by the pH status of the solid samples.

  1. Fuel cycle analysis for fossil energy systems: Coal combustion

    NASA Astrophysics Data System (ADS)

    Greenstreet, W. L.; Carmichael, R. L.

    1981-02-01

    Elements of the fuel cycle for coal combustion in power generation are examined; and information on economics, technological status, energy efficiencies, and environmental issues is reviewed. Overall background information is provided for guidance in identifying issues and establishing needs and priorities for engineering research, development, and demonstration. The elements treated include mining, transportation, coal preparation, direct combustion, and environmental control technology. The treatment used differs from that of usual compendiums in its emphasis on integrated examination and presentation directed primarily toward providing bases for general assessment and for guidance in program development. Emphasis is on program identification as opposed to advocacy.

  2. To improve the stability of combustion of low rank coal

    SciTech Connect

    Jing Bin Wei

    1995-03-01

    A new aerothermodynamic method, Bi-Flat Inlet Flow Precombustor with Control Jets, developed for flame stabilization of pulverized-coal and the improvement of the ignition condition of low grade coal is described in this paper. The BI-flat flow precombustor consists of a rectangular combustion chamber which can be installed in the location of the burner in the utility and industrial boilers to be used to advance ignition of fuel and primary air mixture and to increase combustion stability of the furnace flames. This type of precombustor simply constructs with two flattened primary air flow and control jets at the head end of the combustor. The velocity of control jets is higher than that of primary flow. A very large recirculation zone with high temperature burnt gases and high turbulent intensity as an ignition source is created in the center of combustion chamber based upon the principles of the actions of jets entraining and Coanda effect. Meanwhile, the higher velocity air layers with lower concentration of coal characteristics on preventing walls from slagging accumulation. Another very important feature is that coal particles could enter directly into the recirculation zone as their inertia and diffusion forces so that it shows a good compatibility of the flow paths of coal particles and high temperature gases. Finally, it is full of promise to be a low pollution emissions combustor since its staged flow and combustion structures.

  3. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  4. Effects of water treatment residuals and coal combustion byproduct amendments on properties of a sandy soil and impact on crop production – A pot experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Byproducts of coal combustion (such as fly ash: FA), livestock industry (such as chicken manure: CM, or animal manure, etc), or water treatment residuals (such as sewage sludge: SS, or incinerated sewage sludge: ISS) can be used as amendments to agricultural soils, provided that these byproducts (ap...

  5. Mechanism of surface enrichment and adhesion of coal combustion particulates

    SciTech Connect

    Shadman, F.; Peterson, T.W.; Wendt, J.O.L.

    1992-01-01

    This study focuses on the effect of alkali adsorption on the agglomeration of particles of bauxite, kaolinite, emathlite, lime, and two types of coal ash. An agglomeration (adhesion) temperature is defined which characterizes the adhesion propensity of particles. Using a small fluidized bed, a unique experimental technique is developed to measure this agglomeration point in-situ. The effects of alkali adsorption on the agglomeration characteristics of the substrates are determined. The agglomeration temperature of all substrates decreases as the alkali content increases. At low alkali loadings, alkali adsorption enhances particle agglomeration by forming new compounds of lower melting points. At high alkali concentrations, adhesion and agglomeration are caused by a layer of molten alkali which covers the exterior of the particles. Alkali surface composition of particles is studied using a Scanning Auger Microprobe (SAM). Results indicate that the alkali surface concentration decreases as agglomeration temperature increases. The use of additives to scavenge alkali vapors is further studied in a pilot scale downflow combustor. SAM surface analyses of additive particles indicate three mechanisms of alkali capture. Adsorption by reaction, surface condensation, and nucleation and coagulation with additive particles. These mechanisms may occur independently or simultaneously depending primarily on the alkali vapor concentration and the temperature profile along the combustion furnace. A mathematical model is developed to represent the kinetics and mechanisms of the alkali adsorption and agglomeration process. Modeling results indicate that the adsorption-reaction process is influenced by diffusion of alkali through the surface product layer. The model predictions of the alkali adsorbed as a function of minimum agglomeration temperature agree very well with the experimental results.

  6. PCDD/F FORMATION RATES FROM FLY ASH AND METHANE COMBUSTION CARBON SOURCES

    EPA Science Inventory

    The abstract discusses polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD,F) from fly ash and methane combustion carbon sources. (NOTE: PCDD,Fs are formed in trace quantities in combustion processes via two primary mechanisms: de novo synthesis in which they ...

  7. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Kruse, C.W.; Carlson, S.L.; Snoeyink, V.L.; Feizoulof, C.; Assanis, D.N.; Syrimis, M.; Fatemi, S.M.

    1992-10-01

    The first step in the envisioned integrated, multi-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps would convert low-ash coal to high-value products through mild gasification, char activation, and oxidation reactions. Approximately eight pounds of low-ash coal has been obtained from the crude reactor slurry produced for us at the University of North Dakota Energy and Environmental Research Center (UNDEERC). After treatment to remove the remaining meta-cresol, this material will be subjected to mild gasification. Low-ash mild gasification char will be activated and a catalyst surface will be added by oxidation. A 20% coal: 80% diesel fuel slurry was tested in cylinder two of a two-cylinder, diesel engine after the necessary modifications in the engine`s fuel injection system were made. Four tests indicated that the coal successfully substitutes for diesel fuel in the slurry. The fuel burns in the cylinder, with slightly improved thermal and combustion efficiency. The tests were performed at 1800 rpm and 2200 rpm and 75% load. The change in the surface properties of Calgon F-400 commercial activated carbon caused by several treatments were examined by X-ray Photoelectron Spectroscopy (XPS).

  8. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.

    PubMed

    Wang, Haiyan; Chen Chen; Huang, Tao; Gao, Wei

    2015-07-01

    Coal spontaneous combustion is widely distributed all over the world. CO2 is the main greenhouse gas emitted by coal spontaneous combustion. In the present study characters of CO2 emitted by 10 typical Chinese coal spontaneous combustion and the influence of raw coal functional group on CO2 was studied. CO2 already exists under normal temperature as coal exposed in atmosphere. Under low temperature, the quality of CO2 released by coal spontaneous combustion is relatively small, but tends to increase. And corresponding with it, the oxygen consumption amount is also small. At medium temperature, the oxygen consumption increases rapidly and CO2 mass release rate begins to increase rapidly. Then, CO2 release rate increase rapidly under relatively high temperature (higher than 673 K). Over 873K, concentration of O2 is 6% and release rate of CO2 tends to be steady. It also concluded that mass ratio of CO to CO2 (CO/CO2) during coal spontaneous combustion was lowerthan 0.10 at low temperature. And then, it increased rapidly at medium temperature and reached to top at about 673 K. At 673-873 K, the ratio decreased again, and did not decrease evidently at about 873K. At temperature higher than 873K, the ratio was about 0.13. During the whole testing temperature range, CO/CO2 was not be higher than 0.26, lower than 0.2. This means that release rate of CO2 was much higher than CO during the whole process of coal spontaneous combustion. Moreover, the gas release quantity of CO2 is positively related with carbony content in raw coal. Carbonyl and carboxyl were both material basis of CO2.

  9. Numerical simulation of the coal combustion process initiated by a plasma source

    NASA Astrophysics Data System (ADS)

    Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Maksimov, V. Yu.

    2014-12-01

    Numerical experiments on the torch combustion of the coal dust prepared by a plasma-thermochemical treatment for combustion have been done using the method of three-dimensional simulation. It is shown that the plasma preparation of coal for combustion enables one to optimize the process, improve the conditions for inflammation and combustion and minimize the emissions of harmful substances.

  10. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    SciTech Connect

    Brubaker, Tonya M; Stewart, Brian W; Capo, Rosemary C; Schroeder, Karl T; Chapman, Elizabeth C; Spivak-Birndorf, Lev J; Vesper, Dorothy J; Cardone, Carol R; Rohar, Paul C

    2013-05-01

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  11. Char particle fragmentation and its effect on unburned carbon during pulverized coal combustion. Final report, March 20, 1997

    SciTech Connect

    Mitchell, R.E.

    1997-12-31

    This document is the final report of work on a project concerned with the fragmentation of char particles during pulverized coal combustion that was conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California. The project is intended to satisfy, in part, PETC`s research efforts to understand the chemical and physical processes that govern coal combustion. The overall objectives of the project were: (1) to characterize the fragmentation events as a function of combustion environment, (2) to characterize fragmentation with respect to particle porosity and mineral loadings, (3) to assess overall mass loss rates with respect to particle fragmentation, and (4) to quantify the impact of fragmentation on unburned carbon in ash. The knowledge obtained during the course of this project can be used to predict accurately the overall mass loss rates of coals based on both the physical and chemical characteristics of their chars. The work provides a means of assessing reasons for unburned carbon in the ash of coal fired boilers and furnaces.

  12. Use of coal combustion by-products for solidification/stabilization of hazardous wastes

    SciTech Connect

    Hassett, D.J.; Pflughoeft-Hassett, D.F.

    1997-05-01

    Five low-rank coal combustion fly ash samples extensively characterized in previous projects were used as a pool of candidate materials for potential use as waste stabilization agents. Two of these fly ash samples were selected because ettringite formed in the solid in long-term leaching experiments, and an associated reduction in leachate concentration of at least one trace element was noted for each sample. The stabilization experiments were designed to evaluate the removal of relatively high concentrations of boron and selenium from a simulated wastewater. Sulfate was added as one variable in order to determine if high concentrations of sulfate would impact the ability of the ettringite to include trace elements in its structure. The following conclusions can be drawn from the information obtained in this research: CCBs (coal combustion by-products) can be useful in the chemical fixation of potentially hazardous trace elements; indication of ettringite formation alone is not adequate for selecting a CCB for waste stabilization applications; moderate sulfate concentrations do not promote or inhibit trace element sorption; ettringite formation mechanisms may impact trace element fixation and need to be elucidated; laboratory demonstration of the CCB with the stabilization process being proposed is necessary to verify the efficacy of the material and process; and the final waste form must be evaluated prior to management according to the required regulatory procedures.

  13. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  14. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  15. Automated semiquantitative direct-current-arc spectrographic analysis of eight argonne premium coal ash samples

    USGS Publications Warehouse

    Skeen, C.J.; Libby, B.J.; Crandell, W.B.

    1990-01-01

    The automated semiquantitative direct-current-arc spectre-graphic method was used to analyze 62 elements in eight Argonne Premium Coal Ash samples. All eight coal ash samples were analyzed in triplicate to verify precision and accuracy of the method. The precision for most elements was within ??10%. The accuracy of this method is limited to +50% or -33% because of the nature of the standard curves for each of the elements. Adjustments to the computer program were implemented to account for unique matrix interferences in these particular coal ash samples.

  16. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model.

  17. An evaluation of the toxicological aspects and potential doses from the inhalation of coal combustion products.

    PubMed

    Liberda, Eric N; Chen, Lung Chi

    2013-06-01

    This paper reviews toxicological literature pertaining to coal combustion products (CCPs) inhalation and presents case studies on the inhalation of CCPs from the Kingston Fossil Plant area and from the Colbert Fossil Plant CCP landfill site. While most research regarding coal plant emissions focuses on fly ash, this article takes a holistic approach to examining not only emitted particulate matter such as fly ash, but also the theoretical calculated doses of landfilled CCPs. Furthermore, these doses are compared to in vitro and in vivo studies in order to highlight differences between laboratory-based studies and to emphasize the difficulty in extrapolating effects from inhalation exposures. In both case studies, fugitive emissions from the Kingston ash spill or the Colbert CCP-handling operations did not exceed any national ambient air quality standards or reference concentrations for individual components. Adverse effects such as mild pulmonary inflammation noted in the reviewed literature were in response to doses much higher than would be likely to occur in humans exposed to landfilled CCPs. We conclude that the doses for fugitive emissions calculated herein do not appear to be high enough to elicit a measurable adverse response in humans.

  18. Rate limitations of lime dissolution into coal ash slag

    SciTech Connect

    L.K. Elliott; John A. Lucas; Jim Happ; John Patterson; Harry Hurst; Terry F. Wall

    2008-11-15

    The rate-limiting mechanisms of lime dissolution from a solid pellet into coal ash slag and synthetic slag was investigated using an experiment involving a rotating cylinder of lime in a liquid slag bath at temperatures of 1450-1650{degree}C. Scanning electron microscopy (SEM) analysis of the slag composition around the lime cylinder was used to determine the nature of the boundary layer surrounding the pellet and the calcium concentration profile. Predictions using shrinking core models of a cylindrical pellet were compared to experimental results, suggesting that diffusion through the slag boundary layer and the change of the phase of lime from solid to liquid in the boundary layer combine to limit the process. These results indicate that a combination of controlling steps: diffusion through the boundary layer and the phase change of lime from solid to liquid, must be considered when predicting lime dissolution rates. 24 refs., 5 figs., 3 tabs.

  19. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    PubMed

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards.

  20. Toxic substances form coal combustion--a co prehemsice assessment

    SciTech Connect

    Huggins, F.; Huffman, G.P.; Shah, N.

    1997-04-01

    The Clean Coal Act Amendments of 1990 identify a number of hazardous air pollutants as candidates for regulation. Should regulations be imposed on emission of these pollutants from coal-fired power plants, a sound understanding of the fundamental principles controlling their formation and partition will be needed. A new Toxics Partitioning Engineering Model (ToPEM) has been developed by a broad consortium to be useful to regulators and utility planners. During the last quarter coal analysis was completed on the final program coal, from the Wyodak Seam of the Powder River Basin, Combustion testing continued, including data collected on the self-sustained combustor. Efforts were directed to identify the governing mechanisms for trace element vaporization from the program coals. Mercury speciation and measurements were continued. Review of the existing trace element and organics emission literature was completed. And, model development was begun.

  1. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station.

    PubMed

    Gieré, Reto; Blackford, Mark; Smith, Katherine

    2006-10-15

    The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal+tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 microm (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO4, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO4-H2O, is the main host for Zn and only occurs in the PM derived from the coal+tire blend, whereas yavapaiite, KFe3+(SO4)2, is present only when pure coal was combusted. We conclude that these metal sulfates precipitated from the flue gas, may be globally abundant aerosols, and have, through hydration or dissolution, a major environmental and health impact.

  2. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    DOEpatents

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  3. PULVERIZED COAL COMBUSTION: POLLUTANT FORMATION AND CONTROL, 1970-1980

    EPA Science Inventory

    The report documents the support role of EPA's Air and Energy Engineering Research Laboratory in the major research effort directed by EPA in the l970s to understand pollutant formation during pulverized coal combustion (PCC). Understanding the conversion of fuel nitrogen to nit...

  4. [Research on degradation of methylene blue by coal bottom ash-microwave irradiation method].

    PubMed

    Wu, Shi-Wei; Li, Na; Li, Guang-Zhe; Li, Guo-De

    2010-05-01

    Coal bottom ash is rich in metals and transition metals, and with microwave irradiation these metals can effectively degradate organic matter. Methylene blue degradation by coal bottom ash-microwave irradiation mainly through hydroxyl radicals to degrade organic matter, and metals and rare metals in bottom ash can be used as a catalyst for deep oxidation of organic matter, can reduce processing costs, and reduce environmental pollution. In the present paper the main parameters including the amount of coal bottom ash, H2O2 dosage and time of microwave irradiation were investigated. The UV-visible spectra of methylene blue were determined. The results show that: under coal bottom ash and H2O2 microwave condition the degeneration rate of methylene blue was almost 100%. The dosage of coal ash can accelerate the reaction process, speeding up the degradation of methylene blue. The increase of H2O2 may provide more * OH and speed up the reaction process, but when up to a certain amount, the influence is weakened. The lengthening of microwave time may enhance the reaction temperature, and urge the methylene blue to degrade completely. For 0.125 g x L(-1) of methylene blue, by adding 1.0 g coal bottom ash, 5 mL H2O2 and under mesotherm microwave temperature for 4 min, the methylene blue can be all degradated.

  5. Combustion of dense streams of coal particles

    SciTech Connect

    Annamalai, K.

    1991-01-01

    The main objective of our work is to obtain a specific velocity of the resulting flame and to maintain this flame consistent throughout the experiment. To optimize our work, theoretical study has been conducted relating the flow rate of the premixed gas (gas + air), stoichiometric coal mass flow rate, interparticle distance of the coal particles, number of particles and the max. coal mass flow rate needed to maintain a specific velocity. Runs were made for velocities of 1.5, 2.0, 2.5, and 3.0 m/s.

  6. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    SciTech Connect

    Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong; Song, Qilei; Lu, Zuoji

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates

  7. Control of Trace Metal Emissions During Coal Combustion

    SciTech Connect

    Thomas C. Ho

    1997-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The project was started on July 1, 1994 and this is the thirteenth quarterly technical progress report. Specifically, the following progress has been made during this performance period from July 1, 1997 through September 30, 1997.

  8. Reduction of metal leaching in brown coal fly ash using geopolymers.

    PubMed

    Bankowski, P; Zou, L; Hodges, R

    2004-10-18

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60wt% for fly ash obtained from the electrostatic precipitators and 70wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition.

  9. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 4, February--April 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-06-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

  10. Toxic substances from coal combustion -- A comprehensive assessment. Quarterly report number 2, January 1--March 31, 1996

    SciTech Connect

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.; Wendt, J.; Sarofim, A.F.; Zeng, T.

    1996-04-01

    The technical objectives of this project are: to identify the effect of the mode-of-occurrence of toxic elements in coal on the partitioning of these elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal; to identify the mechanisms governing the post-vaporization interaction of toxic elements and major minerals or unburnt char; to determine the effect of combustion environment (i.e., fuel rich or fuel lean) on the partitioning of trace elements between vapor, submicron fume, and fly ash during the combustion of pulverized coal; to model the partitioning of toxic elements between various chemical species in the vapor phase and between the vapor phase and complex aluminosilicate melts; and to develop a frame work for incorporating the results of the program into the Engineering Model for Ash Formation (EMAF). A description of the work plan for accomplishing these objectives is presented in Section 2 of this report. In Section 3 of this report the authors define a detailed list of deliverables expected and consists of a group by group breakdown of the critical experiments to be performed, and a discussion of how that data fits into the overall program. In Section 4 the four coals selected for this program are reported. In Section 5 preliminary XAFs analysis by UKy personnel is discussed. Section 6 consists of a discussion of trace element analysis (INAA) of two size fractions of the Elkhorn-Hazard coal. A discussion of the modifications to the U.Arizona self-sustained combustor is presented in Section 7. Modifications included addition of a baghouse and improvements in the on-line safety and analytical systems. In Section 8 a detailed QA/QC protocol is presented.

  11. The energy-water quality nexus: insights from the 2008 coal ash spill in Tennessee

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Ruhl, L.; Dwyer, G. S.; Hsu-Kim, H.; Deonarine, A.

    2010-12-01

    Energy production consumes a large volume of water. The USGS estimated that about 52 percent of the total USA fresh surface-water withdrawal in 2000 was for thermoelectric consumption (fresh water use ~188 for thermoelectric out of 563 billion cubic meters a year total water withdrawal in the USA). While water availability and possible changes induced from climate change and increasing demands for other sectors are important limiting factors, this presentation highlights the critical long-term impact on water quality. The Clean Smokestacks Act was enacted to reduce emissions from coal-fired power plants through installation of scrubbers and selective catalytic reduction, aiming to cut emissions of sulfur dioxide, nitrogen oxides and mercury. In addition to the capture of these air pollutants, volatile elements are attached to the residual coal combustion products (CCPs). Consequently, toxic metals concentrations in CCPs are extremely high and become mobile upon interaction of CCPs with aquatic solutions. In particular, several studies have demonstrated the high mobilization of boron, arsenic, selenium, barium and other toxic oxi-anions and metals from CCPs. The 2008 coal ash spill in Kingston, Tennessee, where approximately 4.1 million cubic meters of coal ash was spilled onto the surrounding land surface and into the adjacent Emory and Clinch Rivers, has demonstrated the possible impact of CCPs on the environment. An eighteen-month survey has revealed elevated levels of contaminants in surface water with restricted water exchange and in pore water extracted from the bottom sediments, downstream from the spill. Our research has shown that arsenic concentration in the pore water reached to 2,000 ppb due to the reducing conditions and the high mobility of the non-charged arsenic species. Generation of CCPs however is not restricted to a single accidental release, as over five hundred power plants nationwide generate approximately 130 million tons of CCPs each year

  12. Removal o