Sample records for coal development potential

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less

  2. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    NASA Astrophysics Data System (ADS)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts from coal development are very unlikely. Within each zone, the analysis provides a regional estimate of the likely impacts and identifies the major knowledge and data gaps. This information provides a framework for further local study.

  3. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  4. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  5. A study of industrial hydrogen and syngas supply systems

    NASA Technical Reports Server (NTRS)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  6. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the overall approach taken, and discuss how the results of these modelling studies will be used to evaluate the impacts of the depressurisation of coal seams on ecological, economic and socio-cultural assets that are dependent on surface and/or groundwater.

  7. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2016-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. Surface water and groundwater modelling is now complete for two regions where coal seam gas development may proceed, namely the Clarence-Moreton and Gloucester regions in eastern New South Wales. This presentation will discuss how the results of these modelling studies will be used to evaluate the impacts of the depressurisation of coal seams on ecological, economic and socio-cultural assets that are dependent on surface water and/or groundwater.

  8. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  9. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. P.N.; Peterson, G. R.

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less

  11. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  12. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2015-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However as coal seam gas deposits generally occur at shallower depths than shale gas the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be of even greater concern for coal seam gas than for shale gas. In Australia an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice the Australian Government Department of the Environment has implemented a three-year programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the program and results to date can be found at http://www.bioregionalassessments.gov.au. In this presentation the methodology for undertaking bioregional assessments will be described and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Results of the programme to date will be provided (being nearly two years into the three-year study) with a focus on the preliminary results of numerical groundwater modelling. Once completed this modelling will be used to evaluate the impacts of the depressurisation of coal seams on aquifers and associated ecological, economic and socio-cultural water-dependent assets.

  13. The commercial feasibility of underground coal gasification in southern Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Young, B.C.; Harju, J.A.

    Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less

  14. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  15. Preliminary report on the coal resources of the Dickenson area, Billings, Dunn, and Stark counties, North Dakota

    USGS Publications Warehouse

    Menge, Michael L.

    1977-01-01

    The Dickinson area is underlain by the coal-bearing Fort Union Formation (Paleocene). The Fort Union in this area contains nine potentially economic coal beds. Five of these beds are, either all or in part, shallow enough to be economically extracted by conventional strip-mining methods, while the remaining four deeper beds represent future possible strip-mining, in situ, or shaft-mining coal resources. The Fort Union coal beds in the Dickinson area are relatively flat lying (dips are less than 1??) and only slightly influenced by faulting and both depositional and post-depositional channeling. Topography, coal thickness, and minimum overburden all combine to give the Dickinson area an excellent future coal resource development potential.

  16. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  17. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  18. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE PAGES

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.; ...

    2018-01-23

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  19. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  20. Evaluation of ERDA-sponsored coal feed system development

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.

  1. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  2. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.« less

  3. A preliminary review of coal exploration activities conducted by the government of Armenia and the coal resource potential of Armenia

    USGS Publications Warehouse

    Warwick, Peter D.; Pierce, B.S.; Landis, E.R.

    1993-01-01

    A coal resource assessment team from the U.S. Geological Survey (USGS), in cooperation with the Armenian Department of Underground Resources (DUR) and elements of the Ministry of Energy and Fuel, has completed an initial visit to Armenia under the auspices of the U.S. Agency for International Development JUSAID). The visit included discussions of the coal resources, identification of problems associated with on-going exploration and development activities, and field visits to selected solid fuel areas. The USGS team will return in November with a draft of the final report for discussion of conclusions and recommendations with Armenian counterparts, representatives of USAID, and the American Embassy. The final report, which will contain tabulated coal-sample analytical results and detailed recommendations, will be submitted to the USAID by the end of December 1993.Preliminary conclusions are that: 1) Armenia has usable deposits of coal that could form a viable, though relatively small, component of Armenia's energy budget; 2) on-going exploration and development activities must be augmented and expedited to increase understanding of the coal resource potential and subsequent utilization; 3) deficiencies in supplies (primarily fuel) and equipment (replacement of aging parts and units) have greatly reduced the gathering of necessary resource data; and 4) training of Armenian counterparts in conducting and managing coal exploration activities is desirable.

  4. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, A.O.; Aydiner, K.

    Lignite and hard coal are the major sources of domestic energy sources of Turkey. Hard coal is produced at only one district in the country. Zonguldak Hard Coal Basin is the major power for development of the Turkish steel-making industry. It is the only hard coal basin in the country and it has, to date, supplied approximately 400 million tons of run-of-mine hard coal. This article investigates the potential of hard coal as an energy source and discusses the measures to activate the region for the future energy supply objectives of the country.

  6. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    NASA Astrophysics Data System (ADS)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  7. Health impacts of coal and coal use: Possible solutions

    USGS Publications Warehouse

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.

  9. The Coal-Seq III Consortium. Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to modeling software to enhance model robustness. Research was also conducted to improve algorithms and generalized adsorption models to facilitate realistic simulation of CO2 sequestration in coal seams and shale gas reservoirs. The interaction among water and the adsorbed gases, carbon dioxide (CO2), methane (CH4), and nitrogen (N2) in coalbeds is examined using experimental in situ laboratory techniques to comprehensively model CBM production and CO2 sequestration in coals. An equation of state (EOS) module was developed which is capable of predicting the density of pure components and mixtures involving the wet CBM gases CH4, CO2, and N2 at typical reservoir condition, and is used to inform CO2 injection models. The final research objective examined the effects adsorbed CO2 has on coal strength and permeability. This research studied the weakening or failure of coal by the adsorption of CO2 from empirically derived gas production data to develop models for advanced modeling of permeability changes during CO2 sequestration. The results of this research effort have been used to construct a new and improved model for assessing changes in permeability of coal reservoirs due CO2 injection. The modules developed from these studies and knowledge learned are applied to field validation and basin assessment studies. These data were used to assess the flow and storage of CO2 in a shale reservoir, test newly developed code against large-scale projects, and conduct a basin-oriented review of coal storage potential in the San Juan Basin. The storage potential and flow of CO2 was modeled for shale sequestration of a proprietary Marcellus Shale horizontal gas production well using COMET3 simulation software. Simulation results from five model runs indicate that stored CO2 quantities are linked to the duration of primary production preceding injection. Matrix CO2 saturation is observed to increase in each shale zone after injection with an increase in primary production, and the size of the CO2 plume is also observed to increase in size the longer initial production is sustained. The simulation modules developed around the Coal-Seq experimental work are also incorporated into a pre-existing large-scale numerical simulation model of the Pump Canyon CO2-ECBM pilot in the San Juan Basin. The new model was applied to re-history match the data set to explore the improvements made in permeability prediction against previously published data sets and to validate this module. The assessment of the new data, however, indicates that the impact of the variable Cp is negligible on the overall behavior of the coal for CO2 storage purposes. Applying these new modules, the San Juan Basin and the Marcellus Shale are assessed for their technical ECBM/AGR and CO2 storage potential and the economic potential of these operations. The San Juan Basin was divided into 4 unique geographic zones based on production history, and the Marcellus was divided into nine. Each was assessed based upon each zone’s properties, and simulations were run to assess the potential of full Basin development. Models of a fully developed San Juan Basin suggest the potential for up to 104 Tcf of CO2 storage, and 12.3 Tcf of methane recovery. The Marcellus models suggest 1,248 Tcf of CO2 storage and 924 Tcf of AGR. The economics are deemed favorable where credits cover the cost of CO2 in the San Juan Basin, and in many cases in the Marcellus, but to maximize storage potential, credits need to extend to pay the operator to store CO2.« less

  10. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  11. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  12. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  13. U.S. Port Development and the Expanding World Coal Trade: A Study of Alternatives.

    DTIC Science & Technology

    1982-06-01

    Dredging Program . . ... 70 4. Growth Potential Index . . . . . . . . . . 71 B. SENSITIVITY ANALYSIS . . . . . . . . . . .. . 74 1. Dredging Effect... PROGRAM TO ’:OMPUTE COST AND COAL CAPACITIES ............ .. 95 LIST OPREFRENCES .. . .. .. . . 999 INITIAL DISTRIBUTION LIST .... ....... .. 102 7 LIST...Deepuater Terminal Evaluation Summary ...... 64 Vi. Coal Export Capacities by Port ......... 68 VII. Optimal and Next Best Programs for Various

  14. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  15. Study on feasible technical potential of coal to electricity in china

    NASA Astrophysics Data System (ADS)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  16. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  17. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  18. Central Appalachia: Production potential of low-sulfur coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J.

    The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates ofmore » active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.« less

  19. Variations in coal characteristics and their possible implications for CO2 sequestration: Tanquary injection site, southeastern Illinois, USA

    USGS Publications Warehouse

    Morse, D.G.; Mastalerz, Maria; Drobniak, A.; Rupp, J.A.; Harpalani, S.

    2010-01-01

    As part of the U.S. Department of Energy's Regional Sequestration Partnership program, the potential for sequestering CO2 in the largest bituminous coal reserve in United States - the Illinois Basin - is being assessed at the Tanquary site in Wabash County, southeastern Illinois. To accomplish the main project objectives, which are to determine CO2 injection rates and storage capacity, we developed a detailed coal characterization program. The targeted Springfield Coal occurs at 274m (900ft) depth, is 2.1m (7ft) thick, and is of high volatile B bituminous rank, having an average vitrinite reflectance (Ro) of 0.63%. Desorbed Springfield Coal gas content in cores from four wells ~15 to ~30m (50 to 100ft) apart varies from 4.7-6.6cm3/g (150 to 210scf/ton, dmmf) and consists, generally, of >92% CH4 with lesser amounts of N2 and then CO2. Adsorption isotherms indicate that at least three molecules of CO2 can be stored for each displaced CH4 molecule. Whole seam petrographic composition, which affects sequestration potential, averages 76.5% vitrinite, 4.2% liptinite, 11.6% inertinite, and 7.7% mineral matter. Sulfur content averages 1.59%. Well-developed coal cleats with 1 to 2cm spacing contain partial calcite and/or kaolinite fillings that may decrease coal permeability. The shallow geophysical induction log curves show much higher resistivity in the lower part of the Springfield Coal than the medium or deep curves because of invasion by freshwater drilling fluid, possibly indicating higher permeability. Gamma-ray and bulk density vary, reflecting differences in maceral, ash, and pyrite content. Because coal properties vary across the basin, it is critical to characterize injection site coals to best predict the potential for CO2 injection and storage capacity. ?? 2010 Elsevier B.V.

  20. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  1. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  2. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  3. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  4. Health Implications of Increased Coal Use in the Western States

    PubMed Central

    Guidotti, Tee L.

    1979-01-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803

  5. Health implications of increased coal use in the Western States.

    PubMed

    Guidotti, T L

    1979-07-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.

  6. Prospects for coal briquettes as a substitute fuel for wood and charcoal in US Agency for International Development Assisted countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.

    1986-02-01

    Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer formmore » for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.« less

  7. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    PubMed

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P

    2016-05-13

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  9. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    NASA Astrophysics Data System (ADS)

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-05-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l-1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l-1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  10. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  11. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  12. A new approach to enhance the selectivity of liberation and the efficiency of coal grinding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.H.; Guo, Q.; Parekh, B.K.

    1993-12-31

    An innovative process has been developed at the University of Kentucky to enhance the liberation of mineral matter from coal and the efficiency of grinding energy utilization. Through treating coal with a swelling agent prior to grinding, the grindability of coals can be considerably improved. The Hardgrove Grindability tests show that the HGI of a KY. No. 9 coal increases from 41 for the untreated coal to 60-90 after swelling pretreatment for a short time. Batch stirred ball mill grinding results demonstrate that this new technique has a great potential in reducing the energy consumption of fine coal grinding. Dependingmore » on the pretreatment conditions, the specific energy consumption of producing less than 10 {mu}m product is reduced to 41-60% of that of the untreated coal feed. The production rate of -10 {mu}m particles increases considerably for the pretreated coal. The Energy-Dispersive-X-ray Analytical Scanning Electron Microscope (EDXA-SEM) studies clearly demonstrate that intensive cracking and fracturing were developed during the swelling pretreatment. Cracks and fractures were induced in the coal matrix, preferentially along the boundaries between the pyrite particles and coal matrix. These may be responsible for enhancement in both the efficiency of grinding energy consumption and the selectivity of liberation.« less

  13. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  14. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less

  16. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  17. H-Coal Pilot Plant: letdown-valve experience through Coal Run No. 7 in the H-Coal Pilot Plant, E-3. [Runs 1 thru 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, N.D.

    1982-05-01

    This report covers the development of the various letdown valves used for the two-stage high pressure and temperature coal slurry letdown system as used at the H-Coal Pilot Plant. The period covered in this report was from the prestart-up oil circulation through Coal Runs No. 1 - No. 7. The valves covered are the Willis, which was used exclusively from Coal Runs No. 1 - No. 5, the Cameron and the Kieley and Mueller. The LV-202B Kieley and Mueller and LV-204B Cameron valves again showed little valve wear during short Coal Run No. 7, which demonstrates that the full potentialmore » of these valve designs has not been achieved yet. The problem with the Kieley and Mueller plug freezing will be looked at further, with addition of grease ports and a possible new designed plug shaft and stem guide being made for the valve. The Willis valves developed the same body leaks around the bonnet areas that occurred during Coal Run No. 6. This will be looked at before Coal Run No. 8, but no further trim development is planned. To summarize the progress of the LV-202 and LV-204 valves, the Willis was developed to last about 100 hours, which is the expected life for this valve design in our coal liquefaction process; whereas, the Cameron and Kieley and Mueller valves have lasted for days with good results. The Cameron and Kieley and Mueller valves still have not reached their full potential in plant operation, and, along with the new Masoneilan Sasol, Masoneilan Prototype, Hammel Dahl and Paul valves, future progress in Coal Run No. 8 for the high pressure and temperature letdown valves is anticipated.« less

  18. Atmospheric pollution in a coal mine region of Romania and solutions to assure sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irimie, I.I.; Tulbure, I.

    1996-12-31

    The present paper presents the following subjects regarding the atmospheric pollution in the Jiu-Valley coal mining region of Romania: identifying polluting sources, pointing out the pollution favoring conditions, the pollution impacts, and measures for short, middle, and long time, which could be taken in order to obtain a sustainable future development of this region. The importance of the problems presented in this paper is emphasized by the fact, that beside coking and fuel coal reserves, this region has a high touristic potential the year round.

  19. New maps of Federal coal ( USA).

    USGS Publications Warehouse

    Wayland, R.G.

    1981-01-01

    Compilation and analysis of publicly available data on Federal coal are resulting in voluminous map sets showing coal isopachs, structure contours, and overburden isopachs on each known minable coal bed. As of spring 1981, there are available from the US Geological Survey Open-File Services Section in Denver map sets at 1:24 000 scale or microfiche sets covering approximately 470 of the ultimately 1400 quadrangles in the program. A typical map set has a short text and about 20 plates, including a data sheet; a Federal mineral ownership map; and correlation charts. For each coal bed, there are isopachs, structure contours, stripping limits, and mining ratios extending as far as the data will permit, regardless of coal ownership. Reserve base tonnages and relative development potentials are calculated, but only for unleased Federal coal areas. -from Author

  20. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  1. Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1981-August 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohue, M.D.

    It is the purpose of this research program to develop a model to predict the thermodynamic properties of coal derivatives. Unlike natural gas and petroleum, coal and its gasification and liquefaction products are predominantly aromatic and have substantial quadrupole moments. Because of these quadrupole forces, the numerous correlational techniques that have been developed for petroleum products cannot be used to predict the thermodynamic properties of coal derivatives. We are presently developing a correlation that will be useful in predicting the thermodynamic properties of coal derivatives. This theory is based on the Perturbed-Hard-Chain theory, but is different from PHCT in twomore » respects. First, PHCT uses a square-well to describe the intermolecular potential energy between two molecules. In our new theory, the Lennard-Jones potential energy function is used. The second difference is that we take into account the effect of quadrupole forces on the intermolecular potential energy. In PHCT these forces were ignored. In PHCT the contributions to the partition function (or equation of state) that arise from the attractive forces between molecules (regardless of whether these forces are treated as a square-well or by Lennard-Jones) are calculated by assuming that they are perturbations on a hard sphere. In calculating the contributions to the partition function that arise from the quadrupole-quadrupole interactions, we use a second order perturbation about the Lennard-Jones. For aromatic molecules, the effect of this additional perturbation is significant.« less

  2. Development and testing of synthetic RIPRAP constructed from coal combustion products.

    DOT National Transportation Integrated Search

    2013-11-01

    Even with an increase in the amount of CCPs used in concrete construction, soil stabilization, and other applications, the coal power : industry must dispose of a significant amount of fly ash and bottom ash. One potential avenue for the material is ...

  3. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    PubMed Central

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l−1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l−1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems. PMID:27174014

  4. Potential effects of surface coal mining on the hydrology of the Circle West coal tracts, McCone County, eastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1984-01-01

    The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water in shallow aquifers in and near the coal tracts. Some of the effects on local water supplies could be mitigated by development of alternative water resources in deeper aquifers such as the Tullock aquifer of Paleocene age and the Fox Hills-lower Hell Creek aquifer of Late Cretaceous age. (Author 's abstract)

  5. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target themore » recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.« less

  6. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  7. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.

  8. Energy technologies and the environment: Environmental information handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acidmore » rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).« less

  9. Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming

    USGS Publications Warehouse

    Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.

    2011-01-01

    A total of 37 coal beds were identified during this assessment, 23 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Southwestern Powder River Basin assessment area for these 23 coal beds, with no restrictions applied was calculated to be 369 billion short tons. Available coal resources, which are part of the original resource that is accessible for potential mine development after subtracting all restrictions, are about 341 billion short tons (92.4 percent of the total original resource). Approximately 61 percent are at depths between 1,000 and 2,000 ft, with a modeled price of about $30 per short ton. Therefore, the majority of coal resources in the South-western Powder River Basin assessment area are considered sub-economic.

  10. Environmental issues and economic performance of the coal industry in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, E.A.; Seabra, F.; Wendhausen, J.

    1996-12-31

    The purpose of this study is to investigate the main sources of inefficiency of the Brazilian coal industry. In addition, the authors examine the current and the future competitiveness of the Brazilian coal industry taking into account the effects of globalization, the modernization of the mining techniques and, most important, the environmental costs regarded under the concept of sustainable development. This paper examines some of the causes behind the alleged inefficiency of coal production and coal-electric generation, with special emphasis to environmental issues. The rest of the paper is organized as follows. Section 2 outlines a profile of the energeticmore » potential of coal reserves in Brazil. In section 3, the authors discuss environmental restrictions and other features that can be related to the performance of the coal industry in Brazil.« less

  11. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  12. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.; Tselev, A.; Jesse, S.

    The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and the development of rheological models of coal to coke transformations and for advancing novel approaches. Here, we explore the relationship between the local structural, chemical composition and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy (BE-AFAM) for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size,more » the bond-bending disorder of sp2 aromatic double bonds and the defect density. This methodology hence allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modelling and optimization of coal utilization processes.« less

  13. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  14. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  15. Coal resources of the eastern regions of Russia for power plants of the Asian super ring

    NASA Astrophysics Data System (ADS)

    Sokolov, Aleksander; Takaishvili, Liudmila

    2018-01-01

    The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.

  16. Effect of ground control mesh on dust sampling and explosion mitigation.

    PubMed

    Alexander, D W; Chasko, L L

    2015-07-01

    Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.

  17. Effect of ground control mesh on dust sampling and explosion mitigation

    PubMed Central

    Alexander, D.W.; Chasko, L.L.

    2017-01-01

    Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000

  18. VEGETATIVE REHABILITATION OF ARID LAND DISTURBED IN THE DEVELOPMENT OF OIL SHALE AND COAL

    EPA Science Inventory

    Field experiments were established on sites disturbed by exploratory drilling in the oil shale region of northeastern Utah and on disturbed sites on a potential coal mine in south central Utah. Concurrently, greenhouse studies were carried out using soil samples from disturbed si...

  19. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash : [summary].

    DOT National Transportation Integrated Search

    2015-04-01

    Fly ash produced when pulverized coal is burned in electrical generators can be used as a : concrete additive with many benefits. However, fly ash can have a high ammonia content, : which is released when used in concrete, potentially exposing worker...

  20. OVERBURDEN MINERALOGY AS RELATED TO GROUND-WATER CHEMICAL CHANGES IN COAL STRIP MINING

    EPA Science Inventory

    A research program was initiated to define and develop an inclusive, effective, and economical method for predicting potential ground-water quality changes resulting from the strip mining of coal in the Western United States. To utilize the predictive method, it is necessary to s...

  1. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  2. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  3. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  4. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  5. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  6. The enviornmental assessment of a contemporary coal mining system

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Sullivan, P. J.; Hutchinson, C. F.; Stevens, C. M.

    1980-01-01

    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected.

  7. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  8. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614

  9. DOLLY SODS WILDERNESS, WEST VIRGINIA.

    USGS Publications Warehouse

    Englund, Kenneth J.; Hill, James J.

    1984-01-01

    Coal, the principal mineral resource of the Dolly Sods Wilderness, West Virginia is in at least seven beds of low- to medium-volatile bituminous rank. Of these beds, four are of sufficient thickness, quality, and extent to contain demonstrated coal resources which are estimated to total about 15. 5 million short tons in areas of substantiated coal resource potential. A Small-scale development of the coal resources of the Dolly Sods Wilderness has been by several shallow adits which provided fuel for locomotives during early logging operations and by a one truck mine. All mine entries are now abandoned. Peat, shale, clay, and sandstone, occur in the area but because of remoteness of markets and inaccessability they are not classified as resources in this report. Natural gas may occur in rocks underlying the area, but because of a lack of subsurface information an estimate of resource potential has not been made. No evidence of metallic-mineral resources was found during this investigation.

  10. Coal assessments and coal research in the Appalachian basin: Chapter D.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Tewalt, Susan J.; Ruppert, Leslie F.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    State geological surveys are concentrating on mapping and correlating coal beds and coal zones and studying CBM potential and production. Both State surveys and the USGS are researching the potential for carbon dioxide sequestration in unmined coal beds and other geologic reservoirs. In addition, the State geological surveys continue their long-term collaboration with the USGS and provide coal stratigraphic data to the National Coal Resources Data System (NCRDS).

  11. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the mechanisms involved in this economically important activity.

  12. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  13. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  14. Simulation of the visual effects of power plant plumes

    Treesearch

    Evelyn F. Treiman; David B. Champion; Mona J. Wecksung; Glenn H. Moore; Andrew Ford; Michael D. Williams

    1979-01-01

    The Los Alamos Scientific Laboratory has developed a computer-assisted technique that can predict the visibility effects of potential energy sources in advance of their construction. This technique has been employed in an economic and environmental analysis comparing a single 3000 MW coal-fired power plant with six 500 MW coal-fired power plants located at hypothetical...

  15. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  16. Application of the Exergy UCG technology in international UCG projects

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Underground Coal Gasification is a subject of continuing global interest in the energy sector. While the international scenario in UCG is promising, it is deeply desirable that advances in this area are seen in India as well. This is particularly so with the Paris Climate Agreement bringing in more stringent challenges for clean energy development. India has many potential coal basins which may be suitable for UCG deployment. India is in dire need of indigenous source of gaseous and liquid hydrocarbons that could compete with imported products. It is also the country with exceptionally large and diverse coal and lignite resources, large part of which could not be mined due to geological complexity and prohibitive cost. Thus, there is a rationale that the εUCG™ technology plays a decisive role in realizing the potential of Indian coal resources for the benefit of Indian industry and population. This article has been adapted by Dr. Ajay K. Singh from a lecture delivered at the “Workshop on Challenges and Opportunities of Underground Coal Gasification”, Vigyan Bhawan, New Delhi on 14 February 2017.

  17. Status of H-Coal commercial activities. [Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.N. Jr.

    1981-01-01

    The H-Coal process is a development of Hydrocarbon Research, Inc. (HRI). It converts coal by catalytic hydrogenation to substitutes for petroleum ranging from a low sulfur fuel oil to an all distillate synthetic crude, the latter representing a potential source of raw material for the petrochemical industry. The process is a related application to HRI's H-Oil process which is used commercially for the desulfurization of residual oils from crude oil refining. A large scale pilot plant was constructed at Catlettsburg, Kentucky that is designed to process 200 to 600 TPD of coal. The paper includes an update on the keymore » activities associated with the Breckinridge Project: Pilot Plant H-Coal at Catlettsburg, Kentucky; commercial design activities in Houston; and permit and EIS activities for the Addison, Kentucky plant site.« less

  18. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Study of the effect of bacteria on the disappearance and transformation of CO in the sealed fire zone of coal mine

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai

    2017-01-01

    When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.

  20. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  1. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  2. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  3. Analysis of the current rib support practices and techniques in U.S. coal mines

    PubMed Central

    Mohamed, Khaled M.; Murphy, Michael M.; Lawson, Heather E.; Klemetti, Ted

    2016-01-01

    Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins, coal seams, geology, loading conditions, and rib control strategies. The key findings are: (1) any rib design guideline or tool should take into account external rib support as well as internal bolting; (2) rib bolts on their own cannot contain rib spall, especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing; (3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration; (4) potential rib instability occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line, claystone partings, and soft coal bench overlain by rock strata; (5) 47% of the studied rib spall was classified as blocky—this could indicate a high potential of rib hazards; and (6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m. PMID:27648341

  4. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less

  5. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    DOE PAGES

    Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...

    2015-09-24

    Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less

  6. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  7. Health effects research in direct coal liquefaction. Studies of H-coal distillates: Phase I. PDU samples - the effects of hydrotreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epler, J.L.; Fry, R.J.M.; Larimer, F.W.

    1981-11-01

    A multi-divisional effort aimed at the integrated assessment of the health and environmental effects of various coal conversion and shale oil technologies is being carried out. The feasibility of using health effects bioassays to predict the potential biohazard of various H-Coal derived test materials is examined in a coupled chemical and biological approach. The primary focus of the research is the use of preliminary chemical characterizations and preparation for bioassay, followed by testing in short-term assays in order to rapidly ascertain the potential biohazard. Mammalian toxicological assays parallel the testing. Raw and hydrotreated product liquids from process development units ofmore » H-Coal and the pilot plant solvent refined coal process were examined for acute toxicity monitored as population growth impairment of Tetrahymena exposed to aqueous extracts and for mutagenic activity monitored as revertants of Salmonella exposed to metabolically activated chemical class fractions. Medium to high severity hydrotreatment appears to be an effective means of reducing biological activity, presumably by reducing the aromaticity and heteroatom content. Five basic mammalian, acute toxicity tests have been conducted with selected H-coal samples and shale oil derivatives. The data show that H-Coal samples are moderately toxic whereas the toxicity of shale oil derived products is slight and comparable to samples obtained from naturally occurring petroleums. No overt skin or eye toxicity was found. The present data reveal that coal-derived distillates generated by the H-coal process are highly carcinogenic to mouse skin. An extreme form of neurotoxicity associated with dermal exposure to one of the lighter, minimally carcinogenic, materials was noted. (DMC)« less

  8. Create a Consortium and Develop Premium Carbon Products from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Rusinko; John Andresen; Jennifer E. Hill

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuelmore » industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.« less

  9. Geochemical evaluation of upper cretaceous fruitland formation coals, San Juan Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Michael, G.E.; Anders, D.E.; Law, B.E.

    1993-01-01

    Geochemical analyses of coal samples from the Upper Cretaceous Fruitland Formation in the San Juan Basin of New Mexico and Colorado were used to determine thermal maturity, type of kerogen, and hydrocarbon generation potential. Mean random vitrinite reflectance (%Rm) of the Fruitland coal ranges from 0.42 to 1.54%. Rock-Eval pyrolysis data and saturated to aromatic hydrocarbon ratio indicate that the onset of thermal hydrocarbon generation begins at about 0.60% Rm and peak generation occurs at about 0.85% Rm. Several samples have hydrogen index values between 200 and 400, indicating some potential for liquid hydrocarbon generation and a mixed Type III and II kerogen. Pentacyclic and tricyclic terpanes, steranes, aromatic steroids and methylphenanthrene maturity parameters were observed through the complete range of thermal maturity in the Fruitland coals. Aromatic pentacyclic terpanes, similar to those found in brown coals of Australia, were observed in low maturity samples, but not found above 0.80% Rm. N-alkane depleted coal samples, which occur at a thermal maturity of approx. 0.90% Rm, paralleling peak hydrocarbon generation, are fairly widespread throughout the basin. Depletion of n-alkanes in these samples may be due to gas solution stripping and migration fromthe coal seams coincident with the development of pressure induced fracturing due to hydrocarbon generation; however, biodegradation may also effect these samples. ?? 1993.

  10. Potential minability and economic viability of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia; a prefeasibility study

    USGS Publications Warehouse

    Huber, Douglas W.; Pierce, Brenda S.

    2000-01-01

    The U. S. Geological Survey (USGS) conducted a coal resource assessment of several areas in Armenia from 1997 to 1999. This report, which presents a prefeasibility study of the economic and mining potential of one coal deposit found and studied by the USGS team, was prepared using all data available at the time of the study and the results of the USGS exploratory work, including core drilling, trenching, coal quality analyses, and other ongoing field work. On the basis of information currently available, it is the authors? opinion that a small surface coal mine having about a 20-year life span could be developed in the Antaramut-Kurtan-Dzoragukh coal field, specifically at the Dzoragukh site. The mining organization selected or created to establish the mine will need to conduct necessary development drilling and other work to establish the final feasibility study for the mine. The company will need to be entrepreneurial, profit oriented, and sensitive to the coal consumer; have an analytical management staff; and focus on employee training, safety, and protection of the environment. It is anticipated that any interested parties will be required to submit detailed mining plans to the appropriate Armenian Government agencies. Further development work will be required to reach a final decision regarding the economic feasibility of the mine. However, available information indicates that a small, economic surface mine can be developed at this locality. The small mine suggested is a typical surface-outcropstripping, contour mining operation. In addition, auger mining is strongly suggested, because the recovery of these low-cost mining reserves will help to ensure that the operation will be a viable, economic enterprise. (Auger mining is a system in which large-diameter boreholes are placed horizontally into the coal seam at the final highwall set as the economic limit for the surface mining operation). A special horizontal boring machine, which can be imported from Russia, is required for auger mining. Although auger-mining coal reserves do exist, the necessary development work will further verify the extent of these reserves and all of the other indicated reserves. The following items are based on the detailed study reported in this publication. Initial investment.?Following an investment of US $85,000 over a 12-month period in mine development drilling and other activities, a decision must be taken regarding further investment in an ongoing mining operation. If the new data support the opening of the surface mine, __________________________ 1Consultant, 6024 Morning Dew Drive, Austin, TX 78749. 2 U.S. Geological Survey, 956 National Center, Reston, VA 20192 1 2 MINABILITY AND ECONOMIC VIABILITY, ANTARAMUT-KURTAN-DZORAGUKH COAL FIELD the $85,000 development cost is amortized over the first 10 years of mine production. If the new data do not support the opening of the mine, the $85,000 is considered a business development expense that may be written off against profits from other operations for income or other tax purposes or simply as a business loss. Total capital required.?The equipment costs will reach a total of $900,500 which will be amortized over a 7-year period to establish estimated coal mining costs. Estimated working capital costs are $300,000, which will be borrowed. Surface mining reserves.?Approximately 840,200 metric tonnes of surface minable coal reserves at 9.3 m3 of overburden per metric tonne of minable coal is indicated. Recovery of the minable coal at 85 percent will yield 714,000 recoverable metric tonnes of marketable as-mined coal. Auger mining reserves.?Auger-mining reserves of 576,000 metric tonnes are indicated. Recoverable auger-mining reserves of 202,000 metric tonnes (at 35-percent recovery) can be expected. Auger-mining production will vary according to the hole size being used, but, in either case, augering is a very profitable addition to the mining oper

  11. Polycyclic aromatic hydrocarbons (PAHs) in multimedia environment of Heshan coal district, Guangxi: distribution, source diagnosis and health risk assessment.

    PubMed

    Huang, Huan-Fang; Xing, Xin-Li; Zhang, Ze-Zhou; Qi, Shi-Hua; Yang, Dan; Yuen, Dave A; Sandy, Edward H; Zhou, Ai-Guo; Li, Xiao-Qian

    2016-10-01

    Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g(-1), 426.98 and 381.20 ng L(-1), respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10(-4)), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.

  12. Renal Cell Toxicity of Water-Soluble Coal Extracts from the Gulf Coast

    NASA Astrophysics Data System (ADS)

    Ojeda, A. S.; Ford, S.; Ihnat, M.; Gallucci, R. M.; Philp, P. R.

    2017-12-01

    In the Gulf Coast, many rural residents rely on private well water for drinking, cooking, and other domestic needs. A large portion of this region contains lignite coal deposits within shallow aquifers that potentially leach organic matter into the water supply. It is proposed that the organic matter leached from low-rank coal deposits contributes to the development of kidney disease, however, little work has been done to investigate the toxicity of coal extracts. In this study, human kidney cells (HK-2) were exposed to water-soluble extracts of Gulf Coast Coals to assess toxicity. Cell viability was measured by direct counts of total and necrotic cells. A dose-response curve was used to generate IC50 values, and the extracts showed significant toxicity that ranged from 0.5% w/v to 3% w/v IC50. The most toxic extract was from Louisiana where coal-derived organic material has been previously linked to high incidents of renal pelvic cancer (RPC). Although the toxic threshold measured in this study is significantly higher than the concentration of organic matter in the groundwater, typically <5 mg/L (0.005% w/v), residents in the affected areas may consume contaminated water over a lifetime. It is possible that the cumulative toxic effects of coal-derived material contribute to the development of disease.

  13. US fossil fuel technologies for Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite depositsmore » that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.« less

  14. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    NASA Astrophysics Data System (ADS)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  15. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  16. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    USGS Publications Warehouse

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.

  17. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  18. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  19. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  20. Chimney subsidence development in the Colorado Springs coal field, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheson, G.M.; Pearson, M.L.

    1985-01-01

    Mining in the Colorodo Springs coal field took place from the 1880's to 1940's. The depth of mining in the coal field varied from about 10 meters to over 150 meters. Review of sequential historical aerial photographs from 1937 to 1960 indicated about 2400 chimney subsidence sinkholes had developed throughout the study area. Statistical analyses of the location and size of these sinkholes with respect to the time since mining, depth of mining, mined thickness and type of mining indicated definite trends in the time of occurrence, size, and location of these features. This data is valuable in the assessmentmore » of potential future subsidence in this and other areas of similar mining conditions.« less

  1. Preliminary Investigations of the Distribution and Resources of Coal in the Kaiparowits Plateau, Southern Utah

    USGS Publications Warehouse

    Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.

    1996-01-01

    EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits Plateau are laterally discontinuous relative to many other coal bearing regions of the United States. That is, they end more abruptly and are more likely to fragment or split into thinner beds. Because of these characteristics, the data from approximately 160 drill holes and 40 measured sections available for use in this study are not sufficient to determine what proportion of the resources is technologically and economically recoverable. The Kaiparowits Plateau contains an original resource of 62 billion short tons of coal in the ground. Original resource is defined to include all coal beds greater than one foot thick in the area studied. None of the resource is recoverable by surface mining. However, the total resource figure must be regarded with caution because it does not reflect geologic, technological, land-use, and environmental restrictions that may affect the availability and the recoverability of the coal. At least 32 billion tons of coal are unlikely to be mined in the foreseeable future because the coal beds are either too deep, too thin to mine, inclined at more than 12?, or in beds that are too thick to be completely recovered in underground mining. The estimated balance of 30 billion tons of coal resources does not reflect land use or environmental restrictions, does not account for coal that would be bypassed due to mining of adjacent coal beds, does not consider the amount of coal that must remain in the ground for roof support, and does not take into consideration the continuity of beds for mining. Although all of these factors will reduce the amount of coal that could be recovered, there is not sufficient data available to estimate recoverable coal resources. For purposes of comparison, studies of coal resources in the eastern United States have determined that less than 10 percent of the original coal resource, in the areas studied, could be mined economically at today's prices (Rohrbacher and others, 1994).

  2. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE PAGES

    Holland, Troy; Fletcher, Thomas H.

    2017-02-22

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  3. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy; Fletcher, Thomas H.

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  4. Study on each phase characteristics of the whole coal life cycle and their ecological risk assessment-a case of coal in China.

    PubMed

    Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren

    2017-01-01

    The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.

  5. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG reactors. Fault reactivation resulting from fault shear and normal displacements is discussed under consideration of potentially induced seismicity. Here, the coupled simulation results indicate that seismic hazard during UCG operation remains negligible with a seismic moment magnitude of MW < 3.

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  7. Coal in sub-Saharan-African countries undergoing desertification

    NASA Astrophysics Data System (ADS)

    Weaver, J. N.; Brownfield, M. E.; Bergin, M. J.

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation.

  8. Coal in sub-Saharan-African countries undergoing desertification

    USGS Publications Warehouse

    Weaver, J.N.; Brownfield, M.E.; Bergin, M.J.

    1990-01-01

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation. ?? 1991.

  9. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    USGS Publications Warehouse

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  10. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  11. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in complete agreement. PSO technique had already been found a well-established technique to model SP anomalies. Therefore for successful control and mitigation, SP surveys coupled with Neural Network and PSO technique proves to be novel and economical approach along with other existing geophysical techniques. Keywords: PSO, Coal fire, Self-Potential, Inversion, Neural Network

  12. Coal conversion: description of technologies and necessary biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-08-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  13. Balanced program plan. Volume IV. Coal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C. R.; Reichle, D. E.; Gehrs, C. W.

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants. (auth)« less

  14. Balanced program plan. Volume 4. Coal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  15. Coal Fires in the United States: A Case Study in Government Inattention

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2006-12-01

    Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.

  16. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  17. Conversion of Coal Mine Gas to LNG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools withmore » which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.« less

  18. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  19. Huminite reflectance measurements of Paleocene and Upper Cretaceous coals from borehole cuttings, Zavala and Dimmit counties, South Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Hook, Robert W.; Warwick, Peter D.

    2005-01-01

    The reflectance of huminite in 19 cuttings samples was determined in support of ongoing investigations into the coal bed methane potential of subsurface Paleocene and Upper Cretaceous coals of South Texas. Coal cuttings were obtained from the Core Research Center of the Bureau of Economic Geology, The University of Texas at Austin. Geophysical logs, mud-gas logs, driller's logs, completion cards, and scout tickets were used to select potentially coal-bearing sample suites and to identify specific sample depths. Reflectance measurements indicate coals of subbituminous rank are present in a wider area in South Texas than previously recognized.

  20. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  1. Evaluating the Energy Recovery Potential of Nigerian Coals under Non-Isothermal Thermogravimetry

    NASA Astrophysics Data System (ADS)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study investigated the fuel properties and energy recovery potential of two coal samples from Ihioma (IHM) and Ogboligbo (OGB) environs in Nigeria. The ultimate, proximate, and bomb calorimetric analyses of the coal were examined. Next, the rank classification and potential application of the coals were evaluated according to the ASTM standard D388. Lastly, thermal decomposition behaviour was examined by non-isothermal thermogravimetry (TG) under pyrolysis conditions from 30 - 900 °C. The results indicated IHM and OGB contain high proportions of combustible elements for potential thermal conversion. The higher heating value (HHV) of IHM was 20.37 MJ/kg whereas OGB was 16.33 MJ/kg. TG analysis revealed 55% weight loss for OGB and 76% for IHM. The residual mass was 23% for IHM and 44% for OGB. Based on the temperature profile characteristics (TPCs); Ton , Tmax , and Toff , IHM was more reactive than OGB due to its higher volatile matter (VM). Overall, results revealed the coals are Lignite (Brown) low-rank coals (LRCs) with potential for electric power generation.

  2. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    PubMed

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  3. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  4. Global change and rampant land and water resource development a case study in western Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J.; Kienzle, S.; Schindler, D.

    2006-12-01

    This paper reviews the impacts of global and regional change on the land and water resources in Alberta, Canada. Alberta contains most of Canada's fossil fuel energy resources, including: extensive conventional crude oil and natural gas fields; widespread coal deposits over the southern half of the province with potential for mining and coal bed methane extraction (CBM); and the Athabasca oil sands a crude oil supply of at least several hundred billion barrels entangled in extensive sand deposits lying along the Athabasca River. The province is also a focal point for intensive agriculture in the form of irrigation that has led to over allocated rivers in the south, and a booming economy associated with rapid population growth and associated urban sprawl in support of rapid resource development. All this development is occurring in a region where global climate change is expected to have substantial impacts on land and water in the next few decades. This work outlines the potential impacts of a range of human activities associated with some of the most intensive and extensive resource development plans in North America focused on one region - Alberta. Oil sands investments alone in the next few decades are forecast to exceed one hundred billion dollars! There are plans to double and triple primary and secondary agricultural production; expand coal mining in support of conventional coal fired power plants; and establish CBM well networks over much of the southern half of the province, including extensive development of CBM on the eastern slopes of the Rocky Mountains, the principal source of water for most of the semi-arid Canadian plains. The development pace and direction will likely result in widespread environmental contamination of regional and global consequence.

  5. Biochemical bond breaking in coal: Third quarterly report, (April through June 1987)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-07-01

    Major research efforts are presently being conducted in three principal areas of focus: (1) optimization of coal biosolubilization; (2) characterization of the solubilized products resulting from microbial coal depolymerization; and (3) degradation of model compounds to assess potential interunit linkages which may be attacked by whole culture or cell-free culture supernatants containing extracellular enzymes. Initial evaluations of the various combinations of microbes, coals, and coal pretreatments indicated that CP1 and CP1 + 2 solubilized all of the coals selected for this project at substantially higher rates than S. setonii or T. versicolor. The ARC CP1 + 2 consortium was chosenmore » as the primary culture for detailed evaluation of coal biosolubilization and model compound degradation. Studies were conducted to determine if solubilization of coal by CP1 + 2 supernatants could be enhanced by elevating the temperature. Solubilization of both untreated Leonardite and HNO3 treated Wyodak (Smith-Roland) subbituminous coal was increased when elevating the temperature from ambient to 35C. The initial solubilization rate (T0 - 1 hour) of Leonardite at 22C was 16 OD units/hour and at 35C was 18 OD units/hour. Thus, an elevation of 13C enhanced solubilization of this coal by 12.5%. The effect of temperature on solubilization of Wyodak coal appeared to be more pronounced. Solubilization of HNO3 treated coals by the CP organisms is not only relatively rapid, but is also extensive. The relatively rapid and extensive coal solubilization attainable by CP1 + 2 has enabled us to produce quantities of product sufficient for analytical methods development and for characterization of the coal products. Initial attempts have been made to characterize the depolymerized products using HPLC and GC/MS. 9 figs., 3 tabs.« less

  6. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  7. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  8. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics of well near horizontal directional drilling are analyzed, and the multi-stage filter method is proposed to suppress the natural potential and strong frequency interference signal. And the weak electromagnetic communication signal is extracted from the received signal. Finally, the detailed design of the electromagnetic wave while drilling is given.

  9. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  10. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for Measurement of Silica on Filter Samples of Coal Dust

    PubMed Central

    Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2015-01-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184

  12. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust.

    PubMed

    Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2012-11-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.

  13. Poromechanical response of naturally fractured sorbing media

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant

    The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).

  14. The Effect of a Tectonic Stress Field on Coal and Gas Outbursts

    PubMed Central

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648

  15. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  16. Towards "a different kind of beauty": responses to coal-based pollution in the Witbank coalfield between 1903 and 1948.

    PubMed

    Singer, Michal

    2011-01-01

    This article assesses the changing conceptions of the environmental impact of South African coal mining in the first half of the twentieth century, with special reference to the Witbank coalfield in the Mpumalanga province of South Africa. The anticipated development of the emerging coal town of Witbank was founded on the growing demand for coal. As Witbank's local landscape became visibly scarred, coal-based pollution was continually challenged and redefined. In an attempt to market electricity, and appease the doubts of potential consumers, attempts were made by Escom to romanticise features of Witbank's industrialised environment. Once mines were decommissioned, they were abandoned. Coal production increased dramatically during the Second World War, which provided an economic windfall for the local electrical, steel and chemical industries, placing undue pressure on the coal industry to step up production. The severe damage caused by coal mining during this period resulted in the ecological devastation of affected landscapes. The findings of an inter-departmental committee established to conduct research during the mid-1940s revealed the gravity of coal-based pollution, and set a precedent in the way that the state conceived of the impact of industry and mining. The report of this committee was completed in the wake of the war, by which time the Witbank coalfield had become one of the most heavily polluted regions of South Africa.

  17. JEDI Coal Model | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Coal Model JEDI Coal Model The Jobs and Economic Development Impacts (JEDI) Coal Model allow users to estimate economic development impacts from coal projects and includes default information that can

  18. Completing the CCT mission: The challenge of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monk, J.R.

    1997-12-31

    In order to complete the clean coal technology mission it will be necessary to determine CCT`s role in the restructured electricity industry and develop a strategy to promote that role. First, one must understand where the industry is headed and how clean coal technology fits into that future. Then, one needs to develop a strategy for getting from here to there, from where CCT is today to where it must be in five, ten or twenty years to be a viable option for decision-makers. Coal makes sense for the United States for several important reasons, not the least of whichmore » is its abundance here. It also makes sense in terms of its economic impact on large areas of the nation. And if coal makes sense, especially economically, then clean coal technology makes even more sense because of its potential to capitalize on this abundant resource in an environmentally friendly manner. But after nearly thirty years of involvement in the political world at all levels from Washington, D.C. to Washington, Indiana, the author has learned the hard way that ``common sense`` does not always, or even often, carry the day in the policymaking process. He believes that the future of clean coal technology hinges on the ability in the next few months and years to mobilize all those who favor that technology to move forward in a cohesive and coordinated effort to affect the policymaking and political process and thereby promote and accelerate CCT development. If this can be done, then the nation will be well on the way to completing the clean coal technology mission and meeting the challenge of change.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment themore » high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.« less

  20. Report of activities of the advanced coal extraction systems definition project, 1979 - 1980

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Isenberg, L.

    1981-01-01

    During this period effort was devoted to: formulation of system performance goals in the areas of production cost, miner safety, miner health, environmental impact, and coal conservation, survey and in depth assessment of promising technology, and characterization of potential resource targets. Primary system performance goals are to achieve a return on incremental investment of 150% of the value required for a low risk capital improvement project and to reduce deaths and disability injuries per million man-hour by 50%. Although these performance goals were developed to be immediately applicable to the Central Appalachian coal resources, they were also designed to be readily adaptable to other coals by appending a geological description of the new resource. The work done on technology assessment was concerned with the performance of the slurry haulage system.

  1. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  2. The U.S. Energy Dilemma: The Gap between Today’s Requirements and Tomorrow’s Potential.

    DTIC Science & Technology

    1973-07-01

    Possible Solutions . ........ .. 142 Use of Low-Sulfur Coal ................ 43 Flue - Gas Desulfurization ................ 43 Coal Cleaning...1) use of low-sulfur coal, (2) flue - gas desulfurization , (3) coal cleaning, (4) coal refining, and (5) coal conversion. Use of Low-Sulfur Coal The...to the same point (Skillings Mining Rev., 1973). Flue - Gas Desulfurization With standards based on sulfur dioxide emissions per million Btu, rather than

  3. Technology and development requirements for advanced coal conversion systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  4. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enzymatic desulfurization of coal: Third quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Judith K.; Kitchell, Judith P.

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.

  6. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments tomore » the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.« less

  7. Impact of Coal Mining on Self-Rated Health among Appalachian Residents

    PubMed Central

    Woolley, Shannon M.; Bear, Todd M.; Balmert, Lauren C.; Talbott, Evelyn O.; Buchanich, Jeanine M.

    2015-01-01

    Objective. To determine the impact of coal mining, measured as the number of coal mining-related facilities nearby one's residence or employment in an occupation directly related to coal mining, on self-rated health in Appalachia. Methods. Unadjusted and adjusted ordinal logistic regression models calculated odds ratio estimates and associated 95% confidence intervals for the probability of having an excellent self-rated health response versus another response. Covariates considered in the analyses included number of coal mining-related facilities nearby one's residence and employment in an occupation directly related to coal mining, as well as potential confounders age, sex, BMI, smoking status, income, and education. Results. The number of coal mining facilities near the respondent's residence was not a statistically significant predictor of self-rated health. Employment in a coal-related occupation was a statistically significant predictor of self-rated health univariably; however, after adjusting for potential confounders, it was no longer a significant predictor. Conclusions. Self-rated health does not seem to be associated with residential proximity to coal mining facilities or employment in the coal industry. Future research should consider additional measures for the impact of coal mining. PMID:26240577

  8. Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Wu, Qiang; Liu, Honglei; Jiao, Jian

    Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are -270 m and -31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.

  9. Coalbed methane potential in the Appalachian states of Pennsylvania, West Virginia, Maryland, Ohio, Virginia, Kentucky, and Tennessee; an overview

    USGS Publications Warehouse

    Lyons, Paul C.

    1996-01-01

    This report focuses on the coalbed methane (CBM) potential of the central Appalachian basin (Virginia, eastern Kentucky, southern West Virginia, and Tennessee) and the northern Appalachian basin (Pennsylvania, northern West Virginia, Maryland, and Ohio). As of April 1996, there were about 800 wells producing CBM in the central and northern Appalachian basin. For the Appalchian basin as a whole (including the Cahaba coal field, Alabama, and excluding the Black Warrior Basin, Alabama), the total CBM production for 1992, 1993, 1994, and 1995, is here estimated at 7.77, 21.51, 29.99, and 32 billion cubic feet (Bcf), respectively. These production data compare with 91.38, 104.70, 110.70, and 112.11 Bcf, respectively, for the same years for the Black Warrior Basin, which is the second largest CBM producing basin in the United States. For 1992-1995, 92-95% of central and northern Appalachian CBM production came from southwestern Virginia, which has by far the largest CBM production the Appalachian states, exclusive of Alabama. For 1994, the average daily production of CBM wells in Virginia was 119.6 Mcf/day, which is about two to four times the average daily production rates for many of the CBM wells in the northern Appalachian basin. For 1992-1995, there is a clear increase in the percentage of CBM being produced in the central and northern Appalachian basin as compared with the Black Warrior Basin. In 1992, this percentage was 8% of the combined central and northern Appalachian and Black Warrior Basin CBM production as compared with 22% in 1995. These trends imply that the Appalachian states, except for Alabama and Virginia, are in their infancy with respect to CBM production. Total in place CBM resources in the central and northern Appalachian basin have been variously estimated at 66-76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (3.07 Tcf for central Appalachian basin and 11.48 Tcf for northern Appalachian basin) is technically recoverable according to Ricei s (1995) report. This compares with 20 Tcf in place and 2.30 Tcf as technically recoverable CBM for the Black Warrior Basin. These estimates should be considered preliminary because of unknown CBM potential in Ohio, Maryland, Tennessee, and eastern Kentucky. The largest potential for CBM development in the central Appalachian basin is in the Pocahontas coal beds, which have total gas values as much as 700 cf/ton, and in the New River coal beds. In the northern Appalachian basin, the greatest CBM potential is in the Middle Pennsylvanian Allegheny coal beds, which have total gas values as much as 252 cf/ton. Rice (1995) estimated a mean estimated ultimate recovery per well of 521 MMcfg for the central Appalachian basin and means of 121 and 216 MMcfg for the anticlinal and synclinal areas, respectively, of the northern Applachian basin. There is potential for CBM development in the Valley coal fields and Richmond basin of Virginia, the bituminous region of southeastern Kentucky, eastern Ohio, northern Tennessee, and the Georges Creek coal field of western Maryland and adjacent parts of Pennsylvania. Moreover, the Anthracite region of eastern Pennsylvania, which has the second highest known total gas content for a single coal bed (687 cf/ton) in the central and northern Appalachian basin, should be considered to have a fair to good potential for CBM development where structure, bed continuity, and permeability are favorable. CBM is mainly an undeveloped unconventional fossil-fuel resource in the central and northern Appalachian basin states, except in Virginia, and will probably contribute an increasing part of total Appalachian gas production into the next century as development in Pennsylvania, West Virginia, Ohio, and other Appalachian states continue. The central and northern Appalachian basins are frontier or emerging regions for CBM exploration and development, which will probably extend well into the next century. On the basis of CBM production

  10. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  11. Opportunity for America: Mexico`s coal future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, V.W.

    1993-09-01

    This study examines the history, current status and future prospects for increased coal use in Mexico. Environmental implications of the power-generation capacity expansion plans are examined in general terms. Mexican environmental law and regulations are briefly reviewed along with the new sense of urgency in the cleanup of existing environmental problems and avoidance of new problems as clearly mandated in recent Mexican government policy initiatives. It is expected that new capital facilities will need to incorporate the latest in process and technology to comply with existing environmental regulation. Technology developments which address these issues are identified. What opportunities have newmore » initiatives caused by the recent diversification of Mexico`s energy economy offered US firms? This report looks at the potential future use of coal in the Mexican energy economy, examining this issue with an eye toward identifying markets that might be available to US coal producers and the best way to approach them. Market opportunities are identified by examining new developments in the Mexican economy generally and the energy economy particularly. These developments are examined in light of the current situation and the history which brought Mexico to its present status.« less

  12. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Jones; Brandon Pavlish; Stephen Sollom

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less

  13. Development of a Rapid Assessment Method for Quantifying Carbon Sequestration on Reclaimed Coal Mine Sites

    NASA Astrophysics Data System (ADS)

    Maharaj, S.; Barton, C. D.; Karathanasis, A. D.

    2005-12-01

    Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies designed to sequester carbon in various terrestrial ecosystems. Reclaimed coal mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. However, quantifying new carbon (carbon that has been added to soil through recent biological processes) on reclaimed mine soils have proven to be difficult due to carbonates and coal particles present in the reclaimed coal mine spoils. Visible coal particles can be removed, but the microscopic coal dust particles remain. Additionally, with the advent of carbon trading on the stock market, rapid quantification of newly sequestered carbon has proven to be elusive. The focus of this project is to assess the potential of thermogravimetric analysis as a rapid, simple and direct method for differentiating and quantifying new carbon from old carbon (carbon of geologic origin) on reclaimed coal mine sites and provide a standard procedure for determining carbon sequestered in soil sinks. Thermogravimetry is a physico-chemical technique where the weight change is measured and recorded during the incremental heating of the soil sample over a temperature range of 25 to 1000 ° C. Grass litter and limestone were used as representative organic and inorganic carbon fractions, while coal was used to differentiate the old and new carbon within the organic fraction. Recoveries of mixtures at the 95 % confidence interval were found to be 94.49 ± 4.23 % (coal) , 93.67 ± 2.11 % (litter) , and 108.88 ± 2.88 % (limestone) respectively. Each of the above components appeared as distinct separate peaks on the thermograph, with litter appearing between 260 to 390 ° C, coal 425 to 480 ° C, and limestone 640 to 740 ° C. Overlapping peaks for the organic carbon represented by the grass litter may be indicative of cellulose and lignin fractions. Ongoing work in this area is being carried out to separate such peaks which may further enhance thermogravimetric analysis as an effective method to determine new carbon and to simultaneously monitor organic matter degradation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Vivak

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However.more » the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, however, when the coal was pressurized with CO2 at ambient ≤ P ≤ 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.« less

  15. Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model.

    PubMed

    Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun

    2016-10-03

    Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.

  16. Process development for production of coal/sorbent agglomerates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, D.M.

    1991-01-01

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less

  17. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investingmore » in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H 2S, NH 3, HCN, AsH 3, PH 3, HCl, NaCl, KCl, AS 3, NH 4NO 3, NH 4OH, KNO 3, HBr, HF, and HNO 3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.« less

  18. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiers, R.J.; Golden, D.; Gray, R.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less

  19. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  20. A New Use for High-Sulfur Coal

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; England, C.

    1982-01-01

    New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.

  1. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health.

    PubMed

    Oliveira, Marcos L S; da Boit, Kátia; Pacheco, Fernanda; Teixeira, Elba C; Schneider, Ismael L; Crissien, Tito J; Pinto, Diana C; Oyaga, Rafael M; Silva, Luis F O

    2018-01-01

    Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Influences Determining European Coal Seam Gas Deliverability

    NASA Astrophysics Data System (ADS)

    Clark, G.

    2009-04-01

    Technically the coal basins of Europe have generated significant Gas In Place figures that has historically generated investor's interest in the development of this potential coal seam gas (CSG) resource. In the early 1980's, a wave of international, principally American, companies arrived, established themselves, drilled and then left with a poor record of success and disappointed investors. Recently a second wave of investment started after 2002, with the smaller companies leading the charge but have the lesson been learned from the past failures? To select a CSG investment project the common European approach has been to: 1. Find an old mining region; 2. Look to see if it had a coal mine methane gas problem; 3. Look for the non-mined coal seams; and 4. Peg the land. This method is perhaps the reason why the history of CSG exploration in Europe is such a disappointment as generally the coal mining regions of Europe do not have commercial CSG reservoir attributes. As a result, investors and governments have lost confidence that CSG will be a commercial success in Europe. New European specific principles for the determination of commercial CSG prospects have had to be delineated that allow for the selection of coal basins that have a strong technical case for deliverability. This will result in the return of investor confidence.

  3. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  4. Fuel Characterization of Newly Discovered Nigerian Coals

    NASA Astrophysics Data System (ADS)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study seeks to characterize and highlight the fuel properties, rank, and classification of coals from Ihioma (IHM) and Ogboligbo (OGB) in Imo and Kogi states of Nigeria, respectively. The fuel properties were examined based on ultimate, proximate, and bomb calorific analyses. The results indicated that IHM coal contains comparatively higher C and H but lower O, N, and S content than OGB. In addition, the nitrogen (N) and sulphur (S) content for both coal samples were above 0.7 wt.% and 1.5 wt.%, respectively, which indicates high potential for pollutant emissions. Furthermore, the coal proximate properties were below 5 wt.% for Moisture; Volatiles (70 wt.%); Fixed Carbon (45 wt.%) and Ash (2.5 wt.%) on average. IHM coal has an HHV of 19.40 MJ/kg whereas OGB is 15.55 MJ/kg. This is due to the low carbon (C), hydrogen (H) and high oxygen (O) content in OGB whereas IHM contains higher VM and HHV. Furthermore, OGB presents better handling, storage, and transport potential. Furthermore, OGB has a higher fuel ratio and value index due to lower moisture, ash content, and volatiles. Based on the ASTM D388 standard, the coals were classified as Lignite (Brown) Low-Rank Coals (LRCs) with potential for energy recovery.

  5. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    DTIC Science & Technology

    1980-09-01

    TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD

  6. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  7. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in parallel with the proposed technologies. Principal options include promoting wind, solar and biogas as alternative energies; encouraging reforestation; using economic incentives to change energy policies; and gradually replacing obsolete facilities with new power plants. This study finds that the limited capacity and associated costs of alternative energies are the main factors that prevent competition with coal-based energy in China today.

  8. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    USGS Publications Warehouse

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  9. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan

    2017-02-15

    The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less

  12. Weak economy and politics worry US coal operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2009-01-15

    A potential decrease in demand, a new administration, and production constraints have coal operators worried about prospects for 2009. This and other interesting facts are revealed in this 2009 forecast by the journal Coal Age. Results are presented of the survey answered by 69 of the 646 executives contacted, on such questions about expected coal production, coal use, attitude in the coal industry, capital expenditure on types of equipment and productive capacity. Coal Age forecasts a 2.3% decline in coal production in 2009, down to 1.145 billion tons from 1.172 billion tons. 8 figs.

  13. Potential health impacts of burning coal beds and waste banks

    USGS Publications Warehouse

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  14. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  15. Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India

    NASA Astrophysics Data System (ADS)

    Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.

    2017-12-01

    Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems. Collaboration between geoscientists and public health researchers are essential to assess complex geohealth issues such as those that may be caused by uncontrolled coal fires. This type of multidisciplinary collaboration must be maintained and expanded to include engineers, social scientists, and others to help minimize or avoid these problems.

  16. A primer on the occurrence of coalbed methane in low-rank coals, with special reference to its potential occurrence in Pakistan

    USGS Publications Warehouse

    SanFilipo, John R.

    2000-01-01

    Introduction: This report compiles and updates a series of correspondence that took place between 1998 and early 2000 among the author and representatives of various consulting groups operating in the coal sector of Pakistan. The purpose of the original correspondence was to introduce basic concepts of coalbed methane (CBM) in low-rank coals to planners and other parties interested in the development of Pakistan's coal, particularly the large deposits of the Thar desert area of Sindh Province that were recently discovered (SanFilipo and Khan, 1994) by the Geological Survey of Pakistan (GSP) and the U.S. Geological Survey (USGS). The author tested two shallow boreholes in Sindh Province for CBM in 1992, including one in Thar, with very marginal results. Additional targets with better CBM prospects were recommended shortly thereafter (SanFilipo and others, 1994), but these were not followed up during subsequent drilling, nor were any other sites tested. Recent events, notably the rapid pace of CBM development in low-rank coals of the Powder River Basin of the U.S., and a show of CBM in commercial quantities in the Cambay Basin of India - both of which are similar in age and rank to most of Pakistan's coal - have indicated a need for reevaluating the initial CBM investigations made in Pakistan in 1992 and for a reassessment of the CBM prospects for the country at large.

  17. A fouling monitor alarm to prevent forced outages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.E.; Hickinbotham, A.; Fang, T.C.

    2000-07-01

    Many utilities rely on coal blending to meet emissions and boiler performance goals, but the increased variability in coal quality can adversely impact ash deposition and soot blowing requirements. Other utilities are experimenting with lower quality coals and burner zone blending of coals fired from different bunkers as part of a deregulation strategy to reduce fuel costs. However, these strategies can lead to slagging/fouling episodes, a possible outage, or a decrease in unit availability if boiler operations are not carefully monitored. This paper summarizes the development of software to monitor boiler fouling and to provide an advanced warning to themore » control operators when a fouling episode is imminent. With adequate warming, preemptive action can be taken (e.g., soot blowing, a change in coal blend, etc.) to potentially avoid a costly outage. The software utilizes a unique combination of combustion diagnostic techniques and convective section heat adsorption analyses to identify boiler operating conditions where ash deposition rates may be high and conductive to triggering a fouling episode. The paper outlines the history of the fouling problem and the implementation of the software on Wabamun Unit 4, a tangentially-fired unit with relatively narrow reheat tube spacing. The unit had a tendency to foul when burning a high alkaline (but low ash) coal seam. The paper discusses the software development, implementation, and data acquisitions activities. Preliminary test results are provided for Wabamun 4 and for Sundance Units 1 and 2 where the software was recently installed.« less

  18. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  19. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  20. Nitric Oxide Reduction over Sewage Sludge and Coal Chars at Conditions Relevant to Staged Fluidized Bed Combustion

    NASA Astrophysics Data System (ADS)

    Salatino, P.; Solimene, R.; Chirone, R.

    The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.

  1. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  2. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  3. Cogeneration technology alternatives study. Volume 6: Computer data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.

  4. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  5. Comparative analyses for selected clean coal technologies in the international marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less

  6. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  7. The directory of US coal and technology export resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  8. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, G.; Lane, D.; Edblom, G.

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distancemore » transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)« less

  9. Potential conflict between the coal and arable land resources in australia: A case for corporate responsiveness

    NASA Astrophysics Data System (ADS)

    Langkamp, Peter J.

    1985-01-01

    Background information on possible surface-coal-mining operations in arable agricultural areas in Australia is provided. The major co-occurrence of the coal and arable land resources was in the Darling Downs region of Queensland and the Liverpool Plains region of New South Wales; however, coal development will probably only occur in the former region over the next decade. Analysis of the situation in the Darling Downs region, which consists of 11 Shires, found five companies conducting prefeasibility projects for surface-coal development and the size of exploration areas concerned far exceeding final mined-land disturbance estimates. Most of the land included in the prefeasibility studies was classified as “arable with moderate crop restrictions requiring intensive management” (classes II IV). The total area of land that may be disturbed at some time in the future was less than 2% of the arable land in the Shires concerned. Project mutual exclusivity and ongoing rehabilitation of disturbed areas further reduce arable land out of production at any one time. It is suggested that, if self-regulation by the coal industry in Australia on rehabilitation issues is to remain a viable option in these areas, an understanding between the corporate and public sectors on the extent and limitations of its responsibilities must be obtained. The current development of a National Conservation Strategy for Australia should assist this to proceed. Research on various rehabilitation issues may be required prior to project commitment to ensure the responsibilities identified are realizable. Integrative problem-solving, incorporating audit procedures, was suggested as a suitable method to achieve these aims and corporate responsiveness was seen as a necessary first step.

  10. Health impacts of domestic coal use in China

    USGS Publications Warehouse

    Finkelman, R.B.; Belkin, H.E.; Zheng, B.

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  11. Health impacts of domestic coal use in China

    PubMed Central

    Finkelman, Robert B.; Belkin, Harvey E.; Zheng, Baoshan

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion. PMID:10097053

  12. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    USGS Publications Warehouse

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  13. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  14. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  15. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China.

    PubMed

    Xiong, Yan; Xiao, Tangfu; Liu, Yizhang; Zhu, Jianming; Ning, Zengping; Xiao, Qingxiang

    2017-10-01

    Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (I geo ), single factor index (P i ) and Nemerow index (P N ), soils i n the study area were mainly polluted by Cd, which constituted a potential risk to locally planted crops. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  17. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that aremore » associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.« less

  18. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  19. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less

  20. Cost and performance of coal-based energy in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temchin, J.; DeLallo, M.R.

    1998-07-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less

  1. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE PAGES

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.; ...

    2017-06-03

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantagesmore » of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.« less

  3. Evaluation of coal feed systems being developed by the Energy Research and Development administration

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Development criteria and recommendations for coal feed system selections that include supporting data are presented. Considered are the areas of coal feed coasts, coal feed system reliability, and the interaction of the feed system with the conversion process.

  4. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    NASA Astrophysics Data System (ADS)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  5. The determination of methane resources from liquidated coal mines

    NASA Astrophysics Data System (ADS)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  6. Industrial hygiene monitoring needs for the coal conversion and oil shale industries. Study group report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Otto; Morris, Samuel; Cessario, Thomas R.

    1979-11-01

    Conclusions of a study group organized to assess the need for research and development of instrumentation for monitoring occupational exposures in the coal conversion and oil shale industries are reported. Research and development requirements for assessing potentially hazardous exposures are reviewed. Hazardous substances are classified in the following four categories: those which are immediately hazardous to life and health; high risk, but not immediately hazardous; moderate risk and not immediately hazardous; and short-term, nonroutine high hazards. Specific research recommendations are made in the following areas: personal monitors for gases; nitrogen compounds; aerosols; metals; fibers and dust; surface contamination; skin contamination;more » analytical development; industrial hygiene surveys;research; and, bioassays. (JGB)« less

  7. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  8. 75 FR 18877 - Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... the Mineral Leasing Act of 1920, as amended by section 4 of the Federal Coal Leasing Amendments Act of... reserves contained in a potential lease. The Federal coal resources are located in Emery and Sevier...] Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041 AGENCY...

  9. Water resources and potential effects of surface coal mining in the area of the Woodson Preference Right Lease Application, Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1987-01-01

    Federal coal lands of the Woodson Preference Right Lease Application are located in Dawson and Richland Counties, northeastern Montana. A probable mine area, comprised of the lease area and adjacent coal lands, contains about 220 million tons of recoverable lignite coal in the 12-37 ft thick Pust coal bed. A hydrologic study has been conducted in the area to describe the water resources and to evaluate potential effects of coal mining on the water resources. Geohydrologic data collected from wells and springs indicate that several aquifers exist in the area. Sandstone beds in the Tongue River Member of the Fort Union Formation (Paleocene age) are the most common aquifers and probably underlie the entire area. The Pust coal bed in the Tongue River Member is water saturated in part of the probable mine area and is dry in other parts of the probable mine area. Other aquifers, located mostly outside of the probable mine area, exist in gravel of the Flaxville Formation (Miocene of Pliocene age) and valley alluvium (Pleistocene and Holocene age). Chemical analyses of groundwater indicate a range in dissolved solids concentration of 240-2,280 mg/L. Surface water resources are limited. Most streams in the area are ephemeral and flow only in response to rainfall or snowmelt. Small reaches of the North and Middle Forks of Burns Creek have intermittent flow. Water sampled from a small perennial reach of the Middle Fork had a dissolved solids concentration of 700 mg/L. Mining of the Pust coal bed would destroy one spring and four stock wells, dewater areas of the Pust coal and sandstone aquifers, and probably lower water levels in seven stock and domestic wells. Mining in the valley of Middle Fork Burns Creek would intercept streamflow and alter flow characteristics of a small perennial reach of stream. Leaching of soluble minerals from mine spoils may cause a long-term degradation of the quality of water in the spoils and in aquifers downgradient from the spoils. Some of the effects on local water supplies could be mitigated by development of new wells in deeper sandstones of the Tongue River Member. Effects of mining on water resources would be minimized if only areas of dry coal were mined. (Author 's abstract)

  10. Process development for production of coal/sorbent agglomerates. Final technical report, September 1, 1990--August 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, D.M.

    1991-12-31

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less

  11. Production of activated char from Illinois coal for flue gas cleanup

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  12. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Russell; Dombrowski, K.; Bernau, M.

    Coal-based power generation systems provide reliable, low-cost power to the domestic energy sector. These systems consume large amounts of fuel and water to produce electricity and are the target of pending regulations that may require reductions in water use and improvements in thermal efficiency. While efficiency of coal-based generation has improved over time, coal power plants often do not utilize the low-grade heat contained in the flue gas and require large volumes of water for the steam cycle make-up, environmental controls, and for process cooling and heating. Low-grade heat recovery is particularly challenging for coal-fired applications, due in large partmore » to the condensation of acid as the flue gas cools and the resulting potential corrosion of the heat recovery materials. Such systems have also not been of significant interest as recent investments on coal power plants have primarily been for environmental controls due to more stringent regulations. Also, in many regions, fuel cost is still a pass-through to the consumer, reducing the motivation for efficiency improvements. Therefore, a commercial system combining low-grade heat-recovery technologies and associated end uses to cost effectively improve efficiency and/or reduce water consumption has not yet been widely applied. However, pressures from potential new regulations and from water shortages may drive new interest, particularly in the U.S. In an effort to address this issue, the U.S. Department of Energy (DOE) has sought to identify and promote technologies to achieve this goal.« less

  13. Royal Society, Discussion on New Coal Chemistry, London, England, May 21, 22, 1980, Proceedings

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A discussion of new coal chemistry is presented. The chemical and physical structure of coal is examined in the first section, including structural studies of coal extracts, metal and metal complexes in coal and coal microporosity. The second section presents new advances in applied coal technology. The development of liquid fuels and chemicals from coal is given especial emphasis, with papers on the Sasol Synthol process, the Shell-Koppers gasification process, liquefaction and gasification in Germany, the Solvent Refined Coal process, the Exxon Donor Solvent liquefaction process and the Mobil Methanol-to-Gasoline process. Finally, some developments that will be part of the future of coal chemistry in the year 2000 are examined in the third section, including coal-based chemical complexes and the use of coal as an alternative source to oil for chemical feedstocks.

  14. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    PubMed

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  15. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal.

    PubMed

    Guijian, Liu; Liugen, Zheng; Duzgoren-Aydin, Nurdan S; Lianfen, Gao; Junhua, Liu; Zicheng, Peng

    2007-01-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  16. Detection of coal mine workings using high-resolution earth resistivity techniques. Final technical report, September 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.

    1980-09-26

    Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less

  17. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  18. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  19. Assessing U.S. coal resources and reserves

    USGS Publications Warehouse

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  20. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  1. The solubilization of low-ranked coals by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less

  2. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    USGS Publications Warehouse

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  3. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  4. CO2 sequestration potential of Charqueadas coal field in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Santarosa, C; Crandall, D

    2013-02-01

    Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.more » The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.« less

  5. Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana

    USGS Publications Warehouse

    Solano-Acosta, W.; Mastalerz, Maria; Schimmelmann, A.

    2007-01-01

    Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress. At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution. The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to providing access for methanogenic bacteria. The abundance, distribution, and orientation of cleats control coal fabric and are crucial features in all stages of coalbed gas operations (i.e., exploration and production). Understanding coal fabric is important for coal gas exploration as it may be related to groundwater migration and the occurrence of methanogenic bacteria, prerequisite to biogenic gas accumulations. Likewise, the distribution of cleats in coal also determines pathways for migration and accumulation of thermogenic gas generated during coalification. ?? 2007 Elsevier B.V. All rights reserved.

  6. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zhu, Y.; Chou, C.-L.; Zeng, R.; Zheng, B.

    2004-01-01

    Mineralogy, coal chemistry and 21 potentially hazardous trace elements (PHTEs) of 44 coal samples from the Qianxi Fault Depression Area (QFDA) in southwestern Guizhou province, China have been systematically studied. The major minerals in coals studied are quartz, kaolinite, illite, pyrite, calcite, smectite, marcasite and accessory minerals, including rutile, dolomite, siderite, gypsum, chlorite, melanterite, apatite, collophane and florencite. The SiO2 content shows a broad variation (0.8-30.7%). A high SiO2 content in Late Permian coals reflects their enrichment in quartz. The Al2O3 content varies from 0.8% to 13.4%, Fe2O3 from 0.2% to 14.6%, CaO from Al>K>Ti>Na>Mg>Ca>Fe>S. A comparison with World coal averages shows that the Late Permian coals in QFDA are highly enriched in As, Hg, F and U, and are slightly enriched in Mo, Se, Th, V and Zn. The Late Triassic coals in QFDA are highly enriched in As and Hg, and are slightly enriched in Mo, Th and U. The concentrations of As, Hg, Mo, Se, Tl and Zn in the QFDA coal are higher than other Guizhou coal and Liupanshui coal nearby. The QFDA is an area strongly affected by the low-temperature hydrothermal activity during its geologic history (Yanshanian Age, about 189 Ma). The coals in QFDA are enriched in volatile PHTEs, including As, Hg, Se, Sb, Mo, among others. The regions where the coals are enriched in As, Hg and F have been mapped. The regions of coals enriched in volatile PHTEs overlap with the regions of noble metal ore deposits. These coals are located in the cores of anticline and anticlinorium, which are connected with the profound faults through the normal faults. Coals are enriched in volatile PHTEs as a result of the low-temperature hydrothermal activity associated with tectonic faulting. ?? 2003 Elsevier B.V. All rights reserved.

  7. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  8. Performance potential of the coal strip mining in the east of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheskidov, V.I.

    2007-07-15

    The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.

  9. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less

  10. Developing a byproduct materials information system for the Kentucky Transportation Cabinet.

    DOT National Transportation Integrated Search

    2007-09-01

    Kentucky has numerous coal-fired, electric generating facilities and, as a result, there are abundant byproduct materials being produced from these facilities that have environmental, engineering, and economic potential as materials for use in common...

  11. Forecasting of a Thermal Condition of Pneumatic Tires of Dump Trucks

    NASA Astrophysics Data System (ADS)

    Kvasova, Anna; Gerike, Boris; Murko, Elena; Skudarnov, Dmitriy

    2017-11-01

    Over the last 10 years the world consumption of coal has grown almost by 50%. Coal is one of the main energy resources capable to satisfy basic energy demands of increasing population and developing world economy. On January 24, 2012 the long-term Coal Industry Development Program for the period till 2030 was approved in Russia. According to this Program coal mining in Kuzbass in 2030 will make 260 million tonns of coal per year. Development of the coal industry is impossible without upgrade of coal production by avoiding inefficient technological, organizational and economic solutions. Off the road (OTR) tires play an important role in ensuring effective, continuous and safe work of mining motor transport.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, B.B.

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating amore » potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.« less

  13. Similar simulation study on the characteristics of the electric potential response to coal mining

    NASA Astrophysics Data System (ADS)

    Niu, Yue; Li, Zhonghui; Kong, Biao; Wang, Enyuan; Lou, Quan; Qiu, Liming; Kong, Xiangguo; Wang, Jiali; Dong, Mingfu; Li, Baolin

    2018-02-01

    An electric potential (EP) can be generated during the failure process of coal and rock. In this article, a similar physical model of coal rock was built and the characteristics of the EP responding to the process of coal mining were studied. The results showed that, at the early mining stage, the structure of coal rock strata were stable in the simulation model, the support stress of overlying coal rock strata was low and the maximum subsidence was little, while the EP change was less. With the advancement of the working face, the support stress of the overlying coal rock strata in the mined-out area changed dramatically, the maximum subsidence increased constantly, the deformation and destruction were aggravated, and cracks expanded continuously. Meanwhile, the EP response was significant with fluctuation. When significant macro damage appeared in coal rock strata, the EP signal fluctuation was violent. The overlying coal rock strata were influenced by gravity and mining activity. During the mining process, the crack growth and the friction, together with slip between coal and rock particles, resulted in the response of EP. The change in EP was closely related to the damage state and stress distribution of the coal rock strata. EP monitoring has the advantages of accurate reflection and strong anti-interference in the field. Therefore, with further study, an EP monitoring method could be applied for monitoring and early warning of coal and rock dynamic disaster, and risk evaluation in the future. The strength of the EP and its fluctuation degree could serve as the key discrimination indexes.

  14. Coal depositional models in some Tertiary and Cretaceous coal fields in the U.S. Western Interior

    USGS Publications Warehouse

    Flores, R.M.

    1979-01-01

    Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and 'back-barrier'. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and 'back-barrier', which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. ?? 1979.

  15. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  16. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  17. Geochemistry of vanadium (V) in Chinese coals.

    PubMed

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  18. Crowding-out effect of coal industry investment in coal mining area: taking Shanxi province in China as a case.

    PubMed

    Li, Li; Lei, Yalin; Xu, Qun; Wu, Sanmang; Yan, Dan; Chen, Jiabin

    2017-10-01

    The rapid development of coal industry in Shanxi province in China has important effects on its economic development. A large amount of money has been invested into the coal industry and other related industries during the recent years. However, research on the investment effect of Shanxi's coal industry was rare. In order to analyze the investment effect of coal industry, based on the crowding-out effect model, cointegration test, and the data available in Shanxi Statistical Yearbooks, this paper calculates the effect between coal industry investment and other 17 industry investment. The results show that the investment of coal industry produces crowding-out effect on food industry, building materials industry, and machinery industry. Increasing 1% of the coal industry investment can reduce 0.25% of the food industry investment, or 0.6% of building materials industry investment, or 0.52% of the machinery industry investment, which implies that Shanxi province should adjust coal industrial structure, promote the balance development of coal industry and other industries, so as to promote its economic growth.

  19. Applying robust design to study the effects of stratigraphic characteristics on brittle failure and bump potential in a coal mine

    PubMed Central

    Kim, Bo-Hyun; Larson, Mark K.; Lawson, Heather E.

    2018-01-01

    Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades. For example, in just five states in the U.S. from 1983 to 2014, there were 388 reportable bumps. Despite significant advances in mine design tools and mining practices, these events continue to occur. Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology. The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining. This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk. Because the inherent variability of stratigraphic characteristics in sedimentary formations, such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually. Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data. In this study, orthogonal arrays, which were developed using the robust design, are used to define the combination of the (a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor, (b) location of the stiff sandstone inserted on the top and bottom of the coal seam, and (c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D. After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables. As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy. By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables. The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars. Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps. PMID:29416902

  20. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  1. Atomistic Modeling of Diffusion and Phase Transformations in Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Purja Pun, Ganga Prasad

    Dissertation consists of multiple works. The first part is devoted to self-diffusion along dislocation cores in aluminum followed by the development of embedded atom method potentials for Co, NiAl, CoAl and CoNi systems. The last part focuses on martensitic phase transformation (MPT) in Ni xAl1--x and Al xCoyNi1-- x--y alloys. New calculation methods were developed to predict diffusion coefficients in metal as functions of temperature. Self-diffusion along screw and edge dislocations in aluminum was studied by molecular dynamic (MD) simulations. Three types of simulations were performed with and without (intrinsic) pre-existing vacancies and interstitials in the dislocation core. We found that the diffusion along the screw dislocation was dominated by the intrinsic mechanism, whereas the diffusion along the edge dislocation was dominated by the vacancy mechanism. The diffusion along the screw dislocation was found to be significantly faster than the diffusion along the edge dislocation, and the both diffusivities were in reasonable agreement with experimental data. The intrinsic diffusion mechanism can be associated with the formation of dynamic Frenkel pairs, possibly activated by thermal jogs and/or kinks. The simulations show that at high temperatures the dislocation core becomes an effective source/sink of point defects and the effect of pre-existing defects on the core diffusivity diminishes. First and the foremost ingredient needed in all atomistic computer simulations is the description of interaction between atoms. Interatomic potentials for Co, NiAl, CoAl and CoNi systems were developed within the Embedded Atom Method (EAM) formalism. The binary potentials were based on previously developed accurate potentials for pure Ni and pure Al and pure Co developed in this work. The binaries constitute a version of EAM potential of AlCoNi ternary system. The NiAl potential accurately reproduces a variety of physical properties of the B2-NiAl and L12--Ni3Al phases. The potential is expected to be especially suitable for simulations of hetero-phase interfaces and mechanical behavior of NiAl alloys. Apart from properties of the HCP Co, the new Co potential is accurate enough to reproduce several properties of the FCC Co which were not included in the potential fit. It shows good transferability property. The CoAl potential was fitted to the properties of B2-CoAl phase as in the NiAl fitting where as the NiCo potential was fitted to the ab initio formation energies of some imaginary phases and structures. Effect of chemical composition and uniaxial mechanical stresses was studied on the martensitic phase transformation in B2 type Ni-rich NiAl and AlCoNi alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The twinned martensites were always formed under the uniaxial compression where as the single variant martensites were the results of the uniaxial tension. The transformation was reversible and characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress.

  2. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  3. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  4. Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China

    NASA Astrophysics Data System (ADS)

    Chen, Shancheng; Wu, Dun; Liu, Guijian; Sun, Ruoyu

    2017-01-01

    Normal burial metamorphism of coal superimposed by magmatic-contact metamorphism makes the characteristics of the Raman spectrum of coal changed. Nine coal samples were chosen at a coal transect perpendicular to the intrusive dike, at the No. 3 coal seam, Zhuji Coal Mine, Huainan Coalfield, China, with different distances from dike-coal boundary (DCB). Geochemical (proximate and ultimate) analysis and mean random vitrinite reflectance (R0, %) indicate that there is a significant relationship between the values of volatile matter and R0 in metamorphosed coals. Raman spectra show that the graphite band (G band) becomes the major band but the disordered band (D band) disappears progressively, with the increase of metamorphic temperature in coals, showing that the structural organization in high-rank contact-metamorphosed coals is close to that of well-crystallized graphite. Evident relationships are observed between the calculated Raman spectral parameters and the peak metamorphic temperature, suggesting some spectral parameters have the potentials to be used as geothermometers for contact-metamorphic coals.

  5. An evaluation of the efficacy of various coal combustion models for predicting char burnout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Josh; Goshayeshi, Babak; Sutherland, James C.

    Coal combustion is comprised of several subprocesses including devolatilization and heterogeneous reactions of the coal char with O 2, CO 2, H 2O and potentially several other species. Much effort has been put forth to develop models for these processes which vary widely in both complexity and computational cost. This work investigates the efficacy of models for devolatilization and char reactions at either end of the complexity and cost spectrums for a range of particle sizes and furnace temperatures and across coal types. The overlap of simulated devolatilization and char consumption is also examined. In the gas phase, a detailedmore » kinetics model based on a reduced version of the GRI 3.0 mechanism is used. The Char Conversion Kinetics and an n th-order Langmuir-Hinshelwood models are considered for char oxidation. The Chemical Percolation and Devolatilization and a two-step model are considered for devolatilization. Results indicate that high-fidelity models perform better at representing particle temperature and mass data across a wide range of O 2 concentrations as well as coal types. A significant overlap in devolatilization and char consumption is observed for both char chemistry and devolatilization models.« less

  6. An evaluation of the efficacy of various coal combustion models for predicting char burnout

    DOE PAGES

    McConnell, Josh; Goshayeshi, Babak; Sutherland, James C.

    2016-11-22

    Coal combustion is comprised of several subprocesses including devolatilization and heterogeneous reactions of the coal char with O 2, CO 2, H 2O and potentially several other species. Much effort has been put forth to develop models for these processes which vary widely in both complexity and computational cost. This work investigates the efficacy of models for devolatilization and char reactions at either end of the complexity and cost spectrums for a range of particle sizes and furnace temperatures and across coal types. The overlap of simulated devolatilization and char consumption is also examined. In the gas phase, a detailedmore » kinetics model based on a reduced version of the GRI 3.0 mechanism is used. The Char Conversion Kinetics and an n th-order Langmuir-Hinshelwood models are considered for char oxidation. The Chemical Percolation and Devolatilization and a two-step model are considered for devolatilization. Results indicate that high-fidelity models perform better at representing particle temperature and mass data across a wide range of O 2 concentrations as well as coal types. A significant overlap in devolatilization and char consumption is observed for both char chemistry and devolatilization models.« less

  7. Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model

    NASA Astrophysics Data System (ADS)

    Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.

    2016-02-01

    When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.

  8. Siting of prison complex above abandoned underground coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, G.G.

    1998-10-01

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the state of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. However, one masonry building was located within the potential drawmore » zone of mine works that still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was designed accordingly to be mine subsidence resistant. It was decided that a phase 2 prison complex should be constructed adjacent to and just south of the phase 1 complex. This complex would be directly above the underground workings. Subsequently, an extensive subsurface investigation program was undertaken to (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical database of subsidence events in the Illinois coal basin. As a result of this work many structures on the site required no or nominal subsidence considerations. However, for others that could be affected potentially by future subsidence movement preliminary subsidence resistant designs were completed using the expected level of potential subsidence movement.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, S.C.; Manwani, P.

    Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less

  10. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less

  11. Environmental analysis for pipeline gas demonstration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plantmore » of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.« less

  12. Assessment of global industrial-age anthropogenic arsenic contamination.

    PubMed

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  13. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resultedmore » in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run of pipe. In fact, an optimal signal is obtained near a pipe elbow. This is fortuitous, as bends are often more accessible on pipes in a power plant than straight sections. In contrast to measurement systems that rely on the uniformity of the air and coal profile, the accuracy of the system under development will not compromised by varying levels of flow uniformity.« less

  14. Final Scientific/Technical Report for project “Increasing the Rate and Extent of Microbial Coal to Methane Conversion through Optimization of Microbial Activity, Thermodynamics, and Reactive Transport”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Matthew

    Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the ratesmore » of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H 2O and CO 2 management.« less

  15. The Sohagpur Coalfield Project - A collaborative study of potential coking coal resources by the Geological Survey of India and the U.S. Geological Survey

    USGS Publications Warehouse

    Milici, Robert C.; Mukhopadhyay, Abhijit; Warwick, Peter D.; Adhikari, S.; Landis, Edwin R.; Mukhopadhyay, S.K.; Ghose, Ajoy K.; Bose, L.K.

    2003-01-01

    The Geological Survey of India (GSI), Coal Wing, and the U.S. Geological Survey (USGS), Energy Resources Team, conducted a collaborative study of the potential for coking coal resources within the Sohagpur coalfield, Madhya Pradesh, India from 1995 to 2001. The coalfield is located within an extensional basin that contains Permian- and Triassic-age strata of the Gondwana Supergroup (Figs. 1 and 2). The purposes of the study were to perform a synthesis of previous work and. an integrated analysis of the basin of deposition with particular emphasis on the regional stratigraphy and depositional environments of the coal-bearing strata, the geologic structure of the basin, and the geochemistry of the coal in order to understand the geologic controls on the distribution of coking coals within the basin. The results of this study have been published previously (Mukhopadhyay and others, 2001a, b), and this paper provides a general overview of our findings.

  16. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  17. Energy Crunch is Stimulant for Coal Research

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Presents views of the first International Coal Research Conference, involving problems facing reconversion to a coal-based energy economy, organization and funding of coal research units, development of new techniques for mining and using coal; and transportation of coal products to users. (CC)

  18. Cumulative potential hydrologic impacts of surface coal mining in the eastern Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G.

    1988-01-01

    There are 16 existing and six proposed surface coal mines in the eastern Powder River structural basin of northeastern Wyoming. Coal mining companies predict water level declines of 5 ft or more in the Wasatch aquifer to extend form about 1,000 to about 2,000 ft beyond the mine pits. The predicted 5 ft water level decline in the Wyodak coal aquifer generally extends 4-8 mi beyond the lease areas. About 3,000 wells are in the area of potential cumulative water level declines resulting from all anticipated mining. Of these 3,000 wells, about 1,200 are outside the areas of anticipated mining: about 1,000 wells supply water for domestic or livestock uses, and about 200 wells supply water for municipal, industrial, irrigation, and miscellaneous uses. The 1,800 remaining wells are used by coal mining companies. Future surface coal mining probably will result in postmining groundwater of similar quality to that currently present in the study area. By use of geochemical modeling techniques, the results of a hypothetical reaction path exercise indicate the potential for marked improvements in postmining water quality because of chemical reactions as postmining groundwater with a large dissolved solids concentration (3,540 mg/L) moves into a coal aquifer with relatively small dissolved solids concentrations (910 mg/L). Results of the modeling exercise also indicate geochemical conditions that are most ideal for large decreases in dissolved solids concentrations in coal aquifers receiving recharge from a spoil aquifer. (Lantz-PTT)

  19. Shell-armored wood cobbles as a potential criterion for detrital coal deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, M.J.; Nummedal, D.

    1986-01-01

    Shell-armored wood cobbles occur on detrital-peat beaches along the seaward edge of the Mississippi Delta. Shell material consists exclusively of Mulinia lateralis, a dwarf surf clam. Soft, heavy, waterlogged wood fragments are abraded and become armored by hard shells in response to wave activity on the beach. Although their preservation potential is suspect, fossilized shell-armored wood clasts would probably be recognized as a type of coal ball and might indicate an allochthonous origin for the host coal.

  20. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYSTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  1. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  2. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    USGS Publications Warehouse

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  3. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    USGS Publications Warehouse

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  4. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  5. Mineral resource potential map of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas counties, Colorado

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1983-01-01

    The depth of several thousand feet at which coal may underlie the surface rocks of the study area makes it a resource with little likelihood of development. The potential for oil and gas appears low because of the apparent lack of structural traps and the intense igneous activity in the area.

  6. Development of coal-feeding systems at the Morgantown Energy Research Center

    NASA Technical Reports Server (NTRS)

    Hobday, J. M.

    1977-01-01

    Systems for feeding crushed and pulverized coal into coal conversion reactor vessels are described. Pneumatic methods for feeding pulverized coal, slurry feeders, and coal pumps, methods for steam pickup, and a method for drying a water-coal slurry in a steam fluidized bed subsequent to feeding the coal into a reactor vessel are included.

  7. FURNACE SORBENT REACTIVITY TESTING FOR CONTROL OF SO2 EMISSIONS FROM ILLINOIS COALS

    EPA Science Inventory

    Research was undertaken to evaluate the potential of furnai sorbent injection (FSI) for sulf dioxide (S02) emission controlcoal-fired boilers utilizing coals indigenous to Illinois. Tests were run using four coals from the Illinois Basin and six calcium hydroxide [Ca(OH)2], sorbe...

  8. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  9. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Coal procurement activities. Technica report No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-14

    This report consists of reference material taken from Erie Mining Company project files and includes the following: (1) Investigation of the Main Coal Producing Fields in the United States: This report identifies potential coal fiels for gasifier feedstock and factors influencing coal selection. The report analyzes coal fields located in five separate regions of the United States. Three design coals are discussed and lab reports have been included. Also included are cost considerations for selected coals and preliminary cost data and transportation routing. (2) Analysis of Test Coals Received at Erie Mining Company: Rosebud, Clarion, and Clarion-Brookfield-Kittaning coal samples weremore » received and analyzed at Erie Mining Company. The screen analysis indicated the severe decrepitation of the Rosebud western coal. (3) Criteria for Gasifier Coal: In this study, BCI states that gasifier feed should have the following characteristics: (1) the ratio between the upper and lower size for coal should be 3:1; (2) coal fines should not exceed 10%; (3) coal grading limits which can be handled are maximum range 3'' x 1'', minimum range - 1 1/2'' x 1/2''.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.

    The coal seams uplifted by the Perija and Sierra Nevada de Santa marta Mountains along the border of Colombia and Venezuela are high quality reserves with low mining ratios that are in close proximity to the coast. Since the late 70`s and early 80`s, various mining developments have increased the production of these reserves to its current level of 37 million tons per year. Most of the production is shipped to European and to North and South American markets. Further exploitation of these reserves will require significant investments in mine development, inland transportation, and port facilities. This paper will summarizemore » the current status of the Colombian and Venezuelan coal industry, as well as the potential and challenges for increased production and exportation.« less

  11. Preliminary report on the coal resources of the National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Martin, G.C.; Callahan, J.E.

    1978-01-01

    NPR-A, located on the Arctic slope of Northern Alaska, is underlain by a thick sequence of sedimentary rocks of Cretaceous age which attain a thickness of as much as 4600 m (15,000 feet). The bulk of the coal resources occurs in rocks of the Nanushuk Group of Early and Late Cretaceous age. The Nanushuk Group is a wedge-shaped unit of marginal marine and nonmarine rocks that is as thick as 3300 m (11,000 feet) just west of NPR-A. Within the reserve, coal occurs primarily in the middle and thicker portions of this clastic wedge and occurs stratigraphically in the upper half of the section. Specific data on individual coal beds or zones are scarce, and estimates of identified coal resources of about 49.5 billion tons represent a sampling of coal resources too small to give a realistic indication of the potential resources for an area so large. Estimates of undiscovered resources suggest hypothetical resources of between 330 billion and 3.3 trillion tons. The wide range in the undiscovered resource estimates reflects the scarcity and ambiguity of the available data but also suggests the presence of a potentially large coal resource.

  12. Organic geochemistry and petrology of subsurface Paleocene-Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.

    2012-01-01

    Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical degradation at the beginning and end of Indio mire development. Fluorescence spectra of sporinite and resinite are consistent and distinctly different from each other, attributed to the presence of a greater proportion of complex asphaltene and polar molecules in resinite. Gas chromatography of resinite-rich coal shows sesquiterpenoid and diterpenoid peaks in the C14–17 range, which are not present in resinite-poor coal. Quantities of extracts suggest bitumen concentration below the threshold for effective source rocks [30–50 mg hydrocarbon/g total organic carbon (HC/g TOC)]. Saturate/aromatic and pristane/phytane (Pr/Ph) ratios are different from values for nearby Tertiary-reservoired crude oil, suggesting that the Indio coals are too immature to source liquid hydrocarbons in the area. However, moderately high HI values (200–400 mg HC/g rock) may suggest some potential for naphthenic–paraffinic oil generation where buried more deeply down stratigraphic/structural dip. Extractable phenols and C20+ alkanes are suggested as possible intermediates for acetate fermentation in microbial methanogenesis which may, however, be limited by poor nutrient supply related to low rainfall and meteoric recharge rate or high local sulfate concentration.

  13. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-06-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  14. Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, F.; Li, T.Y.; Zhou, Z.J.

    Coal burning provides 70% of the energy for China's industry and power, but releases large quantities of polycyclic aromatic hydrocarbons (PAHs) and other pollutants. PAHs are reproductive and developmental toxicants, mutagens, and carcinogens. We evaluated the benefit to neurobehavioral development from the closure of a coal-fired power plant that was the major local source of ambient PAHs. The research was conducted in Tongliang, Chongqing, China, where a coal-fired power plant operated seasonally before it was shut down in May 2004. Two identical prospective cohort studies enrolled nonsmoking women and their newborns in 2002 (before shutdown) and 2005 (after shutdown). Prenatalmore » PAH exposure was measured by PAH-DNA adducts (benzo(a)pyrene-DNA) in umbilical cord blood. Child development was assessed by the Gesell Developmental Schedules at 2 years of age. Prenatal exposure to other neurotoxicants and potential confounders (including lead, mercury, and environmental tobacco smoke) was measured. We compared the cohorts regarding the association between PAH-DNA adduct levels and neurodevelopmental outcomes. Significant associations previously seen in 2002 between elevated adducts and decreased motor area developmental quotient (DQ) (p = 0.043) and average DQ (p = 0.047) were not observed in the 2005 cohort (p = 0.546 and p = 0.146). However, the direction of the relationship did not change. The findings indicate that neurobehavioral development in Tongliang children benefitedby elimination of PAH exposure from the coal-burning plant, consistent with the significant reduction in PAH-DNA adducts in cord blood of children in the 2005 cohort. The results have implications for children's environmental health in China and elsewhere.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Actionmore » Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.« less

  16. Development of Laser Scanner for Full Cross-Sectional Deformation Monitoring of Underground Gateroads

    PubMed Central

    Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi

    2017-01-01

    The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449

  17. Development of a 5 kW Prototype Coal-Based Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less

  18. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.

  19. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 43 CFR 3483.5 - Crediting of production toward diligent development.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... development. (a) For Federal coal leases issued after August 4, 1976, all production after the effective date of the Federal lease shall be credited toward diligent development. (b) For Federal coal leases... after August 4, 1976, shall be credited toward diligent development. (c) For Federal coal leases issued...

  1. 43 CFR 3483.5 - Crediting of production toward diligent development.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... development. (a) For Federal coal leases issued after August 4, 1976, all production after the effective date of the Federal lease shall be credited toward diligent development. (b) For Federal coal leases... after August 4, 1976, shall be credited toward diligent development. (c) For Federal coal leases issued...

  2. 43 CFR 3483.5 - Crediting of production toward diligent development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... development. (a) For Federal coal leases issued after August 4, 1976, all production after the effective date of the Federal lease shall be credited toward diligent development. (b) For Federal coal leases... after August 4, 1976, shall be credited toward diligent development. (c) For Federal coal leases issued...

  3. 43 CFR 3483.5 - Crediting of production toward diligent development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... development. (a) For Federal coal leases issued after August 4, 1976, all production after the effective date of the Federal lease shall be credited toward diligent development. (b) For Federal coal leases... after August 4, 1976, shall be credited toward diligent development. (c) For Federal coal leases issued...

  4. Coalbed methane resource potential and current prospects in Pennsylvania

    USGS Publications Warehouse

    Markowski, A.K.

    1998-01-01

    Coalbed methane gas content analyses from exploratory coal cores and existing data indicate that gas content generally increases with increasing depth and rank. The coal beds studied are from the Main Bituminous field of Pennsylvania (which currently contains 24 coalbed methane pools) and the Northern and Southern Anthracite coal fields. They range from the Middle Pennsylvanian Allegheny Group to the Late Pennsylvanian-Early Permian Dunkard Group. Previous US Bureau of Mines studies revealed gas contents from 0.4 to 13.8 cm3/g at depths of 99 to 432 m for the bituminous coal beds of the Allegheny Group. More recent core data from the Allegheny Group yielded gas contents from 2.2 to 8.9 cm3/g at depths from 167 to 387 m. In the Anthracite region of eastern Pennsylvania, the little data that are available show that gas content is anomalously high or low. Gas yields from test holes in eastern Pennsylvania are low with or without artificial stimulation mainly due to the lack of a good cleat system. Overall estimates of coalbed methane resources indicate there may be 1.7 Tm3 (61 Tcf) of gas-in-place contained in the Northern Appalachian coal basin. The amount of technically recoverable coalbed methane resources is projected by the US Geological Survey National Oil and Gas Resource Assessment Team [US Geological Survey National Oil and Gas Resource Assessment Team, 1996. 1995 National assessment of United States oil and gas resources-results, methodology, and supporting data, US Geological Survey Digital Data Series DDS-30, CD-ROM, Denver, CO, 80 pp.] and Lyons [Lyons, P.C., 1997. Central-northern Appalachian coalbed methane flow grows. Oil and Gas Journal 95 (27) 76-79] at 0.3 Tm3 (11.48 Tcf). This includes portions of Pennsylvania, Ohio, West Virginia, and a small part of Maryland. Consequently, a mapping investigation was conducted to evaluate the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval of southwestern Pennsylvania. Phase II focused on a stratigraphic delineation and evaluation of Allegheny Group coal beds and associated sandstones. Several prospective coal beds and associated facies relationships with channel-fill sandstones were determined. Possible non-coal scenarios for coalbed methane include erosional contacts between coal beds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden, and are also potential coalbed methane targets. Additional Pennsylvania Geological Survey drilling/coalbed methane sampling occurred in Armstrong, Beaver, Cambria, Greene, Lawrence, Somerset, and Washington Counties. Raw coalbed methane desorption data tables/graphical displays of gas contents versus depth, thickness, and time, and average composition and heating values from coal beds of the Allegheny Group to the Dunkard Group are available at the Pennsylvania Geological Survey. Further information on cross-sections, isopleth maps, isopach maps, raw drillhole data, and ownership issues can also be obtained from the same source.A mapping of the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania reveal several prospective coal beds and associated facies relationships with channel-fill sandstones. Possible non-coal scenarios for coalbed methane include erosional contacts between coalbeds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden. and are also potential coalbed methane targets.

  5. Coal feed component testing for CDIF

    NASA Technical Reports Server (NTRS)

    Pearson, C. V.; Snyder, B. K.; Fornek, T. E.

    1977-01-01

    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.

  6. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  7. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  8. Experience in feeding coal into a liquefaction process development unit

    NASA Technical Reports Server (NTRS)

    Akhtar, S.; Friedman, S.; Mazzocco, N. J.; Yavorsky, P. M.

    1977-01-01

    A system for preparing coal slurry and feeding it into a high pressure liquefaction plant is described. The system was developed to provide supporting research and development for the Bureau of Mines coal liquefaction pilot plant. Operating experiences are included.

  9. Tertiary coals in South Texas: Anomalous cannel-like coals of Webb County (Claiborne Group, Eocene) and lignites of Atascosa County (Jackson Group, Eocene) - Geologic setting, character, source-rock and coal-bed methane potential

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, Claire E.; Willett, Jason C.

    1999-01-01

    The coal-bearing Gulf of Mexico Coastal Plain of North America contains a variety of depositional settings and coal types. The coal-bearing region extends westward from Alabama and Mississippi, across Louisiana to the northern part of the Mississippi Embayment, and then southward to eastern Arkansas, Texas and northern Mexico (fig. 1). Most of the coal currently mined in Texas is lignite from the upper part of the Wilcox Group (Paleocene-Eocene) and, in Louisiana, lignite is mined from the lower part of the Wilcox (fig. 2). Gulf Coast coal is used primarily as fuel for mine-mouth electric plants. On this field trip we will visit the only two non-Wilcox coal mining intervals in the Texas-Louisiana Coastal Plain; these include the San Pedro - Santo Tomas bituminous cannel-like coal zone of the Eocene Claiborne Group, and the San Miguel lignite coal zone of the Eocene Jackson Group (fig. 2). Other coal-mining areas in northern Mexico are currently producing bituminous coal from the Cretaceous Olmos Formation of the Navaro Group (fig. 2).

  10. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.

  11. Coal availability in the Hilight Quadrangle, Powder River Basin, Wyoming; a prototype study in a western coal field

    USGS Publications Warehouse

    Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.

  12. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    USGS Publications Warehouse

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.

    2017-01-01

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).

  13. Coal-bed methane water: effects on soil properties and camelina productivity

    USDA-ARS?s Scientific Manuscript database

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  14. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  15. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue

    2018-02-01

    In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.

  17. Coal: special report number 2

    USGS Publications Warehouse

    Keenlyne, Kent D.

    1977-01-01

    The Fish and Wildlife Service has extensive biological expertise within the Department of Interior and exerts national leadership in the management and protection of the nation's fish and wildlife resources, their habitat, and environment. Specifically, the Office of Biological Services obtains and assimilates biological and environmental data and identifies additional informational needs and means to provide environmental and biological input into major natural resource decisions. Coal Coordinators assist in carrying out Fish and Wildlife Service involvement in the Interior Department Coal Leasing Program through a multi-stage process designed to assemble existing fish and wildlife inventory data and to prioritize fish and wildlife values in areas subject to coal leasing and associated development. This report is designed to identify possible areas of concern for wildlife and its habitat in Wyoming in the development of coal and the associate implication of land use changes. This report summarizes past and present development of the coal resource in Wyoming in anticipation of future identification of data needs for making sound resource decisions in the development of coal.

  18. Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation

    NASA Astrophysics Data System (ADS)

    Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.

    2017-01-01

    At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.

  19. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  20. Remote sensing of strippable coal reserves and mine inventory in part of the Warrior Coal Field in Alabama

    NASA Technical Reports Server (NTRS)

    Joiner, T. J.; Copeland, C. W., Jr.; Russell, D. D.; Evans, F. E., Jr.; Sapp, C. D.; Boone, P. A.

    1978-01-01

    Methods by which estimates of the remaining reserves of strippable coal in Alabama could be made were developed. Information acquired from NASA's Earth Resources Office was used to analyze and map existing surface mines in a four-quadrangle area in west central Alabama. Using this information and traditional methods for mapping coal reserves, an estimate of remaining strippable reserves was derived. Techniques for the computer analysis of remotely sensed data and other types of available coal data were developed to produce an estimate of strippable coal reserves for a second four-quadrangle area. Both areas lie in the Warrior coal field, the most prolific and active of Alabama's coal fields. They were chosen because of the amount and type of coal mining in the area, their location relative to urban areas, and the amount and availability of base data necessary for this type of study.

  1. Prediction of coal grindability from exploration data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, M.; Hazen, K.

    1970-08-01

    A general prediction model for the Hardgrove grindability index was constructed from 735 coal samples using the proximate analysis, heating value, and sulfur content. The coals used to develop the general model ranged in volatile matter from 12.8 to 49.2 percent, dry basis, and had grindability indexes ranging from 35 to 121. A restricted model applicable to bituminous coals having grindabilities in the 40 to 110 range was developed from the proximate analysis and the petrographic composition of the coal. The prediction of coal grindability within a single seam was also investigated. The results reported support the belief that mechanicalmore » properties of the coal are related to both chemical and petrographic factors of the coal. The mechanical properties coal may be forecast in advance of mining, because the variables used as input to the prediction models can be measured from drill core samples collected during exploration.« less

  2. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  3. Microbial production of natural gas from coal and organic-rich shale

    USGS Publications Warehouse

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  4. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  5. Indoor fuel exposure and the lung in both developing and developed countries: An update

    PubMed Central

    2012-01-01

    Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607

  6. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridley, David; Khanna, Nina Zheng; Hong, Lixuan

    As China continues its double-digit economic growth, coal remains the principal fuel for the country’s primary energy consumption and electricity generation. China’s dependence on coal in coming years makes its carbon emission intensity reduction targets more difficult to achieve, particularly given rising electricity demand from a growing number of Chinese cities. This paradox has led the government to pursue cleaner and more efficient development of the coal industry on the supply side and “low carbon” development of cities on the demand side. To understand and assess how China may be able to meet its energy and carbon intensity reduction targets,more » this report looks at the recent development of low carbon cities as well as new developments and trends in the coal industry. Specifically, we review low-carbon city and related eco-city development in China before delving into a comparison of eight pilot lowcarbon city plans to highlight their strengths and weaknesses in helping achieve national energy and carbon targets. We then provide insights into the future outlook for China’s coal industry by evaluating new and emerging trends in coal production, consumption, transport, trade and economic performance.« less

  7. Coal-mining seismicity and ground-shaking hazard: A case study in the Trail Mountain area, Emery County, Utah

    USGS Publications Warehouse

    Arabasz, W.J.; Nava, S.J.; McCarter, M.K.; Pankow, K.L.; Pechmann, J.C.; Ake, J.; McGarr, A.

    2005-01-01

    We describe a multipart study to quantify the potential ground-shaking hazard to Joes Valley Dam, a 58-m-high earthfill dam, posed by mining-induced seismicity (MIS) from future underground coal mining, which could approach as close as ???1 km to the dam. To characterize future MIS close to the dam, we studied MIS located ???3-7 km from the dam at the Trail Mountain coal mine. A 12-station local seismic network (11 stations above ground, one below, combining eight triaxial accelerometers and varied velocity sensors) was operated in the Trail Mountain area from late 2000 through mid-2001 for the dual purpose of (1) continuously monitoring and locating MIS associated with longwall mining at a depth of 0.5-0.6 km and (2) recording high-quality data to develop ground-motion prediction equations for the shallow MIS. (Ground-motion attenuation relationships and moment-tensor results are reported in companion articles.) Utilizing a data set of 1913 earthquakes (M ??? 2.2), we describe space-time-magnitude distributions of the observed MIS and source-mechanism information. The MIS was highly correlated with mining activity both in space and time. Most of the better-located events have depths constrained within ??0.6 km of mine level. For the preponderance (98%) of the 1913 located events, only dilatational P-wave first motions were observed, consistent with other evidence for implosive or collapse-type mechanisms associated with coal mining in this region. We assess a probable maximum magnitude of M 3.9 (84th percentile of a cumulative distribution) for potential MIS close to Joes Valley Dam based on both the worldwide and regional record of coal-mining-related MIS and the local geology and future mining scenarios.

  8. Modeling Effects of Annealing on Coal Char Reactivity to O 2 and CO 2 , Based on Preparation Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy; Bhat, Sham; Marcy, Peter

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive computational fluid dynamics (CFD) simulations are valuable tools in evaluating and deploying oxyfuel and other carbon capture technologies, either as retrofit technologies or for new construction. However, accurate predictive combustor simulations require physically realistic submodels with low computational requirements. A recent sensitivity analysis of a detailed char conversion model (Char Conversion Kinetics (CCK)) found thermal annealing to be an extremely sensitive submodel. In the present work, further analysis of the previous annealing model revealed significant disagreement with numerous datasets from experiments performed after that annealing model was developed. Themore » annealing model was accordingly extended to reflect experimentally observed reactivity loss, because of the thermal annealing of a variety of coals under diverse char preparation conditions. The model extension was informed by a Bayesian calibration analysis. In addition, since oxyfuel conditions include extraordinarily high levels of CO 2, the development of a first-ever CO 2 reactivity loss model due to annealing is presented.« less

  9. Modeling Effects of Annealing on Coal Char Reactivity to O 2 and CO 2 , Based on Preparation Conditions

    DOE PAGES

    Holland, Troy; Bhat, Sham; Marcy, Peter; ...

    2017-08-25

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive computational fluid dynamics (CFD) simulations are valuable tools in evaluating and deploying oxyfuel and other carbon capture technologies, either as retrofit technologies or for new construction. However, accurate predictive combustor simulations require physically realistic submodels with low computational requirements. A recent sensitivity analysis of a detailed char conversion model (Char Conversion Kinetics (CCK)) found thermal annealing to be an extremely sensitive submodel. In the present work, further analysis of the previous annealing model revealed significant disagreement with numerous datasets from experiments performed after that annealing model was developed. Themore » annealing model was accordingly extended to reflect experimentally observed reactivity loss, because of the thermal annealing of a variety of coals under diverse char preparation conditions. The model extension was informed by a Bayesian calibration analysis. In addition, since oxyfuel conditions include extraordinarily high levels of CO 2, the development of a first-ever CO 2 reactivity loss model due to annealing is presented.« less

  10. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  11. Classification of Structural Coal-Controlling Styles and Analysis on Structural Coal-Controlling Actions

    NASA Astrophysics Data System (ADS)

    Zhan, Wen-feng

    2017-11-01

    Tectonism was the primary geologic factors for controlling the formation, deformation, and occurrence of coal measures. As the core of a new round of prediction and evaluation on the coalfield resource potential, the effect of coal-controlling structure was further strengthened and deepened in related researches. By systematically combing the tectonic coal-controlling effect and structure, this study determined the geodynamical classification basis for coal-controlling structures. According to the systematic analysis and summary on the related research results, the coal-controlling structure was categorized into extensional structure, compressive structure, shearing and rotational structure, inverted structure, as well as the sliding structure, syndepositional structure with coalfield structure characteristics. In accordance with the structure combination and distribution characteristics, the six major classes were further classified into 32 subclasses. Moreover, corresponding mode maps were drawn to discuss the basic characteristics and effect of the coal-controlling structures.

  12. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Larson; Robert Williams; Thomas Kreutz

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less

  13. Economic and Technological Role of Kuzbass Industry in the Implementation of National Energy Strategy of Russian Federation

    NASA Astrophysics Data System (ADS)

    Zhironkin, S. A.; Khoreshok, A. A.; Tyulenev, M. A.; Barysheva, G. A.; Hellmer, M. C.

    2016-08-01

    This article describes the problems and prospects of development of coal mining in Kuzbass - the center of coal production in Siberia and Russia, in the framework of the major initiatives of the National Energy Strategy for the period until 2035. The structural character of the regional coal industry problems, caused by decline in investment activity, high level of fixed assets depreciation, slow development of deep coal processing and technological reduction of coal mining is shown.

  14. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A samplemore » bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.« less

  15. Hydrotreating of coal-derived liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V.

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  16. Carbon Dioxide Emission Factors for Coal

    EIA Publications

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  17. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  18. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  19. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    PubMed

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  20. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  1. Coal Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  2. Optimization of enhanced coal-bed methane recovery using numerical simulation

    NASA Astrophysics Data System (ADS)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  3. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    USGS Publications Warehouse

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  4. Chemistry of thermally altered high volatile bituminous coals from southern Indiana

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.

    2007-01-01

    The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.

  5. Equilibrium approach towards water resource management and pollution control in coal chemical industrial park.

    PubMed

    Xu, Jiuping; Hou, Shuhua; Xie, Heping; Lv, Chengwei; Yao, Liming

    2018-08-01

    In this study, an integrated water and waste load allocation model is proposed to assist decision makers in better understanding the trade-offs between economic growth, resource utilization, and environmental protection of coal chemical industries which characteristically have high water consumption and pollution. In the decision framework, decision makers in a same park, each of whom have different goals and preferences, work together to seek a collective benefit. Similar to a Stackelberg-Nash game, the proposed approach illuminates the decision making interrelationships and involves in the conflict coordination between the park authority and the individual coal chemical company stockholders. In the proposed method, to response to climate change and other uncertainties, a risk assessment tool, Conditional Value-at-Risk (CVaR) and uncertainties through reflecting parameters and coefficients using probability and fuzzy set theory are integrated in the modeling process. Then a case study from Yuheng coal chemical park is presented to demonstrate the practicality and efficiency of the optimization model. To reasonable search the potential consequences of different responses to water and waste load allocation strategies, a number of scenario results considering environmental uncertainty and decision maker' attitudes are examined to explore the tradeoffs between economic development and environmental protection and decision makers' objectives. The results are helpful for decision/police makers to adjust current strategies adapting for current changes. Based on the scenario analyses and discussion, some propositions and operational policies are given and sensitive adaptation strategies are presented to support the efficient, balanced and sustainable development of coal chemical industrial parks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils.

    PubMed

    Guo, Wei; Zhao, Renxin; Fu, Ruiying; Bi, Na; Wang, Lixin; Zhao, Wenjing; Guo, Jiangyuan; Zhang, Jun

    2014-03-01

    Coal mine spoils are usually unfavorable for plant growth and have different properties according to dumping years, weathering degree, and the occurrence of spontaneous combustion. The establishment of plant cover in mine spoils can be facilitated by arbuscular mycorrhizal fungi (AMF). A greenhouse pot experiment was conducted to evaluate the importance of AMF in plant adaptation to different mine spoils and the potential role of AMF for revegetation practices. We investigated the effects of Glomus aggregatum, Rhizophagus intraradices (syn. Glomus intraradices), and Funneliformis mosseae (syn. Glomus mosseae) on the growth, nutritional status, and metal uptake of maize (Zea mays L.) grown in recent discharged (S1), weathered (S2), and spontaneous combusted (S3) coal mine spoils. Symbiotic associations were successfully established between AMF and maize in three substrates. Mycorrhizal colonization effectively promoted plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K), adjusting C:N:P stoichiometry and alleviating toxic effects of heavy metals. G. aggregatum, R. intraradices, and F. mosseae exhibited different mycorrhizal effects in response to mine spoil types. F. mosseae was the most effective in the development of maize in S1 and may be the most appropriate for revegetation of this substrate, while R. intraradices played the most beneficial role in S2 and S3. Our results suggest that inoculation with AMF can enhance plant adaptation to different types of coal mine spoils and play a positive role in the revegetation of coal mine spoil banks.

  7. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    PubMed

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spatial Variation of Selenium in Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.

    2013-12-01

    The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.

  9. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components

    USGS Publications Warehouse

    Kolker, A.; Finkelman, R.B.

    1998-01-01

    Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  10. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  11. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  12. Analysis of ecological environment impact of coal exploitation and utilization

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi

    2018-02-01

    Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.

  13. Coal Fields and Federal Lands of the Conterminous United States

    USGS Publications Warehouse

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  14. Petrographic And Geochemical Relationships And Environmentally Significant Trace Element Contents Of Miocene Coals in The Çayirli (Erzincan) Area, Eastern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Yalcin Erik, Nazan

    2014-05-01

    This study has done related to the petrographic, coal-quality and the environmental influences of the Çayırlı coal field in the Eastern Anatolia. The region is one of the best examples of a continental collision zone in the world and located in a North-south converging collision zone between the Eurasian and the Arabian Plates. The geological units on the North of the basin are the peridotites and on the South, the Upper Triassic to Lower Cretaceous limestone. Tertiary sedimentary units also occupy a significant part of the geological features. Lower Miocene sediments include recifal limestone, marls, green clay and coal seams. The Çayırlı mining area in Eastern Anatolia region, contains these Miocene aged coals. These coals is characterized by high vitrinite and inertinite and low liptinite contents. The coals are Bituminous coal rank, with vitrinite reflectance ranging from 0.53 to 0.58%. Chemically, the coal in this study is characterised by low moisture, ash yield and sulfur content. The Çayırlı coal consist mainly of SiO2 and CaO, with secondary Fe2O3, Al2O3, and minor proportions of TiO2, P2O5 and other oxides. Several trace elements of environmental concern namely As, U and Be in Çayırlı coal are above the world averages, while Ni and Pb concentrations are less than the world average. However, As, Co, Cr, Ni, Pb, U and V contents of this coal are below Turkish averages. It can clearly observed that the concentration of the elements is highest in the high ash coal levels. Among the potentially hazardous trace elements, Be, Co, Ni, Se and U may be of little or no health and environmental concerns, wheras As, Pb, Sb, and Th require further examination for their potential health and environmental concerns. These properties may be related to evaluation of the coal forming environment from more reducing contitions in a marine influenced lower delta plain environment for investigated coals. On the basis of analytical data, there is no possibility that the Çayırlı coals could be used for residential heating or industrial applications; when used, they cause significant of air pollution and healt problems.

  15. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  16. Coal-tar-based pavement sealcoat—Potential concerns for human health and aquatic life

    USGS Publications Warehouse

    Mahler, Barbara J.; Woodside, Michael D.; Van Metre, Peter C.

    2016-04-20

    Aquatic Life Concerns—Runoff from coal-tar-sealcoated pavement, even runoff collected more than 3 months after sealcoat application, is acutely toxic to fathead minnows and water fleas, two species commonly used to assess toxicity to aquatic life. Exposure to even highly diluted runoff from coal-tar-sealcoated pavement can cause DNA damage and impair DNA repair. These findings demonstrate that coal-tar-sealcoat runoff can remain a risk to aquatic life for months after application.

  17. Bibliography of US geological survey reports on coal drilling and geophysical logging projects, and related reports on geologic uses, Powder River Basin, Montana and Wyoming, 1973-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.D.

    1984-01-01

    This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.

  18. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.

    PubMed

    Kong, Biao; Li, Zenghua; Yang, Yongliang; Liu, Zhen; Yan, Daocheng

    2017-10-01

    In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world's largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the "dangerous area" in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.

  19. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    NASA Astrophysics Data System (ADS)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, M.A.; Husain, S.

    Coal is the most abundant source of energy. However, there is a need to develop cleaner, and more efficient, economical, and convenient coal conversion technologies. It is important to understand the organic chemical structure of coal for achieving real breakthroughs in the development of such coal conversion technologies. A novel computer-assisted modeling technique based on the analysis of {sup 13}C NMR and gel permeation chromatography has been applied to predict the average molecular structure of the acetylated product of a depolymerized bituminous Indian coal. The proposed molecular structure may be of practical use in understanding the mechanism of coal conversionsmore » during the processes of liquefaction, gasification, combustion, and carbonization.« less

  1. Fossil Energy organization restructured

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy has restructured its fossil energy organization to accommodate increases in activity and visibility of the President's $2.5 billion clean coal technology initiative. The realignment also includes changes in the coal research and development program and in supporting staff functions. In the coal program, changes in the organization include the establishment of two associate deputy assistant secretaries, both reporting to the deputy Assistant Secretary for Coal Technology. One associate deputy assistant secretary will oversee the Clean Coal Technology Program. A second associate deputy assistant secretary will manage the coal research and development program. An organizational chart illustratesmore » the new fossil energy headquarters organization.« less

  2. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  3. Coal liquefaction processes and development requirements analysis for synthetic fuels production

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Focus of the study is on: (1) developing a technical and programmatic data base on direct and indirect liquefaction processes which have potential for commercialization during the 1980's and beyond, and (2) performing analyses to assess technology readiness and development trends, development requirements, commercial plant costs, and projected synthetic fuel costs. Numerous data sources and references were used as the basis for the analysis results and information presented.

  4. Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1983-01-01

    Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)

  5. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  6. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less

  7. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    DOE PAGES

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; ...

    2017-01-05

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less

  8. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    USGS Publications Warehouse

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydin, M.E.; Yildirim, I.; Dogan, M.Z.

    The Istanbul Region coals are characterized by high moisture contents (avg. 35%), high volatile matter values (avg. 45%), and more importantly high levels of sulfur in the range of 1 to 5%. These lignitic coals generally have relatively low ash (10%), and higher levels of calorific values over 5,000 Kcal/kg. The Multi-Gravity Separator (MGS), a new fine size gravity separation equipment, was tested to evaluate its potential for the desulfurization of these low-rank coals. Systematic tests conducted on two different samples of minus 1 mm size indicate that despite the finely distributed nature of coal and relatively small difference betweenmore » coal and its associated gangue minerals, the degree of pyritic sulfur removal is 65.7% and 85.9% for the respective coals.« less

  10. Evaluation of coalbed gas potential of the Seelyville Coal Member, Indiana, USA

    USGS Publications Warehouse

    Drobniak, A.; Mastalerz, Maria; Rupp, J.; Eaton, N.

    2004-01-01

    The Seelyville Coal Member of the Linton Formation in Indiana potentially contains 0.03 trillion m3 (1.1 TCF) of coalbed gas. The gas content determined by canister desorption technique ranges from 0.5 to 5.7 cm3/g on dry ash free basis (15.4 to 182.2 scf/ton). The controls on gas content distribution are complex, and cannot be explained by the coal rank alone. Ash content and the lithology of the overlying strata, among other factors, may influence this distribution. ?? 2004 Elsevier B.V. All rights reserved.

  11. Hardgrove grindability index and petrology used as an enhanced predictor of coal feed rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, J.C.

    1990-01-01

    An improved predictor of coal pulverization behavior and coal feed rate is under development at the CAER based upon the interaction between Hardgrove Grindability Index (HGI) and coal petrology. With educated attention, this interaction may be a useful tool to enhance coal feed rates if cautiously extended to the mining environment where blends of coal lithotypes are produced.

  12. Geology, coal quality, and resources of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia

    USGS Publications Warehouse

    Pierce, B.S.; Martirosyan, A.; Malkhasian, G.; Harutunian, S.; Harutunian, G.

    2001-01-01

    The Antaramut-Kurta-Dzoragukh (AKD) coal deposit is a previously unrecognized coal field in north-central Armenia. Coal has been known to exist in the general vicinity since the turn of the century, but coal was thought to be restricted to a small (1 km2) area only near the village of Antaramut. However, through detailed field work and exploratory drilling, this coal deposit has been expanded to at least 20 km2, and thus renamed the Antaramut-Kurtan-Dzoragukh coal field, for the three villages that the coal field encompasses. The entire coal-bearing horizon, a series of tuffaceous sandstones, siltstones, and claystones, is approximately 50 m thick. The AKD coal field contains two coal beds, each greater than 1 m thick, and numerous small rider beds, with a total resource of approximately 31,000,000 metric tonnes. The coals are late Eocene in age, high volatile bituminous in rank, relatively high in ash yield (approximately 40%, as-determined basis) and moderate in sulfur content (approximately 3%, as-determined basis). The two coal beds (No. 1 and No. 2), on a moist, mineral-matter-free basis, have high calorific values of 32.6 MJ/kg (7796 cal/g) and 36.0 MJ/kg (8599 cal/g), respectively. Coal is one of the few indigenous fossil fuel resources occurring in Armenia and thus, the AKD coal field could potentially provide fuel for heating and possibly energy generation in the Armenian energy budget. Published by Elsevier Science B.V.

  13. The joint Australia/Federal Republic of Germany feasibility study on the conversion of Australian coals into liquid fuels in Australia

    NASA Astrophysics Data System (ADS)

    Imhausen, K. H.

    1982-08-01

    The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.

  14. Energy and Resource-Saving Sources of Energy in Small Power Engineering of Siberia

    NASA Astrophysics Data System (ADS)

    Baranova, Marina

    2017-11-01

    The sustainable development of distant areas of Siberia is associated with the structures of energy demand and supply, the implementation and promotion of the process of environmentally safe restructuring of the energy supply system. It has been established that suspension coal fuels derived from brown coal, coal mining, coal processing wastes can be used as fuel. The results of experimental and industrial boilers on suspension water coal fuel are presented. The designs of vortex combustion chambers of various powers are developed and tested. The possibility of using coal-enrichment wastes and substandard coals for the production of manure-coal fuel briquettes was studied. It is shown that the strength and thermal power characteristics of briquettes depend on the moisture content and degree of metamorphism of the raw materials. The most effective percentage of the solid phase and manure, as a binder, was determined.

  15. Model documentation, Coal Market Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The internationalmore » area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.« less

  16. 43 CFR 3483.1 - Diligent development and continued operation requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., each Federal coal lease and LMU is required to achieve diligent development. (2) Once the operator/lessee of a Federal coal lease or LMU has achieved diligent development, the operator/lessee shall..., except as provided in § 3483.3 of this title. (b) Federal coal leases issued prior to August 4, 1976...

  17. 43 CFR 3483.1 - Diligent development and continued operation requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., each Federal coal lease and LMU is required to achieve diligent development. (2) Once the operator/lessee of a Federal coal lease or LMU has achieved diligent development, the operator/lessee shall..., except as provided in § 3483.3 of this title. (b) Federal coal leases issued prior to August 4, 1976...

  18. 43 CFR 3483.1 - Diligent development and continued operation requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., each Federal coal lease and LMU is required to achieve diligent development. (2) Once the operator/lessee of a Federal coal lease or LMU has achieved diligent development, the operator/lessee shall..., except as provided in § 3483.3 of this title. (b) Federal coal leases issued prior to August 4, 1976...

  19. 43 CFR 3483.1 - Diligent development and continued operation requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., each Federal coal lease and LMU is required to achieve diligent development. (2) Once the operator/lessee of a Federal coal lease or LMU has achieved diligent development, the operator/lessee shall..., except as provided in § 3483.3 of this title. (b) Federal coal leases issued prior to August 4, 1976...

  20. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine

    PubMed Central

    Karacan, C. Özgen; Goodman, Gerrit V.R.

    2015-01-01

    This paper presents a study assessing potential factors and migration paths of methane emissions experienced in a room-and-pillar mine in Lower Kittanning coal, Indiana County, Pennsylvania. Methane emissions were not excessive at idle mining areas, but significant methane was measured during coal mining and loading. Although methane concentrations in the mine did not exceed 1% limit during operation due to the presence of adequate dilution airflow, the source of methane and its migration into the mine was still a concern. In the course of this study, structural and depositional properties of the area were evaluated to assess complexity and sealing capacity of roof rocks. Composition, gas content, and permeability of Lower Kittanning coal, results of flotation tests, and geochemistry of groundwater obtained from observation boreholes were studied to understand the properties of coal and potential effects of old abandoned mines within the same area. These data were combined with the data obtained from exploration boreholes, such as depths, elevations, thicknesses, ash content, and heat value of coal. Univariate statistical and principal component analyses (PCA), as well as geostatistical simulations and co-simulations, were performed on various spatial attributes to reveal interrelationships and to establish area-wide distributions. These studies helped in analyzing groundwater quality and determining gas-in-place (GIP) of the Lower Kittanning seam. Furthermore, groundwater level and head on the Lower Kittanning coal were modeled and flow gradients within the study area were examined. Modeling results were interpreted with the structural geology of the Allegheny Group of formations above the Lower Kittanning coal to understand the potential source of gas and its migration paths. Analyses suggested that the source of methane was likely the overlying seams such as the Middle and Upper Kittanning coals and Freeport seams of the Allegheny Group. Simulated ground-water water elevations, gradients of groundwater flow, and the presence of recharge and discharge locations at very close proximity to the mine indicated that methane likely was carried with groundwater towards the mine entries. Existing fractures within the overlying strata and their orientation due to the geologic conditions of the area, and activation of slickensides between shale and sandstones due to differential compaction during mining, were interpreted as the potential flow paths. PMID:26478644

  1. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  2. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  3. Reuse of Produced Water from CO 2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO 2 enhanced oil recovery (CO 2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that producedmore » water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO 2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13-23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents,more » keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.« less

  5. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology;more » and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.« less

  6. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this researchmore » also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.« less

  7. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    PubMed

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  8. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines

    PubMed Central

    Zhou, Lu-jie; Cao, Qing-gui; Yu, Kai; Wang, Lin-lin; Wang, Hai-bin

    2018-01-01

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines. PMID:29701715

  9. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  10. Preliminary assessment of alternative PFBC power plant systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less

  11. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  12. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B.

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel,more » zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.« less

  13. America's Energy Potential: A Summary and Explanation; Committee on Interior and Insular Affairs, U.S. House of Representatives, Ninety-Third Congress, First Session. [Committee Print].

    ERIC Educational Resources Information Center

    Udall, Morris K.

    This report reviews America's current energy position. The energy sources studied include oil and gas, coal, nuclear energy, solar energy, and geothermal energy. Each source is analyzed in terms of current use, technology for extracting and developing the energy, research and development funding, and projections for future consumption and…

  14. Cleat development in coals of the Upper Cretaceous Mesaverde Formation, Pilot Butte area, Wind River Reservation, Wyoming

    USGS Publications Warehouse

    Johnson, R.C.; Clark, A.C.; Szmajter, R.J.

    1993-01-01

    The cleat system developed in low-rank (mean viltrinite reflectance of 0.43 to 0.5 percent) coal beds in the Upper Cretaceous Mesaverde Formation was studied in outcrop and in coreholes drilled for coalbed methane evaluation near Pilot Butte in the central part of the Wind River Reservation. Cleats are the principal permeability pathway for fluids in coal beds. As a result, coalbed gas cannot be economically produced without significant cleat development. Two drillholes about 800 ft (244 m) apart encountered Mesaverde coal beds at depths ranging from 307 to 818 ft (93.6 to 249.3 m). One of the coal beds penetrated while drilling, the lowest coal in the Mesaverde coaly interval, is well exposed about a mile south of the two drillholes and the cleat development in this coal bed on outcrop was compared with that of the same coal in the drillholes.The 3 in (7.62 cm) diameter core is less than ideal for this study because cleat spacing in low-rank coals such as these typically averages greater than 7.62 cm. Nonetheless, face cleats at spacing of from 0.25 to 2.5 cm was observed in many of the coal beds. Cleats were less well-developed in other coal beds and no cleats were observed in a few beds. As expected, butt cleats were somewhat less well-developed than the face cleats. Attempts to relate cleat spacing to gas content, bed thickness, and ash content were not successful. A 3.0 m by 1.8 m area of the upper surface of the coal bed exposed a mile south of the drillsites was cleaned off and studied in detail. Cleat development in this limited study area varied from well-developed face and butt cleats in some places to few or no cleats in others. Face cleats trended roughly perpendicular to the fold axis of the nearby Pilot Butte anticline. Cleats did not penetrate a 2.5 cm thick carbonaceous shale bed about 20 cm above the base of the coal bed indicating that thin carbonaceous shale beds will act a permeability barriers. Two types of face cleats were observed on outcrop: 1) major face cleats that could be traced for as much as a meter along outcrop and averaged as little as 1.6 cm apart; and 2) microfractures or microcleats which paralleled the face cleats but averaged from 0.10 to 0.17 cm apart. The microcleats were more visible on outcrop than in core because of surface weathering which dried out the coal causing the microcleats to open up. This surface weathering also increased the aperture widths on many of the major cleats, and no attempt was made to systematically study aperture widths. These microcleats may contribute significantly to the permeability of the coals in the subsurface. Dewatering of the coal during the early stages of coalbed methane production may help open these microcleats thereby increasing permeability, and hence coalbed gas production, with time.

  15. The role of coal in industrialization: A case study of Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarakiri, J.B.

    1989-01-01

    Coal is a mineral matter found in layers or beds in sedimentary rocks. It is a very highly variable substance. In addition to the variations from lignite to bituminous and anthracite, there are vast differences in its heating value, amount of volatiles, sulfur, moisture and so on. The chemical and physical properties of coal make it an important industrial raw material. There is proven 639 million tonnes of coal reserves in Nigeria. This paper examines the potential and current role of coal in the industrialization of Nigeria. Industries are now dependent on fuel oil as a source of fuel becausemore » of its economic and technological advantages over coal. Coal is a source of industrial energy for the future after the known oil reserves might have been exhausted. In the short term, coal can be used as a material for chemicals, iron and steel production as well as a substitute for wood energy in the process of industrialization.« less

  16. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    USGS Publications Warehouse

    Flores, R.M.

    1993-01-01

    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.

  17. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  18. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  19. The World Coal Quality Inventory: A status report

    USGS Publications Warehouse

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  20. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A.

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  2. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  3. A review of lignite resources of western Tennessee and the Jackson Purchase area, western Kentucky

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Thomas, Roger E.; Nichols, Douglas J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This review of the lignite deposits of western Tennessee and the Jackson Purchase area in western Kentucky (Figure 1) is an updated report on part of the U.S. Geological Survey's National Coal Resource Assessment of the Gulf Coastal Plain Coal Province (see Ruppert et al., 2002; Hackley et al., 2006; Dennen, 2009; and other chapters of this publication). Lignite deposits of western Kentucky and Tennessee are an extension of the Gulf Coastal Plain Coal Province (Cushing et al., 1964), and currently are not economic to mine. These deposits have not been extensively investigated or developed as an energy resource. This review includes a description of the geology of the lignite-bearing units, a discussion of the available coal quality data, and information on organic petrology. Palynological data for lignite samples collected in Kentucky and Tennessee as part of this work are presented in Table 1. Lignite trace element data originally presented in Hackley et al. (2006) are not included in this report due to potential laboratory quality control issues during the time the samples were analyzed (U.S. Geological Survey Energy Resources Program, 2010).

  4. Tube bundle system: for monitoring of coal mine atmosphere.

    PubMed

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  5. Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

    The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

  6. Identification of linkages between potential Environmental and Social Impacts of Surface Mining and Ecosystem Services in Thar Coal field, Pakistan

    NASA Astrophysics Data System (ADS)

    Hina, A.

    2017-12-01

    Although Thar coal is recognized to be one of the most abundant fossil fuel that could meet the need to combat energy crisis of Pakistan, but there still remains a challenge to tackle the associated environmental and socio-ecological changes and its linkage to the provision of ecosystem services of the region. The study highlights the importance of considering Ecosystem service assessment to be undertaken in all strategic Environmental and Social Assessments of Thar coal field projects. The three-step approach has been formulated to link the project impacts to the provision of important ecosystem services; 1) Identification of impact indicators and parameters by analyzing the environmental and social impacts of surface mining in Thar Coal field through field investigation, literature review and stakeholder consultations; 2) Ranking of parameters and criteria alternatives using Multi-criteria Decision Analysis(MCDA) tool: (AHP method); 3) Using ranked parameters as a proxy to prioritize important ecosystem services of the region; The ecosystem services that were prioritized because of both high significance of project impact and high project dependence are highlighted as: Water is a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed. The results of the analysis outline a framework of identifying these linkages as key constraints to foster the emergence of green growth and development in Pakistan. The practicality of implementing these assessments requires policy instruments and strategies to support human well-being and social inclusion while minimizing environmental degradation and loss of ecosystem services. Keywords Ecosystem service assessment; Environmental and Social Impact Assessment; coal mining; Thar Coal Field; Sustainable development

  7. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  8. Preliminary evaluation of the coalbed methane potential of the Gulf Coastal Plain, USA and Mexico

    USGS Publications Warehouse

    Warwick, Peter D.; Barker, Charles E.; SanFilipo, John R.; Schwochow, S.D.; Nuccio, V.F.

    2002-01-01

    Several areas in the Gulf Coast have potential for coalbed gas accumulations. These areas include parts of southern Alabama and Mississippi, north-central Louisiana, northeast, east-central and south Texas and northeastern Mexico. The coal deposits in these areas vary in rank, thickness, lateral extent and gas content, and range in age from Late Cretaceous to Eocene.Gas desorption tests conducted by the U.S. Geological Survey (USGS) on shallow (2,000 ft [609 m]) Paleocene (Wilcox-Midway Groups) coals of southeastern Mississippi indicate that the coalbeds contain some methane. Measured gas contents range from 0 to 19 scf/ton (0.19 to 0.59 cc/g; dry, ash-free) and average about 15 scf/ton (0.5 cc/g). These coals have apparent ranks of lignite to subbituminous (vitrinite reflectance of 0.3 to 0.4% Romax) at shallow depths and subbituminous to bituminous (0.5 to 0.6% Romax) in the deeper parts of the basin. Adsorption isotherm data indicate that Wilcox Group coals are undersaturated and have methane gas-storage capacities similar to those of the subbituminous coals in the Powder River basin, Wyoming. In the primary areas where Wilcox Group coalbeds are mined and subsurface data are available, net coal thickness ranges from about 10 to 50 ft (3 to 15 m), which is much less than coal thickness in the Powder River basin, which can be 300 ft (91 m).Upper Cretaceous and Paleocene-Eocene coals of south Texas and northeastern Mexico are subbituminous to bituminous rank (up to 0.6% Romax). Some methane has been produced commercially from thin coal beds (13 ft [4 m] net) and associated sandstone at shallow depths (

  9. Assessment of the petroleum, coal and geothermal resources of the economic community of West African States (ECOWAS) Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattick, Robert E.; Spencer, Frank D.; Zihlman, Frederick N.

    1982-01-01

    Approximately 85 percent of the land area of the ECOWAS (Economic Community of West African States) region is covered by basement rocks (igneous and highly metamorphosed rocks) or relatively thin layers of Paleozoic, Upper Precambrian, and Continental Intercalaire sedimentary rocks. These areas have little or no petroleum potential. The ECOWAS region can be divided into 13 sedimentary basins on the basis of analysis of the geologic framework of Africa. These 13 basins can be further grouped into 8 categories on the basis of similarities in stratigraphy, geologic history, and probable hydrocarbon potential. The author has attempted to summarize the petroleummore » potential within the geologic framework of the region. The coal discoveries can be summarized as follows: the Carboniferous section in the Niger Basin; the Paleocene-Maestrichtian, Maestrichtian, and Eocene sections in the Niger Delta and Benin; the Maestrichtian section in the Senegal Basin; and the Pleistocene section in Sierra Leone. The only proved commercial deposits are the Paleocene-Maestrichtian and Maestrichtian subbituminous coal beds of the Niger Delta. Some of the lignite deposits of the Niger Delta and Senegal Basin, however, may be exploitable in the future. Published literature contains limited data on heat-flow values in the ECOWAS region. It is inferred, however, from the few values available and the regional geology that the development of geothermal resources, in general, would be uneconomical. Exceptions may include a geopressured zone in the Niger Delta and areas of recent tectonic activity in the Benue Trough and Cameroon. Development of the latter areas under present economic conditions is not feasible.« less

  10. Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China

    NASA Astrophysics Data System (ADS)

    Gu, Yang; Ding, Wenlong; Yin, Shuai; Wang, Ruyue; Mei, Yonggui; Liu, Jianjun

    2017-03-01

    The coalbed gas reservoirs in the Qinshui Basin in central China are highly heterogeneous; thus, the reservoir characteristics are difficult to assess. Research on the pore structure of a reservoir can provide a basis for understanding the occurrence and seepage mechanisms of coal reservoirs, rock physics modeling and the formulation of rational development plans. Therefore, the pore structure characteristics of the coalbed gas reservoirs in the high rank bituminous coal in the No. 15 coal seam of the Carboniferous Taiyuan Group in the Heshun coalbed methane (CBM) blocks in the northeastern Qinshui Basin were analyzed based on pressure mercury and scanning electron microscopy data. The results showed that the effective porosity system of the coal reservoir was mainly composed of pores and microfractures and that the pore throat configuration of the coal reservoir was composed of pores and microthroats. A model was developed based on the porosity and microfractures of the high rank coal rock and the mercury injection and drainage curves. The mercury injection curve model and the coal permeability are well correlated and were more reliable for the analysis of coal and rock pore system connectivity than the mercury drainage curve model. Coal rocks with developed microfractures are highly permeable; the production levels are often high during the initial drainage stages, but they decrease rapidly. A significant portion of the natural gas remains in the strata and cannot be exploited; therefore, the ultimate recovery is rather low. Coal samples with underdeveloped microfractures have lower permeabilities. While the initial production levels are lower, the production cycle is longer, and the ultimate recovery is higher. Therefore, the initial production levels of coal reservoirs with poorly developed microfractures in some regions of China may be low. However, over the long term, due to their higher ultimate recoveries and longer production cycles, the total gas production levels will increase. This understanding can provide an important reference for developing appropriate CBM development plans.

  11. Solvent Refined Coal (SRC) process. Research and development report No. 53, interim report No. 29, August-November, 1978. Volume VI. Process development unit studies. Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-01-01

    This report presents the results of seven SRC-II runs on Process Development Unit P99 feeding Pittsburgh Seam coal. Four of these runs (Runs 41-44) were made feeding coal from the Robinson Run Mine and three (Runs 45-47) were made feeding a second shipment of coal from the Powhatan No. 5 Mine. This work showed that both these coals are satisfactory feedstocks for the SRC-II process. Increasing dissolver outlet hydrogen partial pressure from approximately 1300 to about 1400 psia did not have a significant effect on yields from Robinson Run coal, but simultaneously increasing coal concentration in the feed slurry frommore » 25 to 30 wt% and decreasing the percent recycle solids from 21% to 17% lowered distillate yields. With the Powhatan coal, a modest increase in the boiling temperature (approximately 35/sup 0/F) at the 10% point) of the process solvent had essentially no effect on product yields, while lowering the average dissolver temperature from 851/sup 0/F to 842/sup 0/F reduced gas yield.« less

  12. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  13. Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique

    NASA Astrophysics Data System (ADS)

    Nimaje, Devidas; Tripathy, Debi Prasad

    2017-04-01

    Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.

  14. The environmental impact of future coal production and use in the EEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    The aims of this study are to assess the expected increased levels of coal consumption in the European Community up to the year 2000; to estimate to what extent consumer demand is likely to be met by EEC production; to determine the level of polluting emissions which are likely to derive from changes in coal consumption and production; and finally, to compare the environmental impact of alternative, existing or developing means of coal utilisation. Contents: Conclusions; Future coal supply and demand in the EEC; Environmental consequences of coal production and use; Coal extraction; Transport and storage; Coal combustion: air pollution;more » Coal combustion: water pollution; Pollution from solid wastes; Coal conversion process; Environmental control technology; Bibliography.« less

  15. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  16. Diversified management of coal enterprises in China: model selection, motivation and effect analysis

    NASA Astrophysics Data System (ADS)

    Lyu, Jingye; Lian, Xu; Li, Penglin

    2018-01-01

    In the context of promoting the new energy revolution and economic development of the new normal, the coal industry to excess production capacity is one of the important aspects of structural reform of the supply side. The purpose of diversification of coal enterprises in China is to seize historical opportunities, create new models of development and improve operational efficiency. In the research on diversification of coal enterprises, exploring the mode selection, motivation and effect from the aspects of the industry is conducive to the realization of the smooth replacement and the sustainable development of enterprises, to further enrich the strategic management of coal enterprises, to provide effective reference for the formulation of enterprise management decision-making and implementation of diversification strategy.

  17. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification.

    PubMed

    Herndon, J Marvin

    2016-01-01

    U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.

  18. Flow in Coal Seams: An Unconventional Challenge

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Mostaghimi, P.; Jing, Y.; Gerami, A.

    2016-12-01

    A significant unconventional resource for energy is the methane gas stored in shallow coal beds, known as coal seam gas. An integrated imaging and modelling framework is developed for analysing petrophysical behaviour of coals. X-ray micro-computed tomography (micro-CT) is applied using a novel contrast agent method for visualising micrometer-sized fractures in coal. The technique allows for the visualisation of coal features not visible with conventional imaging methods. A Late Permian medium volatile bituminous coal from Moura Coal Mine (Queensland, Australia) is imaged and the resulting three-dimensional coal fracture system is extracted for fluid flow simulations. The results demonstrate a direct relationship between coal lithotype and permeability. Scanning electron microscope and energy dispersive spectrometry (SEM-EDS) together with X-ray diffraction (XRD) methods are used for identifying mineral matters at high resolution. SEM high-resolution images are also used to calibrate the micro-CT images and measure the exact aperture size of fractures. This leads to a more accurate estimation of permeability using micro-CT images. To study the significance of geometry and topology of the fracture system, a fracture reconstruction method based on statistical properties of coal is also developed. The network properties including the frequency, aperture size distribution, length, and spacing of the imaged coal fracture system. This allows for a sensitivity analysis on the effects that coal fracture topology and geometry has on coal petrophysical properties. Furthermore, we generate microfluidic chips based on coal fracture observations. The chip is used for flow experiments to visualise multi-fluid processes and measure recovery of gas. A combined numerical and experimental approach is applied to obtain relative permeability curves for different regions of interest. A number of challenges associated with coal samples are discussed and insights are provided for better understanding of these complex porous media systems.

  19. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  20. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  1. Health hazard evaluation report HETA 81-472-1380, Pennsylvania Power and Light, Martins Creek Steam Electric Station, Martins Creek, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, F.A.

    1983-10-01

    In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less

  2. CRANBERRY WILDERNESS STUDY AREA, WEST VIRGINIA.

    USGS Publications Warehouse

    Meissner, Charles R.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness Study Area, West Virginia contains a large demonstrated resource of bituminous coal of coking quality. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56. 5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout the State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.

  3. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  4. 43 CFR 3483.2 - Termination or cancellation for failure to meet diligent development and maintain continued...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...

  5. 43 CFR 3483.2 - Termination or cancellation for failure to meet diligent development and maintain continued...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...

  6. 43 CFR 3483.2 - Termination or cancellation for failure to meet diligent development and maintain continued...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...

  7. 43 CFR 3483.2 - Termination or cancellation for failure to meet diligent development and maintain continued...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...

  8. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.

  9. Studies of the effect of selected nondonor solvents on coal liquefaction yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.

    The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less

  10. Pipeline transportation of upgraded Yugoslavian lignite fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljubicic, B.; Anderson, C.; Bukurov, Z.

    1993-12-31

    Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less

  11. Map showing outcrop of the coal-bearing units and land use in the Gulf Coast region

    USGS Publications Warehouse

    Warwick, Peter D.; SanFilipo, John R.; Crowley, Sharon S.; Thomas, Roger E.; Freid, John; Tully, John K.

    1997-01-01

    This map is a preliminary compilation of the outcrop geology of the known coal-bearing units in the Gulf Coast Coal region. The map has been compiled for use in the National Coal Resource Assessment Project currently being conducted by the U.S. Geological Survey, and will be updated as the assessment progresses. The purpose of the map is to show the distribution of coal-bearing rocks in the Gulf Coastal Plain Region and to show stratigraphic correlations, transportation network, fossil-fuel burning power plants, and federally managed lands in the region. It is hoped that this map may aid coal exploration and development in the region. Geologic contacts were digitized from paper copies of the maps listed in the reference section below. The primary source of information was the 1:500,000-scale state geology map series, but larger scale maps were use to better define certain areas, notably the Jackson-Claiborne contact in western Kentucky and Tennessee for example (Olive, 1980). Contacts along state boundaries were modified to best-fit information available from the border areas. Note that coal distribution in the mapped units is not uniform. For example, the Jackson Group contains coal in Texas, but in Mississippi is not presently known to contain significant coal deposits. The unit is widespread and in part non-marine and thus of potential future interest. In contrast, the Jackson Group is not shown in Georgia where it is mostly marine and residuum (weathered material) at the surface. Tertiary age coal has also been noted in the Vicksburg Group (Oligocene) of Louisiana and Mississippi, but is not shown on this map. Contacts with mapped surficial units are not always shown. The locations of coal mine permit boundaries are based on information available at the time of publication and were obtained from the Division of Surface Mining and Reclamation, Railroad Commission of Texas, Austin, and the Injection and Mining Division, Department of Natural Resources, Baton Rouge, Louisiana. The correlation of map units and formation names generally follow Galloway and others (1991). We have placed the Paleocene-Eocene boundary in the middle of the Calvert Bluff Formation in Texas based on unpublished pollen biostratigraphy reports (N.O. Fredericksen, unpublished data, 1993; D.J. Nichols, unpublished data, 1996).

  12. Federal coal follies: a new program ends (begins) a decade of anxiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.L.

    1980-01-01

    The history, outline, and implementation of the new Federal Coal Management Program (FCMP) which has preoccupied the Department of Interior during the administrations of at least three presidents. The introduction briefly reviews the coal resource in the United States in general and the Federal coal resource in particular. Part II outlines the history of the Federal coal-leasing program over the decade of the 1970's. This is followed in Part III by a detailed discussion of the new FCMP which has been developed over the last two years and is now in the initial stages of implementation. Part III will focusmore » on the principal differences between the old and new coal programs. Part IV provides a critical review of the new program and discusses recommendations for revisions. Part V concludes that the future of Federal coal leasing may depend on whether the FCMP can generate the timely and defensible data needed to stimulate renewed coal development. 310 references, 6 figures, 2 tables.« less

  13. Fast and safe gas detection from underground coal fire by drone fly over.

    PubMed

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanical properties of reconstituted Australian black coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less

  15. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  16. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    PubMed

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  17. Predicting cerulean warbler habitat use in the Cumberland Mountains of Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, D.A.; Welton, M.J.; Beachy, T.A.

    2006-12-15

    We developed a habitat model to predict cerulean warbler (Dendroica cerulea) habitat availability in the Cumberland Mountains of eastern Tennessee. We used 7 remotely sensed vegetation and topographic landform explanatory variables and known locations of territorial male cerulean warblers mapped in 2003 as the response variable to develop a Mahalanobis distance statistic model of potential habitat. We evaluated the accuracy of the model based on field surveys for ceruleans during the 2004 breeding season. The model performed well with an 80% correct classification of cerulean presence based on the validation data, although prediction of absence was only 54% correct. Wemore » extrapolated from potential habitat to cerulean abundance based on density estimates from territory mapping on 8 20-ha plots in 2005. Over the 200,000-ha study area, we estimated there were 80,584 ha of potential habitat, capable of supporting about 36,500 breeding pairs. We applied the model to the 21,609-ha state-owned Royal Blue Wildlife Management Area to evaluate the potential effects of coal surface mining as one example of a potential conflict between land use and cerulean warbler conservation. Our models suggest coal surface mining could remove 2,954 ha of cerulean habitat on Royal Blue Wildlife Management Area and could displace 2,540 breeding pairs (23% of the Royal Blue population). A comprehensive conservation strategy is needed to address potential and realized habitat loss and degradation on the breeding grounds, during migration, and on the wintering grounds.« less

  18. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development.

    PubMed

    Pelak, Adam J; Sharma, Shikha

    2014-12-01

    Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects.

    PubMed

    Silva, Luis F O; da Boit, Kátia M

    2011-03-01

    Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al-Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.

  20. Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil

    USGS Publications Warehouse

    Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H.

    2010-01-01

    In Brazil economically important coal deposits occur in the southern part of the Paran?? Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Paran?? Basin.In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapu??, Barro Branco and Treviso seams).Seam thicknesses range from 1.70 to 2.39. m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapu?? seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapu?? seam has the highest inertinite content (33.8. vol%). Liptinite mean values range from 7.8. vol% (Barro Branco seam) to 22.5. vol% (Irapu?? seam).Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (>50wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the predominance of quartz and kaolinite (also pyrite). Gypsum, gibbsite, jarosite and calcite were also identified in some samples. Feldspar was noted but is rare. The major element distribution in the three seams (coal basis) is dominated by SiO2 (31.3wt.%, mean value), Al2O3 (14.5wt.%, mean value) and Fe2O3 (6.9 wt.%, mean value). Considering the concentrations of trace elements that are of potential environmental hazards the Barro Branco, Bonito and Irapu?? seams (coal base) are significantly enriched in Co (15.7ppm), Cr (54.5ppm), Li (59.3ppm), Mn (150.4ppm), Pb (58.0ppm) and V (99.6ppm), when compared to average trace elements contents reported for U. S. coals.Hierarchical cluster analysis identified, based on similarity levels, three groups of major elements and seven groups of trace elements. Applying discriminant analyses using trace and major element distribution, it could be demonstrated that the three seams from Santa Catarina show distinct populations in the discriminant analyses plots, and also differ from the coals of Rio Grande do Sul analyzed in a previous study. ?? 2010 Elsevier B.V.

  1. Coal-bed methane potential in Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campen, E.

    1991-06-01

    Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less

  2. Thar Coalfield: Sustainable Development and an Open Sesame to the Energy Security of Pakistan

    NASA Astrophysics Data System (ADS)

    Masih, Adven

    2018-04-01

    The paper discusses the role of Thar-coalfield, a 175 Billion tones reserve in enhancing the energy and combating global environmental change from the local and regional aspects. Pakistan’s energy requirements are potentially huge. Being the sixth largest country in the world, with its growing population exceeded 190m by 2015. Rising population, improved living standards, increased per capita energy use, and industrialization has led to a high energy demand growth. According to latest reports the gap between the demand and supply of electricity is around 6,000MW. To meet the projected demand exploiting indigenous resources, such as Thar coalfield, a 100,000MW generation capacity reserve, could be the possible answer. Due to sustainable techniques in energy sector, 1) Coal mining is moving towards sustainable development; 2) circular economy has proven useful concept for promoting sustainable development; 3) coal industry can minimize its environmental impact from local to global level. Besides energy goals, environmental degradation associated with the mining activity poses a serious threat to the region. Therefore, some challenges need to be addressed, e.g., discharge management issues, concerns regarding pollution control, lack of technology needed to replenish solid waste; and, increased socioeconomic and environmental pressure on the coal industry. The study discusses how sustainable development measures in Thar coalfield can run the engines of economic growth without hurting the natural environment promoting prosperity in Pakistan.

  3. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  4. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    NASA Astrophysics Data System (ADS)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  5. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  6. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  7. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  8. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  9. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal regime in the coal fire zone 18. The occurrence of various thermal alteration products indicates temperatures in the range of 500-700°C.

  10. Quality of selected coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.

    2000-07-01

    As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  11. Relations between coal petrology and gas content in the Upper Newlands Seam, Central Queensland, Australia

    USGS Publications Warehouse

    Walker, R.; Glikson, M.; Mastalerz, Maria

    2001-01-01

    The Upper Newlands Seam in the northern Bowen Basin, Queensland Australia consists of six benches (A-F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show a consistent orientation of northeast-southwest for face cleats, and a wide range of orientations for fractures. Cleat systems are well developed in bright bands, with poor continuity in the dull coal. Both maceral content and cleat character are suggested to influence gas drainage in the upper Newlands Seam. A pronounced positive correlation between vitrinite abundance and gas desorption data suggests more efficient drainage from benches with abundant vitrinite. Conversely, inertinite-rich benches are suggested to have less efficient drainage, and possibly retain gas within pore spaces, which could increase the outburst potential of the coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Innovative Production of Polyvinychloride on the Basis of Vertical Integration of Business and Cluster Organisation

    NASA Astrophysics Data System (ADS)

    Kudryashova, Irina; Zakharova, Natalia; Kharlampenkov, Evgeniy

    2017-11-01

    The paper presents the results of the research of the world and Russian market of polyvinyl chloride (PVC), a comparative assessment is made and the similarities and differences of these segments at the present have been identified. The theoretical possibility of considerable prospects of the development of domestic production of PVC is justified, ensure that it can achieve import substitution and export substitutionof this product in Russia. Based on the theoryof value chains and cluster organization of the enterprises of coal and chemical industries, ferrous metallurgy and other enterprises of Kuzbass have been proposed new technological solutions for the production of PVC, taking into account regional features of naturalresource base and capacity of national and world markets. It is established that the organization of production of PVC, using coal chemistry technology can be a promising growth point for the business of the Kemerovo region, will help to diversify the coal industry, to expand its product structure and export potential of the region, increase its competitiveness.

  13. Coal geology of the Bowman-Gascoyne area, Adams, Billings, Bowman, Golden Valley, and Slope counties, North Dakota

    USGS Publications Warehouse

    Lewis, Robert C.

    1979-01-01

    The Bowrnan-Gascoyne area is located in southwestern North Dakota. It is situated on the southwestern edge of the Williston structural basin and the northeastern flank of the Cedar Creek anticline. Strata of the Fort Union Formation (Paleocene), consisting of nonmarine claystone, sandstone, and lignite, dip to the northeast 25-50 ft/mi. Seven correlatable coal beds of varying thicknesses and areal dimensions occur in the area. The thickest and most persistent of these beds is the Harmon bed which attains a maximum thickness of 38 ft in T. 134 N., Rs. 101 and 102 W. Analyses show a heating value of 5,915-6,680 Btu/lb and a sulfur content of 0.6-1.4 percent. Two areas of high-coal-development potential are located near Gascoyne and Amidon. The Harmon bed in these two areas contains a total of 740,000,000 and 650,000,000 tons, respectively, and is under less than 150 ft of overburden.

  14. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montross, Scott N.; Verba, Circe A.; Collins, Keith

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries formore » supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO 4,SiO 4), xenotime (YPO 4,SiO 4), and apatite (Ca 5(PO 4) 3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification successfully identified the different mineral phases present in CUB. Further, our characterization results can guide techniques for extracting REEs from CUB, or other geologic and engineered materials. Whilst, interpretations will inform future REE separation and extraction techniques and technologies practical for commercial utilization of combustion byproducts generated by power plants.« less

  15. Coal-mine spoil banks offer good potential for timber and wildlife production

    Treesearch

    Grant Davis; Walter H. Davidson

    1968-01-01

    More than 300,000 acres have been strip-mined for coal in the Anthracite and Bituminous Regions of Pennsylvania—most of this since World War II. And an additional 10,000 to 15,000 acres are strip-mined each year. Since 1945 coal operators have been required to revegetate the areas disturbed by mining. Although the primary purpose of revegetation is to provide permanent...

  16. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Treesearch

    David Nicholls; John Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  17. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Treesearch

    David Nicholls; Zackery Wright; Daisy Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  18. Assessment method for the prevention effectiveness of PM2.5 based on the optimization development of coal-fired power generation

    NASA Astrophysics Data System (ADS)

    Zheng, Kuan; Liu, Jun; Zhang, Jin-fang; Hao, Weihua

    2017-01-01

    A large number of combustion of coal is easy to lead to the haze weather which has brought a lot of inconveniences and threat to people’s living and health in E&C China, as the dominant power source of China, the coal-fired power generation is one of the main sources to the haze. In this paper, the contribution of the combustion of coal and development of coal-fired power generation to the PM2.5 emissions is summarized based on the analysis of the present situation, the mechanism and the emission source of PM2.5. Considering the peak of carbon emissions and the constraints of atmospheric environment, the quantitative assessment method of PM2.5 by optimizing the development of coal-fired power generation is present. By the computation analysis for different scenarios, it indicates that the optimization scenario, which means the main new-installed coal-fired power generation is distributed in western and northern China, can prevent the PM2.5 effectively for both the load center and coal base regions of China. The results of this paper not only have reference value for the optimized layout of coal-fired power generation in the “13rd fifth-year” power planning, also is of great significance to deal with problems that the atmospheric pollution and climate warming in the future.

  19. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    USGS Publications Warehouse

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  1. USGS international activities in coal resources

    USGS Publications Warehouse

    ,

    1999-01-01

    During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.

  2. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S. C.

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO 2 recycling unit.« less

  3. Water-Lean Solvents for Post-Combustion CO 2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David J.; Koech, Phillip K.; Glezakou, Vassiliki-Alexandra

    Capturing CO2 from the exhaust of coal-fired power plants is a daunting task, requiring selective removal from a dilute gas stream of millions of pounds per hour of a molecule that is considered thermodynamically and kinetically stable. There are commercial solvent technologies containing proprietary blends of aqueous amines such as Econamine FG+, KS-1, Oase® Blue, and Cansolv that may achieve this task, though only one of them has been deployed at scale, albeit in the natural gas industry.1 The Achilles’ heel of amine blends is the energy loss involved with regenerating the solvent, i.e., boiling and condensing millions of poundsmore » of water per hour. This energy loss translates to a sizeable parasitic load on a coal-fired plant, requiring the plant to burn more coal to get back to its nameplate capacity.2 Unsurprisingly, a considerable amount of research has focused on the design of more efficient technologies to lessen this parasitic load. Liquid systems are the lowest hanging fruit from a time and cost perspective, as they have the potential to use aqueous amine infrastructure, with potential for more rapid ascent up the development ladder than porous solids or membranes.« less

  4. Coal supply and cost under technological and environmental uncertainty

    NASA Astrophysics Data System (ADS)

    Chan, Melissa

    This thesis estimates available coal resources, recoverability, mining costs, environmental impacts, and environmental control costs for the United States under technological and environmental uncertainty. It argues for a comprehensive, well-planned research program that will resolve resource uncertainty, and innovate new technologies to improve recovery and environmental performance. A stochastic process and cost (constant 2005) model for longwall, continuous, and surface mines based on current technology and mining practice data was constructed. It estimates production and cost ranges within 5-11 percent of 2006 prices and production rates. The model was applied to the National Coal Resource Assessment. Assuming the cheapest mining method is chosen to extract coal, 250-320 billion tons are recoverable. Two-thirds to all coal resource can be mined at a cost less than 4/mmBTU. If U.S. coal demand substantially increases, as projected by alternate Energy Information Administration (EIA), resources might not last more than 100 years. By scheduling cost to meet EIA projected demand, estimated cost uncertainty increases over time. It costs less than 15/ton to mine in the first 10 years of a 100 year time period, 10-30/ton in the following 50 years, and 15-$90/ton thereafter. Environmental impacts assessed are subsidence from underground mines, surface mine pit area, erosion, acid mine drainage, air pollutant and methane emissions. The analysis reveals that environmental impacts are significant and increasing as coal demand increases. Control technologies recommended to reduce these impacts are backfilling underground mines, surface pit reclamation, substitution of robotic underground mining systems for surface pit mining, soil replacement for erosion, placing barriers between exposed coal and the elements to avoid acid formation, and coalbed methane development to avoid methane emissions during mining. The costs to apply these technologies to meet more stringent environmental regulation scenarios are estimated. The results show that the cost of meeting these regulatory scenarios could increase mining costs two to six times the business as usual cost, which could significantly affect the cost of coal-powered electricity generation. This thesis provides a first estimate of resource availability, mining cost, and environmental impact assessment and cost analysis. Available resource is not completely reported, so the available estimate is lower than actual resource. Mining costs are optimized, so provide a low estimate of potential costs. Environmental impact estimates are on the high end of potential impact that may be incurred because it is assumed that impact is unavoidable. Control costs vary. Estimated cost to control subsidence and surface mine pit impacts are suitable estimates of the cost to reduce land impacts. Erosion control and robotic mining system costs are lower, and methane and acid mine drainage control costs are higher, than they may be in the case that these impacts must be reduced.

  5. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous construction of new coal-fired power plants driven by increased electricity demand would pose a potential threat to climate change mitigation and China's peak carbon pledge, and more aggressive CO2 emission reduction policy should be implemented in the future.

  6. Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Schmit, C.R.

    The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

  7. Characterization and Recovery of Rare Earths from Coal and By-Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a dramatic paradigm shift for coal.« less

  8. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.

  9. 76 FR 26753 - Grant Program To Assess, Evaluate and Promote Development of Tribal Energy and Mineral Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ...: (720) 407-0609, e-mail: [email protected] . Conventional Energy Projects (Oil, Natural Gas, Coal..., development, feasibility and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro...

  10. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  11. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  12. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation ismore » located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.« less

  13. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less

  14. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    NASA Astrophysics Data System (ADS)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  15. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Ordermore » has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.« less

  16. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    PubMed Central

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  17. Political and technical issues of coal fire extinction in the Kyoto framework

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  18. Sound-burst Generator for Measuring Coal Properties

    NASA Technical Reports Server (NTRS)

    Hadden, W. J. J.; Mills, J. M.; Pierce, A. D.

    1982-01-01

    Acoustical properties of coal can be measured accurately and with relative ease with aid of digital two-channel sine-wave sound generator. Generator is expected to provide information for development of acoustic devices for measuring thickness of coal in longwall mining. In echo-cancellation measurements, sound bursts are sent to coal sample from opposite directions. Transmitted and reflected amplitudes and phases are measured by transducers to determine coal properties.

  19. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  20. Cranberry Wilderness study area, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissner, C.R. Jr.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness study area contains a large demonstrated resource of bituminous coal of coking quality according to studies made in 1977. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56.5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout themore » State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.« less

  1. CAMD studies of coal structure and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulon, J.L.; Carlson, G.A.

    The macromolecular structure of coal is essential to understand the mechanisms occurring during coal liquefaction. Many attempts to model coal structure can be found in the literature. More specifically for high volatile bituminous coal, the subject of interest the most commonly quoted models are the models of Given, Wiser, Solomon, and Shinn. In past work, the authors`s have used computer-aided molecular design (CAMD) to develop three-dimensional representations for the above coal models. The three-dimensional structures were energy minimized using molecular mechanics and molecular dynamics. True density and micopore volume were evaluated for each model. With the exception of Given`s model,more » the computed density values were found to be in agreement with the corresponding experimental results. The above coal models were constructed by a trial and error technique consisting of a manual fitting of the-analytical data. It is obvious that for each model the amount of data is small compared to the actual complexity of coal, and for all of the models more than one structure can be built. Hence, the process by which one structure is chosen instead of another is not clear. In fact, all the authors agree that the structure they derived was only intended to represent an {open_quotes}average{close_quotes} coal model rather than a unique correct structure. The purpose of this program is further develop CAMD techniques to increase the understanding of coal structure and its relationship to coal liquefaction.« less

  2. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    NASA Technical Reports Server (NTRS)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  3. Proceedings of the conference on Coal Feeding Systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.

  4. Evaluation of ocular irritancy of coal-tar dyes used in cosmetics employing reconstructed human cornea-like epithelium and short time exposure tests.

    PubMed

    Lee, Miri; Nam, Ki Taek; Kim, Jungah; Lim, Song E; Yeon, Sang Hyeon; Lee, Buhyun; Lee, Joo Young; Lim, Kyung-Min

    2017-10-01

    Coal-tar dyes in cosmetics may elicit adverse effects in the skin and eyes. Countries, like the US, have banned the use of coal-tar dyes in cosmetics for the eye area due to the potential for ocular irritation. We evaluated the eye irritation potential of 15 coal-tar dyes permitted as cosmetic ingredients in reconstructed human cornea-like epithelium (RhCEs [EpiOcular™ and MCTT HCE™]) tests and the short time exposure (STE) test. Eosin YS, phloxine B, tetrachlorotetrabromofluorescein, and tetrabromofluorescein were identified as irritants in RhCEs; dibromofluorescein and uranine yielded discrepant results. STE enabled further classification in accordance with the UN Globally Harmonized System of Classification and Labelling of Chemicals, as follows: eosin YS as Cat 2; phloxine B, Cat 1; and tetrachlorotetrabromofluorescein and tetrabromofluorescein, Cat 1/2. STE indicated dibromofluorescein (irritant in EpiOcular™) and uranine (irritant in MCTT HCE™) as No Cat, resulting in the classification of "No prediction can be made." based on bottom-up approach with each model. These results demonstrated that in vitro eye irritation tests can be utilized to evaluate the potential ocular irritancy of cosmetic ingredients and provide significant evidence with which to determine whether precautions should be given for the use of coal-tar dyes in cosmetics or other substances applied to the eye area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance of the observed effects for populations in natural receiving environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Potential for Recoverable Coalbed Methane Resources on Navy Lands.

    DTIC Science & Technology

    1985-06-01

    into the Tertiary Period (up to 12 Ma). This deposition occurred in a series of basins in the west-central United States. These are the Piceance, Uinta ...14 5. Average Composition of Gas From Coalbeds, % ...................... 16 6. Gas Content and Rank of Coals From Several Major Coal Basins ...Industry Manual (Reference 2) indicates over 30 Army or Air Force installations that appear to lie within or adjacent to major coal basins . Therefore

  7. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analysesmore » of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.« less

  8. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  9. 75 FR 6178 - Mission Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... geothermal, biomass, hydropower, wind, solar, and energy efficiency sectors. The mission will focus on... offers potential growth, barriers still exist that prevent U.S. companies from accessing the market and... additional opportunities in solar, biomass, ``clean coal'' technology such as gasification or wet coal...

  10. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  11. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    PubMed

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Preliminary Toxicological Analysis of the Effect of Coal Slurry Impoundment Water on Human Liver Cells

    USGS Publications Warehouse

    Bunnell, Joseph E.

    2008-01-01

    Coal is usually 'washed' with water and a variety of chemicals to reduce its content of sulfur and mineral matter. The 'washings' or 'coal slurry' derived from this process is a viscous black liquid containing fine particles of coal, mineral matter, and other dissolved and particulate substances. Coal slurry may be stored in impoundments or in abandoned underground mines. Human health and environmental effects potentially resulting from leakage of chemical substances from coal slurry into drinking water supplies or aquatic ecosystems have not been systematically examined. Impoundments are semipermeable, presenting the possibility that inorganic and organic substances, some of which may be toxic, may contaminate ground or surface water. The Agency for Toxic Substances and Disease Registry, part of the Centers for Disease Control and Prevention, has concluded that well water in Mingo County, West Virginia, constitutes a public health hazard.

  13. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J.M.K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  14. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  15. Some regional costs of a synthetic fuel industry: The case of illinois

    USGS Publications Warehouse

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  16. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  17. Assessment of subclinical right ventricular systolic dysfunction in coal miners using myocardial isovolumic acceleration.

    PubMed

    Ozcan Abacıoglu, Ozge; Kaplan, Mehmet; Abacıoglu, Serkan; Quisi, Ala

    2017-09-01

    Several studies have been conducted regarding the effects of coal mining on the respiratory system. However, there is a lack of data concerning potential effects of coal mining on the cardiovascular system. In this study, we aimed to evaluate the potential subclinical right and left ventricular dysfunction in coal miners. This single-center, prospective study included a total of 102 patients. Patient and control groups consisted of 54 coal miners and 48 healthy men, respectively. All patients underwent 12-lead electrocardiography, transthoracic echocardiography, and pulmonary function test. As compared to control group, coal miners had significantly higher right ventricular myocardial performance index (RVMPI) (0.41 ± 0.03 vs 0.37 ± 0.02, P < .001), lower right ventricular fractional area change (RVFAC) (33.55% ± 6.70% vs 37.04 ± 9.26 P < .05), lower tricuspid annular plane systolic excursion (TAPSE) (1.54 ± 0.17 vs 1.73 ± 0.25, P < .001), lower myocardial isovolumic acceleration (IVA) (2.13 ± 0.16 vs 2.56 ± 0.36 P < .001) and decreased aortic distensibility (AD) (4.14 ± 2.18 vs 6.63 ± 3.91 P < .001). All of the echocardiographic parameters were positively correlated with exposure time to coal mine dust, except IVA. Echocardiographic parameters of both right and left ventricular dysfunction, including RVMPI, RVFAC, TAPSE, IVA, and AD, are impaired in coal miners. © 2017 The Authors Echocardiography Published by Wiley Periodicals, Inc.

  18. Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts

    NASA Astrophysics Data System (ADS)

    The organization of a national coal science program and the production of electricity from coal using magnetohydrodynamic processes were the topics of a hearing before the subcommittee on energy research and development. The analysis of commercial energy at electric power plants, with an emphasis on the protection of the environment, were the main issues discussed.

  19. Continuous coal processing method

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1980-01-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  20. [Identification of the cumulative eco-environment effect of coal-electricity integration based on interpretative structural model].

    PubMed

    Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang

    2017-05-18

    In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.

Top