Science.gov

Sample records for coal mining regions

  1. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    SciTech Connect

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  2. Effect of coal mining on regional ecological footprint based on GIS

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-ji; Kong, Yun-feng; Zhang, Hong-bo

    2006-10-01

    Coal mining has brought a plenty of benefit and matter for human kind, and greatly improved the development of economy and society. At the same time, however, it has also lead to the environment damage, which has affected the regional sustainable development. In this paper, we take the Luxi Coal Mine, Shandong Province as an example, based on the GIS, to study the effect on the sustainable development due to coal mining with the theory of ecological footprint. The research result show that coal mining inevitably affects the ecological footprint of coal mining area. In order to minimize the ecological deficit, measures shall be taken during coal mining period to reduce the environment damage by coal mining, adopting new reclamation method to protect the ecological producing land and avoiding cultivated land degraded.

  3. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014.

    PubMed

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260-4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806-5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938-2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured.

  4. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014

    PubMed Central

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260–4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806–5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938–2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured. PMID:26366418

  5. How many mountains can we mine? Assessing the regional degradation of Central Appalachian rivers by surface coal mining.

    PubMed

    Bernhardt, Emily S; Lutz, Brian D; King, Ryan S; Fay, John P; Carter, Catherine E; Helton, Ashley M; Campagna, David; Amos, John

    2012-08-07

    Surface coal mining is the dominant form of land cover change in Central Appalachia, yet the extent to which surface coal mine runoff is polluting regional rivers is currently unknown. We mapped surface mining from 1976 to 2005 for a 19,581 km(2) area of southern West Virginia and linked these maps with water quality and biological data for 223 streams. The extent of surface mining within catchments is highly correlated with the ionic strength and sulfate concentrations of receiving streams. Generalized additive models were used to estimate the amount of watershed mining, stream ionic strength, or sulfate concentrations beyond which biological impairment (based on state biocriteria) is likely. We find this threshold is reached once surface coal mines occupy >5.4% of their contributing watershed area, ionic strength exceeds 308 μS cm(-1), or sulfate concentrations exceed 50 mg L(-1). Significant losses of many intolerant macroinvertebrate taxa occur when as little as 2.2% of contributing catchments are mined. As of 2005, 5% of the land area of southern WV was converted to surface mines, 6% of regional streams were buried in valley fills, and 22% of the regional stream network length drained watersheds with >5.4% of their surface area converted to mines.

  6. Reclamation of mined lands in the western coal region

    USGS Publications Warehouse

    Narten, Perry F.; Litner, S.F.; Allingham, J.W.; Foster, Lee; Larsen, D.M.; McWreath, H.C.

    1983-01-01

    In 1978, a group of scientists from several Federal agencies examined reclamation work at 22 coal mines in seven western States. The results of these examinations were not used to derive quantitative predictions of the outcome of reclamation work but rather to determine the general requirements for revegetation success. Locally, reclamation efforts are affected by climate, especially precipitation; the landform of the restored surface; the nature of the overburden material; the nature of the surface soil; and the natural ecological system. The goals of reclamation efforts are now broader than ever. Regulations call not only for reducing the steepness of the final surface and establishing a cover of mostly perennial native vegetation, but for restoring the land for specific land uses, achieving diversity both in types of plants and in number of species, and reintroduction of biological and ecological processes. If specific sites are monitored over a long enough period of time, quantitative predictions of success for individual mines may be possible, and such predictions can be included in environmental impact statements to help in the decision-making process. The results of this study indicate that current reclamation objectives can be met when the reclamation effort is designed on the basis of site-specific needs and when existing technology is used.

  7. Atlas of wetlands in the principal coal surface mining region of western Kentucky. Reference report

    SciTech Connect

    Mitsch, W.J.; Taylor, J.R.; Benson, K.B.; Hill, P.L. Jr.

    1983-07-01

    This reference document provides information on the location of wetlands in the Western Kentucky Region where coal surface mining is an important industry, principally Muhlenberg, Hopkins, and Ohio Counties. The wetlands and fish and wildlife data are presented on U. S. Geologic Survey 1:24,000 scale Quad maps and tables. The discussion focuses on historical information on the wetlands, occurrence of selected species in various kinds of wetlands, and environmentally important factors affecting the biota through surface mining activities.

  8. Construction of a conceptual model of transport system for a coal mining region

    NASA Astrophysics Data System (ADS)

    Pristupa, Yu D.; Fryanov, V. N.; Pavlova, L. D.

    2016-10-01

    The methodological approaches to creation of a conceptual model of complex transport system for coal-mining region are substantiated. In the structure of the system base model the ensemble of local interconnected subsystems is distinguished. The local structure of the traffic management system of cargo transportation company is developed, the factors and indicators affecting the efficiency of cargo management are highlighted.

  9. Quality of surface water in the coal-mining region, southwestern Indiana, March and May 1979

    USGS Publications Warehouse

    Renn, Danny E.; Ragone, Stephen E.; Wilber, William G.

    1980-01-01

    On August 3, 1977, the Surface Mine Control and Reclamation Act, Public Law 95-87 (the Act) was enacted by the 95th Congress. Under Section 507(b)(11) of the Act, an appropriate Federal or State agency must provide applicants for coal-mining permits hydrologic and water-quality information for the general use of proposed mining. To help meet the goals of the Act, the U.S. Geological Survey is designing a data-collection network in the coal-mining region of southwestern Indiana. The purpose of the network is to provide hydrologic and water-quality data on the ' general area ' for coal-mining permits. Because of the large size of the study area and the lack of hydrologic and water-quality data, a preliminary assessment is being done to determine the factors that affect water quality in the coal-mining region. This information will be used in designing a data network that will (1) provide the hydrologic and water-quality data needed by applicants for coal-mining permits and (2) determine the major factors that affect water quality. Reconnaissance data were collected at 293 sites in March, and hydrologic and water-quality data were collected at 84 synoptic sampling sites in May. (Synoptic sampling is the virtually simultaneous collection of data at specific sites.) In the reconnaissance, pH, specific conductance, dissolved-oxygen concentration, temperature, and Eh of streams were measured on site to provide general water-quality data. In the synoptic sampling, the preceding characteristics, as well as concentrations of various dissolved and suspended constituents of stream water and concentrations of heavy metals on streambed materials, were determined. 

  10. Ground-Water Quality in Unmined Areas and Near Reclaimed Surface Coal Mines in the Northern and Central Appalachian Coal Regions, Pennsylvania and West Virginia

    USGS Publications Warehouse

    McAuley, Steven D.; Kozar, Mark D.

    2006-01-01

    Findings are presented from investigations during 1996-1998 by the U.S. Geological Survey National Water-Quality Assessment Program. Ground-water quality in 58 wells downgradient of reclaimed surface coal mines is compared to ground-water quality from 25 wells in unmined areas (background concentrations) in the bituminous coal fields of the northern Appalachian coal region (high-sulfur coal region) in Pennsylvania, Maryland, and West Virginia and the central Appalachian coal region (low-sulfur coal region) in West Virginia. Ground water in the mined high-sulfur coal region has significantly greater median concentrations of sulfate, hardness, calcium, and specific conductance compared to the unmined high-sulfur coal region and to both mined and unmined areas in the low-sulfur coal region. Ground water in mined areas had median values of mine-drainage constituents (sulfate, iron, manganese, aluminum, hardness, calcium, magnesium, turbidity, and specific conductance) that were significantly greater than medians for wells in unmined areas. Mine-drainage constituents include cations such as calcium and magnesium that become elevated compared to levels in unmined areas because of exposure of acidic mine drainage to calcareous materials. The transport of pyrite-oxidation products from the mined site and subsequent neutralization reactions by calcareous materials at the mine site or along the flow path are likely processes that result in greater concentrations of mine-drainage constituents in mined areas compared to unmined areas. Mine-drainage constituents generally exceeded unmined-area background concentrations within about 500 feet of mined sites but were at or below background levels in wells more than 1,000 feet downgradient of mined sites. Concentrations of sulfate, hardness, and total dissolved solids were greatest at well depths of 50 to 150 feet but generally were less than background concentrations in wells deeper than 150 feet. Concentrations of iron, manganese

  11. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  12. Controlling coal mine bumps

    SciTech Connect

    Goode, C.A.; Campoli, A.A.; Zona, A.

    1984-10-01

    A coal bump or burst is defined as the instantaneous violent failure of a coal pillar(s) from overstress. The causes of coal bumps are not well understood, even though minor disturbances are a daily occurrence in bump prone seams. Lack of knowledge about coal bumps coupled with questionable mining practices can create disastrous consequences. Much of the early work on bumps was documented by US Bureau of Mines (BOM) researchers and operators of mines prone to bumps. In 1954 the BOM published Bulletin 535, This study compares recent events with those findings and suggests measures that can be taken to minimize the potential occurrence and severity of coal bumps.

  13. Mortality in Appalachian coal mining regions: the value of statistical life lost

    SciTech Connect

    Hendryx, M.; Ahern, M.M.

    2009-07-15

    We examined elevated mortality rates in Appalachian coal mining areas for 1979-2005, and estimated the corresponding value of statistical life (VSL) lost relative to the economic benefits of the coal mining industry. We compared age-adjusted mortality rates and socioeconomic conditions across four county groups: Appalachia with high levels of coal mining, Appalachia with lower mining levels, Appalachia without coal mining, and other counties in the nation. We converted mortality estimates to VSL estimates and compared the results with the economic contribution of coal mining. We also conducted a discount analysis to estimate current benefits relative to future mortality costs. The heaviest coal mining areas of Appalachia had the poorest socioeconomic conditions. Before adjusting for covariates, the number of excess annual age-adjusted deaths in coal mining areas ranged from 3,975 to 10,923, depending on years studied and comparison group. Corresponding VSL estimates ranged from $18.563 billion to $84.544 billion, with a point estimate of $50.010 billion, greater than the $8.088 billion economic contribution of coal mining. After adjusting for covariates, the number of excess annual deaths in mining areas ranged from 1,736 to 2,889, and VSL costs continued to exceed the benefits of mining. Discounting VSL costs into the future resulted in excess costs relative to benefits in seven of eight conditions, with a point estimate of $41.846 billion.

  14. A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil.

    PubMed

    Silva, Luis F O; Wollenschlager, Marcus; Oliveira, Marcos L S

    2011-02-01

    The concentrations and loadings of major and trace elements in coal mine drainage (CMD) from 49 abandoned mines located in the coal fields of the Brazilian state of Santa Catarina were determined. The CMD sites typically displayed a wide spatial and temporal variability in physical and geochemical conditions. The results of our CMD analyses in Santa Catarina State were used to illustrate that the geochemical processes in the rock piles can be deduced from multiple data sets. The observed relationship between the pH and constituent concentrations were attributed to (1) dilution of acidic water by near-neutral or alkaline groundwater and (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals. The preliminary results of the CMD analyses and environmental health in the Santa Catarina region, Brazil, are discussed.

  15. Mortality in Appalachian coal mining regions: the value of statistical life lost.

    PubMed

    Hendryx, Michael; Ahern, Melissa M

    2009-01-01

    We examined elevated mortality rates in Appalachian coal mining areas for 1979-2005, and estimated the corresponding value of statistical life (VSL) lost relative to the economic benefits of the coal mining industry. We compared age-adjusted mortality rates and socioeconomic conditions across four county groups: Appalachia with high levels of coal mining, Appalachia with lower mining levels, Appalachia without coal mining, and other counties in the nation. We converted mortality estimates to VSL estimates and compared the results with the economic contribution of coal mining. We also conducted a discount analysis to estimate current benefits relative to future mortality costs. The heaviest coal mining areas of Appalachia had the poorest socioeconomic conditions. Before adjusting for covariates, the number of excess annual age-adjusted deaths in coal mining areas ranged from 3975 to 10,923, depending on years studied and comparison group. Corresponding VSL estimates ranged from $18.563 billion to $84.544 billion, with a point estimate of $50.010 billion, greater than the $8.088 billion economic contribution of coal mining. After adjusting for covariates, the number of excess annual deaths in mining areas ranged from 1736 to 2889, and VSL costs continued to exceed the benefits of mining. Discounting VSL costs into the future resulted in excess costs relative to benefits in seven of eight conditions, with a point estimate of $41.846 billion. Research priorities to reduce Appalachian health disparities should focus on reducing disparities in the coalfields. The human cost of the Appalachian coal mining economy outweighs its economic benefits.

  16. Development of remote sensing techniques for assessment of hydrologic conditions in coal mining regions of Appalachia

    NASA Technical Reports Server (NTRS)

    Pope, C. D.; Higer, A. L.; Coker, A. E.

    1975-01-01

    In December of 1974 the John F. Kennedy Space Center, NASA, and the Water Resources Division, United States Geological Survey (USGS), acquired photographic, thermal, and multispectral data over the Cumberland region of eastern Tennessee. This data was effectively used to delineate ground water sources, and surface water runoff into river systems in the Cumberlands. The data, coupled with an overview of the area from the Earth Resources Technology Satellite (ERTS), could be useful in determining hydrologic conditions in coal mining regions of the Appalachians.

  17. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  18. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  19. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions

    SciTech Connect

    Hendryx, M.; Zullig, K.J.

    2009-11-15

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  20. Radioactivities related to coal mining.

    PubMed

    Seddeek, Mostafa K; Sharshar, Taher; Ragab, Hossam S; Badran, Hussein M

    2005-08-01

    Natural radioactivity concentrations due to the coal mining in Gabal El-Maghara, North Sinai, Egypt, were determined using gamma-ray spectroscopy. Coal, water and soil samples were investigated in this study. The (226)Ra, (232)Th and (40)K activity concentrations in coal before extraction were 18.5 +/- 0.5, 29.5 +/- 1.2 and 149.0 +/- 8.4 Bq kg(-1), respectively. These concentrations were reduced to 18-22% after extraction due to the clay removal of the coal ore. The activity contents of the water and soil samples collected from the surrounding area did not show any evidence of enhancement due to the mining activities. Absorbed dose rate and effective dose equivalent in the mine environment were 29.4 nGy h(-1) and 128.0 microSv a(-1), respectively. The measured activity concentrations in the mine environment and the surrounding areas (5 km away from the mine) are similar to that found in other regions in North and South Sinai. Based on the measurements of gamma-ray emitting radionuclides, the mine activity does not lead to any enhancement in the local area nor represents any human risk.

  1. Mining-Induced Coal Permeability Change Under Different Mining Layouts

    NASA Astrophysics Data System (ADS)

    Zhang, Zetian; Zhang, Ru; Xie, Heping; Gao, Mingzhong; Xie, Jing

    2016-09-01

    To comprehensively understand the mining-induced coal permeability change, a series of laboratory unloading experiments are conducted based on a simplifying assumption of the actual mining-induced stress evolution processes of three typical longwall mining layouts in China, i.e., non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM). A theoretical expression of the mining-induced permeability change ratio (MPCR) is derived and validated by laboratory experiments and in situ observations. The mining-induced coal permeability variation under the three typical mining layouts is quantitatively analyzed using the MPCR based on the test results. The experimental results show that the mining-induced stress evolution processes of different mining layouts do have an influence on the mechanical behavior and evolution of MPCR of coal. The coal mass in the PCM simulation has the lowest stress concentration but the highest peak MPCR (approximately 4000 %), whereas the opposite trends are observed for the coal mass under NM. The results of the coal mass under TCM fall between those for PCM and NM. The evolution of the MPCR of coal under different layouts can be divided into three sections, i.e., stable increasing section, accelerated increasing section and reducing section, but the evolution processes are slightly different for the different mining layouts. A coal bed gas intensive extraction region is recommended based on the MPCR distribution of coal seams obtained by simplifying assumptions and the laboratory testing results. The presented results are also compared with existing conventional triaxial compression test results to fully comprehend the effect of actual mining-induced stress evolution on coal property tests.

  2. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania.

    PubMed

    Maccausland, A; McTammany, M E

    2007-09-01

    Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations.

  3. Terrestrial Carbon Losses from Mountaintop Coal Mining Offsets Regional Forest Carbon Sequestration in the 21ST Century

    NASA Astrophysics Data System (ADS)

    Acton, P. M.; Campbell, J. E.; Fox, J.

    2012-12-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for predicting future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025 to 2033 with a 30% to 35% loss is terrestrial carbon stocks relative to a scenario with no future mining of forest carbon by the year 2100. Alternatively, scenarios of forest sequestration due to the offsetting effects of CO2 fertilization and enhanced soil respiration result in a 15% to 24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while stack emissions are the dominant life-cycle in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical land-use component of regional carbon budgets.

  4. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Fox, James F.; Acton, Peter M.

    2012-12-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025-33 with a 30%-35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO2 fertilization result in a 15%-24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets.

  5. Land reclamation beautifies coal mines

    SciTech Connect

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  6. Case-control study of stomach cancer in a coal mining region of Pennsylvania

    SciTech Connect

    Weinberg, G.B.; Kuller, L.H.; Stehr, P.A.

    1985-08-01

    Historically coal mining populations have been reported to have elevated stomach cancer incidence rates. To identify which factors might be associated with cases who reside in these high risk areas, and specifically if particulate exposures from coal mining and coal utilization are associated with risk, a mining area of western Pennsylvania was defined for a retrospective case-control study. One hundred seventy-eight resident cases, identified from certificates of death, were compared to three controls: digestive cancer deaths, arteriosclerotic heart disease deaths, and neighborhood (living) controls. Controls were matched to each case on age, race, sex, and residence. Interviews were conducted during 1981 and 1982. Excess risks were shown for foreign born and eastern Europeans. Coal mining was not shown to be a risk factor for males, while an association was seen for female cases whose husbands were miners. Farming was a risk factor for males and females. Marked decreased risks were shown for gas heating and cooking fuels, with elevated risks for coal, wood and oil heating fuels, and wood cooking fuel. These findings are associated with lower socioeconomic status, and suggest environmental exposures or lifestyles that are directly and indirectly related to these risks factors. The marked inverse relationship between stomach cancer and use of gas heating and cooking fuel may be of important etiologic significance, especially in association with dietary changes. Further evaluation of prior use of various types of heating and cooking fuels needs to be considered especially using incident rather than case deaths.

  7. Respiratory Diseases Caused by Coal Mine Dust

    PubMed Central

    Laney, A. Scott; Weissman, David N.

    2015-01-01

    Objective To provide an update on respiratory diseases caused by coal mine dust. Methods This article presents the results of a literature review initially performed for an International Conference on Occupational and Environmental Lung Disease held in summer 2013. Results Coal mine dust causes a spectrum of lung diseases collectively termed coal mine dust lung disease (CMDLD). These include Coal Workers’ Pneumoconiosis, silicosis, mixed dust pneumoconiosis, dust-related diffuse fibrosis (which can be mistaken for idiopathic pulmonary fibrosis), and chronic obstructive pulmonary disease. CMDLD continues to be a problem in the United States, particularly in the central Appalachian region. Treatment of CMDLD is symptomatic. Those with end-stage disease are candidates for lung transplantation. Because CMDLD cannot be cured, prevention is critical. Conclusions Coal mine dust remains a relevant occupational hazard and miners remain at risk for CMDLD. PMID:25285970

  8. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    PubMed

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  9. The Study Of Soil And Agrochemical Features Of Zonal Soils Of Coal Mining Enterprises In Kemerovo Region

    NASA Astrophysics Data System (ADS)

    Yakovchenko, M. A.; Kosolapova, A. A.; Ermolaev, V. A.

    2017-01-01

    The paper represents the results of the study of soil and agrochemical features of zonal soils: the grain-size composition, the content of humus, phosphorus and potassium, and heavy metals, the reaction of soil solution of the territory of the open-pit coal mine No12 of Kemerovo region in the areas of the working enterprise. The species composition of the lignose and herbaceous vegetation of the undisturbed territories has been studied. It has been revealed that the fertile soil layer of the studied areas of the open-pit coal mine is characterized as fertile but can’t be removed and stored because the surface of the whole area under study is forest-covered very much, rumpled, there are gullies and a lot of wind-fallen trees.

  10. Automatic Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    Coal cutting and removal done with minimal hazard to people. Automatic coal mine cutting, transport and roof-support movement all done by automatic machinery. Exposure of people to hazardous conditions reduced to inspection tours, maintenance, repair, and possibly entry mining.

  11. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    PubMed

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters.

  12. In Brief: Coal mining regulations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-12-01

    The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.

  13. Coal mine methane global review

    SciTech Connect

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  14. Coal Mining, Germany

    NASA Image and Video Library

    2001-08-01

    This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years. The image is centered at 51 degrees north latitude, 6.4 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02676

  15. Coal Mining-Related Respiratory Diseases

    MedlinePlus

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  16. pH in streams draining small mined and unmined watersheds in the coal region of Appalachia

    Treesearch

    Kenneth L. Dyer; Willie R. Curtis

    1983-01-01

    To better evaluate the effects of surface mining for coal in first-order watersheds in Appalachia, a network of 421 water-quality sampling stations was established in 136 counties in nine states in 1977 and sampled on approximately a monthly basis until August 1979. Three categories of watersheds were sampled: (1) unmined, (2) mined after January 1972, and (3) mined...

  17. Automated Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Isenberg, L.; Lewis, E. V.

    1985-01-01

    Proposed system offers safety and large return on investment. System, operating by year 2000, employs machines and processes based on proven principles. According to concept, line of parallel machines, connected in groups of four to service modules, attacks face of coal seam. High-pressure water jets and central auger on each machine break face. Jaws scoop up coal chunks, and auger grinds them and forces fragments into slurry-transport system. Slurry pumped through pipeline to point of use. Concept for highly automated coal-mining system increases productivity, makes mining safer, and protects health of mine workers.

  18. Soil risk assessment of As and Zn contamination in a coal mining region using geostatistics [corrected].

    PubMed

    Komnitsas, Kostas; Modis, Kostas

    2006-12-01

    The present paper aims to map As and Zn contamination and assess the risk for agricultural soils in a wider disposal site containing wastes derived from coal beneficiation. Geochemical data related to environmental studies show that the waste characteristics favor solubilisation and mobilization of inorganic contaminants and in some cases the generation of acidic leachates. 135 soil samples were collected from a 34 km(2) area and analysed by using geostatistics under the maximum entropy principle in order to produce risk assessment maps and estimate the probability of soil contamination. In addition, the present paper discusses the main issues related to risk assessment in wider mining and waste disposal sites in order to assist decision makers in selecting feasible rehabilitation schemes.

  19. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  20. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  1. 78 FR 63463 - Intent To Prepare a Regional Environmental Impact Statement for Surface Coal and Lignite Mining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Surface Coal and Lignite Mining in the State of Texas AGENCY: Department of the Army, U.S. Army Corps of... associated with a decision to develop and assess data and information with waters of the United States and... expansions in the state of Texas within the Fort Worth District's area of responsibility. These coal...

  2. Coal Mining, Germany

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years.

    The image is centered at 51 degrees north latitude, 6.4 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change

  3. Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacuí, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, E.; Ortiz, L.; Alves, M.; Sanchez, J.

    2001-11-01

    The geochemical distributions of Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were investigated to provide information about the mobility and availability of these elements in polluted sediments from the Baixo Jacuí region, southern Brazil. Sediment samples were collected at eight sites in the Conde stream, near coal mining and waste disposal areas, and in the Jacuí river, downstream from industrial activities. Total extraction results showed higher metals concentration at some sites, when compared to background values, as well as indicated by the calculated enrichment factor and geoaccumulation index. However, the results were insufficient to establish the existence of anthropogenic contribution to the studied area. The contamination was better evaluated by the sequential extraction. The geochemical distribution in the sediments of the Jacuí river revealed the presence of high concentrations of Cr and Cu in the oxidizable fraction, in response to effluent discharge from coal fired power stations and a steel plant. Higher percentages of the available fraction were verified in the Conde stream for the elements Cu, Fe, Ni, Pb, and Zn, indicating the sediment contamination by coal-related activities.

  4. Spatiotemporal variability and meteorological control of particulate matter pollution in a large open-pit coal mining region in Colombia

    NASA Astrophysics Data System (ADS)

    Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.

    2012-12-01

    Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle

  5. The upper pennsylvanian pittsburgh coal bed: Resources and mine models

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.

    2001-01-01

    The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.

  6. Significance and technology of coal mine packing

    NASA Astrophysics Data System (ADS)

    Wang, Yunliang

    2017-08-01

    Packing is a kind of mining method which is used to fill the goaf with filling material to control the movement of overlying strata and reduce the deformation of the surface. This paper mainly discusses the significance of coal mine packing, and introduces the current method of filling and mining. Finally, the future of coal mine packing is forecasted.

  7. Topographic Maps and Coal Mining.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1984-01-01

    Geography teachers can illustrate the patterns associated with mineral fuel production, especially coal, by using United States Geological Survey topographic maps, which are illustrated by symbols that indicate mine-related features, such as shafts and tailings. Map reading exercises are presented; an interpretative map key that can facilitate…

  8. Topographic Maps and Coal Mining.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1984-01-01

    Geography teachers can illustrate the patterns associated with mineral fuel production, especially coal, by using United States Geological Survey topographic maps, which are illustrated by symbols that indicate mine-related features, such as shafts and tailings. Map reading exercises are presented; an interpretative map key that can facilitate…

  9. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  10. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  11. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  12. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  13. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  14. Comparison of Mortality Disparities in Central Appalachian Coal- and Non-Coal-Mining Counties.

    PubMed

    Woolley, Shannon M; Meacham, Susan L; Balmert, Lauren C; Talbott, Evelyn O; Buchanich, Jeanine M

    2015-06-01

    Determine whether select cause of death mortality disparities in four Appalachian regions is associated with coal mining or other factors. We calculated direct age-adjusted mortality rates and associated 95% confidence intervals by sex and study group for each cause of death over 5-year time periods from 1960 to 2009 and compared mean demographic and socioeconomic values between study groups via two-sample t tests. Compared with non-coal-mining areas, we found higher rates of poverty in West Virginia and Virginia (VA) coal counties. All-cause mortality rates for males and females were higher in coal counties across all time periods. Virginia coal counties had statistically significant excesses for many causes of death. We found elevated mortality and poverty rates in coal-mining compared with non-coal-mining areas of West Virginia and VA. Future research should examine these findings in more detail at the individual level.

  15. Coal mine directory: United States and Canada

    SciTech Connect

    2004-07-01

    The directory gives a state-by-state listing of all US and Canadian coal producers. It contains contact information as well as the type of mine, production statistics, coal composition, transportation methods etc. A statistical section provides general information about the US coal industry, preparation plants, and longwall mining operations.

  16. Reconnaissance of stream biota and physical and chemical water quality in areas of selected land use in the coal-mining region, southwestern Indiana, 1979-80

    USGS Publications Warehouse

    Wangsness, D.J.

    1982-01-01

    To help meet the goals of the Surface-Mining Control and Reclamation Act of 1977, the U.S. Geological Survey is assessing the physical, chemical, and biological characteristics of surface water within the coal-mining region of southwestern Indiana. This report discusses benthic-invertebrate and periphyticalgal communities in streams draining homogeneous-agricultural, forested, active/reclaimed-mine, reclaimed-mine, and unreclaimed-mine watersheds--and relates the biological communities to the physical and chemical characteristics of the streams. Alkalinity and pH were lower and the concentrations of dissolved solids, suspended solids, calcium, magnesium, sodium, potassium, sulfate, iron, manganese, aluminum, and zinc were higher in unreclaimed-mine watersheds than in the other land-use watersheds. Numbers and community diversity of benthic invertebrates were less at sites affected by mining than at agricultural or forested sites, owing to (1) synergistic effects of low pH, metals, and unsuitable habitat and (2) lack of colonizing drift organisms because of the small drainage area upstream from the mined area. Only a few organisms, such as the caddisflies Cheumatopsyche and Hydropsyche and the chironomids Chironomus and Cricotopus were found in streams draining mine areas.

  17. Coal mining with a liquid solvent

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.

    1979-01-01

    Study suggests carbonated water can dissolve or suspend coal and carry it to surface. Mixture of carbon dioxide and water may be coal solvent that will make unmanned mining reality. When used with proposed process monitoring coal solubility with conventional strain gage, solvent is basis for rapid cost effective extraction of coal from underground seams.

  18. Coal mining with a liquid solvent

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.

    1979-01-01

    Study suggests carbonated water can dissolve or suspend coal and carry it to surface. Mixture of carbon dioxide and water may be coal solvent that will make unmanned mining reality. When used with proposed process monitoring coal solubility with conventional strain gage, solvent is basis for rapid cost effective extraction of coal from underground seams.

  19. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  20. Coal bunkers in underground mines

    SciTech Connect

    Polak, J.; Zegzulka, J.

    1996-12-31

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  1. Exploring geographic variation in lung cancer incidence in Kentucky using a spatial scan statistic: elevated risk in the Appalachian coal-mining region.

    PubMed

    Christian, W Jay; Huang, Bin; Rinehart, John; Hopenhayn, Claudia

    2011-01-01

    We examined geographic patterns of lung cancer incidence in Kentucky. Recent research has suggested that the coal-mining industry contributes to lung cancer risk in Appalachia. We focused on the southeastern portion of the state, which has some of the highest lung cancer rates in the nation. We implemented a spatial scan statistic to identify areas with lung cancer incidence rates that were higher than expected, after adjusting for age, gender, and smoking. The Kentucky Cancer Registry supplied information on cases (1995-2007). The U.S. Census (2000) and several years of Behavioral Risk Factor Surveillance System data (1996-2006) provided county-level population and smoking data. We compared the results with coal-mining data from the Mining Safety and Health Administration and public water utility data from the Kentucky Division of Water. We identified three clusters of counties with higher-than-expected rates. Cluster 1 (relative risk [RR] = 1.21, p<0.01) included 12 counties in southeastern Kentucky. Cluster 2 (RR=1.17, p<0.01) included three nearby counties in the same region. Several of the 15 counties in Cluster 3 (RR=1.04, p=0.01) were part of the Louisville, Kentucky, or Cincinnati, Ohio, metropolitan areas. All of the counties in Clusters 1 and 2 produced significant amounts of coal. Environmental exposures related to the coal-mining industry could contribute to the high incidence of lung cancer in southeastern Kentucky. Lack of evidence for this effect in western Kentucky could be due to regional differences in mining practices and access to public water utilities. Future research should collect biological specimens and environmental samples to test for the presence of trace elements and other lung carcinogens.

  2. Geologic considerations in underground coal mining system design

    NASA Technical Reports Server (NTRS)

    Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.

    1981-01-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

  3. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  4. Geologic considerations in underground coal mining system design

    SciTech Connect

    Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

    1981-10-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

  5. Hydroseeding on anthracite coal-mine spoils

    Treesearch

    Miroslaw M. Czapowskyj; Ross Writer

    1970-01-01

    A study was made of the performance of selected species of legumes, grasses, and trees hydroseeded on anthracite coal-mine spoils in a slurry of lime, fertilizer, and mulch. Hydroseeding failed on coal-breaker refuse, but was partially successful on strip-mine spoils.

  6. Development of ground vegetation under exotic tree plantations on restored coal mine spoil land in a dry tropical region of India.

    PubMed

    Dutta, Raman Kumar; Agrawal, Madhoolika

    2005-10-01

    Restoration of mine spoil is a prime need for coal industry. The study of ground cover vegetation provides essential information about the species diversity and their successional trends during the restoration. The present study was conducted to analyze the structure and biomass accumulation of ground vegetation developing in different plantation stands of an opencast coal mine spoil in a dry tropical region. Different plantation stands showed variations in species diversities. Exotic herbs were more dominant in comparison to native herbs. Pennisetum pedicillatum, an exotic herb showed maximum Importance Value Index in most of the plantation stands. Total number of species varied between 12-18 in different plantation stands. Speces richness and evenness increased with increasing age of the plantations. Variations in total biomass accumulation of ground vegetation were also significant among different plantations. These results suggest that reforestation programme with exotic species on coal mine spoil has been successful in colonization of ground vegetation under different plantations. Gravellia pteridifolia plantations showed most successful ground cover among different plantation stands.

  7. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines. This... Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on October 18, October...

  8. Respirable coal mine dust sample processing

    SciTech Connect

    Raymond, L.D.; Tomb, T.F.; Parobeck, P.S.

    1987-01-01

    The Federal Coal Mine Health and Safety Act of 1969 established mandatory dust standards for coal mines. Regulatory requirements for complying with the provisions of the Act were prescribed in Title 30, Code of Federal Regulations, Parts 70 and 71, which were published in the Federal Register on April 3, 1970, and March 28, 1972, respectively. These standard and sampling requirements of coal mine operators, along with a description of the laboratory which was established to process respirable coal mine dust samples collected in accordance with these requirements, were published in MESA Informational Report (MESA, the acronym for the Mining Enforcement and Safety Administration, was changed to MSHA, the acronym for the Mine Safety and Health Administration, in 1977). These standards and regulatory requirements continued under the Federal Mine Safety and Health Act of 1977 until November 1980, when major regulatory revisions were made in the operator's dust sampling program. This paper describes the changes in the respirable coal mine dust sampling program and the equipment and procedures used by MSHA to process respirable coal mine dust samples collected in accordance with regulatory requirements. 10 figs., 1 tab.

  9. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of §...

  10. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  11. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  12. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  13. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  14. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  15. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  16. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  17. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  18. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  19. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of §...

  20. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  1. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  2. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  3. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine...

  4. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  5. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  6. Frictional ignition with coal mining

    SciTech Connect

    Courtney, W.G.

    1990-01-01

    This paper reviews recent U.S. Bureau of Mine studies of frictional ignition of a methane-air environment by coal mining bits cutting into sandstone and the effectiveness of remedial techniques to reduce the likelihood of frictional ignition. Frictional ignition with a minim bit always involves a worn bit having a wear flat on the tip of the bit. The worn bit forms hot spots on the surface of the sandstone because of frictional abrasion. The hot spots then can ignite the methane-air environment. A small wear flat forms a small hot spot, which does not give ignition, while a large wear flat forms a large hot spot, which gives ignition. The likelihood of frictional ignition can be somewhat reduced by using a mushroom-shaped tungsten-carbide bit tip on the mining bit and by increasing the bit clearance angle; it can be significantly reduced by using a water spray nozzle in back of each bit, which is carefully oriented to direct the water spray onto the sandstone surface directly behind the bit and thereby cool the hot spots formed by the worn bit. A bit replacement schedule must be used to avoid the formation of a dangerously worn bit.

  7. Bidirectional, Automatic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    Proposed coal-mining machine operates in both forward and reverse directions along mine face. New design increases efficiency and productivity, because does not stop cutting as it retreats to starting position after completing pass along face. To further increase efficiency, automatic miner carries its own machinery for crushing coal and feeding it to slurry-transport tube. Dual-drum mining machine cuts coal in two layers, crushes, mixes with water, and feeds it as slurry to haulage tube. At end of pass, foward drum raised so it becomes rear drum, and rear drum lowered, becoming forward drum for return pass.

  8. Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine

    SciTech Connect

    Walter, W.R.; Hunter, S.L.; Glenn, L.A.

    1996-01-01

    This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty.

  9. Injury experience in coal mining, 1989

    SciTech Connect

    Not Available

    1990-01-01

    This Mine and Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  10. Injury experience in coal mining, 1992

    SciTech Connect

    Reich, R.B.; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  11. Injury experience in coal mining, 1990

    SciTech Connect

    1991-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  12. Selenium transformation in coal mine spoils

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-09-01

    The objective of this part of the study is to investigate the oxidation-reduction (redox) environment that favor the release of selenium from coal mine spoils. It is anticipated that the study will help answer critical questions as to the form, solubility, and mobility of selenium from the spoil site to the surrounding environment. This investigation will evaluate the conditions which favor the speciation of selenium from coal mine spoils as affected by changes in the oxidation states of selenium.

  13. Injury experience in coal mining, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

  14. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... proposing to require underground coal mine operators to equip continuous mining machines (except full-face continuous mining machines) with proximity detection systems. Miners working near continuous mining...

  15. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  16. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... Alternatives for Underground Coal Mines. The RFI comment period was originally scheduled to close on October...

  17. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated...

  18. 78 FR 79010 - Criteria to Certify Coal Mine Rescue Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Safety and Health Administration Criteria to Certify Coal Mine Rescue Teams AGENCY: Mine Safety and... Safety and Health Administration (MSHA) has updated the coal mine rescue team certification criteria. The... every five years. One of the criteria for a mine operator to certify the qualifications of a coal...

  19. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated...

  20. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated...

  1. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 153... 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and... alternatives in underground coal mines. The U.S. Court of Appeals for the District of Columbia Circuit...

  2. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated...

  3. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013....

  4. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Part 75 RIN 1219-AB65 Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines, published on August 31, 2011... Mining Machines in Underground Coal Mines. Due to requests from the public and to provide...

  5. Hydrogeology of the Erunakovo region of the Kuznetsk Basin in the context of coal methane formation and mining

    SciTech Connect

    Shvartsev, S.L.; Khryukin, V.T.; Domrocheva, E.V.; Kuzevanov, K.I.; Rasskazov, N.M.; Popova, T.S.; Lepokurova, O.E.; Shvachko, E.V.

    2006-07-01

    Detailed study was given to the hydrogeology of the coal methane-promising Erunakovo region. We have established that all aquifers there are mutually related and form a single aquifer complex consisting of a series of microbeds of different water transmissivities and permeabilities. Two zones have been recognized in the Erunakovo region - of intense and slow water exchange (fresh- and brackish-water, respectively). Fresh waters with mineralization of up to 1 g/l and pH = 7 - 8 occur at depths down to about 300 m or, seldom, 500 m. Brackish waters have mineralization of 1 - 13 g/l and pH reaching 10.1. The higher mineralization is due to the higher contents of HCO{sub 3}{sup -} and Na and, sometimes, SO{sub 4}{sup 2-}, produced through sulfide oxidation, and Cl{sup -}, concentrated as a result of evaporation. In the study region, CO{sub 2} is not of mantle genesis but is the product of coal metamorphism.

  6. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large...

  7. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large...

  8. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large...

  9. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small...

  10. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small...

  11. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small...

  12. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small...

  13. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small...

  14. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large...

  15. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large...

  16. Coal bed methane potential of the Raton Mesa coal region, Raton Basin, Colorado

    SciTech Connect

    Tremain, C.M.

    1980-01-01

    The Raton Mesa coal region of Colorado is an 1100 sq mi area in the western portion of the Raton Basin. Coal rank data, desorption of coal samples, structure mapping on the Trinidad Sandstone, isopach mapping of Vermejo coal beds, coal mine methane emission data, and records of oil and gas tests in the region all define a 179 sq mi area containing 1.56 trillion cubic ft of gas in Vermejo coal beds. These Vermejo coals occur in beds up to 14 ft thick; total coal thicknesses in the Vermejo Formation reach a maximum of 30 ft in the 179 sq mi high potential area. These coals contain up to 514 ft/sup 3/ of gas per ton of coal and are less than 2000 feet below the surface in the high potential area. Currently, 3 wells are being drilled to test these Vermejo coals. 33 references, 26 figures, 3 tables.

  17. VIEW OF FORMER BERWINDWHITE COAL MINING COMPANY MAIN OFFICE BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FORMER BERWIND-WHITE COAL MINING COMPANY MAIN OFFICE BUILDING, CA. 1902, LOOKING NORTH. - Berwind-White Coal Mining Company, Main Office, Fifteenth Street & Somerset Avenue, Windber, Somerset County, PA

  18. Coal Mine Roof Rating (CMRR): A practical rock mass classification for coal mines. Information circular/1994

    SciTech Connect

    Molinda, G.M.; Mark, C.

    1994-01-01

    The Coal Mine Roof Rating (CMRR) was developed by the U.S. Bureau of Mines as an engineering tool to quantify descriptive geologic information for use in coal mine design and roof support selection. The CMRR system combines the results of many years of geologic ground control research with worldwide experience with rock mass classification systems. Like other classification systems, the CMRR begins with the premise that the structural competence of mine roof rock is determined primarily by the discontinuities that weaken the rock fabric. The CMRR makes four unique contributions: (1) it is specifically designed for bedded coal measure rocks, (2) it concentrates on the bolted interval and its ability to form a stable mine structure, (3) it is applicable to all U.S. coal seams, and (4) it provides a methodology for data collection. Using only simple field tests and observations, the CMRR can be calculated from roof falls, overcasts, and highwall exposures.

  19. Environmental impact assessment of selenium from coal mine spoils

    SciTech Connect

    Atalay, A.

    1990-10-01

    The development of environmental impact assessment of selenium from coal mine spoils will provide a useful guideline to predict the environmental impact of Se from abandoned coal mine operations. Information obtained from such a study can be applied in areas where coal mining has not yet begun in order to predict and identify the geochemistry of rocks, soils, surface waters and groundwaters likely to be disturbed by coal mining operation.

  20. Health effects of respirable coal mine dust: coal workers' pneumoconiosis

    SciTech Connect

    Costantino, J.P.

    1981-10-01

    Coal worker's pneumoconiosis is discussed. The nature of the disease is described; it is classified as either simple coal worker's pneumoconiosis or progressive, massive fibrosis (PMF). Simple coal worker's pneumoconiosis is not considered to cause clinical illness. Widespread scarring of the lungs, resulting shortness of breath, pulmonary hypertension and congestive heart failure may be caused by PMF. Chronic exposure to respirable dust from coal mines is the most significant variable associated with the development of coal worker's pneumoconiosis. Exposure-response models are described, and factors affecting exposure to various types of dust are identified. Data for the prevalence of the disease in USA are presented, and the incidence among US mineworkers is discussed. (38 refs.)

  1. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  2. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those...

  3. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal... training for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of... in underground coal mines. On January 13, 2009, the United Mine Workers of America (UMWA)...

  4. Statistical analysis of surface-water-quality data in and near the coal-mining region of southwestern Indiana, 1957-80

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.

    1987-01-01

    predictions of the water-quality variables listed above. The poorest relations are typically at stations in the Patoka River watershed. Suspended-solids concentration was positively related to streamflow at all but two stations on the Patoka River. These relations are poor, have large confidence intervals, and will give less reliable predictions of suspended-solids concentration. Predictive equations for the regional relations between dissolved-solids concentration and specific conductance and between sulfate concentration and specific conductance, and the seasonal patterns of water quality, are probably valid for the coal-mining regions of Illinois and western Kentucky.

  5. Coal mine ground control. 3rd ed.

    SciTech Connect

    Peng, S.S.

    2008-09-15

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  6. Managing coal combustion residues in mines

    SciTech Connect

    2006-07-01

    Burning coal in electric utility plants produces, in addition to power, residues that contain constituents which may be harmful to the environment. The management of large volumes of coal combustion residues (CCRs) is a challenge for utilities, because they must either place the CCRs in landfills, surface impoundments, or mines, or find alternative uses for the material. This study focuses on the placement of CCRs in active and abandoned coal mines. The Committee on Mine Placement of Coal Combustion Wastes of the National Research Council believes that placement of CCRs in mines as part of the reclamation process may be a viable option for the disposal of this material as long as the placement is properly planned and carried out in a manner that avoids significant adverse environmental and health impacts. This report discusses a variety of steps that are involved in planning and managing the use of CCRs as minefills, including an integrated process of CCR characterization and site characterization, management and engineering design of placement activities, and design and implementation of monitoring to reduce the risk of contamination moving from the mine site to the ambient environment. Enforceable federal standards are needed for the disposal of CCRs in minefills to ensure that states have adequate, explicit authority and that they implement minimum safeguards. 267 refs., 6 apps.

  7. Mining induced seismicity in the Ruhr coal mining district, Germany

    NASA Astrophysics Data System (ADS)

    Fischer, Kasper D.; Wehling-Benatelli, Sebastian; Erstling, Stefanie; Brüstle, Andrea; Wlecklik, Dennis

    2013-04-01

    In 2012 four hard coal mines (at about 1000 m depth) were operating in Germany, three of them are in the Ruhr coal mining district. The mining method used (longwall mining in combination with caving) causes induced earthquakes due to the stress redistribution in the surrounding rock. Seismic events of magnitude 1.2 and larger are generally perceived by the population and thus trigger a wide interest. The Ruhr-University of Bochum routinely monitors the seismicity and its temporal evolution and energy release since the 1980s. The current seismological network consists of 14 stations (broad-band and short-period seismometers) in the Ruhr area. Six stations are located at the Ruhr-University Bochum at distances of approximately 20-40 km to the active coal fields. The remaining 8 stations are located in the vicinity of the mines (app. 1 to 5 km from the active mining). The magnitude of completeness is 0.9 throughout the entire Ruhr coal mining district with a local magnitude of completeness of 0.7 depending on the network configuration. In general, the identified earthquakes have a horizontal location uncertainty of 3 km. The routine detection and location of the seismicity is done by classical methods, e. g. based on first arrivals, and advanced methods like array techniques or cross-correlation of waveforms of master events with recorded seismograms from selected stations. Additionally selected event clusters are studied in more detail by reprocessing sub-datasets with methods like cluster analysis or consistent phase-picking. Reassessing this unique dataset of 30 years continuous recordings with newly developed methods and modern data processing techniques can provide new insights of the nature of mining induced seismicity. This methods may also be usable in the field of geothermal energy, unconventional hydrocarbon reservoirs or underground storage of carbon dioxide which also deals with the detection and handling of large amounts of small magnitude earthquakes.

  8. NAFTA opportunities: Bituminous coal and lignite mining

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) secures and improves market access in Mexico and Canada for the United States bituminous coal and lignite mining sector. Canada is one of the United States' largest export markets for bituminous coal and lignite, with exports of $486.7 million in 1992. Conversely, the Mexican market is one of the smallest export markets for U.S. producers with exports of $1.8 million in 1992. Together, however, Canada and Mexico represent approximately 15 percent of total U.S. coal exports. The report presents a sectoral analysis.

  9. Longwall Coal Mining and Soil Moisture Changes in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Pfeil-McCullough, E. K.; Bain, D.

    2014-12-01

    Subsidence from longwall coal mining impacts the surface and sub-surface hydrology in overlying areas. During longwall mining, coal is completely removed in large rectangular panels and the overlying rock collapses into the void. Though the hydrologic effects of longwall mining subsidence have been studied in arid systems, in humid-temperate regions these effects are not well understood. In particular, it is not clear how longwall mining will impact soil moisture patterns. Utilizing simple soil water modeling frameworks (ArcGIS-based Water Balance Toolbox) and the locations of recent long wall mining, potential impacts on soil water availability were predicted at the landscape scale. For example, in areas overlying panel edges, soil available water capacities (AWC) were altered based on several scenarios of AWC change and interactions between aspect driven soil moisture regimes and the mining perturbation were explored over a five year period (2008-2013). The regular patterns of soil moisture arising from insolation contrasts, when interacting with broad-scale longwall mining impacts, are predicted to cause complicated patterns of soil moisture change. These predictions serve as a means to guide field campaigns necessary to understand longwall mining's hydrologic impacts in wetter climates

  10. Hydrogeological and environmental impact of coal mining, Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Choubey, Vishnu D.

    1991-05-01

    The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200 1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.

  11. Quality of water in mines in the Western Middle Coal Field, Anthracite Region, east-central Pennsylvania

    USGS Publications Warehouse

    Reed, L.A.; Beard, M.M.; Growitz, D.J.

    1987-01-01

    The quality of mine water in the 75 sq-mi Western Middle anthracite field, Pennsylvania was determined by sampling discharges and boreholes at 60 abandoned and flooded mines during 1975-78. The Vulcan-Buck Mountain mine, east-northeast of Mahanoy City, contains an estimated 6,100 acre-ft of water with a specific conductance of 380 to 460 micromhos and a pH of 4.4 to 4.6 units. Twenty-two mines are in a 15-sq mi area between Mahanoy City and Girardville, all of which closed prior to 1958. Seven of these mines in the Mahanoy Basin may contain 30,000 acre-ft of water. Specific conductance ranges from 630 micromhos in the Tunnel mine to 1,800 micromhos in the Gilberton mine. Fifteen of these mines are in the Shenandoah complex; specific conductance ranges from 240 to 310 micromhos in mines in the eastern end of the complex to 2,400 micromhos in the western end. The specific conductance of water in 25 mines in the Mount Carmel-Shamokin area ranges from 460 to 980 micromhos. The North Franklin mine near Trevorton contains about 4,900 acre-ft of water with a specific conductance of about 1,100 micromhos. (USGS)

  12. Advancing apparatus for coal-mining machine in underground mine

    SciTech Connect

    Schupphaus, H.

    1984-05-29

    A coal-mining machine is advanced along a face conveyor by providing a rack extending along the conveyor and a plurality of advancing units. Each advancing unit includes a hydraulic motor to rotate a drive wheel while meshing with the teeth of the gear rack. The advancing units arranged side-by-side along the mining machine have curved end faces to abut against one another. Runners are provided on the advancing units at the opposite ends of the mining machine which extend partially around the rack for guiding and maintaining the drive wheel engaged with the teeth of the rack.

  13. A study of mining-induced seismicity in Czech mines with longwall coal exploitation

    SciTech Connect

    Holub, K.

    2007-01-15

    A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.

  14. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  15. Coal Mining Technology, An Innovative Program.

    ERIC Educational Resources Information Center

    Wabash Valley Coll., Mt. Carmel, IL.

    Described in detail in this report are the processes and procedures involved in the development of a State funded curriculum and program for a new emerging technology, in this instance a Coal Mining Technology Program, to be taught at Wabash Valley College in Illinois. The document provides a step-by-step account of the determination of need,…

  16. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  17. A Modified Coal Mine Roof Rating Classification System to Design Support Requirements in Coal Mines

    NASA Astrophysics Data System (ADS)

    Taheri, Abbas; Lee, Yongha; Medina, Mario Andres Guardado

    2017-10-01

    The coal mine roof rating (CMRR) classification system has been applied in a number of coal mines worldwide including Australia. However, the current system cannot be used directly to design support measures in underground mines. Two case studies, the Eliza Hill project in Australia and Tabas coal mine in Iran were analyzed to assess the impact of various rock properties and gallery geometry on stability and to modify the CMRR classification system. Having considered the CMRR system as a working classification system, applicable information and related coal mine data were selected from the two case records. The CMRR value was evaluated and analysed by undertaking correlation between CMRR and factor of safety, followed by a parametric study based on various rock properties and gallery geometries. To improve the applicability of the current system, the CMRR system was then modified by adding additional parameters, namely, the width of roof span and the density of overburden rock. Consequently, based on the modified CMRR system (mCMRR) roof support requirements were recommended to select the suitable rock bolting system including length and spacing of rock bolt. Numerical modelling were then undertaken to verify the support requirements recommended. The support requirements recommended by the mCMRR were found to be relatively identical with numerical analysis results. Support systems proposed by mCMRR can assist mining engineers to assess the stability of underground coal mines or verify the results of other design tools.

  18. A Modified Coal Mine Roof Rating Classification System to Design Support Requirements in Coal Mines

    NASA Astrophysics Data System (ADS)

    Taheri, Abbas; Lee, Yongha; Medina, Mario Andres Guardado

    2017-01-01

    The coal mine roof rating (CMRR) classification system has been applied in a number of coal mines worldwide including Australia. However, the current system cannot be used directly to design support measures in underground mines. Two case studies, the Eliza Hill project in Australia and Tabas coal mine in Iran were analyzed to assess the impact of various rock properties and gallery geometry on stability and to modify the CMRR classification system. Having considered the CMRR system as a working classification system, applicable information and related coal mine data were selected from the two case records. The CMRR value was evaluated and analysed by undertaking correlation between CMRR and factor of safety, followed by a parametric study based on various rock properties and gallery geometries. To improve the applicability of the current system, the CMRR system was then modified by adding additional parameters, namely, the width of roof span and the density of overburden rock. Consequently, based on the modified CMRR system (mCMRR) roof support requirements were recommended to select the suitable rock bolting system including length and spacing of rock bolt. Numerical modelling were then undertaken to verify the support requirements recommended. The support requirements recommended by the mCMRR were found to be relatively identical with numerical analysis results. Support systems proposed by mCMRR can assist mining engineers to assess the stability of underground coal mines or verify the results of other design tools.

  19. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  20. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  1. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  2. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  3. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  4. Noise exposures in US coal mines

    SciTech Connect

    Seiler, J.P.; Valoski, M.P.; Crivaro, M.A.

    1994-05-01

    Mine Safety and Health Administration (MSHA) inspectors conduct full-shift environmental noise surveys to determine the occupational noise levels to which coal miners are exposed. These noise surveys are performed to determine compliance with the noise standard promulgated under the Federal Mine Safety and Health Act of 1977. Data from over 60,000 full-shift noise surveys conducted from fiscal year 1986 through 1992 were entered into a computer data base to facilitate analysis. This paper presents the mean and standard deviation of over 60,000 full-shift noise dose measurements for various underground and surface coal mining occupations. Additionally, it compares and contrasts the levels with historical noise exposure measurements for selected coal mining occupations that were published in the 1970`s. The findings were that the percentage of miners surveyed that were subjected to noise exposures above 100%, neglecting personal hearing protectors, were 26.5% and 21.6% for surface and underground mining, respectively. Generally, the trend is that the noise exposures for selected occupations have decreased since the 1970`s.

  5. Selenium in ecosystems within the mountaintop coal mining and valley-fill region of southern West Virginia-assessment and ecosystem-scale modeling

    USGS Publications Warehouse

    Presser, Theresa S.

    2013-01-01

    Investigating the presence and variability of prey and predator species in demographically open systems such as streams also is key to model outcomes given the overall environmental stressors (for example, general landscape change, food-web disruption, recolonization potential) imposed on the composition of biological communities in coal mining and valley-fill affected watersheds

  6. Coal-mine spoil banks offer good potential for timber and wildlife production

    Treesearch

    Grant Davis; Walter H. Davidson

    1968-01-01

    More than 300,000 acres have been strip-mined for coal in the Anthracite and Bituminous Regions of Pennsylvania—most of this since World War II. And an additional 10,000 to 15,000 acres are strip-mined each year. Since 1945 coal operators have been required to revegetate the areas disturbed by mining. Although the primary purpose of revegetation is to provide permanent...

  7. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  8. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES

    EPA Science Inventory

    Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...

  9. 78 FR 58567 - Criteria to Certify Coal Mine Rescue Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ....regulations.gov . Follow the on-line instructions for submitting comments for Docket Number MSHA-2013-0037... (facsimile). These are not toll-free numbers. SUPPLEMENTARY INFORMATION: Underground coal mine operators must... Instruction Guide IG7, ``Advanced Mine Rescue Training--Coal Mines'', which includes best practices, handouts...

  10. Environmental damage and countermeasures in Chinese coal mine areas

    SciTech Connect

    Hu, B. |; Cui, Z.

    1998-12-31

    The paper discusses three aspects of the ecological environmental damage in China: ground subsidence due to underground coal mining, pollution of mine refuse from underground, and release of fly ash from power plants within coal mine areas. The paper proposes the comprehensive countermeasures for solving these problems. The author puts forward several ways and applications of disposal which could help alleviate the problems, and introduces the subsidence prediction principle in long wall mining. This technology calculates the subsidence, displacement and deformation at every point according to mining schedule. It provides a very useful tool for subsidence control. Finally, the author provides some suggestions to improve the environment in Chinese coal mine areas.

  11. Map of coal-mining features, Allegheny County, Pennsylvania

    USGS Publications Warehouse

    Davies, W.E.; Pomeroy, J.S.; Kohl, W.R.

    1976-01-01

    This map is one result of a series of studies sponsored by the Appalachian Regional Commission as part of a larger U.S. Geological Survey program of environmental analysis of a part of southwestern Pennsylvania. The map summarizes surface features resulting from coal mining. The distribution of surface features is largely from 1973, 1:12,000 scale aerial photographs verified by field reconnaissance in 1973 and 1974. Supplementary interpretations relative to surface subsidence were done using 1939 aerial photographs.

  12. Conversion of Coal Mine Gas to LNG

    SciTech Connect

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  13. Lung disease and coal mining: what pulmonologists need to know.

    PubMed

    Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S

    2016-03-01

    Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.

  14. Coal mine dust lung disease. New lessons from old exposure.

    PubMed

    Petsonk, Edward L; Rose, Cecile; Cohen, Robert

    2013-06-01

    Coal mining remains a sizable industry, with millions of working and retired coal miners worldwide. This article provides an update on recent advances in the understanding of respiratory health issues in coal miners and focuses on the spectrum of disease caused by inhalation of coal mine dust, termed coal mine dust lung disease. In addition to the historical interstitial lung diseases (coal worker's pneumoconiosis, silicosis, and mixed dust pneumoconiosis), coal miners are at risk for dust-related diffuse fibrosis and chronic airway diseases, including emphysema and chronic bronchitis. Recent recognition of rapidly progressive pneumoconiosis in younger miners, mainly in the eastern United States, has increased the sense of urgency and the need for vigilance in medical research, clinical diagnosis, and exposure prevention. Given the risk for disease progression even after exposure removal, along with few medical treatment options, there is an important role for chest physicians in the recognition and management of lung disease associated with work in coal mining.

  15. Transcriptome Analysis of Invasive Plants in Response to Mineral Toxicity of Reclaimed Coal-Mine Soil in the Appalachian Region.

    PubMed

    Saminathan, Thangasamy; Malkaram, Sridhar A; Patel, Dharmesh; Taylor, Kaitlyn; Hass, Amir; Nimmakayala, Padma; Huber, David H; Reddy, Umesh K

    2015-09-01

    Efficient postmining reclamation requires successful revegetation. By using RNA sequencing, we evaluated the growth response of two invasive plants, goutweed (Aegopodium podagraria L.) and mugwort (Artemisia vulgaris), grown in two Appalachian acid-mine soils (MS-I and -II, pH ∼ 4.6). Although deficient in macronutrients, both soils contained high levels of plant-available Al, Fe and Mn. Both plant types showed toxicity tolerance, but metal accumulation differed by plant and site. With MS-I, Al accumulation was greater for mugwort than goutweed (385 ± 47 vs 2151 ± 251 μg g-1). Al concentration was similar between mine sites, but its accumulation in mugwort was greater with MS-I than MS-II, with no difference in accumulation by site for goutweed. An in situ approach revealed deregulation of multiple factors such as transporters, transcription factors, and metal chelators for metal uptake or exclusion. The two plant systems showed common gene expression patterns for different pathways. Both plant systems appeared to have few common heavy-metal pathway regulators addressing mineral toxicity/deficiency in both mine sites, which implies adaptability of invasive plants for efficient growth at mine sites with toxic waste. Functional genomics can be used to screen for plant adaptability, especially for reclamation and phytoremediation of contaminated soils and waters.

  16. Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region

    USGS Publications Warehouse

    Zhai, M.; Totolo, O.; Modisi, M.P.; Finkelman, R.B.; Kelesitse, S.M.; Menyatso, M.

    2009-01-01

    Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 ??m) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction. ?? 2009 Springer Science+Business Media B.V.

  17. Heavy metal distribution in soils near Palapye, Botswana: an evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region.

    PubMed

    Zhai, Mingzhe; Totolo, Otlogetswe; Modisi, Motsoptse P; Finkelman, Robert B; Kelesitse, Sebueng M; Menyatso, Mooketsi

    2009-12-01

    Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 μm) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction.

  18. Determining the research needs of the surface coal mining industry

    SciTech Connect

    Zell, L.M.

    1982-12-01

    This paper reveals avenues open to the coal industry to help gain technology and research information needed to meet the requirements of the Surface Mining Control and Reclamation Act of 1977. It discusses projects of the Department of Energy's (DOE) Office of Coal Mining and the Mining and Reclamation Council of America (MARC) to help meet the environmental needs as well as the coal industry needs.

  19. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  20. SEROPREVALENCE OF T. cruzi INFECTION IN BLOOD DONORS AND CHAGAS CARDIOMYOPATHY IN PATIENTS FROM THE COAL MINING REGION OF COAHUILA, MEXICO

    PubMed Central

    Martínez-Tovar, José Gerardo; Rebollar-Téllez, Eduardo A.; Salas, Ildefonso Fernández

    2014-01-01

    Context and Objective: Chagas disease is considered a worldwide emerging disease; it is endemic in Mexico and the state of Coahuila and is considered of little relevance. The objective of this study was to determine the seroprevalence of T. cruzi infection in blood donors and Chagas cardiomyopathy in patients from the coal mining region of Coahuila, Mexico. Design and Setting: Epidemiological, exploratory and prospective study in a general hospital during the period January to June 2011. Methods: We performed laboratory tests ELISA and indirect hemagglutination in three groups of individuals: 1) asymptomatic voluntary blood donors, 2) patients hospitalized in the cardiology department and 3) patients with dilated cardiomyopathy. Results: There were three levels of seroprevalence: 0.31% in asymptomatic individuals, 1.25% in cardiac patients and in patients with dilated cardiomyopathy in 21.14%. Conclusions: In spite of having detected autochthonous cases of Chagas disease, its importance to local public health remains to be established as well as the details of the dynamics of transmission so that the study is still in progress. PMID:24626421

  1. Regional Differences in Demand for Coal as A Basis for Development of A Product Distribution Model for Mining Companies in the Individual Customers Segment

    NASA Astrophysics Data System (ADS)

    Magda, Roman; Bogacz, Paweł; Franik, Tadeusz; Celej, Maciej; Migza, Marcin

    2014-10-01

    The article presents a proposal of methodology based on the process of relationship marketing, serving to determine the level of demand for coal in the individual customer segment, as well as fuel distribution model for this customer group in Poland developed on the basis of this methodology. It also includes selected results of tests carried out using the proposed methods. These proposals have been defined on the basis of market capacity indicators, which can be determined for the district level based on data from the Polish Central Statistical Office. The study also included the use of linear programming, based on the cost of coal logistics, data concerning railway, road and storage infrastructure present on the Polish market and taking into account the legal aspects. The presented results may provide a basis for mining companies to develop a system of coal distribution management in the locations with the highest demand values.

  2. Altering the Social Structure in Coal Mining: A Case Study

    ERIC Educational Resources Information Center

    Mills, Ted

    1976-01-01

    An 18-month quality-of-working-life experiment in an underground coal mine was conducted using autonomous work groups. Increased production, motivation, and safety resulted, but discontent was created among other workers at the mine. (TA)

  3. Extracting value from coal mine methane

    SciTech Connect

    Liebert, B.

    2009-06-15

    Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

  4. 78 FR 27442 - Coal Mine Dust Sampling Devices; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine Safety and Health Administration Coal Mine Dust Sampling Devices; Correction AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice; correction. SUMMARY: On April 30, 2013, Mine Safety...

  5. Long term measurements in reconstructed soils at a coal mine in the plains region of Alberta, Canada

    SciTech Connect

    Macyk, T.M.; Faught, R.L.; Logan, R.J.

    1995-09-01

    In 1983 the Alberta Research Council and Luscar Ltd. initiated a study to monitor the physical and chemical properties of newly mined and reconstructed soils at the Paintearth Mine. The objective was to determine what changes were occurring and the impact, if any, of these changes on long-term soil quality and productivity. Baseline soil sampling and neutron access tube installation were completed shortly after spoil leveling and soil replacement at six locations representing different slope positions and thickness of replaced subsoil. Monitoring sites were also established in unmined soils adjacent to the mine area. Neutron probe measurements to determine soil moisture and bulk density status in the upper 4 m were conducted annually from April to October. Forage crop harvests were completed to determine yield and forage quality in three different years. Sampling of soils in 15 cm intervals to a maximum depth of 210 cm for analytical purposes was completed in seven of the ten years of the study. Soil moisture data indicated that moisture content and distribution pattern in the reconstructed soils were similar to that of adjacent unmined soils. Bulk density at the reconstructed sites decreased with time during the term of the project and was similar to the bulk density values measured at unmined sites. The electrical conductivity data indicated salts were leached or redistributed downward in the profiles over time. Measurements to date indicate that in terms of soil moisture regime, bulk density status and forage yield the reconstructed soils are similar to unmined soils in the area. The overall improvement in the chemical properties of the reconstructed soils from the time of reconstruction could be largely attributed to leaching of salts.

  6. 4D seismic data acquisition method during coal mining

    NASA Astrophysics Data System (ADS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-06-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions.

  7. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  8. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  9. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  10. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  11. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  12. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  13. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  14. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine...

  15. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  17. 30 CFR 72.800 - Single, full-shift measurement of respirable coal mine dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mine dust. 72.800 Section 72.800 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.800 Single, full-shift measurement of respirable coal mine dust. The Secretary will use a single,...

  18. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  19. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  20. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted...

  1. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  2. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  3. Distribution and assessment of Pb in the supergene environment of the Huainan Coal Mining Area, Anhui, China.

    PubMed

    Fang, Ting; Liu, Guijian; Zhou, Chuncai; Yuan, Zijiao; Lam, Paul Kwan Sing

    2014-08-01

    Coal mining area is highly subject to lead (Pb) pollution from coal mining activities. Several decades of coal mining and processing practices in dozens of coal mines in the Huainan Coal Mining Area (HCMA) have led to the accumulation of massive amounts of coal gangue, which piled in dumps. In order to investigate the impacts of coal gangue dumps on Pb level in the supergene media of the HCMA, a systematic sampling campaign comprising coal gangue, soil, wheat, and earthworm samples was conducted. The average Pb content in the coal mining area soil is 24 mg/kg, which is slightly higher than the associated coal gangues (23 mg/kg) and markedly higher than reference region soil (12.6 mg/kg). Soil in the HCMA present a slight to moderate Pb contamination, which might be related to the weathering and leaching of coal gangue dumps. Lateral distribution of Pb in HCMA soil differed among individual coal mines. The soil profile distribution of Pb depends on both natural and anthropogenic contributions. Average Pb content is higher in roots than in stems, leaves, and wheat husks, while the Pb level in seeds exceeded the maximum Pb allowance for foods (Maximum Levels of Contaminants in Foods of China, GB 2762-2012). Earthworms in the selected area are significantly enriched in Pb, suggesting higher bio-available Pb level in soil in the HCMA.

  4. Research on combined coal mining technology under highway

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Zhang, Wenjun

    2017-05-01

    Based on the 3107 working face of a mine in Shanxi province, using the theoretical calculation and field measurement methods, explored a coal mining technology by combining use of the caving method and the roadway filling method, to solve the coal mining problems under the highway, under the premise that not change the mining layout of the coal mine. The results show that it is feasible to solve the problem of coal mining under the highway by using the combined mining technology. The surface subsidence can be controlled at the range of 282 to 312mm and 278 85mm, in parallel to and vertical to the working face direction, respectively, by using this technology; and the maximum slope of the surface deformation was controlled at 1.52mm/m, and all of the deformation variables are controlled under the requirement of the regulation

  5. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km

  6. Health disparities of coal miners and coal mining communities: the role of occupational health nurses.

    PubMed

    Apostle, Elisa P; O'Connell, Marykate E; Vezeau, Toni M

    2011-07-01

    This article investigates how the health disparities of Appalachian coal miners and coal mining communities could be decreased through a partnership with occupational health nurses. On-site health clinics managed by occupational health nurses working in the coal mining industry are proposed as a means to improve health care outcomes. Health effects, economic considerations, environmental impacts, and U.S. coal mining legislation and regulation are examined. An epidemiological approach is presented to the unique health effects experienced by Appalachian coal miners and coal mining communities within the context of existent socioeconomic disparities. The long-standing health crisis in Appalachian coal mining communities requires a multidisciplinary approach led by occupational health nurses. Copyright 2011, SLACK Incorporated.

  7. From Mining to Post-Mining: The Sustainable Development Strategy of the German Hard Coal Mining Industry

    NASA Astrophysics Data System (ADS)

    Kretschmann, J.; Efremenkov, A. B.; Khoreshok, A. A.

    2017-01-01

    By the end of the 1950s, the German coal mining industry produced 150 million tons of hard coal per year in 170 collieries with 600,000 employees. At that time, 70% of the primary energy demand of the Federal Republic of Germany was covered by domestic coal. Since the advance of oil, later of natural gas, in the world energy market and with the growth of world coal trade, domestic coal stood under a long-term restructuring pressure. This decision required a new strategy for the coal mining industry. Now German coal mining will be strictly finalized and will be prepared for the post-mining era. Within a sustainability strategy the long-term impacts of mining activities before and after the mine closures concerning the environmental, economic and social dimensions will be analyzed systematically and forward-looking.

  8. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  9. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  10. R&D and Technological Change in Coal Mining.

    ERIC Educational Resources Information Center

    Baker, Joe G.

    This report examines the issue of research and development (R and D) as well as technological changes in coal mining, focusing primarily on deep coal mining from 1970 to the present. First, a conceptual framework for classification of R and D as well as technological change is developed. A review of the literature that gives a mixed impression of…

  11. Safety Improvement Solutions In Coal Mines Using GIS

    NASA Astrophysics Data System (ADS)

    Costa, Cristian; Lupu, Lucian; Edelhauser, Eduard

    2015-07-01

    Exploitation of coal from the Jiu Valley presents its own specific, in terms of coal mining deposit conditions, fact that required a continuous preoccupation for the monitoring of the work conditions, in order to ensure work-places safety. This paper intends to indicate a method of increasing the work environment safety using GIS technology, the analysis being completed at Lupeni Coal Mine, the largest Coal Mine in Jiu Valley, characterised by a low level of accidents that has taken place in there so far. It consists of an extension of accomplished studies in order to implement an intelligent dispatching system.

  12. Knowledge modeling of coal mining equipments based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Baolong; Wang, Xiangqian; Li, Huizong; Jiang, Miaomiao

    2017-06-01

    The problems of information redundancy and sharing are universe in coal mining equipment management. In order to improve the using efficiency of knowledge of coal mining equipments, this paper proposed a new method of knowledge modeling based on ontology. On the basis of analyzing the structures and internal relations of coal mining equipment knowledge, taking OWL as ontology construct language, the ontology model of coal mining equipment knowledge is built with the help of Protégé 4.3 software tools. The knowledge description method will lay the foundation for the high effective knowledge management and sharing, which is very significant for improving the production management level of coal mining enterprises.

  13. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    PubMed

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  14. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    NASA Astrophysics Data System (ADS)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  15. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  16. Investigation of relationship between barometric pressure and coal and gas outburst events in underground coal mining

    NASA Astrophysics Data System (ADS)

    Yönet, Sinem; Esen, Olgun; Fişne, Abdullah

    2015-04-01

    Coal and gas outburst is a serious risk which occurs during the mine production. This accident results both ejection of high volumes of gas and high amount of coal into the mine production area, and death of mining workers for many years in Turkey. Outburst of gas, coal and rock can be defined as sudden release of coal and rock accompanied by large quantities of gas into the working face or other mine workings. It is a phenomena that influenced by geological structure such as folds, joints of rocks or coal seams, is also still investigated for many years. Zonguldak Coal Basin is the main part of the Upper Carboniferous bituminous coal basin of Turkey. Much of the bituminous coal mining has thus been concentrated in the Zonguldak Basin which is located on the Black Sea coast. The coal field has been disturbed by tectonic activity, first by Hercynian and later by Alpine orogenesis resulting in folding and faulting of strata. This formation has a complex structural geology which consists mostly fault zones, anticlinal and syncline strata and because of this a large amount of methane gases are adsorbed or accumulated in strata or in coal fractures, pores and micropores. There are 5 Collieries exists in Zonguldak Coalfield and coal and gas outbursts were occurred only in two collieries such as Karadon and Kozlu Mines. In addition at a number of 90 coal and gas outburst events were experienced in these collieries. Based on the analysis of data, oscillation at barometric pressure and temperature values at the location of Kozlu and Karadon Mines were seen when coal and gas outburst events were occurred. In this study, barometric pressure and temperature changes are investigated at Kozlu and Karadon Mines. Also the relationship between the variation at temperature with barometric pressure and coal and gas outbursts are evaluated. It can be understand that this investigation depends to field observations and macroscopic considerations and on the purpose of predicting the

  17. Safety at coal mines: what role does methane play?

    SciTech Connect

    2006-04-01

    The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

  18. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    PubMed

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L(-1)) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  19. Reconnaissance of Stream Geomorphology, Low Streamflow, and Stream Temperature in the Mountaintop Coal-Mining Region, Southern West Virginia, 1999-2000

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Evaldi, Ronald D.; Eychaner, James H.; Chambers, Douglas B.

    2001-01-01

    The effects of mountaintop removal coal mining and the valley fills created by this mining method in southern West Virginia were investigated by comparing data collected at valley-fill, mined, and unmined sites. Bed material downstream of valley-fill sites had a greater number of particles less than 2 millimeters and a smaller median particle size than the mined and unmined sites. At the 84th percentile of sampled data, however, bed material at each site type had about the same size particles. Bankfull cross-sectional areas at a riffle section were approximately equal at valley-fill and unmined sites, but not enough time has passed and insufficient streamflows since the land was disturbed may have prevented the stream channel at valley-fill sites from reaching equilibrium. The 90-percent flow durations at valley-fill sites generally were 6-7 times greater than at unmined sites. Some valley-fill sites, however, exhibited streamflows similar to unmined sites, and some unmined sites exhibited streamflows similar to valley-fill sites. Daily streamflows from valley-fill sites generally are greater than daily streamflows from unmined sites during periods of low streamflow. Valley-fill sites have a greater percentage of base-flow and a lower percentage of flow from storm runoff than unmined sites. Water temperatures from a valley-fill site exhibited lower daily fluctuations and seasonal variations than water temperatures from an unmined site.

  20. Numerical study on 4-1 coal seam of Xiaoming mine in ascending mining.

    PubMed

    Lan, Tianwei; Zhang, Hongwei; Li, Sheng; Han, Jun; Song, Weihua; Batugin, A C; Tang, Guoshui

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits.

  1. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    PubMed Central

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  2. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  3. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia.

    PubMed

    Strager, Michael P; Strager, Jacquelyn M; Evans, Jeffrey S; Dunscomb, Judy K; Kreps, Brad J; Maxwell, Aaron E

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts.

  4. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  5. Surface coal mining influences on macroinvertebrate assemblages in streams of the Canadian Rocky Mountains.

    PubMed

    Kuchapski, Kathryn A; Rasmussen, Joseph B

    2015-09-01

    To determine the region-specific impacts of surface coal mines on macroinvertebrate community health, chemical and physical stream characteristics and macroinvertebrate family and community metrics were measured in surface coal mine-affected and reference streams in the Canadian Rocky Mountains. Water chemistry was significantly altered in mine-affected streams, which had elevated conductivity, alkalinity, and selenium and ion concentrations compared with reference conditions. Multivariate redundancy analysis (RDA) indicated alterations in macroinvertebrate communities downstream of mine sites. In RDA ordination, Ephemeroptera family densities, family richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) richness, and % Ephemeroptera declined, whereas densities of Capniidae stoneflies increased along environmental gradients defined by variables associated with mine influence including waterborne Se concentration, alkalinity, substrate embeddedness, and interstitial material size. Shifts in macroinvertebrate assemblages may have been the result of multiple region-specific stressors related to mining influences including selenium toxicity, ionic toxicity, or stream substrate modifications. © 2015 SETAC.

  6. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  7. Rock mass response to the decline in underground coal mining

    SciTech Connect

    Holub, K.

    2006-01-15

    Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

  8. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING §...

  9. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Auger mining: Coal recovery. 819.13 Section 819.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING §...

  10. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Coal recovery. 819.13 Section 819.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING §...

  11. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Auger mining: Coal recovery. 819.13 Section 819.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING §...

  12. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Auger mining: Coal recovery. 819.13 Section 819.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING §...

  13. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  14. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Federal Coal Mine Health and Safety Act... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health and...

  15. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  16. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  17. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Federal Coal Mine Health and Safety Act... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health...

  18. 30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Daily inspection of surface coal mine... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1713 Daily inspection of...

  19. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  20. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Federal Coal Mine Health and Safety Act... LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health and Safety...

  1. Overview of surface-water quality in Ohio's coal regions

    USGS Publications Warehouse

    Westover, Susan; Eberle, Michael

    1987-01-01

    This report is designed to provide the nontechnical audience with some of the results of an 'Assessment of Water Quality in Streams Draining Coal-Producing Areas in Ohio,' by Christine L. Pfaff and others (published by the U.S. Geological Survey in 1981). The purpose of the assessment was to document the occurrence of certain chemical constituents in streams in Ohio's coal region and determine to what extent the presence of these constituents was related to mining. Ohio's most productive coal seams are associated with the Allegheny and Monongahela Formation of Pennsylvanian age. These coals were mined by underground methods very early in Ohio's history. Underground mining continues in the state today; however, surface mining now produces significantly more coal. Acid mine drainage from unreclaimed surface and underground mines has affected surface-water quality in Ohio for many years, and recently has led to establishment of reclamation programs by State and Federal agencies. In their assessment of Ohio's coal region, Pfaff and others sampled 150 sites in small watersheds underlain by the Allegheny and the Monogahela Formations. Each site represented only one of four land-use types (active-mine, unmined, abandoned-mine, or reclaimed). Statistical analysis of data from the unmined, abandoned-mine, and reclaimed sites showed that there were significant differences in pH, specific conductance, alkalinity, and concentrations of sulfate and aluminum among abandoned-mine and unmined sites. Reclaimed sites had average pH values and aluminum concentrations similar to those unmined sites. Average specific conductance and sulfate concentrations were about the same for reclaimed abandoned-mine sites, but were significantly lower at unmined sites; specific conductance and sulfate concentration, in fact, proved to be reliable indicators of basins that had been disturbed by mining. Alkalinity was significantly different for all three land uses, the highest values being found at

  2. Explosive fluid transmitted shock method for mining deeply buried coal

    DOEpatents

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  3. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport

    PubMed Central

    Shahan, M.R.; Seaman, C.E.; Beck, T.W.; Colinet, J.F.; Mischler, S.E.

    2017-01-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8. PMID:28936001

  4. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    PubMed

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  5. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  6. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  7. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  8. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  9. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  10. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  11. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  12. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  13. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  14. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  15. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  16. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  17. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  18. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  19. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  20. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  1. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  2. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  3. 30 CFR 933.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 933.762 Section 933.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designation Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  4. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  5. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  6. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  7. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  8. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  9. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  10. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  11. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  12. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  13. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  14. 30 CFR 942.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 942.762 Section 942.762 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, shall apply to surface coal mining and reclamation operations. (b) In...

  15. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  16. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  17. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary...

  18. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  19. 30 CFR 939.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 939.762 Section 939.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  20. 30 CFR 941.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 941.762 Section 941.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  1. 30 CFR 921.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 921.762 Section 921.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mine operations....

  2. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  3. 30 CFR 905.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 905.762 Section 905.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining operations....

  4. 30 CFR 947.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 947.762 Section 947.762 Mineral Resources OFFICE OF SURFACE MINING... mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal Mining Operations, shall apply to surface coal mining and reclamation operations....

  5. Psycho-social aspects of productivity in underground coal mining

    SciTech Connect

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoing management.

  6. The Economic Impact of Coal Mining in New Mexico

    SciTech Connect

    Peach, James; Starbuck, C.

    2009-06-01

    The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

  7. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    NASA Astrophysics Data System (ADS)

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  8. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    NASA Astrophysics Data System (ADS)

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-03-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  9. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  10. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Particle toxicology: from coal mining to nanotechnology.

    PubMed

    Borm, Paul J A

    2002-03-01

    Particle research has been historically closely connected to industrial activities or materials, such as coal, asbestos, man-made mineral fibers, and more recently ambient particulate matter (PM). It is the purpose of this review to combine insights and developments in particle toxicology with the historical context of exposure and organizations sponsoring such research in Europe. In supporting research on particle-induced respiratory effects and mechanisms, research programs of the European Community on Steel and Coal (ECSC) have played a tremendous role. Current particle research in Europe is dominated by PM, and funded by the World Health Organization (WHO), European Union Framework programs, and the Health Effects Institute (HEI). Differences between historical and current research in particle toxicology include the exposure concentrations, particle size, target populations, endpoints, and length of exposure. Inhaled particle effects are no longer confined to the lung, since particles are suggested to translocate to the blood while lung inflammation invokes systemic responses. Finally, the particle size and concentrations have both been reduced about 100-fold from 2-5 mg/m3 to 20-50 mg/m3 and from 1-2 microm to 20-100 nm (ultrafine) as domestic fuel burning has decreased and vehicle sources have increased and attention has moved from coal mining industry to general environment. There is, however, a further occupational link to nanotechnology, which continuously produces new materials in the ultrafine range. Although inhalation exposure is considered to be minimal in this technology, some particles are produced to be used for carrier purpose in medical applications. Based on our current knowledge of particle toxicology, it is highly desirable that toxicology and technology are linked in this extremely rapid developing area, to learn more about potential risks and also to develop knowledge on the role of surface and size in particle toxicity.

  12. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  13. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  14. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  15. Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation

    NASA Astrophysics Data System (ADS)

    Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.

    2017-01-01

    At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.

  16. New coal capacity surges ahead. [Coal mines opening in 1980 to 1989 period, by state, company and mine location

    SciTech Connect

    Nielsen, G.F.

    1981-01-30

    Coal production from mines currently being developed, from older mines being expanded, or from those operations in planning stages, could add about 515 million tons of new capacity to the nation's total by the end of 1989. That conclusion is drawn from a recently completed industry-wide survey conducted by Keystone Coal Industry Manual. There are caveats applying to the data presented. Most important is that while it appears federal coal leasing programs will be accelerated, the timing of individual agreements leaves actual startup dates for some mines in question. Similar to actions taken by operators last year, the opening dates for many of the mines in this survey have been pushed back several years. A few of the previously announced mines have been cancelled. Some of those mine names may reappear, as firm committments are made for their output. This survey accounts for 324 expanding or planned mines projecting a combined output, including present production, of 780 million tpy of bituminous coal and lignite. This figure does not include production from mines now operating that will not expand during the 1980 to 1989 period. The majority of new mines reported will be underground operations, but surface mining will account for the larger share of production. Most of the new capacity will be west of the Mississippi River where 156 mines will produce 616.03 million tpy, or about 75% of the total. The primary use for the output of these new mines is for steam coal purposes, with 92% devoted to that goal. Metallurgical grade coal is expected to comprise only about 8% of the total. The companies involved with the expansion program were the producers of about 66% of total US output of 776 million tons in 1979.

  17. The enviornmental assessment of a contemporary coal mining system

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Sullivan, P. J.; Hutchinson, C. F.; Stevens, C. M.

    1980-01-01

    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected.

  18. The 2006-2011 world outlook for coal mining

    SciTech Connect

    Park, P.M.

    2006-10-15

    This study covers the world outlook for coal mining across more than 200 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region and of the globe. These comparative benchmarks allow the reader to quickly gauge a country against others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data. This study gives, however, estimates for the worldwide latent demand, or the P.I.E., for coal mining. It also shows how the P.I.E. is divided across the world's regional and national markets. For each country, estimates are given of how the P.I.E. grows over time (positive or negative growth).

  19. Selenium transformation in coal mine spoils. Quarterly report

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-09-01

    The objective of this part of the study is to investigate the oxidation-reduction (redox) environment that favor the release of selenium from coal mine spoils. It is anticipated that the study will help answer critical questions as to the form, solubility, and mobility of selenium from the spoil site to the surrounding environment. This investigation will evaluate the conditions which favor the speciation of selenium from coal mine spoils as affected by changes in the oxidation states of selenium.

  20. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    SciTech Connect

    Hawkins, J.W.

    1995-12-31

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load.

  1. Pennsylvania's approach to underground coal mine permitting and long-term mine pool management

    SciTech Connect

    Callaghan, T.; Koricich, J.

    1999-07-01

    Pennsylvania's underground coal mine permitting process has two goals: first, to ensure that the mining and reclamation plan is designed to minimize adverse environmental impacts; and second, to minimize interference with the applicant's recovery of coal. A successful review process includes the consistent evaluation of mine site hydrology through scrutiny of key indicators of mining-induced, adverse hydrologic consequences. This allows the regulatory agency to assess the potential for mining-related impacts as well as cumulative impacts throughout the proposed mine area and adjacent area. General trends have been identified regarding quality of underground mine drainage versus coal seam mined. However, the large number of factors controlling the final mine pool chemistry along with the lack of focused research have combined to stunt the development of reliable methodologies for the prediction of postmining water quality. Absent reliable predictive methodologies, mine layout has become the best demonstrated technology for pollution prevention. Strategies include: (1) promotion of postmining inundation by down-dip development with proper location of mine openings and sizing and location of barriers; (2) restriction of mining to zones within the groundwater system where flow is relatively lethargic and time of travel is great when compared to natural mine pool amelioration time frames; and (3) mining in zones remote from groundwater discharge areas and features which may serve to short-circuit mine water to nearby existing water-supply aquifers or to the surface. This paper discusses Pennsylvania's application process for underground bituminous coal mines. It briefly outlines Pennsylvania's statutory history relating to mine discharges, touches on some of the tools permit reviewers use to evaluate the hydrology of proposed underground mining sites, and discusses the key factors that permit reviewers consider in assessing potential postmining mine pool levels.

  2. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  3. Identifying woody vegetation on coal surface mines using phenological indicators with multitemporal Landsat imagery

    NASA Astrophysics Data System (ADS)

    Oliphant, A. J.; Li, J.; Wynne, R. H.; Donovan, P. F.; Zipper, C. E.

    2014-11-01

    Surface mining for coal has disturbed large land areas in the Appalachian Mountains. Better information on mined lands' ecosystem recovery status is necessary for effective environmental management in mining-impacted regions. Because record quality varies between state mining agencies and much mining occurred prior to widespread use of geospatial technologies, accurate maps of mining extents, durations, and land cover effects are often not available. Landsat data are well suited to mapping and characterizing land cover and forest recovery on former coal surface mines. Past mine reclamation techniques have often failed to restore premining forest vegetation but natural processes may enable native forests to re-establish on mined areas with time. However, the invasive species autumn olive (Elaeagnus umbellate) is proliferating widely on former coal surface mines, often inhibiting reestablishment of native forests. Autumn olive outcompetes native vegetation because it fixes atmospheric nitrogen and benefits from a longer growing season than native deciduous trees. This longer growing season, along with Landsat 8's high signal to noise ratio, has enabled species-level classification of autumn olive using multitemporal Landsat 8 data at accuracy levels usually only obtainable using higher spatial or spectral resolution sensors. We have used classification and regression tree (CART®) and support vector machine (SVM) to classify five counties in the coal mining region of Virginia for presence and absence of autumn olive. The best model found was a CART® model with 36 nodes which had an overall accuracy of 84% and kappa of 0.68. Autumn olive had conditional kappa of 0.65 and a producers and users accuracy of 86% and 83% respectively. The best SVM model used a second order polynomial kernel and had an overall accuracy of 77%, an overall kappa of 0.54 and a producers and users accuracy of 60% and 90% respectively.

  4. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  5. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  6. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  7. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Statutory insurance requirements for coal... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  8. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering...

  9. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  10. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering...

  11. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  12. 42 CFR 37.100 - Coal mine operator plan for medical examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Coal mine operator plan for medical examinations... MEDICAL CARE AND EXAMINATIONS SPECIFICATIONS FOR MEDICAL EXAMINATIONS OF COAL MINERS General Requirements § 37.100 Coal mine operator plan for medical examinations. (a) Each coal mine operator must submit...

  13. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Relationship of pneumoconiosis to coal mine... LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS... § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering...

  14. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering...

  15. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to...

  16. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  17. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering...

  18. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person...

  19. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Machine Standard for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION...) electrical safety standards for the installation, use, and maintenance of high-voltage continuous mining... INFORMATION CONTACT: Patricia W. Silvey, Director, Office of Standards, Regulations, and Variances, MSHA,...

  20. Ventilation of mines developed by the combined method of coal mining

    NASA Astrophysics Data System (ADS)

    Senkus, Val V.; Ermakov, A. Yu; Senkus, V. V.

    2016-10-01

    The paper considers the features of ventilation of mines which are developed by the combined method of coal mining. It also provides recommendations for placing the flank and central ventilation holes while mining flat and steep seams from open pit sides, as well as anticlinal and synclinal deposits.

  1. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page...

  2. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust... Occupational Safety and Health (NIOSH), Department of Health and Human Services, shall conduct tests...

  3. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  4. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  5. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust... Occupational Safety and Health (NIOSH), Department of Health and Human Services, shall conduct tests...

  6. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust... Occupational Safety and Health (NIOSH), Department of Health and Human Services, shall conduct tests...

  7. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  8. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  9. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  10. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  11. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  12. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  13. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  14. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  15. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  16. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  17. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  18. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  19. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  20. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  1. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  2. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  3. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  4. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  5. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  6. 30 CFR 939.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 939.800 Section 939.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  7. 30 CFR 941.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 941.800 Section 941.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  8. 30 CFR 933.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 933.800 Section 933.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  9. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  10. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  11. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  12. 30 CFR 921.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 921.800 Section 921.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.800 General requirements for bonding of surface coal mining... Mining and Reclamation Operations Under Regulatory Programs, shall apply to all surface coal mining...

  13. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program....

  14. 76 FR 2617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors AGENCY: Mine Safety and... rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal..., Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors....

  15. 76 FR 25277 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors AGENCY: Mine Safety and... period on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including... FR 64412), MSHA published a proposed rule, Lowering Miners' Exposure to Respirable Coal Mine...

  16. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  17. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  18. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  19. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  20. 76 FR 25277 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine Safety and Health Administration... Agency's proposed rules for Examinations of Work Areas in Underground Coal Mines (Examinations of Work... of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern...

  1. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  2. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... (Underground Coal Mines) AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for public... (facsimile). SUPPLEMENTARY INFORMATION: I. Background Fire protection standards for underground coal mines....1100 requires that each coal mine be provided with suitable firefighting equipment adapted for the...

  3. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...-0026] Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION....C. 813(a)) (the Mine Act)) requires that frequent inspections and investigations in coal or...

  4. Tube bundle system: for monitoring of coal mine atmosphere.

    PubMed

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  5. Micronutrient Fractionation in Coal Mine-Affected Agricultural Soils, India.

    PubMed

    Agrawal, Rahul; Kumar, Bijendra; Priyanka, Kumari; Narayan, Chandravir; Shukla, Kriti; Sarkar, Jhuma; Anshumali

    2016-04-01

    Assessment of the anthropogenic impacts on bioavailability, mobility, immobility and toxicity of four micronutrients (Cu, Fe, Mn, and Zn) were carried out by Community Bureau of Reference (BCR) fractionation scheme in agricultural soils (n = 10) around Jharia coalfield, eastern India. The relative abundance of micronutrients was as follows: Fe > Mn > Zn > Cu. The enrichment factor was >1 for Zn (6.1) and Cu (1.8) near coal mining area indicated toward soil pollution due to coal mining activities and application of inorganic fertilizers. The I geo values of micronutrients were <0 suggest no pollution with respect to Cu, Fe, Mn and Zn. Correlation analysis showed geogenic origin of soil micronutrients and derived mainly from weathering of minerals present in the parent rock. The mean values of Cu, Mn and Zn were less than certified reference material indicating highly leached agricultural soils in the study region. BCR fractionation of micronutrients showed that a single element could not reveal all types of chemical reactions occurring in soil consortium.

  6. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  7. Microbial methane formation from hard coal and timber in an abandoned coal mine

    SciTech Connect

    Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H.

    2008-07-01

    About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

  8. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed

    Hill, R D; Bates, E R

    1979-12-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence.

  9. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  10. Research on One Borehole Hydraulic Coal Mining System

    NASA Astrophysics Data System (ADS)

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  11. The impact of coal mining on water quality in Claybank creek, northern Missouri, USA

    SciTech Connect

    Piepenburg, K.H.

    1987-01-01

    Abandoned and unreclaimed shaft and strip mines are the source of sediments and selected, solute ionic species polluting the North Fork of Claybank Creek in north-central Missouri. Coal was mined by shaft and strip techniques in this drainage basin from the 1860's to the 1950's. Coal has been removed from under approximately 1167 hectares of the basin and an additional 114 hectares have been surface mined. The lower Pennsylvanian Bevier-Wheeler coal has a high sulfur content and is bituminous. The dominant sulfur form is pyritic, and the oxidation of the pyrite in the abandoned shaft mines and associated spoil piles and in the strip mine spoil results in acidic discharges from the mining sites to the stream system. Water samples were collected monthly for one year at twelve locations in the drainage basin and from two control streams in the region. Spatial separation of shaft and strip mines within the basin and variable water quality in the stream suggest a relationship between the technique of mining and the intensity of pollution in different portions of the stream. The relationship could not be statistically identified through interpretation of bivariate, multiple, and stepwise regressions.

  12. Coal mine workers' pneumoconiosis (CWP): in vitro study of the release of organic compounds from coal mine dust in the presence of physiological fluids.

    PubMed

    Schulz, H M

    1997-01-01

    Solvents like dichloromethane generally are used to yield exhausted extraction amounts of the organic compounds in coals. Leaching of coal mine dust by dichloromethane yields extracts with comparable amounts of alkanes, aromatics, and phenolic compounds. Dominantly phenolic compounds are leached from coal mine dust by aqueous solutions saturated in lecithin because of their high water solubility. High concentrations of phenolic compounds can be extracted from coal mine dust generated from low-rank coals. Phenolic compounds leached by fluids adapted to physiological conditions correlate with high cytotoxicities of the dust from low-rank coals. Adaptation of leaching fluids to physiological conditions allows a more realistic estimation of experiments. Coal mine dust with varying coal content of different ranks can be seen as a parameter reinforcing the cytotoxic potential of coal mine dust.

  13. Evaluation of discriminating fire sensors in two underground coal mines

    SciTech Connect

    Francart, W.J.

    1999-07-01

    Fire detection in underground coal mines using carbon monoxide (CO) based monitoring systems has been very effective in many mines. Many systems have been able to detect fires in early stages of development at very low CO levels. However in mines which use extensive diesel haulage and support vehicles, the systems have been less sensitive to early detection due to diesel exhaust contaminants elevating baseline CO levels. A new technology has been tested in two underground coal mines which is designed to discriminate between the CO produced by diesel engines and CO from a fire correcting the CO concentration based on the nitric oxide (NO) concentration. This paper discusses the results of studies completed by MSHA at two of these underground coal mines. The technology employs a complex mathematical computation which is continually accomplished to improve fire detection capabilities for dieselized underground coal mines. Findings have shown the technology to be effective in significantly reducing levels for alarms while avoiding a Chicken Little complacency for nuisance alarms. This technology could be used for fire detection in any underground mines which utilize diesel equipment and carbon monoxide based fire detection systems.

  14. 78 FR 35974 - Proposed Information Collection; Comment Request; Coal Mine Rescue Teams; Arrangements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Safety and Health Administration Proposed Information Collection; Comment Request; Coal Mine Rescue Teams... protecting the safety and health of miners. 30 CFR Part 49, Mine Rescue Teams, Subpart B--Mine Rescue Teams for Underground Coal Mines, sets standards related to the availability of mine rescue teams;...

  15. Utilization of coal ash/coal combustion products for mine reclamation

    SciTech Connect

    Dolence, R.C.; Giovannitti, E.

    1997-09-01

    Society`s demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations.

  16. Restoration of abandoned mine lands through cooperative coal resource evaluations

    SciTech Connect

    Hoskins, D.M.; Smith, M.

    1996-12-31

    The public reclamation cost of reclaiming all of Pennsylvania`s abandoned mine lands is estimated at $15 billion. Drainage from abandoned mines poses another $5 billion water pollution clean-up problem. Although it is unlikely that public reclamation alone could ever tackle these problems, much can be done to alleviate the nuisances through the remining of previously mined areas to recover remaining reserves, restore the land and improve water quality in the same process. Remining of priority areas is encouraged through a new Pennsylvania policy which provides incentives to mining companies. One incentive, initiated under Pennsylvania`s comprehensive mine reclamation strategy, is to identify and geologically map reminable coal resources in selected watersheds, and then to expedite mine permitting in these watersheds. At present, two such priority watersheds, Little Toby Creek in Elk County and Tangascootak Creek in Clinton County, are the focus of geologic map compilation based on recent quadrangle mapping, or new, directed, geologic mapping, including new research core drilling to establish the geologic stratigraphic framework. In order to maximize environmental benefits the comprehensive mine reclamation strategy identifies watersheds which are affected by acid mine drainage (AMD), but that are reasonably capable of restoration, if sufficient coal reserves remain. Pennsylvania`s geochemical quality database of rock overburden, in combination with detailed coal resource mapping by the Pennsylvania Geological Survey, and the cooperation of coal companies and leaseholders, is being used by the Department of Environmental Protection (DEP) to identify and design remining projects which will not only allow the recovery of coal resources, but will also improve the water quality through a variety of innovative mining techniques.

  17. Reconnaissance evaluation of water resources for hydraulic coal mining, Crested Butte coal field, Gunnison County, Colorado

    USGS Publications Warehouse

    Alley, William M.; Britton, Linda J.; Boyd, Elaine L.

    1978-01-01

    Available surface-water and ground-water data were compiled for the parts of the Gunnison River basin in and adjacent to the Crested Butte coal field. The data were evaluated to assess the quantity and quality of water resources in the area for use in hydraulic coal mining. Based on discharge records, surface-water supplies of most streams should be adequate to meet the demands for hydraulic mining of 1 million tons of coal per year with a recycled water system. However, on some of the smaller streams in the area, some storage of water may be required for use during low-flow periods to meet minimum-flow requirements for downstream reaches. Other potential sources of water for hydraulic coal mining include ground water from alluvium along major streams and from the Dakota and Entrada Sandstones. The surface and ground water in the study area should be of adequate quality for use in hydraulic coal mining, with the possible exception of Coal Creek which has excessive concentrations of iron, manganese, and zinc. Data are insufficient to assess the potential impact of hydraulic coal mining on downstream water quality. (Woodard-USGS)

  18. 77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Safety and Health Administration Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... surface coal mines, surface facilities and surface work areas of underground coal mines. MSHA is...

  19. The influence of surface coal mining on streamflow in headwater alpine watersheds, Elk Valley, BC, Canada.

    NASA Astrophysics Data System (ADS)

    Ketcheson, S. J.; Carey, S. K.; Shatilla, N. J.

    2016-12-01

    Surface coal mining in mountainous regions typically involves the removal of overburden materials by blasting to expose coal seams and relocation of waste rock material (termed `coal spoils') into adjacent valleys. This process results in headwater streams being buried beneath large volumes of waste rock, which alters the runoff dynamics from the mined catchments. To date, most of the existing research on surface coal mining has focused on the physiochemical quality of the stream ecosystems in Appalachia, with comparably less known about alterations caused to streamflow and active runoff pathways. In this study, we use hydrometric and geochemical data from seven headwater catchments (3 - 65 km2) in southeastern British Columba, Canada, along a surface mining disturbance gradient to provide an assessment of the impact of coal spoils on catchment functioning, runoff timing, magnitude and pathways, water sources, and water residence times. In contrast to reclaimed surface mined catchments in Appalachia, catchments in the Elk Valley with large volumes of unclaimed waste rock had lower flows and dampened responses to precipitation events than reference catchments. Mined catchments were less productive on average and generated approximately 30% less streamflow than the reference catchments. Hydrochemical results indicate that dissolved ions increased in proportion with the volume of waste rock in the watershed, and mined catchments deviated from the chemostatic behavior observed at many of the reference catchments. This suggests either flushing of near-stream sources or changing water sources as stream discharge increases. Stable isotope data indicate a stronger influence of rainfall on recharge in catchments with spoil than the reference catchments, which responded more strongly to enrichment and depletion events. The presence of large volumes of coal spoil shift catchments towards storage-dominated systems with prolonged residence times.

  20. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  1. Study of Natural Radioactivity in Coal Samples of Baganuur Coal Mine, Mongolia

    SciTech Connect

    Altangerel, M.; Norov, N.; Altangerel, D.

    2009-03-31

    Coal and soil samples from Baganuur Coal Mine (BCM) of Mongolia have been investigated. The activities of {sup 226}Ra, {sup 232}Th and {sup 40}K have been measured by gamma-ray spectrometry using shielded HPGe detector. Contents of natural radionuclide elements (U, Th and K) have been determined. Also the activities and contents of radionuclide of ashes were determined which generated in Thermal Power Plant 3 of Ulaanbaatar from coal supplied from BCM.

  2. Research of land resources comprehensive utilization of coal mining in plain area based on GIS: case of Panyi Coal Mine of Huainan Mining Group Corp.

    NASA Astrophysics Data System (ADS)

    Dai, Chunxiao; Wang, Songhui; Sun, Dian; Chen, Dong

    2007-06-01

    The result of land use in coalfield is important to sustainable development in resourceful city. For surface morphology being changed by subsidence, the mining subsidence becomes the main problem to land use with the negative influence of ecological environment, production and steadily develop in coal mining areas. Taking Panyi Coal Mine of Huainan Mining Group Corp as an example, this paper predicted and simulated the mining subsidence in Matlab environment on the basis of the probability integral method. The change of land use types of early term, medium term and long term was analyzed in accordance with the results of mining subsidence prediction with GIS as a spatial data management and spatial analysis tool. The result of analysis showed that 80% area in Panyi Coal Mine be affected by mining subsidence and 52km2 perennial waterlogged area was gradually formed. The farmland ecosystem was gradually turned into wetland ecosystem in most study area. According to the economic and social development and natural conditions of mining area, calculating the ecological environment, production and people's livelihood, this paper supplied the plan for comprehensive utilization of land resource. In this plan, intervention measures be taken during the coal mining and the mining subsidence formation and development, and this method can solve the problems of Land use at the relative low cost.

  3. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  4. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  5. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  6. The accident analysis of mobile mine machinery in Indian opencast coal mines.

    PubMed

    Kumar, R; Ghosh, A K

    2014-01-01

    This paper presents the analysis of large mining machinery related accidents in Indian opencast coal mines. The trends of coal production, share of mining methods in production, machinery deployment in open cast mines, size and population of machinery, accidents due to machinery, types and causes of accidents have been analysed from the year 1995 to 2008. The scrutiny of accidents during this period reveals that most of the responsible factors are machine reversal, haul road design, human fault, operator's fault, machine fault, visibility and dump design. Considering the types of machines, namely, dumpers, excavators, dozers and loaders together the maximum number of fatal accidents has been caused by operator's faults and human faults jointly during the period from 1995 to 2008. The novel finding of this analysis is that large machines with state-of-the-art safety system did not reduce the fatal accidents in Indian opencast coal mines.

  7. Mining injuries in Serbian underground coal mines -- a 10-year study.

    PubMed

    Stojadinović, Saša; Svrkota, Igor; Petrović, Dejan; Denić, Miodrag; Pantović, Radoje; Milić, Vitomir

    2012-12-01

    Mining, especially underground coal mining, has always been a dangerous occupation. Injuries, unfortunately, even those resulting in death, are one of the major occupational risks that all miners live with. Despite the fact that all workers are aware of the risk, efforts must be and are being made to increase the safety of mines. Injury monitoring and data analysis can provide us with valuable data on the causes of accidents and enable us to establish a correlation between the conditions in the work environment and the number of injuries, which can further lead to proper preventive measures. This article presents the data on the injuries in Serbian coal mines during a 10-year period (2000-2009). The presented results are only part of an ongoing study whose aim is to assess the safety conditions in Serbian coal mines and classify them according to that assessment.

  8. Exploration drilling for pre-mining gas drainage in coal mines

    NASA Astrophysics Data System (ADS)

    Shubina, E. A.; Brylin, V. I.; Lukyanov, V. G.; Korotchenko, T. V.

    2015-02-01

    High natural gas content in coal seams and low gas drainage efficiency are the basic issues to be addressed in order to ensure coal mining safety. A great number of wells being drilled within various gas drainage techniques significantly increase the costs of coal mining and do not reduce the gas content levels within the coal beds up to the required parameters in a short period of time. The integrated approach toward exploration well spacing applied at the stage of project development could make it possible to consider coal seam data to provide more effective gas drainage not only ahead of mining but also during further gas content reduction and commercial production of methane. The comparative analysis of a closely spaced grid of exploration program compiled in accordance with the recommendations on applying mineral reserves classification and inferred resources of coal and shale coal deposits and currently effective stimulation radius proves the necessity and possibility to consider exploration well data for gas drainage. Pre-mining gas drainage could ensure the safety of mining operations.

  9. Changes in biodiversity and ecosystem function downstream from mountaintop removal and valley fill coal mining

    EPA Science Inventory

    Mountaintop removal and valley fill coal mining has altered the physicochemical landscape of the Central Appalachian region in the U.S. Increased specific conductance and levels of component ions downstream from valley fill sites are toxic to aquatic life and can negatively impa...

  10. Changes in biodiversity and ecosystem function downstream from mountaintop removal and valley fill coal mining

    EPA Science Inventory

    Mountaintop removal and valley fill coal mining has altered the physicochemical landscape of the Central Appalachian region in the U.S. Increased specific conductance and levels of component ions downstream from valley fill sites are toxic to aquatic life and can negatively impa...

  11. Environmental impact assessment of selenium from coal mine spoils. Quarterly report

    SciTech Connect

    Atalay, A.

    1990-10-01

    The development of environmental impact assessment of selenium from coal mine spoils will provide a useful guideline to predict the environmental impact of Se from abandoned coal mine operations. Information obtained from such a study can be applied in areas where coal mining has not yet begun in order to predict and identify the geochemistry of rocks, soils, surface waters and groundwaters likely to be disturbed by coal mining operation.

  12. Underground coal mine instrumentation and test

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.; Waldron, W. D.

    1976-01-01

    The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.

  13. Strata mechanics of hydraulic sub-level coal mining

    SciTech Connect

    Jeremic, M.L.

    1982-06-01

    Strata mechanics have been studied by monitoring and observing underground mines, and by means of digital and physical models. On the basis of these integrated investigations three principal phenomena have been evaluated: Coal strata are displaced by roof movement along planes of stratification and differential shearing of coal pillars, and floor strata mainly by heave deformations. Within sub-level structures are stress-concentration zones, stress-relaxed zones with pushes of abutment stress of more than 50 m, and the influence of mining stresses for 150-300m. Bed separation and sagging, and strata breaks, are caused by caving of the immediate roof by block rotation, and the main roof by block crushing. Strata mechanics of sub-level hydraulic coal mining still are not well understood and require further investigation.

  14. Cost comparison of selected US and Colombian coal mines - analyses of cost-structure differences between steam coal mines in US and Colombia

    SciTech Connect

    Not Available

    1986-01-01

    The report presents the results from a study comparing the mine-mouth costs among selected steam-coal mines in Colombia and the United States. The study was done in response to a Congressional request to identify the differences in production costs, and those factors, including mine health, safety, and environmental requirements, that account for the difference. Three sets of mines are compared to determine the basic cost differences in mining between the two coal countries.

  15. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite surface coal mining and reclamation operations. 785.11 Section 785.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  16. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite surface coal mining and reclamation operations. 785.11 Section 785.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  17. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  18. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reclamation operations. 785.12 Section 785.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  19. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  20. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  1. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  2. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  4. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  5. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  6. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  7. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  8. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  9. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  10. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  11. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  12. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  13. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  14. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  15. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  16. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  17. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  18. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  19. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  20. 30 CFR 937.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 937.800 Section 937.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE OREGON § 937.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  1. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  2. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 912.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coal mining and reclamation operations. 912.800 Section 912.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE IDAHO § 912.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  4. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  5. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  6. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  7. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WITHIN EACH STATE NORTH CAROLINA § 933.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with the exception of §§ 761.11(c) and 761.12(f)(1), shall apply to surface coal mining and...

  8. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  9. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  10. 30 CFR 922.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 922.762 Section 922.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE MICHIGAN § 922.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  11. 30 CFR 910.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 910.800 Section 910.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE GEORGIA § 910.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  12. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  13. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  14. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  15. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  16. 30 CFR 947.800 - Requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for bonding of surface coal mining... WITHIN EACH STATE WASHINGTON § 947.800 Requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, Requirements for Bonding of Surface Coal Mining and...

  17. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  18. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  19. 30 CFR 922.800 - General requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mining and reclamation operations. 922.800 Section 922.800 Mineral Resources OFFICE OF SURFACE... OPERATIONS WITHIN EACH STATE MICHIGAN § 922.800 General requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, General Requirements for Bonding of Surface Coal Mining...

  20. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  1. 30 CFR 937.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 937.762 Section 937.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE OREGON § 937.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  2. 30 CFR 912.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 912.762 Section 912.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  3. 30 CFR 903.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 903.762 Section 903.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  4. 30 CFR 910.762 - Criteria for designating areas as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 910.762 Section 910.762 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.762 Criteria for designating areas as unsuitable for surface coal mining operations. Part 762 of this chapter, Criteria for Designating Areas Unsuitable for Surface Coal...

  5. 30 CFR 947.800 - Requirements for bonding of surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for bonding of surface coal mining... WITHIN EACH STATE WASHINGTON § 947.800 Requirements for bonding of surface coal mining and reclamation operations. Part 800 of this chapter, Requirements for Bonding of Surface Coal Mining and...

  6. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  7. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such...

  8. 76 FR 10070 - Division of Coal Mine Workers' Compensation; Proposed Extension of Existing Collection; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... of Workers' Compensation Programs Division of Coal Mine Workers' Compensation; Proposed Extension of... Quality Rereading (CM-933b), Medical History and Examination for Coal Mine Workers' Pneumoconiosis (CM-988... interpretation of x-rays. When a miner applies for benefits, the Division of Coal Mine Workers'...

  9. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Amortization of certain coal mine safety... (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of deduction—(1) In... respect to the amortization of the adjusted basis (for determining gain) of any certified coal mine...

  10. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table...

  11. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such...

  12. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table...

  13. 76 FR 35801 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... and 104 RIN 1219-AB75, 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of... Underground Coal Mines (Examinations of Work Areas) and for Pattern of Violations. DATES: The hearings will be... Examinations of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern...

  14. 75 FR 69617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 30 CFR Parts 70, 71, 72, 75, and 90 RIN 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine... Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. The proposed rule was published on... rule. The proposed rule would lower miners' exposure to respirable coal mine dust by revising...

  15. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table...

  16. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table...

  17. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such...

  18. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table...

  19. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights,...

  20. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such...

  1. 29 CFR 570.60 - Occupations in connection with mining, other than coal (Order 9).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Occupations in connection with mining, other than coal... Health or Well-Being § 570.60 Occupations in connection with mining, other than coal (Order 9). (a) Finding and declaration of fact. All occupations in connection with mining, other than coal,...

  2. Population Cancer Risks Associated with Coal Mining: A Systematic Review

    PubMed Central

    Jenkins, Wiley D.; Christian, W. Jay; Mueller, Georgia; Robbins, K. Thomas

    2013-01-01

    Background Coal is produced across 25 states and provides 42% of US energy. With production expected to increase 7.6% by 2035, proximate populations remain at risk of exposure to carcinogenic coal products such as silica dust and organic compounds. It is unclear if population exposure is associated with increased risk, or even which cancers have been studied in this regard. Methods We performed a systematic review of English-language manuscripts published since 1980 to determine if coal mining exposure was associated with increased cancer risk (incidence and mortality). Results Of 34 studies identified, 27 studied coal mining as an occupational exposure (coal miner cohort or as a retrospective risk factor) but only seven explored health effects in surrounding populations. Overall, risk assessments were reported for 20 cancer site categories, but their results and frequency varied considerably. Incidence and mortality risk assessments were: negative (no increase) for 12 sites; positive for 1 site; and discordant for 7 sites (e.g. lung, gastric). However, 10 sites had only a single study reporting incidence risk (4 sites had none), and 11 sites had only a single study reporting mortality risk (2 sites had none). The ecological study data were particularly meager, reporting assessments for only 9 sites. While mortality assessments were reported for each, 6 had only a single report and only 2 sites had reported incidence assessments. Conclusions The reported assessments are too meager, and at times contradictory, to make definitive conclusions about population cancer risk due to coal mining. However, the preponderance of this and other data support many of Hill’s criteria for causation. The paucity of data regarding population exposure and risk, the widespread geographical extent of coal mining activity, and the continuing importance of coal for US energy, warrant further studies of population exposure and risk. PMID:23977014

  3. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal...

  4. 75 FR 63864 - Division of Coal Mine Workers' Compensation; Proposed Extension of Existing Collection; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... of Workers' Compensation Programs Division of Coal Mine Workers' Compensation; Proposed Extension of... to Coal Mine Employment (CM-913). A copy of the proposed information collection request can be... of benefits to coal miners who are totally disabled by black lung disease arising out of coal...

  5. 78 FR 72717 - Division of Coal Mine Workers' Compensation; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... of Workers' Compensation Programs Division of Coal Mine Workers' Compensation; Proposed Collection... to Coal Mine Employment (CM-913). A copy of the proposed information collection request can be... of benefits to coal miners who are totally disabled by black lung disease arising out of coal...

  6. Detecting and characterizing coal mine related seismicity in the Western U.S. using subspace methods

    NASA Astrophysics Data System (ADS)

    Chambers, Derrick J. A.; Koper, Keith D.; Pankow, Kristine L.; McCarter, Michael K.

    2015-11-01

    We present an approach for subspace detection of small seismic events that includes methods for estimating magnitudes and associating detections from multiple stations into unique events. The process is used to identify mining related seismicity from a surface coal mine and an underground coal mining district, both located in the Western U.S. Using a blasting log and a locally derived seismic catalogue as ground truth, we assess detector performance in terms of verified detections, false positives and failed detections. We are able to correctly identify over 95 per cent of the surface coal mine blasts and about 33 per cent of the events from the underground mining district, while keeping the number of potential false positives relatively low by requiring all detections to occur on two stations. We find that most of the potential false detections for the underground coal district are genuine events missed by the local seismic network, demonstrating the usefulness of regional subspace detectors in augmenting local catalogues. We note a trade-off in detection performance between stations at smaller source-receiver distances, which have increased signal-to-noise ratio, and stations at larger distances, which have greater waveform similarity. We also explore the increased detection capabilities of a single higher dimension subspace detector, compared to multiple lower dimension detectors, in identifying events that can be described as linear combinations of training events. We find, in our data set, that such an advantage can be significant, justifying the use of a subspace detection scheme over conventional correlation methods.

  7. Siting of prison complex above abandoned underground coal mine

    SciTech Connect

    Marino, G.G.

    1998-10-01

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the state of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. However, one masonry building was located within the potential draw zone of mine works that still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was designed accordingly to be mine subsidence resistant. It was decided that a phase 2 prison complex should be constructed adjacent to and just south of the phase 1 complex. This complex would be directly above the underground workings. Subsequently, an extensive subsurface investigation program was undertaken to (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical database of subsidence events in the Illinois coal basin. As a result of this work many structures on the site required no or nominal subsidence considerations. However, for others that could be affected potentially by future subsidence movement preliminary subsidence resistant designs were completed using the expected level of potential subsidence movement.

  8. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    SciTech Connect

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  9. Pulsed, Hydraulic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    In proposed coal-cutting machine, piston forces water through nozzle, expelling pulsed jet that cuts into coal face. Spring-loaded piston reciprocates at end of travel to refill water chamber. Machine a onecylinder, two-cycle, internal-combustion engine, fueled by gasoline, diesel fuel, or hydrogen. Fuel converted more directly into mechanical energy of water jet.

  10. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  11. Wildlife management, surface mining, and regional planning

    SciTech Connect

    Nieman, T.J.; Merkin, Z.R.

    1995-12-31

    Wildlife management, surface mining, and regional planning historically have had conflicting missions. The cooperative public/private venture which created the Robinson Forest and Cyprus-Amax Wildlife Management Areas is presented as an example of how a regional perspective encourages a symbiotic relationship among these functions. Wildlife management areas, as either an interim or final land use, are shown to incorporate development concepts which benefit the general public, the coal industry, and the environment. Examining the regional pattern of wildlife management areas and refuges confirms the appropriateness of the subject site for this use. It is suggested that the pattern of mined lands can be studied to identify other sites with potential to provide linkages between a wildlife habitat areas and encourage reclamation of such sites to the {open_quotes}fish and wildlife{close_quotes} postmining land use. Such reclamation strategies should be pursued within a long-term planning framework. More research is needed to recreate specific habitat types on drastically disturbed land and planning is needed to assure that sensitive habitats or species are located away from zones likely to undergo future development. Use of geographic information systems to integrate existing environmental information could make such studies more effective. 14 refs., 7 figs.

  12. AN IMPROVED INVENTORY OF METHANE EMISSIONS FROM COAL MINING IN THE UNITED STATES

    EPA Science Inventory

    Past efforts to estimate methane emissions from underground mines surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining ope...

  13. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements,...

  14. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements,...

  15. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining...

  16. AN IMPROVED INVENTORY OF METHANE EMISSIONS FROM COAL MINING IN THE UNITED STATES

    EPA Science Inventory

    Past efforts to estimate methane emissions from underground mines surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining ope...

  17. Airways obstruction, coal mining, and disability.

    PubMed

    Lapp, N L; Morgan, W K; Zaldivar, G

    1994-04-01

    It has recently been suggested that the inhalation of coal in the absence of complicated coal workers' pneumoconiosis (CWP) or smoking can lead to disabling airways obstruction. The cause of such obstruction has been variously attributed to emphysema or bronchitis. The frequency of significant airways obstruction in a group of United States coal miners seeking compensation for occupationally induced pulmonary impairment was therefore determined. In a sample of 611 "Black Lung" claimants there was only one subject who was a non-smoker and who in the absence of other non-occupationally related diseases,--for example, asthma and bronchiectasis--had sufficient airways obstruction to render it difficult for him to carry out hard labour. An alternative explanation for his reduced ventilatory capacity other than coal dust or smoking may be available. If the inhalation of coal dust in the absence of smoking and complicated CWP ever induces sufficient ventilatory impairment to preclude a miner from working, it is indeed rare.

  18. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  19. Technique for predicting ground-water discharge to surface coal mines and resulting changes in head

    USGS Publications Warehouse

    Weiss, L.S.; Galloway, D.L.; Ishii, Audrey

    1986-01-01

    Changes in seepage flux and head (groundwater level) from groundwater drainage into a surface coal mine can be predicted by a technique that considers drainage from the unsaturated zone. The user applies site-specific data to precalculated head and seepage-flux profiles. Groundwater flow through hypothetical aquifer cross sections was simulated using the U.S. Geological Survey finite-difference model, VS2D, which considers variably saturated two-dimensional flow. Conceptual models considered were (1) drainage to a first cut, and (2) drainage to multiple cuts, which includes drainage effects of an area surface mine. Dimensionless head and seepage flux profiles from 246 simulations are presented. Step-by-step instructions and examples are presented. Users are required to know aquifer characteristics and to estimate size and timing of the mine operation at a proposed site. Calculated groundwater drainage to the mine is from one excavated face only. First cut considers confined and unconfined aquifers of a wide range of permeabilities; multiple cuts considers unconfined aquifers of higher permeabilities only. The technique, developed for Illinois coal-mining regions that use area surface mining and evaluated with an actual field example, will be useful in assessing potential hydrologic impacts of mining. Application is limited to hydrogeologic settings and mine operations similar to those considered. Fracture flow, recharge, and leakage are nor considered. (USGS)

  20. Selective placement of overburden in surface coal mining - problems and mining planning

    SciTech Connect

    Chang, J.L.; Kelley, J.H.

    1982-12-01

    Selective placement of overburden is one of the measures that can mitigate surface coal mining's impact on environment which is mandatory by the Public Law PL 95-87 of 1977. When the operation of selective placement of overburden is integrated into the mining cycle, its effectiveness is largely dependent on mining planning, pit design, and equipment scheduling and matching. This study is intended to provide a baseline information for the decision making of mining planning with respect to this particular operation. A review of OSM Permanent Regulatory Program as related to the requirement of selective placement of overburden around surface coal mine is presented. Parameters that might influence the mining planning of selective overburden handling are classified. Following the evaluation of the requirement on regulation and equipment feasibility of current operation, proposed mining schemes for both steep slope and area mining are presented. A case simulation and comparison of overburden handling cost of alternative tandem equipment combinations of a typical dragline operation revealed the competitive position of the scraper-loader-trucks and cross-pit conveyor subsystems in this particular mining layout. Finally, an index of selective overburden handling operation is provided which categorized independent and controlling factors of the mining sites and shows the relationship of mining planning considerations in this particular practices.

  1. Fe and Mn removal from mining drainage using goaf filling materials obtained from coal mining process.

    PubMed

    Zhang, Liping; Chen, Aolei; Qu, Hongbin; Xu, Shouqiang; Zhang, Xue; He, Xuwen

    2015-01-01

    Coal gangue, sandy soil and clay (mass ratio 45:4:1) as goaf filling materials acquired from coal mining processes were applied to remove Fe and Mn effectively from mining drainage. The results of an adsorption kinetic study showed that the Fe adsorption equation was y=21.454y+8.4712, R2=0.9924 and the Mn adsorption equation was y=7.5409x+0.905, R2=0.9957. Meanwhile, the goaf filling materials had low desorption capacity (Fe 6.765 μg/g, Mn 1.52 μg/g) and desorption ratio (Fe 8.98%, Mn 11.04%). Experiments demonstrated that Fe and Mn from mining drainage could be removed stably at a flow rate of 1.2 L/min, Fe inlet concentration of less than 40 mg/L, Mn inlet concentration of less than 2 mg/L and neutral or alkaline conditions. During a procedure of continuous experiments, the effluent quality could meet the requirement of the 'Code for Engineering Design of Sewage Regeneration-GB503352-2002'. A real-application project using goaf filling materials to treat mining drainage in Shendong coal mine showed that the average cost per ton of mining drainage was about 0.55 RMB, which could bring about considerable economic benefit for coal mining enterprises.

  2. Assessment and distribution of antimony in soils around three coal mines, Anhui, China.

    PubMed

    Qi, Cuicui; Liu, Guijian; Kang, Yu; Lam, Paul K S; Chou, Chenlin

    2011-08-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg(-1), which is lower than in coals from this region (6.2 mg kg(-1)). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.

  3. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  4. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous §...

  5. Assessing the cumulative impacts of surface mining and coal bed methane development on shallow aquifers in the Powder River Basin, Wyoming

    SciTech Connect

    Peacock, K.

    1997-12-31

    Large scale surface coal mining taken place along the cropline of the Wyodak-Anderson coal seam since approximately 1977. Groundwater impacts due to surface mining of coal and other energy-related development is a primary regulatory concern and an identified Office of Surface Mining deficiency in the Wyoming coal program. The modeled aquifers are the upper unit (coal) of the Paleocene Fort Union Formation and the overlying Eocene Wasatch Formation. A regional groundwater model covering 790 square miles was constructed using MODFLOW, to simulate the impacts from three surface coal mines and coal bed methane development occurring downdip. Assessing anisotropy of the coal aquifer, quality checking of in situ aquifer tests and database quality control were precursors to modelling. Geologic data was kriged to develop the structural model of the aquifers. A Geographic Information System (GIS) was utilized to facilitate storage, analysis, display, development of input modelling arrays and assessment of hydrologic boundaries. Model output presents the predicted impacts of likely development scenarios, including impacts from coal bed methane development and surface coal mining through anticipated life of mining, and surface mining impacts independent of gas development.

  6. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  7. Undeground Coal Mine Supervisory and Management Training. Phase I Report.

    ERIC Educational Resources Information Center

    Loustaunau, Paul; And Others

    A project was conducted to develop a safety-oriented supervisory and management training program for the underground coal mining industry. The first phase of the project involved research to determine relevant training materials that are available and in use, assessment of supervisory and management training needs, and development of objectives…

  8. Mycobacterium marinum Infection After Exposure to Coal Mine Water

    PubMed Central

    Huaman, Moises A.; Ribes, Julie A.; Lohr, Kristine M.; Evans, Martin E.

    2016-01-01

    Mycobacterium marinum infection has been historically associated with exposure to aquariums, swimming pools, fish, or other marine fauna. We present a case of M marinum left wrist tenosynovitis and elbow bursitis associated with a puncture injury and exposure to coal mine water in Illinois. PMID:26835478

  9. Mycobacterium marinum Infection After Exposure to Coal Mine Water.

    PubMed

    Huaman, Moises A; Ribes, Julie A; Lohr, Kristine M; Evans, Martin E

    2016-01-01

    Mycobacterium marinum infection has been historically associated with exposure to aquariums, swimming pools, fish, or other marine fauna. We present a case of M marinum left wrist tenosynovitis and elbow bursitis associated with a puncture injury and exposure to coal mine water in Illinois.

  10. Monitoring Soil Moisture in a Coal Mining Area with Multi-Phase Landsat Images

    NASA Astrophysics Data System (ADS)

    Kong, J. L.; Xian, T.; Yang, J.; Chen, L.; Yang, X. T.

    2016-06-01

    The coal development zone of Northern Shaanxi, China is one of the eight largest coal mines in the world, also the national energy and chemical bases. However, the coal mining leads to ground surface deformation and previous studies show that in collapse fissure zone soil water losses almost 50% compared with non-fissure zone. The main objective of this study is to develop a retrieval model that is reliable and sensitive to soil moisture in the whole coal mining zone of Northern Shaanxi based upon the soil sample parameters collected from in situ site investigation, spectral data gathered simultaneously and the images of Landsat7 ETM. The model uses different phases of Landsat data to retrieve soil moisture and analyze the patterns of spatial and temporal variations of soil moisture caused by ground deformation in the coal mining areas. The study indicated that band4 of Landsat7 ETM is the most sensitive band for soil moisture retrieval using the spectrum method. The quadratic model developed by remote sensing reflectance (Rrs4) (corresponding to the band4) is the best pattern with the correlation coefficient of 0.858 between the observed and the estimated soil moisture. Two-phase Landsat7 ETM data of 2002 and 2009 and one phase Landsat8 OLI data of 2015 for the study area were selected to retrieve soil moisture information. The result showed that the mean relative error was 35.16% and the root-mean-squared error (RMSE) was 0.58%. The changes of the spatial distribution of inversed soil moisture revealed that the trend of soil moisture contents of the study area was in general being gradually reduced from 2002 to 2015. The study results can serve as the baseline for monitoring environmental impacts on soil moisture in the regions due to coal mining.

  11. Coal-bench architecture as a means of understanding regional changes in coal thickness and quality

    SciTech Connect

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    1996-09-01

    Analysis of the Fire Creek (Westphalian B), Pond Creek (lower Westphalian B), and Stockton (Westphalian B) coals, three of the most heavily mined coals in the Central Appalachian Basin, shows that all have a similar multiple-bench architecture of at least two benches split by a regional clastic parting or durain. Coal benches beneath regionally extensive partings are generally less continuous, thinner, more palynologically variable, higher in ash yield, and higher in sulfur content than coal benches above regional partings in all three coals. Where thick, benches above regional partings tend to exhibit temporal palynological changes from lycopod- to fern-dominant. Where inertinite-rich/fern-dominant benches are overlain by additional benches, the upper benches are limited in extent, variable in thickness, high in sulfur content and ash yield, and split away from the coal. The multiple-bench architecture exhibited by these coals is interpreted to represent a cyclic mire succession that was common in the Middle Pennsylvanian. Peats began as planar mires infilling an irregular topography during rising base level. When the topography was infilled, unconfined flooding was possible and resulted in widespread partings. Ponding above these clay-rich flood deposits led to re-establishment of new planar mires with greater continuity than the underlying mires. The extent of these mires provided buffers to clastic influx and, in many cases, allowed domed conditions to develop. Doming resulted in thick, high-quality coal benches. In some cases, a third stage of planar peats, with similar characteristics to the planar peats at the base of the beds, developed on the unevenly distributed clastics that buried underlying mires during continued base-level rise.

  12. [Distribution of under-pit noise of coal mining].

    PubMed

    Yang, D C

    1989-11-01

    Noise distribution of a medium size coal mine was studied. There were 17 kinds of machine noise sources with an additional noise due firing of the gun. 449 sets of machine were distributed at the different canes and working places. Over 3000 workers were exposed to this noise. Noise intensity level of machines was 78.5-117 dB(A), of firing-a-gun 128 dB(A), the main working group Leq exceeded criterion (90 dB(A)) by 3-20 dB(A). Coal excavating machine had a high noise intensity level. These results may have reference value for investigation of noise pollution in the coal mines of China.

  13. Artificial supports for coal mine ground control

    SciTech Connect

    1996-12-31

    The report is a discussion of four types of support systems developed by the U.S. Bureau of Mines for use in both room-and-pillar retreat and longwall mining systems. These are: Mobile Roof Support System; Steel-Fiber-Reinforced Concrete Cribbing; Yielding Steel Posts; and Lightweight Hydraulic Supports.

  14. Interaction of compaction near mine openings and drainage of pore fluids from coal seams

    SciTech Connect

    Smelser, R.E.

    1984-02-01

    The long range transport of gas and water through coal seams is generally thought to occur through the natural fracture network of cleats in the coal seam. During mining, the overburden load is transferred from the coal to the nearby pillars and abutments which yield, or deform plastically, close to the mine openings. Stresses acting to deform are also influenced by changes in the fluid pressure in the natural fracture network. In the present work, a model of the yield region is developed, taking account of changes in the pressure (drainage) of fluids in the normal fracture network. Changes in porosity and permeability resulting from additional microfracturing in the yield zone are calculated based on this model.

  15. Phytoremediation of coal mine spoil dump through integrated biotechnological approach.

    PubMed

    Juwarkar, Asha A; Jambhulkar, Hemlata P

    2008-07-01

    Field experiment was conducted on mine spoil dump on an area of 10 ha, to restore the fertility and productivity of the coal mine spoil dump using integrated biotechnological approach. The approach involves use of effluent treatment plant sludge (ETP sludge), as an organic amendment, biofertilizers and mycorrihzal fungi along with suitable plant species. The results of the study indicated that amendment with effluent treatment plant sludge (ETP sludge), @ 50 ton/ha improved the physico-chemical properties of coal mine spoil. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in mine spoil improved greatly. Inoculation of biofertilizer and application of ETP sludge helped in reducing the toxicity of heavy metals such as chromium, zinc, copper, iron, manganese lead, nickel and cadmium, which were significantly reduced to 41%, 43%, 37%, 37%, 34%, 39%, 37% and 40%, respectively, due to the increased organic matter content in the ETP sludge and its alkaline pH (8.10-8.28), at which the metals gets immobilized and translocation of metals is arrested. Thus, amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant on coal mine spoil dump.

  16. The use of atmospheric monitoring systems in dieselized coal mines

    SciTech Connect

    Wirth, G.J.; Schultz, M.J.; Francart, W.J.

    1995-12-31

    Atmospheric Monitoring Systems (AMS) utilizing carbon monoxide sensors have demonstrated their superiority over thermal type fire sensors for early fire detection in underground coal mines. After proving their capability and dependability throughout the 1980`s. systems are now evolving and applying new technologies to enhance their effectiveness and reliability. The use of AMS in coal mines which utilize diesel equipment presents unique obstacles. Exhaust gases from diesel equipment not only raise mine ambient CO readings, but also cause numerous nuisance alarms. Both of these conditions reduce the effectiveness of the AMS. New technologies, such as discriminating devices, smoke detectors, and time delays, as well as administrative controls, have been developed and are being utilized to help reduce nuisance alarms produced by the diesel exhaust. This paper will discuss these technologies and administrative controls which are being utilized in coal mines to enhance the effectiveness of the Atmospheric Monitoring Systems. Reference to specific products does not imply endorsement by the Mine Safety and Health Administration.

  17. Planning of the reforestation at abandoned coal mines using GIS

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Oh, S.; Park, H.; Kwon, H.

    2009-12-01

    This study presents a prototype of decision support system for planning the reforestation at abandoned coal mines. The characteristics of deforested zone due to mine development were analyzed and categorized to define the schema of GIS database. Multiple criteria (i.e. forest-climate zone, mining method, visibility, managerial condition, slope gradient, reforestation purpose) were considered to classify the deforested zone and to assign unique IDs to the key index fields in tables. ArcMap, ArcObjects and Visual Basic.NET were used to implement the system. The application to the Samcheok coal block in Korea shows that the system could present a rational solution to select suitable trees for the reforestation and can also provide cost evaluation tools to support the environmental planning work.

  18. All-Optical Fibre Networks For Coal Mines

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1987-09-01

    A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.

  19. Gazetteer of coal-mine lakes in southwestern Indiana

    USGS Publications Warehouse

    Bobo, Linda L.

    1979-01-01

    This gazetteer is a catalog of lakes formed by surface coal mining in southwestern Indiana that are 0.5 acre or larger and in nonactive mine areas. Approximately 1,000 of the lakes are listed by 7.5-minute quadrangle topographic-map name, lake-identification number, latitude and longitude, and county. Other data given are shape of lake, maximum length, mean width, length and development of shoreline, surface area, orientation, presence of a stream inlet or outlet, and geologic data (geologic formation of area surrounding the lake and the mined coal-bed member). Field data (sampling date, pH, specific conductance, apparent color of lake, and general vegetation along the shoreline) were collected for 287 of the lakes. The apparent colors of the lakes observed were varying shades of aqua, blue, brown, lime green, red, and green. Eighty percent of the lakes sampled were green. (Woodard - USGS)

  20. Exotic grasslands on reclaimed midwestern coal mines: An ornithological perspective

    SciTech Connect

    Scott, P.E.; Lima, S.L.

    2004-07-01

    The largest grasslands in Indiana and Illinois are on reclaimed surface coal mines, which are numerous in the Illinois Coal Basin. The reclamation goal of establishing a vegetation cover with inexpensive, hardy exotic grass species (e.g., tall fescue, smooth brome) inadvertently created persistent, large grassland bird refuges. We review research documenting the importance of these sites for native prairie birds. On mines, grassland specialist birds (restricted to grassland throughout their range) prefer sites dominated by exotic grasses to those rich in forbs, whereas nonspecialist bird species show no significant preference. Midwestern mine grasslands potentially could be converted into landscapes that include native warm-season grasses and forbs adapted to the relatively dry, poor soil conditions, in addition to the present successful exotic grass stands. A key question is whether native mixtures will resist conversion to forb-rich or woody growth over the long term, as the exotic grasses have done.

  1. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    PubMed

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  2. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    USGS Publications Warehouse

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  3. Occupational noise in coal mining -- A continuing problem

    SciTech Connect

    Bartholomae, R.C.

    1996-12-31

    Overexposure to noise, as defined by current Mine Safety and Health Administration (MSHA) regulations, is a widespread problem in mining that can lead to serious worker hearing handicaps. Noise-induced hearing loss has also been recognized by the National Institute of Occupational Safety and Health (NIOSH) as one of the ten leading work-related diseases and injuries in this country. A 1976 epidemiological study performed by NIOSH confirmed that coal miners suffer significant work related hearing loss. For example, at that time, by age 60 more than 70% of the underground coal miners surveyed had a hearing loss exceeding 25 dB which medically and legally classifies them as hearing handicapped. More recent data indicate that overexposure to noise continues to be a problem for miners in all areas of mining and minerals processing. The number of miners overexposed to noise far overshadows the number overexposed to any other mining occupational health hazard such as coal dust or radiation. This paper reviews the history of mining noise and its control since passage of the Coal Mine Health and Safety Act of 1969. In addition, an assessment of the potential impact on the industry of proposed changes in the noise regulations is provided. An OSHA style hearing conservation program might help to alleviate some of this problem. The reasons for this recommendation are twofold: first, a large number of miners are suffering occupational hearing handicaps, and second, the cost to the industry is projected to skyrocket in the form of hearing loss compensation if this recommendation is not followed.

  4. Airways obstruction, coal mining, and disability.

    PubMed Central

    Lapp, N L; Morgan, W K; Zaldivar, G

    1994-01-01

    It has recently been suggested that the inhalation of coal in the absence of complicated coal workers' pneumoconiosis (CWP) or smoking can lead to disabling airways obstruction. The cause of such obstruction has been variously attributed to emphysema or bronchitis. The frequency of significant airways obstruction in a group of United States coal miners seeking compensation for occupationally induced pulmonary impairment was therefore determined. In a sample of 611 "Black Lung" claimants there was only one subject who was a non-smoker and who in the absence of other non-occupationally related diseases,--for example, asthma and bronchiectasis--had sufficient airways obstruction to render it difficult for him to carry out hard labour. An alternative explanation for his reduced ventilatory capacity other than coal dust or smoking may be available. If the inhalation of coal dust in the absence of smoking and complicated CWP ever induces sufficient ventilatory impairment to preclude a miner from working, it is indeed rare. PMID:8199664

  5. An improved inventory of methane emissions from coal mining in the United States.

    PubMed

    Kirchgessner, D A; Piccot, S D; Masemore, S S

    2000-11-01

    Past efforts to estimate methane emissions from underground mines, surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining operations. A primary goal of this study was to collect new methane emissions measurements and other data for the most poorly characterized mining operations and use these data to develop an improved methane emission inventory for the U.S. coal mining industry. This required the development and verification of measurement methods for surface mines, coal handling operations, and abandoned underground mines and the use of these methods at about 30 mining sites across the United States. Although the study's focus was on surface mines, abandoned underground mines, and coal handling operations, evaluations were also conducted to improve our understanding of underground mine emission trends and to develop improved national data sets of coal properties. Total U.S. methane emissions are estimated to be 4.669 million tons, and as expected, emissions from underground mine ventilation and methane drainage systems dominate (74% of the total emissions). On the other hand, emissions from coal handling, abandoned underground mines, and surface mines are significant, and collectively they represent approximately 26% of the total emissions.

  6. Portable breathing apparatus for coal mines

    NASA Technical Reports Server (NTRS)

    Vandolah, R. W.

    1972-01-01

    The state of the art in portable oxygen breathing equipment is reported. Considered are self-containing as well as chemically generating oxygen sources and their effectiveness and limitations in mine rescue operations.

  7. Alcohol consumption in the Australian coal mining industry.

    PubMed

    Tynan, Ross J; Considine, Robyn; Wiggers, John; Lewin, Terry J; James, Carole; Inder, Kerry; Kay-Lambkin, Frances; Baker, Amanda L; Skehan, Jaelea; Perkins, David; Kelly, Brian J

    2017-03-01

    To investigate patterns of alcohol use within the coal mining industry, and associations with the personal, social, workplace and employment characteristics. 8 mine sites across 3 eastern Australian states were surveyed, selected to encompass key geographic characteristics (accessibility and remoteness) and mine type (open cut and underground). Problematic alcohol use was measured using the Alcohol Use Disorders Identification Test (AUDIT) to determine: (1) overall risky or hazardous drinking behaviour; and (2) frequency of single-occasion drinking (6 or more drinks on 1 occasion). A total of 1457 employees completed the survey, of which 45.7% of male and 17.0% of female participants reported levels of alcohol use within the range considered as risky or hazardous, considerably higher than the national average. Hierarchical linear regression revealed a significant contribution of many individual level factors associated with AUDIT scores: younger age, male, current smoking status; illicit substance use; previous alcohol and other drug use (AOD) problems; and higher psychological distress. Workplace factors associated with alcohol use included working in mining primarily for the high remuneration, and the type of mining, with underground miners reporting higher alcohol use than open-cut miners. Our findings provide support for the need to address alcohol use in the coal mining industry over and above routine on-site testing for alcohol use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Revegetation of Alaskan coal mine spoils. Progress report for research

    SciTech Connect

    Mitchell, W.W.; Mitchell, G.A.; McKendrick, J.D.

    1981-10-28

    Research on revegetation of Alaskan coal mine spoils and related topics was conducted at three mine locations in 1980 and 1981. One of the locations was at an active commercial mine, another at an abandoned mine, and the third at a test pit in a coal field that appears on the verge of development. The research included a number of plantings to test the adaptability of plant materials at various sites, time-of-planting and planting method trials, tests to determine fertilizer needs and plant responses to specific elements, numerous soil samplings to characterize minesoil materials and relate soil conditions to apparent performance of reclamation plantings that have been conducted at one mine over a period of nine years, base studies assessing faunal populations and their representation on replanted mine spoils, and studies of nutrient quality of native vegetation and reclamation plantings. This report will be presented in three sections. The first section will deal with the fertility and minesoil characterization studies, the second with the plant material studies, and the third with the faunal and plant quality studies.

  9. Remediation of abandoned mines using coal combustion by-products

    SciTech Connect

    Bulusu, S.; Aydilek, A.H.; Petzrick, P.; Guynn, R.

    2005-08-01

    Acid mine drainage (AMD) is a phenomenon that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which results in the formation of sulfuric acid and iron hydroxide. Grouting of an abandoned mine with alkaline materials provides a permanent reduction in acid production. This study investigates the success of coal combustion by-product (CCB)-based grout mixtures in reducing AMD. The laboratory phase included testing of grouts with different proportions of Class F fly ash, flue gas desulfurization by-product, fluidized bed combustion by-product, and quicklime, for slump, modified flow, bleed, and strength. Then the selected optimal grout mixture was injected into the Frazee mine, located in Western Maryland. Pre- and post-injection water quality data were collected to assess the long-term success of the grouting operation by analyzing mine water, surface water, and groundwater. Overall, the results indicated that CCB-based grouts can control the acid mine drainage. However, the mechanical properties of the grout are highly critical for the construction phase, and long-term monitoring is essential for evaluating the effectiveness of the grouting process.

  10. Microearthquake activity associated with underground coal-mining in Buchanan County, Virginia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Bollinger, G. A.

    1989-09-01

    Microearthquake activity (impulsive, transient seismic events, with durations up to several seconds at a distance of 500 m, that exhibit a coda with a shift toward lower frequencies with increasing time) was monitored for a three-month period by a single seismograph sited directly above an undergound longwall mine in the coal-mining region of Buchanan County, Virginia, U.S.A. The purpose of this investigation was to determine if precursory increases in microseismicity prior to cavings (subsidence) of overburden in the mine were present and, if so, could they be detected by surface seismographic observations. The first two recording weeks were prior to the beginning of coal removal operations at the monitored mine. A comparision of the “before” and “after” levels of microearthquake occurrence indicated a sevenfold increase to about seven seismic events/hour that was attendant with the development of the time over the level of the background, non-coal-mining period seismicity. A total of over 15,000 microearthquakes were recorded during the monitoring period, most of which occurred during the actual coal-mining operations. The workday rate exceeded 30 seismic events/hour in contrast with the non-workday rate of about seven such events/hour. Rock and coal fracturing ahead of the mine plow are believed to be the primary cause of the majority of these very small seismic events. Cavings and rockbursts (violent eruptions that propel rock debris into the mine) also contributed to the total seismic activity. It appears that cavings, some of which were large enough to be felt on ground surface, are the primary source of the non-plowing related seismicity as larger free surface areas are opened underground. Any seismic activity premonitory to cavings, however, was effectively masked by the high workday rate. Thus, the use of surface seismic monitoring, in an attempt to document any increases of localized seismicity precursory to cavings, failed in this instance. The

  11. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  12. Application of geostatistics to coal-resource characterization and mine planning. Final report

    SciTech Connect

    Kauffman, P.W.; Walton, D.R.; Martuneac, L.; Kim, Y.C.; Knudsen, H.P.; Baafi, E.Y.; Lonergan, J.E.; Martino, F.

    1981-12-01

    Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future research and demonstration projects.

  13. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal.

    PubMed

    Fox, James F; Campbell, J Elliott

    2010-03-15

    The Southern Appalachian forest region of the U.S.--a region responsible for 23% of U.S. coal production--has 24 billion metric tons of high quality coal remaining of which mountaintop coal mining (MCM) will be the primary extraction method. Here we consider greenhouse gas emissions associated with MCM terrestrial disturbance in the life-cycle of coal energy production. We estimate disturbed forest carbon, including terrestrial soil and nonsoil carbon using published U.S. Environmental Protection Agency data of the forest floor removed and U.S. Department of Agriculture--Forest Service inventory data. We estimate the amount of previously buried geogenic organic carbon brought to the soil surface during MCM using published measurements of total organic carbon and carbon isotope data for reclaimed soils, soil organic matter and coal fragments. Contrary to conventional wisdom, the life-cycle emissions of coal production for MCM methods were found to be quite significant when considering the potential terrestrial source. Including terrestrial disturbance in coal life-cycle assessment indicates that indirect emissions are at least 7 and 70% of power plant emissions for conventional and CO(2) capture and sequestration power plants, respectively. To further constrain these estimates, we suggest that the fate of soil carbon and geogenic carbon at MCM sites be explored more widely.

  14. Depth perception, dark adaptation, vigilance and accident proneness of Chinese coal mine workers.

    PubMed

    Deng, Mingming; Chan, Alan H S; Wu, Feng; Sun, Linyan

    2016-09-02

    To explore the relationships between human factors and accident proneness of coal mine workers, the depth perception, dark adaptation and vigilance abilities of 239 Chinese coal mine workers were tested and their accident proneness was surveyed with an accident proneness questionnaire. The results indicated that dark adaptation and vigilance abilities of the mine workers declined with increasing age. Vigilance had a significant negative relationship with accident proneness. There were significant differences in vigilance between coal mine workers doing different types of work. Individual difference in vigilance was relevant to the type of work that an individual did in a coal mine. The dark adaptation index had a significant positive relationship with accident proneness. Coal mine workers with weaker dark adaptation ability were also more accident prone. Some ergonomics recommendations concerning coal mine safety management in China are proposed.

  15. Case study of underground-coal-mining productivity in Utah

    SciTech Connect

    Hannah, R.L.

    1981-01-01

    Reasons for the wide variance in productivity levels among underground-coal-mining firms in Utah are examined. Related objectives are to test the feasibility of relying on in-depth field research in the coal industry to clarify relationships and develop more-useful perspectives concerning productivity, to demonstrate in detail the considerable variance in productivity levels among firms, and to suggest more-useful hypotheses for further research. The methodology employed is a series of case studies of individual firms which include in-depth interviews, mine tours, and the collection of firm-specific data. Results indicate that, in the Utah case, the industrial-relations environment is the key to analyzing the determinants of productivity differences. However, this view of industrial relations encompasses more than the traditional area of labor-management relations. From the most-narrow perspective, it focuses on the impact on productivity of the differences in internal-labor-market organizations and functions in union and nonunion firms. From a broader perspective it includes such variables as the impact of the United Mine Workers of America on management philosophy, the work ethic and motivation of miners, and the impact of the size of the firm. The most general interpretation of the industrial-relations framework of analysis concerns the evolution of mine ownership patterns in Utah. The suggestion from this more historical view is that institutional forces have dictated the pattern of acquisition of union and nonunion coal operators.

  16. Injection of fixated scrubber sludge into abandoned coal mines

    SciTech Connect

    Gray, R.E.; Turka, R.J.; Meiers, R.J.; Golden, D.M.

    1996-12-31

    Fixated scrubber sludge (FSS) was injected into an abandoned underground coal mine in southwestern Indiana. The project was undertaken to evaluate using FSS to control mine subsidence and reduce acid mine drainage. Preinjection laboratory testing included characterization and analysis of the effects that the mine environment has on the FSS. Bench scale testing determined the composition for optimum flow, minimization of free water, and physical characteristics. A total of 16,351 cubic yards of FSS was injected over an eight-week period in late 1994. This resulted in filling about five acres of the mine. The injected FSS was sampled at six and at nine months after injection. Unconfirmed compressive strengths were generally from 100 to 200 psi. The hydrogeologic environment surrounding the mine was monitored by sampling ground water over a six month period prior to injection and then quarterly for one year after injection. There were some changes in the concentration of chemical parameters in the mine pool water, particularly in close proximity to injected FSS, but no significant changes in ground water chemistry surrounding the mine.

  17. Effects of coal mining on the water resources of the Tradewater River Basin, Kentucky

    USGS Publications Warehouse

    Grubb, Hayes F.; Ryder, Paul D.

    1973-01-01

    The effects of coal-mine drainage on the water resources of the Tradewater River basin, in the Western Coal Field region of Kentucky, were evaluated (1) by synthesis and interpretation of 16 years of daily conductance data. 465 chemical analyses covering an 18-year period, 28 years of daily discharge data, and 14 years of daily suspended-sediment data from the Tradewater River at Olney and (2) by collection, synthesis, and interpretation of chemical and physical water-quality data and water-quantity data collected over a 2-year period from mined and nonmined sites in the basin. Maximum observed values of 13 chemical and physical water-quality parameters were three to 300 times greater in the discharge from mined subbasins than in the discharge from nonmined subbasins. Potassium, chloride, and nitrate concentrations were not significantly different between mined and nonmined areas. Mean sulfate loads carried by the Tradewater River at Olney were about 75 percent greater for the period 1955-67 than for the period 1952-54. Suspended-sediment loads at Olney for the November-April storm-runoff periods generally vary in response to strip-mine coal production in the basin above Olney. Streamflow is maintained during extended dry periods in mined subbasins after streams in nonmined subbasins have ceased flowing. Some possible methods of reducing the effects of mine drainage on the streams are considered in view of a geochemical model proposed by Ivan Barnes and F. E. Clarke. Use of low-flow-augmenting reservoirs and crushed limestone in streambeds in nonmined areas seems to be the most promising method for alleviating effects of mine drainage at the present time. Other aspects of the water resources such as variability of water quantity and water quality in the basin are discussed briefly.

  18. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to Benefits...

  19. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to Benefits...

  20. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to...