Sample records for coal quantifying potential

  1. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  2. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    USGS Publications Warehouse

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.

    2010-01-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  3. Development of a Rapid Assessment Method for Quantifying Carbon Sequestration on Reclaimed Coal Mine Sites

    NASA Astrophysics Data System (ADS)

    Maharaj, S.; Barton, C. D.; Karathanasis, A. D.

    2005-12-01

    Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies designed to sequester carbon in various terrestrial ecosystems. Reclaimed coal mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. However, quantifying new carbon (carbon that has been added to soil through recent biological processes) on reclaimed mine soils have proven to be difficult due to carbonates and coal particles present in the reclaimed coal mine spoils. Visible coal particles can be removed, but the microscopic coal dust particles remain. Additionally, with the advent of carbon trading on the stock market, rapid quantification of newly sequestered carbon has proven to be elusive. The focus of this project is to assess the potential of thermogravimetric analysis as a rapid, simple and direct method for differentiating and quantifying new carbon from old carbon (carbon of geologic origin) on reclaimed coal mine sites and provide a standard procedure for determining carbon sequestered in soil sinks. Thermogravimetry is a physico-chemical technique where the weight change is measured and recorded during the incremental heating of the soil sample over a temperature range of 25 to 1000 ° C. Grass litter and limestone were used as representative organic and inorganic carbon fractions, while coal was used to differentiate the old and new carbon within the organic fraction. Recoveries of mixtures at the 95 % confidence interval were found to be 94.49 ± 4.23 % (coal) , 93.67 ± 2.11 % (litter) , and 108.88 ± 2.88 % (limestone) respectively. Each of the above components appeared as distinct separate peaks on the thermograph, with litter appearing between 260 to 390 ° C, coal 425 to 480 ° C, and limestone 640 to 740 ° C. Overlapping peaks for the organic carbon represented by the grass litter may be indicative of cellulose and lignin fractions. Ongoing work in this area is being carried out to separate such peaks which may further enhance thermogravimetric analysis as an effective method to determine new carbon and to simultaneously monitor organic matter degradation.

  4. Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for Measurement of Silica on Filter Samples of Coal Dust

    PubMed Central

    Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2015-01-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184

  5. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust.

    PubMed

    Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2012-11-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.

  6. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    NASA Astrophysics Data System (ADS)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts from coal development are very unlikely. Within each zone, the analysis provides a regional estimate of the likely impacts and identifies the major knowledge and data gaps. This information provides a framework for further local study.

  7. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J.M.K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  8. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  9. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    PubMed

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model.

    PubMed

    Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun

    2016-10-03

    Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.

  11. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new air pollution controls implemented between 2000 and 2020, we predict health damages from air pollution exposure will quadruple and account for 8-16% of Zaozhuang's 2020 GDP. End-of-pipe controls could reduce the potential health damages from air pollution by 20% and a coal gasification polygeneration energy system could reduce it by 50% with only 24% penetration. Benefits to public health, of substantial monetary value, could be achieved in eastern China through the use of currently available end-of-pipe controls; with further development, benefits from the use of advanced coal technology could be even larger.

  12. Paleobotany and palynology of the Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of the Illinois Basin (Upper Pennsylvanian)

    USGS Publications Warehouse

    Willard, D.A.; Phillips, T.L.

    1993-01-01

    Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psarnius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals. -from Authors

  13. Evaluation of the genotoxic potential of soil contaminated with mineral coal tailings on snail Helix aspersa.

    PubMed

    de Souza, Melissa Rosa; da Silva, Fernanda Rabaioli; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Premoli, Suziane; Corrêa, Dione Silva; Soares, Mariana do Couto; Marroni, Norma Possa; Morgam-Martins, Maria Isabel; da Silva, Juliana

    2015-11-01

    Coal remains an important source of energy, although the fuel is a greater environmental pollutant. Coal is a mixture of several chemicals, especially inorganic elements and polycyclic aromatic hydrocarbons (PAH). Many of these compounds have mutagenic and carcinogenic effects on organisms exposed to this mineral. In the town of Charqueadas (Brazil), the tailings from mining were used for landfill in the lower areas of the town, and the consequence is the formation of large deposits of this material. The purpose of this study was to evaluate the genotoxic potential of soil samples contaminated by coal waste in different sites at Charqueadas, using the land snail Helix aspersa as a biomonitor organism. Thirty terrestrial snails were exposed to different treatments: 20 were exposed to the soil from two different sites in Charqueadas (site 1 and 2; 10 in each group) and 10 non-exposed (control group). Hemolymph cells were collected after 24h, 5days and 7days of exposure and comet assay, micronucleus test, oxidative stress tests were performed. Furthermore, this study quantified the inorganic elements present in soil samples by the PIXE technique and polycyclic aromatic hydrocarbons (PAH) by HPLC. This evaluation shows that, in general, soils from sites in Charqueadas, demonstrated a genotoxic effect associated with increased oxidative stress, inorganic and PAH content. These results demonstrate that the coal pyrite tailings from Charqueadas are potentially genotoxic and that H. aspersa is confirmed to be a sensitive instrument for risk assessment of environmental pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovanni, D.V.; Carr, R.C.; Landham, E.C.

    Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less

  16. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China.

    PubMed

    Liu, Yafei; Zhang, You; Li, Chuang; Bai, Yun; Zhang, Daoming; Xue, Chunyu; Liu, Guangqing

    2018-05-15

    Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM 2.5 , SO 2 , and CO 2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM 2.5 and SO 2 emissions per household in one heating season was lower, but CO, CO 2 , and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  18. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  19. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  20. Potential Cost-Effective Opportunities for Methane Emission Abatement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less

  1. Rail Transportation Requirements for Coal Movement in 1985

    DOT National Transportation Integrated Search

    1978-12-01

    This study of transportation requirements for coal movements through 1985 is one of the series conducted for the U.S. Department of Transportation to identify and quantify future transportation requirements for energy materials. This report presents ...

  2. Water Transportation Requirements for Coal Movement in 1985

    DOT National Transportation Integrated Search

    1978-12-01

    This study of transportation requirements for coal movements through 1985 is one of a series conducted for the U.S. Department of Transportation to identify and quantify future transportation requirements for energy materials. The primary objectives ...

  3. Rail Transportation Requirements for Coal Movement in 1980

    DOT National Transportation Integrated Search

    1976-12-01

    This rail-oriented coal transportation study is one of a series conducted by the Department of Transportation to identify and quantify transportation requirements for energy materials. Information provided by these studies will be used by government ...

  4. Quantitative relation between emphysema and lung mineral content in coalworkers.

    PubMed Central

    Leigh, J; Driscoll, T R; Cole, B D; Beck, R W; Hull, B P; Yang, J

    1994-01-01

    The relation between quantified emphysema and measured lung content of coal and silica was investigated in the lungs of 264 deceased underground coalworkers who had been exposed to mixed coal and silica dust. Lung specimens obtained at postmortem and inflated and fixed under standard conditions were used to quantify the extent of emphysema and then to measure the amount of coal and silica present in the lungs at the time of death. These data were combined with clinical and other pathological information from the subjects. Multiple regression analysis showed that the extent of emphysema (E score) had a strong positive quantitative relation with coal content of the lungs (p < 0.0003), age (p < 0.0001), and smoking (p < 0.0001). There was a significant negative interaction of uncertain biological importance between coal content of the lungs and smoking (p < 0.004; E score = -1.79 + 0.62 coal + 0.06 age + 0.21 smoking -0.17 coal x smoking; adjusted R2 = 0.25). In lifelong non-smokers emphysema was particularly strongly related to coal content and age (coal: p < 0.001; age: p < 0.002; E score = -1.56 + 0.78 coal + 0.06 age; adjusted R2 = 0.66). The relation was basically unchanged by adding a lung silica content term. Emphysema score was highly negatively correlated with forced expiratory volume in one second (FEV1; % predicted, obtained within five years of death) (r = -0.44, p < 0.0001). Degree of lung fibrosis was highly positively associated with lung silica content (chi 2(1) = 12.9, p < 0.0003). These results provide strong evidence that emphysema in coalworkers is actually related to lung coal content. The role silica in development of emphysema, however remains unclear. PMID:8044232

  5. Coal-mining seismicity and ground-shaking hazard: A case study in the Trail Mountain area, Emery County, Utah

    USGS Publications Warehouse

    Arabasz, W.J.; Nava, S.J.; McCarter, M.K.; Pankow, K.L.; Pechmann, J.C.; Ake, J.; McGarr, A.

    2005-01-01

    We describe a multipart study to quantify the potential ground-shaking hazard to Joes Valley Dam, a 58-m-high earthfill dam, posed by mining-induced seismicity (MIS) from future underground coal mining, which could approach as close as ???1 km to the dam. To characterize future MIS close to the dam, we studied MIS located ???3-7 km from the dam at the Trail Mountain coal mine. A 12-station local seismic network (11 stations above ground, one below, combining eight triaxial accelerometers and varied velocity sensors) was operated in the Trail Mountain area from late 2000 through mid-2001 for the dual purpose of (1) continuously monitoring and locating MIS associated with longwall mining at a depth of 0.5-0.6 km and (2) recording high-quality data to develop ground-motion prediction equations for the shallow MIS. (Ground-motion attenuation relationships and moment-tensor results are reported in companion articles.) Utilizing a data set of 1913 earthquakes (M ??? 2.2), we describe space-time-magnitude distributions of the observed MIS and source-mechanism information. The MIS was highly correlated with mining activity both in space and time. Most of the better-located events have depths constrained within ??0.6 km of mine level. For the preponderance (98%) of the 1913 located events, only dilatational P-wave first motions were observed, consistent with other evidence for implosive or collapse-type mechanisms associated with coal mining in this region. We assess a probable maximum magnitude of M 3.9 (84th percentile of a cumulative distribution) for potential MIS close to Joes Valley Dam based on both the worldwide and regional record of coal-mining-related MIS and the local geology and future mining scenarios.

  6. Study of terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region using carbon elemental and isotopic data and remote sensing of land cover change

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Campbell, J. E.; Martin, D.

    2008-12-01

    The need to quantify the impact of human disturbance upon carbon flux and storage has been recently highlighted in order to more accurately budget carbon. One understudied but critical area of research is surface coal mining's impact on terrestrial carbon storage and sediment carbon transport processes-which has been identified as potentially important to understanding fluxes in global carbon budgeting. While national attention has focused on U.S. coal production to maintain a vibrant economy, scientists are concerned that increased coal production could have unforeseen environmental implications if the relationship between coal mining practices and the environment is not better understood. This issue is particularly important to the coal mining region of the Southern Appalachian forest region, which has been responsible for 23.3% of the coal produced in the United States over the past twenty years and seen approximately 300,000 ha of forested land disturbed by surface coal mining during that time period. Our presentation provides results that focus upon terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region. In order to study carbon redistribution due to the mining disturbance, our methods make use of measurements of total organic carbon, total organic nitrogen, and carbon and nitrogen stable isotopes of soils and eroded sediments collected in the region as well as published data, consultation with experts and remote sensing of land cover change. It was found that disturbed terrestrial carbon, including soil C, non-soil or plant C, and geogenic C, is approximately 10% of the carbon emitted to the atmosphere during coal combusting and transportation and mining of coal. Quantification of the fate of terrestrial carbon in different pools is provided and discussed including the fate atmosphere during recovery of the terrestrial system; newly deposited coal fragments within the terrestrial soil reservoir; and carbon that is eroded to streams in mined watersheds with different levels of disturbance.

  7. USE OF GEOSPATIAL DATA TO PREDICT DOWNSTREAM IMPACTS OF COAL MINING IN AN APPALACHIAN WATERSHED

    EPA Science Inventory

    Mountaintop removal and valley filling is a method of mining coal that results in burial of Appalachian headwater streams. Leaching of fill material often results in elevated ion concentrations below fills. A primary objective of this study was to quantify downstream extent of mi...

  8. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    USGS Publications Warehouse

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  9. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less

  11. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  12. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    PubMed Central

    Wen, Zhijie; Wen, Jinhao; Shi, Yongkui; Jia, Chuanyang

    2014-01-01

    The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall. PMID:24967438

  13. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  14. Quantifying Fugitive Methane Emissions at an Underground Coal Fire Using Cavity Ring-Down Spectroscopy Technology

    NASA Astrophysics Data System (ADS)

    Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.

    2016-12-01

    Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future, examining the tradeoffs and dynamics between methane and carbon dioxide emissions will allow us to further understand the propagation and evolution of these large greenhouse gas emitters.

  15. The role of coal technology in redefining India’s climate change agents and other pollutants

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Ohara, T.; Beig, G.

    2017-10-01

    It is well established that carbon dioxide (CO2) is the most prominent agent of climate change. The level of CO2 in the atmosphere has been increasing persistently over the last few decades due to rising dependence on fossil fuels for energy production. India is facing a potential energy crisis. India has large coal reserves and coal is currently the linchpin of the Indian power sector, making Indian coal-derived emissions a focus of global attention. Further, India’s journey from a challenging energy security situation to the ‘Make in India’ initiative is expected to drive energy needs exponentially. Thus, in the context of a rapidly changing climate, it has become imperative to quantify the emissions of greenhouse gases (GHGs) from emerging coal-based energy plants in India. The present work attempts not only to do this, with the intention of highlighting India’s commitment to reducing CO2 emissions, but also to redefine India’s future emissions. We draw attention to India’s attempt to transform the coal technology used in coal-based thermal power plants. We have tried to adopt a holistic approach to quantify the past (2010), present (2015) and future (2025) emission trends for important GHGs like CO2 and other critical air pollutants from rapidly penetrating low-emission advanced coal technology. Our estimation shows that CO2 emissions will increase from 1065 Tg yr-1 (2015) to 2634 Tg yr-1 (2025), which is approximately 147% of the current value. This rapid increase is largely attributed to rising energy demand due to industrial development, followed by demand from the domestic and agricultural sectors. The present trend of CO2 emissions is sure to propel India to become world’s second largest emitter of GHGs in 2025, dislodging the United States. We have also estimated the emission of other pollutants like NOx, SO2, black carbon, organic carbon, particulate matter (PM2.5, PM10), volatile organic compounds and CO. Our findings seem to suggest that India will able to cut CO2 emission from the traditionally dominant thermal power sector by at least 19% in 2025. Present attempts at emission reduction, along with the government’s massive initiatives towards building renewable energy infrastructure, could be well aligned to India’s Intended Nationally Determined Contribution submission to COP21 of the United Nations Framework Convention on Climate Change. With such a rapid expansion of energy production it can be assumed that cost-effective and uninterrupted power (i.e. 24/7) can be provided to all citizens of the country well before 2025.

  16. Essays in environmental and energy economics

    NASA Astrophysics Data System (ADS)

    Hancevic, Pedro I.

    Chapter 1: I measure the impact of the 1990 Clean Air Act Amendment on the productivity and output of US coal-fired power generating units. The Act led to power units adopting a number of different pollution abating behaviors, one of which was an input change to lower SO2 emitting coal. A key feature of coal generating units is each one is designed to burn a particular variety of coal, with significant deviations from the targeted coal characteristics resulting in productivity loss. The main innovation is to quantify the effect that switching to cleaner coal had on productivity, output and generation costs. With data spanning over twenty one years, I first compute the unconstrained coal type of each unit and document ensuing deviations caused by switching to cleaner coal. I then incorporate the effect of this deviation directly into a production function to explicitly quantify the resulting productivity loss. Chapter 2: Since the 1990-CAAA was implemented and a market for SO2 emission permits was established, coal-fired power generating units have had to choose among three main compliance alternatives: i) burn high-sulfur coal and buy additional permits to cover the excess emissions, ii) retrofit the boiler and convert it to low-sulfur coal, or iii) adopt a flue gas desulfurization unit (scrubber). The decision problem has dynamic implications driven by the evolution of input, output, and allowance prices and is revised whenever significant changes in the industry occur. I assume output level is randomly and exogenously assigned to each boiler and estimate a structural dynamic discrete choice model to recover the relative compliance costs. Chapter 3: We study a cycle of subsidized energy prices and estimate its welfare impact on households in the Buenos Aires Metropolitan Region. A simple framework explains its emergence in terms of the preference of a median household (voter) for receiving transfer gains followed by a future flow of transfer losses. We evaluate actual transfers and welfare effects that a departure of prices of natural gas and electricity generation from opportunity costs since 2003 had on households, and explore the impact of a way back to opportunity cost pricing.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten

    In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstratesmore » nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.« less

  18. Advanced Thermally Stable Coal-Derived Jet Fuels Compositional Factors Affecting Thermal Degradation of Jet Fuels

    DTIC Science & Technology

    1992-12-01

    shown in Figure 4.2 and the peaks are identified and quantified in Table 4.2. Phenol and alkylphenols are the most readily visible 137 Cf) C-)" M0 oý...transformation of the catechol and alkylphenolic structures in subbituminous coal is a loss of aryl-( -containing structures and a condensation of the phenols

  19. Impact of nongray multiphase radiation in pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  20. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    NASA Astrophysics Data System (ADS)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  1. Microbial solubilization of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal hadmore » been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.« less

  2. Coal assessments and coal research in the Appalachian basin: Chapter D.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Tewalt, Susan J.; Ruppert, Leslie F.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    State geological surveys are concentrating on mapping and correlating coal beds and coal zones and studying CBM potential and production. Both State surveys and the USGS are researching the potential for carbon dioxide sequestration in unmined coal beds and other geologic reservoirs. In addition, the State geological surveys continue their long-term collaboration with the USGS and provide coal stratigraphic data to the National Coal Resources Data System (NCRDS).

  3. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  4. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  5. A study of industrial hydrogen and syngas supply systems

    NASA Technical Reports Server (NTRS)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  6. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model.

    PubMed

    Callén, M S; Iturmendi, A; López, J M; Mastral, A M

    2014-02-01

    In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies.

  7. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  8. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  9. Soil Organic Carbon and Nutrient Dynamics in Reclaimed Appalachian Mine Soil

    NASA Astrophysics Data System (ADS)

    Acton, P.; Fox, J.; Campbell, J. E.; Rowe, H. D.; Jones, A.

    2011-12-01

    Past research has shown that drastically disturbed and degraded soils can offer a high potential for soil organic carbon and aboveground carbon sequestration. Little work has been done on both the functioning of soil carbon accumulation and turnover in reclaimed surface mining soils. Reclamation practices of surface coal mine soils in the Southern Appalachian forest region of the United States emphasizes heavy compaction of surface material to provide slope stability and reduce surface erosion, and topsoil is not typically added. An analysis of the previously collected data has provided a 14 year chronosequence of SOC uptake and development in the soil column and revealed that these soils are sequestering carbon at a rate of 1.3 MgC ha-1 yr-1, which is 1.6 to 3 times less than mining soils reported for other regions. Results of bulk density analysis indicate a contrast between 0 - 10 cm (1.51 g cm-3) and 10 - 50 cm (2.04 g cm-3) depth intervals. Aggregate stability was also quantified as well as dynamic soil texture measurements. With this analysis, it has been established that these soils are well below their potential in terms of the ability to store and cycle carbon and other nutrients as well their ability to sustain a fully-functioning forested ecosystem typical for the region. We are taking an integrated approach that relies on ecological observations for present conditions combined with computational modeling to understand long-term soil organic carbon (SOC) accumulation and turnover in regards to SOC sequestration potential and quantification of specific processes by which these soils develop. A dual-isotope end-member model, utilizing the carbon 13 and nitrogen 15 stable isotopes, is being developed to provide greater input into the mathematical separation of organic carbon derived from new soil inputs and existing coal carbon. Soils from the study sites have been isolated into three distinct size pools, and elemental and isotopic analysis of these samples was performed. These results are being used to calibrate an isotope fractionation model to quantify decomposition rates of various conceptual organic matter pools. The hydrology of the mine soils is being modeled using the SCS curve number method to quantify infiltration rates. An assessment of above and belowground biomass was performed to provide estimates for annual plant production. Soil samples will be analyzed for micronutrient content. The CENTURY soil organic matter model will be utilized to provide a biogeochemical analysis of the plant and soil ecosystem. Simulations will be made under varying climatic and land-use changes. Surface coal mine extraction can act as a disturbance and greatly impacts the terrestrial carbon reservoir through initial removal of aboveground biomass and soil carbon and thereafter mineland reclamation. This research will provide a better understanding of the net impact of surface coal mining on terrestrial carbon, thus accounting for long term C sequestration in the soils and aboveground biomass that might offset drastic carbon disturbance in the initial stage of surface mining.

  10. Chemical and radiological risk factors associated with waste from energy production.

    PubMed

    Christensen, T; Fuglestvedt, J; Benestad, C; Ehdwall, H; Hansen, H; Mustonen, R; Stranden, E

    1992-04-01

    We have tried to estimate the toxic potential of waste from nuclear power plants and from power plants burning fossil fuels. The potential risks have been expressed as 'risk potentials' or 'person equivalents.' These are purely theoretical units and represent only an attempt to quantify the potential impact of different sources and substances on human health. Existing concentration limits for effects on human health are used. The philosophy behind establishing limits for several carcinogenic chemicals is based on a linear dose-effect curve. That is, no lower concentration of no effect exists and one has to accept a certain small risk by accepting the concentration limit. This is in line with the establishment of limits for radiation. Waste products from coal combustion have the highest potential risk among the fossil fuel alternatives. The highest risk is caused by metals, and the fly ash represents the effluent stream giving the largest contribution to the potential risk. The waste from nuclear power production has a lower potential risk than coal if today's limit values re used. If one adjusts the limits for radiation dose and the concentration limit values so that a similar risk is accepted by the limits, nuclear waste seems to have a much higher potential risk than waste from fossil fuel. The possibility that such risk estimates may be used as arguments for safe storage of the different types of waste is discussed. In order to obtain the actual risk from the potential risk, the dispersion of the waste in the environment and its uptake and effects in man have to be taken into account.

  11. Polycyclic aromatic hydrocarbons (PAHs) in multimedia environment of Heshan coal district, Guangxi: distribution, source diagnosis and health risk assessment.

    PubMed

    Huang, Huan-Fang; Xing, Xin-Li; Zhang, Ze-Zhou; Qi, Shi-Hua; Yang, Dan; Yuen, Dave A; Sandy, Edward H; Zhou, Ai-Guo; Li, Xiao-Qian

    2016-10-01

    Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g(-1), 426.98 and 381.20 ng L(-1), respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10(-4)), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.

  12. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  13. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    NASA Astrophysics Data System (ADS)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  14. STAR Measurements and Modeling for Quantifying Air Quality and Climatic Impacts of Residential Biomass or Coal Combustion for Cooking, Heating and Lighting Kick-off Meeting

    EPA Pesticide Factsheets

    STAR grantees and EPA scientists will discuss progress on their projects which aim to quantify the extent to which interventions for cleaner cooking, heating, or lighting can impact air quality and climate, which in turn affect human health and welfare

  15. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  16. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  17. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  18. Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry

    DOE PAGES

    Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.; ...

    2018-01-23

    The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less

  19. Structural elucidation, molecular representation and solvent interactions of vitrinite-rich and inertinite-rich South African coals

    NASA Astrophysics Data System (ADS)

    van Niekerk, Daniel

    The structural differences and similarities of two Permian-aged South African coals, vitrinite-rich Waterberg and inertinite-rich Highveld coals (similar rank, carbon content and Permian age), were evaluated. With South African coals the opportunity presented itself to study not only Permian-aged Gondwana vitrinite but also inertinite. It was expected that these coals would differ from Northern hemisphere Carboniferous coals. It was concluded from various structural data that both coals, although different in maceral composition and depositional basins, are similar in their base structural composition. The main differences were that the inertinite-rich Highveld coal was more ordered, more aromatic, and had less hydrogen than the vitrinite-rich Waterberg coal. Analytical data were used to construct large-scale advanced molecular representations for vitrinite-rich Waterberg and inertinite-rich Highveld coals. The three-dimensional models were structurally diverse with a molecular weight range of 78 to 1900 amu. The vitrinite-rich coal model consisted of 18,572 atoms and 191 individual molecules and the inertinite-rich coal model consisted of 14,242 atoms and 158 individual molecules. This largescale modeling effort was enabled by the development of various PERL scripts to automate various visualization and analytical aspects. Coal swelling studies were conducted using the traditional pack-bed swelling method and a new novel single-particle stop-motion videography swelling method with NMP and CS2/NMP solvents. The pack-bed swelling showed that vitrinite-rich coal had a greater swelling extent and that swelling extent for both coals was greater in CS2/NMP binary solvent than for NMP. Single-particle swelling experiments showed that both coals, for both solvents, exhibit overshoot-type and climbing-type swelling behaviors. Inertinite-coal had a faster swelling rate, in both solvents, than the vitrinite-rich coal. The single-particle swelling data was used to calculate the kinetic parameters and it was found that the swelling was governed by relaxation of the coal structure (super-Case II swelling). X-ray computed tomography was conducted confirming anisotropic swelling. The petrographic transitions (maceral-group composition and reflectance) with solvent swelling and extraction were quantified. No changes in the maceral compositions were found, but changes in some coal particles were observed. Random reflectance analysis showed that, for both vitrinite and inertinite, there is a decrease in reflectance values with solvent treatment. Vitrinite reflectograms showed a shift from the dominant reflecting V-types to lower V-types. The inertinite reflectograms exhibited an increase in number of I-types (broadening of reflectrograms). Molecular simulation and visualization approaches to solvent swelling and extraction were performed on the proposed molecular models of vitrinite-rich and inertinite-rich coals. A theoretical extraction yield was determined using solubility parameters and showed agreement with experimental extraction yield trends. Statistical Associating Fluid Theory (SAFT) modeling was explored to test whether this method could predict swelling extent. The predicted swelling trends of SAFT were comparable to that of the experimental swelling results. SAFT was found to be a promising tool for solvent-coal interaction predictions. Partially solvent swollen structures were constructed by the addition of solvent molecules to the original coal molecules using a amorphous building approach. This method showed that coal-coal non-bonding interaction changed with the introduction of solvent. A disruption in the van der Waals interaction energies and a change in hydrogen bond distributions were observed in the swollen coal models and quantified. It was concluded that small changes in coal structure translates to significant changes in solvent interaction behavior. These changes were successfully visualized and simulated using atomistic molecular representations.

  20. A case study of multi-seam coal mine entry stability analysis with strength reduction method

    PubMed Central

    Tulu, Ihsan Berk; Esterhuizen, Gabriel S; Klemetti, Ted; Murphy, Michael M.; Sumner, James; Sloan, Michael

    2017-01-01

    In this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels. Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels. Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries. The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations. The SRM-calculated stability factors were compared with observations made during the site visits, and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case. It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines. PMID:28239503

  1. A case study of multi-seam coal mine entry stability analysis with strength reduction method.

    PubMed

    Tulu, Ihsan Berk; Esterhuizen, Gabriel S; Klemetti, Ted; Murphy, Michael M; Sumner, James; Sloan, Michael

    2016-03-01

    In this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels. Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels. Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries. The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations. The SRM-calculated stability factors were compared with observations made during the site visits, and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case. It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.

  2. Effect of combustion temperature on the emission of trace elements under O2/CO2 atmosphere during coal combustion

    NASA Astrophysics Data System (ADS)

    Qu, Chengrui; Zhang, Mo; Mann, Michael. D.

    2018-03-01

    The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.

  3. Study on each phase characteristics of the whole coal life cycle and their ecological risk assessment-a case of coal in China.

    PubMed

    Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren

    2017-01-01

    The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.

  4. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China

    NASA Astrophysics Data System (ADS)

    Wu, Di; Wang, Zongshuang; Chen, Jianhua; Kong, Shaofei; Fu, Xiao; Deng, Hongbing; Shao, Guofan; Wu, Gang

    2014-11-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 are identified and quantified at five sites of E'erduosi in 2005 by GC-MS. Total PAH concentrations in PM2.5 and PM10 are in the ranges of 0.58-145.01 ng m- 3 and 5.80-180.32 ng m- 3 for the five sites, decreasing as coal-chemical base site (ZGE) > heavy industrial site (QPJ) > residential site with heavy traffic (DS) > suburban site surrounded by grassland (HJQ) > background site (QGN) for both PM2.5 and PM10. PAH concentrations in the coal-chemical base site are 250 and 31.1 times of those in the background site. Flu, Pyr, Chr, BbF, BeP, IND and BghiP are abundant for the coal-chemical base site, totally accounting for 75% of the PAH concentrations. 4, 5 and 6 rings PAHs are dominant, accounting for 88.9-94.2% and 90.5-94.1% of PAHs in PM2.5 and PM10, respectively. Combustion-derived PAH concentrations cover 42%-84% and 75%-82% of PAHs in PM2.5 and PM10, indicating large amounts of combustion sources existed for them in E'erduosi. PAH compositions between PM2.5 and PM10 are quite different from each other for sites with few human activities (HJQ and QGN) by coefficient of divergence analysis. Results obtained from principal component analysis and diagnostic ratios indicate that coal combustion, vehicle emission, wood combustion and industrial processes are the main sources for PAHs in E'erduosi. According to BaP equivalent concentration, the potential health risk of PAHs in PM2.5 at the two industrial sites ZGE and QPJ are 537 and 460 times of those for the background site. And they are 4.3 and 3.7 times of those for the residential site. The potential PAH pollution in particles at other industrial agglomeration regions that occurred in China in recent years should be paid attention by the local government.

  5. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression

    PubMed Central

    Miller, Arthur L.; Weakley, Andrew Todd; Griffiths, Peter R.; Cauda, Emanuele G.; Bayman, Sean

    2017-01-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present. PMID:27645724

  6. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    PubMed

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present.

  7. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. P.N.; Peterson, G. R.

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less

  9. Not in My Backyard: CCS Sites and Public Perception of CCS.

    PubMed

    Braun, Carola

    2017-12-01

    Carbon capture and storage (CCS) is a technology that counteracts climate change by capturing atmospheric emissions of CO 2 from human activities, storing them in geological formations underground. However, CCS also involves major risks and side effects, and faces strong public opposition. The whereabouts of 408 potential CCS sites in Germany were released in 2011. Using detailed survey data on the public perception of CCS, this study quantifies how living close to a potential storage site affects the acceptance of CCS. It also analyzes the influence of other regional characteristics on the acceptance of CCS. The study finds that respondents who live close to a potential CCS site have significantly lower acceptance rates than those who do not. Living in a coal-mining region also markedly decreases acceptance. © 2017 Society for Risk Analysis.

  10. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  11. AFB/open cycle gas turbine conceptual design study

    NASA Astrophysics Data System (ADS)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  12. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    USGS Publications Warehouse

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  13. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  14. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Larson; Robert Williams; Thomas Kreutz

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less

  15. Quantifying methane emissions from coal and natural gas sources along the northwestern Appalachian

    NASA Astrophysics Data System (ADS)

    Barkley, Z.; Lauvaux, T.; Davis, K. J.; Fried, A.

    2017-12-01

    According to the EPA's 2012 gridded inventory (Maasakkers et al., 2016), more than 10% of all CH4 emissions in the U.S. are located along the western edge of the Appalachian with the majority of these emissions coming from natural gas infrastructure and coal mines. However, top-down studies of unconventional wells in southwestern Pennsylvania have found emission rates to be much higher than EPA estimates (Caulton et al., 2014, Ren et al., 2017). Furthermore, although 9 of the 10 largest sources of CH4 in the EPA Greenhouse Gas Reporting Program are coal mines located in this region, no top down studies have been performed to assess the accuracy of these enormous point sources. This study uses aircraft data from the ACT-America flight campaign in conjunction with techniques previously used to solve for CH4 emissions from the northeastern Marcellus (Barkley et al., 2017) to quantify the total CH4 flux from the western Pennsylvania/West Virginia region and constrain emissions from natural gas and coal with an upper limit for each source. We use the WRF-Chem mesoscale model at 3 km resolution to simulate CH4 enhancements from a customized emissions inventory and compare the modelled enhancements to observations from 7 flights that were downwind of coal and gas sources. Coal and natural gas emissions are adjusted in the model to minimize a cost function that accounts for the difference between the modelled and observed CH4 values, and a range of likely combinations for natural gas and coal emission rates are obtained for each flight. We then overlap this range of likely emission rates across all flights to further limit the range of possible emission rates. Influence functions created using a lagrangian particle dispersion model for segments of each flight provide information on what area emissions are being optimized for. Preliminary results find that CH4 emissions from gas and coal along the northwestern Appalachian are lower than EPA estimates by 20-50%. In particular, upper limits on CH4 emissions from unconventional natural gas are less than 1% of total production, significantly lower than previous top-down estimates in the region. Future work will use ethane data to better distinguish between coal and natural gas emissions, and expand these analyses to other study regions explored in the ACT-America aircraft campaign.

  16. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    PubMed Central

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoor air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM2.5 concentration in 20 homes was 36.0 μg/m3. This is the first time that PM2.5 has been quantified and characterized inside Navajo reservation residents' homes. PMID:20671946

  17. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE PAGES

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; ...

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  18. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  19. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    NASA Astrophysics Data System (ADS)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  20. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  1. Rationale for continuing R&D in indirect coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, D.; Tomlinson, G.

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coalmore » liquids will become competitive with petroleum.« less

  2. Cytotoxic, genotoxic and mutagenic evaluation of surface waters from a coal exploration region.

    PubMed

    Porta, Cynthia Silva; Dos Santos, Débora Lemes; Bernardes, Hélio Vieira; Bellagamba, Bruno Corrêa; Duarte, Anaí; Dias, Johnny Ferraz; da Silva, Fernanda Rabaioli; Lehmann, Mauricio; da Silva, Juliana; Dihl, Rafael Rodrigues

    2017-04-01

    Coal mining generates a considerable amount of waste, which is disposed of in piles or dams near mining sites. As a result, leachates may reach rivers and streams, promoting the wide dispersion of contaminants in solution and as particulate matter. The present study evaluated the cytotoxic, genotoxic, and mutagenic action of surface waters collected around a thermoelectric power plant and the largest mining area in Brazil (Candiota). Four sites in Candiota stream were selected, and samples were collected in winter and summer. Water samples were analyzed using the comet and CBMN assays in V79 and HepG2 cells. Furthermore, genotoxicity of water samples was evaluated in vivo using the SMART in Drosophila melanogaster. In addition, polycyclic aromatic hydrocarbons and inorganic elements were quantified. The results indicate that water samples exhibited no genotoxic and mutagenic activities, whether in vitro or in vivo. On the other hand, surface water samples collected in sites near the power plant in both summer and winter inhibited cell proliferation and induced increased frequencies of V79 cell death, apoptosis, and necrosis. The cytotoxicity observed may be associated with the presence of higher concentration of inorganic elements, especially aluminum, silicon, sulfur, titanium and zinc at sites 1 and 2 in the stream, as well as with the complex mixture present in the coal, in both seasons. Therefore, the results obtained point to the toxicity potential of water samples with the influence of coal mining and combustion processes and the possible adverse effects on the health of exposed organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  4. Huminite reflectance measurements of Paleocene and Upper Cretaceous coals from borehole cuttings, Zavala and Dimmit counties, South Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Hook, Robert W.; Warwick, Peter D.

    2005-01-01

    The reflectance of huminite in 19 cuttings samples was determined in support of ongoing investigations into the coal bed methane potential of subsurface Paleocene and Upper Cretaceous coals of South Texas. Coal cuttings were obtained from the Core Research Center of the Bureau of Economic Geology, The University of Texas at Austin. Geophysical logs, mud-gas logs, driller's logs, completion cards, and scout tickets were used to select potentially coal-bearing sample suites and to identify specific sample depths. Reflectance measurements indicate coals of subbituminous rank are present in a wider area in South Texas than previously recognized.

  5. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  6. Evaluating the Energy Recovery Potential of Nigerian Coals under Non-Isothermal Thermogravimetry

    NASA Astrophysics Data System (ADS)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study investigated the fuel properties and energy recovery potential of two coal samples from Ihioma (IHM) and Ogboligbo (OGB) environs in Nigeria. The ultimate, proximate, and bomb calorimetric analyses of the coal were examined. Next, the rank classification and potential application of the coals were evaluated according to the ASTM standard D388. Lastly, thermal decomposition behaviour was examined by non-isothermal thermogravimetry (TG) under pyrolysis conditions from 30 - 900 °C. The results indicated IHM and OGB contain high proportions of combustible elements for potential thermal conversion. The higher heating value (HHV) of IHM was 20.37 MJ/kg whereas OGB was 16.33 MJ/kg. TG analysis revealed 55% weight loss for OGB and 76% for IHM. The residual mass was 23% for IHM and 44% for OGB. Based on the temperature profile characteristics (TPCs); Ton , Tmax , and Toff , IHM was more reactive than OGB due to its higher volatile matter (VM). Overall, results revealed the coals are Lignite (Brown) low-rank coals (LRCs) with potential for electric power generation.

  7. Preliminary report on the coal resources of the Dickenson area, Billings, Dunn, and Stark counties, North Dakota

    USGS Publications Warehouse

    Menge, Michael L.

    1977-01-01

    The Dickinson area is underlain by the coal-bearing Fort Union Formation (Paleocene). The Fort Union in this area contains nine potentially economic coal beds. Five of these beds are, either all or in part, shallow enough to be economically extracted by conventional strip-mining methods, while the remaining four deeper beds represent future possible strip-mining, in situ, or shaft-mining coal resources. The Fort Union coal beds in the Dickinson area are relatively flat lying (dips are less than 1??) and only slightly influenced by faulting and both depositional and post-depositional channeling. Topography, coal thickness, and minimum overburden all combine to give the Dickinson area an excellent future coal resource development potential.

  8. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  9. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  10. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literaturemore » reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).« less

  11. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  12. Mapping of compositional properties of coal using isometric log-ratio transformation and sequential Gaussian simulation - A comparative study for spatial ultimate analyses data.

    PubMed

    Karacan, C Özgen; Olea, Ricardo A

    2018-03-01

    Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.

  13. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  14. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of modified extended method in CREAM for safety inspector in coal mines

    NASA Astrophysics Data System (ADS)

    Wang, Jinhe; Zhang, Xiaohong; Zeng, Jianchao

    2018-01-01

    Safety inspector often performs duties in circumstances contributes to the oc currence of human failures. Therefore, the paper aims at quantifying human failure pro bability (HFP) of safety inspector during the coal mine operation with cognitive reliabi lity and error analysis method (CREAM). Whereas, some shortcomings of this approa ch that lacking considering the applicability of the common performance condition (C PC), and the subjective of evaluating CPC level which weaken the accuracy of the qua ntitative prediction results. A modified extended method in CREAM which is able to a ddress these difficulties with a CPC framework table is proposed, and the proposed me thodology is demonstrated by the virtue of a coal-mine accident example. The results a re expected to be useful in predicting HFP of safety inspector and contribute to the enh ancement of coal mine safety.

  16. The Effect of a Tectonic Stress Field on Coal and Gas Outbursts

    PubMed Central

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648

  17. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    PubMed

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents.

  18. Opportunities for wind and solar to displace coal and associated health impacts in Texas

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.; Strasert, B.; Slusarewicz, J.

    2017-12-01

    Texas uses more coal for power production than any other state, but also leads the nation in wind power while lagging in solar. Many analysts expect that more than half of coal power plants may close within the next decade, unable to compete with cheaper natural gas and renewable electricity. To what extent could displacing coal with wind and solar yield benefits for air quality, health, and climate? Here, we present modeling of the ozone, particulate matter, and associated health impacts of each of 15 coal power plants in Texas, using the CAMx model for air quality and BenMAP for health effects. We show that health impacts from unscrubbed coal plants near urban areas can be an order of magnitude larger than some other facilities. We then analyze the temporal patterns of generation that could be obtained from solar and wind farms in various regions of Texas that could displace these coal plants. We find that winds along the southern Gulf coast of Texas exhibit strikingly different temporal patterns than in west Texas, peaking on summer afternoons rather than winter nights. Thus, wind farms from the two regions along with solar farms could provide complementary sources of power to displace coal. We quantify several metrics to characterize the extent to which wind and solar farms in different regions provide complementary sources of power that can reliably displace traditional sources of electricity.

  19. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  20. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the overall approach taken, and discuss how the results of these modelling studies will be used to evaluate the impacts of the depressurisation of coal seams on ecological, economic and socio-cultural assets that are dependent on surface and/or groundwater.

  1. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2016-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. Surface water and groundwater modelling is now complete for two regions where coal seam gas development may proceed, namely the Clarence-Moreton and Gloucester regions in eastern New South Wales. This presentation will discuss how the results of these modelling studies will be used to evaluate the impacts of the depressurisation of coal seams on ecological, economic and socio-cultural assets that are dependent on surface water and/or groundwater.

  2. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2015-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However as coal seam gas deposits generally occur at shallower depths than shale gas the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be of even greater concern for coal seam gas than for shale gas. In Australia an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice the Australian Government Department of the Environment has implemented a three-year programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the program and results to date can be found at http://www.bioregionalassessments.gov.au. In this presentation the methodology for undertaking bioregional assessments will be described and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Results of the programme to date will be provided (being nearly two years into the three-year study) with a focus on the preliminary results of numerical groundwater modelling. Once completed this modelling will be used to evaluate the impacts of the depressurisation of coal seams on aquifers and associated ecological, economic and socio-cultural water-dependent assets.

  3. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  4. The U.S. Energy Dilemma: The Gap between Today’s Requirements and Tomorrow’s Potential.

    DTIC Science & Technology

    1973-07-01

    Possible Solutions . ........ .. 142 Use of Low-Sulfur Coal ................ 43 Flue - Gas Desulfurization ................ 43 Coal Cleaning...1) use of low-sulfur coal, (2) flue - gas desulfurization , (3) coal cleaning, (4) coal refining, and (5) coal conversion. Use of Low-Sulfur Coal The...to the same point (Skillings Mining Rev., 1973). Flue - Gas Desulfurization With standards based on sulfur dioxide emissions per million Btu, rather than

  5. SBIR Phase I final report, Sensor for direct, rapid and complete elemental analysis of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunyi

    This Final Report is the result of the DOE SBIR Phase I assistance agreement No: DE-FOA-0001619 awarded to Applied Spectra, Inc. During the nine-month Phase I effort, we successfully demonstrated the ability to quantify rare-earth elements (REE) in coal using LIBS (Laser Induced Breakdown Spectroscopy) along with other elements of interest such as silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), titanium (Ti) and iron (Fe). In addition to elemental quantification, eighteen different coal types could be classified with 100% certainty using their LIBS spectrum. High-resolution LA-ICP-MS surface mapping showed a correlation between REE and other prevalent elementsmore » such as aluminum, silicon, and titanium.« less

  6. Quantifying Stove Emissions Related to Different Use Patterns for the Silver mini (Small Turkish) Space Heating Stove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Lunden, Melissa; Wilson, Daniel

    2012-08-01

    Air pollution levels in Ulaanbaatar, Mongolia’s capital, are among the highest in the world. A primary source of this pollution is emissions from traditional coal - burning space heating stoves used in the Ger (tent) regions around Ulaanbaatar. Significant investment has been made to replace traditional heating stoves with improved low - emission high-efficiency stoves. Testing performed to support selection of replacement stoves or for optimizing performance may not be representative of true field performance of the improved stoves. Field observations and lab measurements indicate that performance is impacted , often adversely, by how stoves are actually being used inmore » the field. The objective of this project is to identify factors that influence stove emissions under typical field operating conditions and to quantify the impact of these factors. A highly - instrumented stove testing facility was constructed to allow for rapid and precise adjustment of factors influencing stove performance. Tests were performed using one of the improved stove models currently available in Ulaanbaatar. Complete burn cycles were conducted with Nailakh coal from the Ulaanbaatar region using various startup parameters, refueling conditions , and fuel characteristics . Measurements were collected simultaneously from undiluted chimney gas, diluted gas drawn directly from the chimney and plume gas collected from a dilution tunnel above the chimney. CO, CO 2, O 2, temperature, pressure, and particulate matter (PM) were measured . We found that both refueling events and coal characteristics strongly influenced PM emissions and stove performance. Start-up and refueling events lead to increased PM emissions with more than 98% of PM mass emitted during the 20% of the burn where coal ignition occurs. CO emissions are distributed more evenly over the burn cycle, peaking both during ignition and late in the burn cycle . We anticipate these results being useful for quantifying public health outcomes related to the distribution of improved stoves and to identify opportunities for improving and sustaining performance of the new stoves .« less

  7. Corrosion of rock anchors in US coal mines

    NASA Astrophysics Data System (ADS)

    Bylapudi, Gopi

    The mining industry is a major consumer of rock bolts in the United States. Due to the high humidity in the underground mining environment, the rock bolts corrode and loose their load bearing capacity which in turn reduces the life expectancy of the ground support and, thus, creates operational difficulties and number of safety concerns[1]. Research on rock anchor corrosion has not been adequately extensive in the past and the effects of several factors in the mine atmosphere and waters are not clearly understood. One of the probable reasons for this lack of research may be attributed to the time required for gathering meaningful data that makes the study of corrosion quite challenging. In this particular work underground water samples from different mines in the Illinois coal basin were collected and the major chemical content was analyzed and used for the laboratory testing. The corrosion performance of the different commercial rock anchors was investigated by techniques such as laboratory immersion tests in five different corrosion chambers, and potentiodynamic polarization tests in simulated ground waters based on the Illinois coal basin. The experiments were conducted with simulate underground mining conditions (corrosive). The tensile strengths were measured for the selected rock anchors taken every 3 months from the salt spray corrosion chambers maintained at different pH values and temperatures. The corrosion potential (Ecorr ), corrosion current (Icorr) and the corresponding corrosion rates (CR) of the selected commercial rock bolts: #5, #6, #6 epoxy coated and #7 forged head rebar steels, #6 and #7 threaded head rebar steels were measured at the solution pH values of 5 and 8 at room temperature. The open circuit potential (OCP) values of the different rock anchors were recorded in 3 selected underground coal mines (A, B & C) in the Illinois coal basin and the data compared with the laboratory electrochemical tests for analyzing the life of the rock anchors installed in the mines with respect to corrosion potential and corrosion current measured. The results of this research were statistically validated. This research will have direct consequence to the rock related safety. The results of this research indicate that certain corrosive conditions are commonly found in mines but uniform corrosion (around 0.01-0.03mm loss per year across the diameter) is generally not considered a serious issue. From this study, longer term research for longterm excavation support is recommended that could quantify the problem depending on the rock anchor used and specific strata conditions.

  8. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments tomore » the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.« less

  9. Impact of Coal Mining on Self-Rated Health among Appalachian Residents

    PubMed Central

    Woolley, Shannon M.; Bear, Todd M.; Balmert, Lauren C.; Talbott, Evelyn O.; Buchanich, Jeanine M.

    2015-01-01

    Objective. To determine the impact of coal mining, measured as the number of coal mining-related facilities nearby one's residence or employment in an occupation directly related to coal mining, on self-rated health in Appalachia. Methods. Unadjusted and adjusted ordinal logistic regression models calculated odds ratio estimates and associated 95% confidence intervals for the probability of having an excellent self-rated health response versus another response. Covariates considered in the analyses included number of coal mining-related facilities nearby one's residence and employment in an occupation directly related to coal mining, as well as potential confounders age, sex, BMI, smoking status, income, and education. Results. The number of coal mining facilities near the respondent's residence was not a statistically significant predictor of self-rated health. Employment in a coal-related occupation was a statistically significant predictor of self-rated health univariably; however, after adjusting for potential confounders, it was no longer a significant predictor. Conclusions. Self-rated health does not seem to be associated with residential proximity to coal mining facilities or employment in the coal industry. Future research should consider additional measures for the impact of coal mining. PMID:26240577

  10. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.

  11. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    NASA Astrophysics Data System (ADS)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  12. Impact of coal-carrying trains on particulate matter concentrations in South Delta, British Columbia, Canada.

    PubMed

    Akaoka, K; McKendry, I; Saxton, J; Cottle, P W

    2017-04-01

    Transport of coal by train through residential neighborhoods in Metro Vancouver, British Columbia, Canada may increase the possibility of exposure to particulate matter at different size ranges, with concomitant potential negative health impacts. This pilot study identifies and quantifies train impacts on particulate matter (PM) concentrations at a single location. Field work was conducted during August and September 2014, with the attributes of a subset of passing trains confirmed visually, and the majority of passages identified with audio data. In addition to fixed ground based monitors at distances 15 and 50 m from the train tracks, an horizontally pointing mini-micropulse lidar system was deployed on three days to make backscatter and depolarization measurements in an attempt to identify the zone of influence, and sources, of train-generated PM. Ancillary wind and dust fall data were also utilized. Trains carrying coal are associated with a 5.3 (54%), 4.1 (33%), and 2.6 (17%) μgm -3 average increase in concentration over a 14 min period compared to the average concentrations over the 10 min prior to and after a train passage ("control" or "background" conditions), for PM 3 , PM 10 , and PM 20 , respectively. In addition, for PM 10 and PM 20 , concentrations during train passages of non-coal-carrying trains were not found to be significantly different from PM concentrations during control conditions. Presence of coal dust particles at the site was confirmed by dust fall measurements. Although enhancements of PM concentrations during 14 min train passages were generally modest, passing coal trains occasionally enhanced concentrations at 50 m from the tracks by ∼100 μgm -3 . Results showed that not every train passage increased PM concentrations, and the effect appears to be highly dependent on wind direction, local meteorology and load related factors. LiDAR imagery suggests that re-mobilization of track-side PM by train-induced turbulence may be a significant contributor to coarse particle enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Jones; Brandon Pavlish; Stephen Sollom

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less

  14. Implications of low natural gas prices on life cycle greenhouse gas emissions in the U.S. electricity sector

    NASA Astrophysics Data System (ADS)

    Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.

    2012-12-01

    Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.

  15. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  16. A New Use for High-Sulfur Coal

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; England, C.

    1982-01-01

    New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.

  17. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  18. Reactivity of coal in direct hydrogenation processes: Technical progress report, March-May 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Miller, R.L.

    Research during the past quarter centered on continuation of two facets related to the study of coal reactivity in direct hydrogenation liquefaction processes. Five coals from the Argonne Premium coal collection were liquefied at three temperature levels in order to gather data for kinetic analysis purposes. Conversion of these coals to THF-, toluene-, and hexane-solubles was determined at temperatures of 425, 400, and 375 C, and nominal reaction times of 3, 5, 10, 15, and 40 minutes in the microautoclave batch reaction system. Preliminary mathematical modeling of the data using simple irreversible rate expressions and more complex formulations based onmore » a statistical distribution of activation energies was initiated in order to investigate the feasibility of utilizing activation energy as an additional reactivity screening factor. Use of complex models such as the Anthony-Howard formulation for purposes of activation energy determination from liquefaction data at one temperature level was further examined. Five of the 21 coals from the Penn State Premium coal sample bank were liquefied at the standard reactivity screening conditions, and the rate and extent of conversion to THF-, and toluene-, and hexane-solubles quantified. These data were added to the existing data base containing similar information for the prior coal suites from the Exxon and Argonne collections, and preliminary correlational efforts for reactivity vs. coal properties were initiated. Prior conclusions regarding the effect of rank on the rate and extent of conversion were qualitatively verified from the data collected. 1 ref., 13 figs., 2 tabs.« less

  19. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  20. Petrography, geochemistry, and depositional setting of the San Pedro and Santo Tomas coal zones: Anomalous algae-rich coals in the middle part of the Claiborne Group (Eocene) of Webb County, Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Hook, Robert W.

    1995-01-01

    Two coal zones, the San Pedro and the overlying Santo Tomas, are present for nearly 35 km in outcrop, surface and underground mines, and shallow drill holes along the strike of the middle part of the Claiborne Group (Eocene) in Webb County, Texas. A sandstone-dominated interval of 25 to 35 m separates the two coal zones, which range up to 3 m in thickness. Each coal zone contains carbonaceous shales, thin (<0.75 m) impure coal beds, and thin (<0.85 m) but commercially significant nonbanded coal beds. The nonbanded coals are different from other Tertiary coals of the Gulf of Mexico Coastal Plain: unlike lignites that are typical of the older Wilcox Group (Paleocene-Eocene) and younger Jackson Group (Eocene), nonbanded coals of the Claiborne Group have high vitrinite-reflectance values (0.53 Rmax) and high calorific yields (average 6670 kcal/kg or 12,000 Btu, dry basis). The coals are weakly agglomerating (free-swelling index is 1.5–2.0) and have an apparent rank of high-volatile bituminous.The coal-bearing portion of the middle Claiborne Group in the Rio Grande area represents a fining-upward transition from sandstone-dominated, marine-influenced, lower delta plain depositional environments to more inland, mudstone-rich, predominantly freshwater deltaic settings. Discontinuities within the San Pedro coal zone are attributed mainly to the influence of contemporaneous deposition of distributary mouth-bar sand bodies. The less variable nature of the Santo Tomas coal zone reflects its origin in the upper part of an interlobe basin that received only minor clastic influx.Petrographic attributes of the nonbanded coals indicate that they formed subaqueously in fresh to possibly brackish waters. A highly degraded groundmass composed of eugelinite is the main petrographic component (approximately 71%, mineral-matter-free basis). An enriched liptinite fraction (approximately 23%) probably accounts for unusually high calorific values. There is negligible inertinite. Petrographic study of polished blocks indicates that approximately 10 percent of the nonbanded coal from both coal zones is composed of green algae fructifications, which also occur in clastic rocks of the coal-bearing interval. Such algal material cannot be identified or quantified by conventional coal petrographic techniques that utilize particle pellets or by palynological analyses that include acid preparation.

  1. Fuel Characterization of Newly Discovered Nigerian Coals

    NASA Astrophysics Data System (ADS)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study seeks to characterize and highlight the fuel properties, rank, and classification of coals from Ihioma (IHM) and Ogboligbo (OGB) in Imo and Kogi states of Nigeria, respectively. The fuel properties were examined based on ultimate, proximate, and bomb calorific analyses. The results indicated that IHM coal contains comparatively higher C and H but lower O, N, and S content than OGB. In addition, the nitrogen (N) and sulphur (S) content for both coal samples were above 0.7 wt.% and 1.5 wt.%, respectively, which indicates high potential for pollutant emissions. Furthermore, the coal proximate properties were below 5 wt.% for Moisture; Volatiles (70 wt.%); Fixed Carbon (45 wt.%) and Ash (2.5 wt.%) on average. IHM coal has an HHV of 19.40 MJ/kg whereas OGB is 15.55 MJ/kg. This is due to the low carbon (C), hydrogen (H) and high oxygen (O) content in OGB whereas IHM contains higher VM and HHV. Furthermore, OGB presents better handling, storage, and transport potential. Furthermore, OGB has a higher fuel ratio and value index due to lower moisture, ash content, and volatiles. Based on the ASTM D388 standard, the coals were classified as Lignite (Brown) Low-Rank Coals (LRCs) with potential for energy recovery.

  2. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    DTIC Science & Technology

    1980-09-01

    TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD

  3. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  4. Potential effects of surface coal mining on the hydrology of the Circle West coal tracts, McCone County, eastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1984-01-01

    The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water in shallow aquifers in and near the coal tracts. Some of the effects on local water supplies could be mitigated by development of alternative water resources in deeper aquifers such as the Tullock aquifer of Paleocene age and the Fox Hills-lower Hell Creek aquifer of Late Cretaceous age. (Author 's abstract)

  5. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    USGS Publications Warehouse

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  6. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan

    2017-02-15

    The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Weak economy and politics worry US coal operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2009-01-15

    A potential decrease in demand, a new administration, and production constraints have coal operators worried about prospects for 2009. This and other interesting facts are revealed in this 2009 forecast by the journal Coal Age. Results are presented of the survey answered by 69 of the 646 executives contacted, on such questions about expected coal production, coal use, attitude in the coal industry, capital expenditure on types of equipment and productive capacity. Coal Age forecasts a 2.3% decline in coal production in 2009, down to 1.145 billion tons from 1.172 billion tons. 8 figs.

  9. Potential health impacts of burning coal beds and waste banks

    USGS Publications Warehouse

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  10. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  11. Study on feasible technical potential of coal to electricity in china

    NASA Astrophysics Data System (ADS)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  12. A photographic method for estimating wear of coal tar sealcoat from parking lots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateo Scoggins; Tom Ennis; Nathan Parker

    2009-07-01

    Coal-tar-based sealcoat has been recognized as an important source of PAHs to the environment through wear and transport via stormwater runoff. Sealcoat removal rates have not been measured or even estimated in the literature due to the complex array of physical and chemical process involved. A photographic study was conducted that incorporates all sources of wear using 10 coal tar-sealed parking lots in Austin, Texas, with sealcoat age ranging from 0 to 5 years. Randomly located photographs from each parking lot were analyzed digitally to quantify black sealed areas versus lighter colored unsealed areas at the pixel level. The resultsmore » indicate that coal tar sealcoat wears off of the driving areas of parking lots at a rate of approximately 4.7% per year, and from the parking areas of the lots at a rate of approximately 1.4% per year. The overall annual loss of sealcoat was calculated at 2.4%. This results in an annual delivery to the environment of 0.51 g of PAHs per m{sup 2} of coal tar-sealed parking lot. These values provide a more robust and much higher estimate of loading of PAHs from coal tar sealcoated parking lots when compared to other available measures. 20 refs., 6 figs.« less

  13. PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...

    EPA Pesticide Factsheets

    EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.

  14. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.

  15. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  16. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  17. Transatlantic wood pellet trade demonstrates telecoupled benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Esther S.; Herzberger, Anna J.; Phifer, Colin C.

    European demand for renewable energy resources has led to rapidly increasing transatlantic exports of wood pellets from the southeastern United States (SE US) since 2009. Disagreements have arisen over the global greenhouse gas reductions associated with replacing coal with wood, and groups on both sides of the Atlantic Ocean have raised concerns that increasing biomass exports might negatively affect SE US forests and the ecosystem services they provide. We use the telecoupling framework to test assertions that the intended benefits of the wood pellet trade for Europe might be offset by negative consequences in the SE US. Through a reviewmore » of current literature and available data sets, we characterize the observed and potential changes in the environmental, social, and economic components of the sending and receiving regions to assess the overall sustainability of this renewable energy system. We conclude that the observed transatlantic wood pellet trade is an example of a mutually beneficial telecoupled system with the potential to provide environmental and socioeconomic benefits in both the SE US and Europe despite some negative effects on the coal industry. We recommend continued monitoring of this telecoupled system to quantify the environmental, social, and economic interactions and effects in the sending, receiving, and spillover systems over time so that evidence-based policy decisions can be made with regard to the sustainability of this renewable energy pathway.« less

  18. Transatlantic wood pellet trade demonstrates telecoupled benefits

    DOE PAGES

    Parish, Esther S.; Herzberger, Anna J.; Phifer, Colin C.; ...

    2018-01-01

    European demand for renewable energy resources has led to rapidly increasing transatlantic exports of wood pellets from the southeastern United States (SE US) since 2009. Disagreements have arisen over the global greenhouse gas reductions associated with replacing coal with wood, and groups on both sides of the Atlantic Ocean have raised concerns that increasing biomass exports might negatively affect SE US forests and the ecosystem services they provide. We use the telecoupling framework to test assertions that the intended benefits of the wood pellet trade for Europe might be offset by negative consequences in the SE US. Through a reviewmore » of current literature and available data sets, we characterize the observed and potential changes in the environmental, social, and economic components of the sending and receiving regions to assess the overall sustainability of this renewable energy system. We conclude that the observed transatlantic wood pellet trade is an example of a mutually beneficial telecoupled system with the potential to provide environmental and socioeconomic benefits in both the SE US and Europe despite some negative effects on the coal industry. We recommend continued monitoring of this telecoupled system to quantify the environmental, social, and economic interactions and effects in the sending, receiving, and spillover systems over time so that evidence-based policy decisions can be made with regard to the sustainability of this renewable energy pathway.« less

  19. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    PubMed

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of the first EPA-certified wood and coal combination stove.

  20. The directory of US coal and technology export resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  1. Health impacts of domestic coal use in China

    USGS Publications Warehouse

    Finkelman, R.B.; Belkin, H.E.; Zheng, B.

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  2. Health impacts of domestic coal use in China

    PubMed Central

    Finkelman, Robert B.; Belkin, Harvey E.; Zheng, Baoshan

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion. PMID:10097053

  3. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  4. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    USGS Publications Warehouse

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  5. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  6. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  7. The commercial feasibility of underground coal gasification in southern Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Young, B.C.; Harju, J.A.

    Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less

  8. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China.

    PubMed

    Xiong, Yan; Xiao, Tangfu; Liu, Yizhang; Zhu, Jianming; Ning, Zengping; Xiao, Qingxiang

    2017-10-01

    Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (I geo ), single factor index (P i ) and Nemerow index (P N ), soils i n the study area were mainly polluted by Cd, which constituted a potential risk to locally planted crops. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  10. CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA

    USGS Publications Warehouse

    O'Keefe, Jennifer M.K.; Henke, Kevin R.; Hower, James C.; Engle, Mark A.; Stracher, Glenn B.; Stucker, J.D.; Drew, Jordan W.; Staggs, Wayne D.; Murray, Tiffany M.; Hammond, Maxwell L.; Adkins, Kenneth D.; Mullins, Bailey J.; Lemley, Edward W.

    2010-01-01

    Carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400 t CO2/yr and 16 kg Hg/yr resulting from a coal combustion rate of 450–550 t/yr. The sum of CO2 emissions from seven vents at the Ruth Mullins fire is 726 ± 72 t/yr, suggesting that the fire is consuming about 250–280 t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21 ± 1.8 t/yr and > 840 ± 170 g/yr, respectively. The CO2emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9 × 106 t CO2/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO2 and Hg emissions from coal-fires in the U.S. are estimated at 1.4 × 107–2.9 × 108 t/yr and 0.58–11.5 t/yr, respectively. This initial work indicates that coal fires may be an important source of CO2, CO, Hg and other atmospheric constituents.

  11. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    NASA Astrophysics Data System (ADS)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  12. Mine planning and emission control strategies using geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, F.; Kim, Y.C.

    1983-03-01

    This paper reviews the past four years' research efforts performed jointly by the University of Arizona and the Homer City Owners in which geostatistics were applied to solve various problems associated with coal characterization, mine planning, and development of emission control strategies. Because geostatistics is the only technique which can quantify the degree of confidence associated with a given estimate (or prediction), it played an important role throughout the research efforts. Through geostatistics, it was learned that there is an urgent need for closely spaced sample information, if short-term coal quality predictions are to be made for mine planning purposes.

  13. The determination of methane resources from liquidated coal mines

    NASA Astrophysics Data System (ADS)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  14. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  15. 75 FR 18877 - Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... the Mineral Leasing Act of 1920, as amended by section 4 of the Federal Coal Leasing Amendments Act of... reserves contained in a potential lease. The Federal coal resources are located in Emery and Sevier...] Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041 AGENCY...

  16. Source Apportionment of Particle Bound Polycyclic Aromatic Hydrocarbons at an Industrial Location in Agra, India

    PubMed Central

    Lakhani, Anita

    2012-01-01

    16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m−3. Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline. PMID:22606062

  17. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.

    PubMed

    Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun

    2018-06-14

    This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.

  18. The stability behavior of sol-emulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkel, J.M.; Berg, J.C.

    1996-05-10

    Sol-emulsion systems, i.e., colloids consisting of mixed populations of solid particles and emulsion droplets, are encountered in a number of applications, e.g., oil-assisted agglomeration for particle removal (coal fines from water). The stability characteristics of mixed aqueous dispersions of titanium dioxide and mineral oil emulsion droplets are examined as a function of pH and emulsifier type and content. Zeta potentials of both the titanium dioxide and the mineral oil particles are measured under all conditions to identify regions of expected heterocoagulation and to quantify the electrostatic boundary conditions. The latter are used in the numerical solution of the pair interactionmore » potentials based on the recent theory of McCormack et al. The potential functions are used in a modified version of the stability model of Hogg, Healy, and Fuerstenau to calculate early-stage aggregation rates. Photon correlation spectroscopy is used to determine stability ratios for homo- and heterocoagulation, and initial results indicate good agreement between experiments and computations.« less

  19. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, A.O.; Aydiner, K.

    Lignite and hard coal are the major sources of domestic energy sources of Turkey. Hard coal is produced at only one district in the country. Zonguldak Hard Coal Basin is the major power for development of the Turkish steel-making industry. It is the only hard coal basin in the country and it has, to date, supplied approximately 400 million tons of run-of-mine hard coal. This article investigates the potential of hard coal as an energy source and discusses the measures to activate the region for the future energy supply objectives of the country.

  1. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  2. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  3. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation.

    PubMed

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-28

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  4. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    PubMed Central

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure. PMID:26817784

  5. Assessing U.S. coal resources and reserves

    USGS Publications Warehouse

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  6. The solubilization of low-ranked coals by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less

  7. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    USGS Publications Warehouse

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  8. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  9. CO2 sequestration potential of Charqueadas coal field in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Santarosa, C; Crandall, D

    2013-02-01

    Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.more » The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.« less

  10. Health impacts of coal and coal use: Possible solutions

    USGS Publications Warehouse

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zhu, Y.; Chou, C.-L.; Zeng, R.; Zheng, B.

    2004-01-01

    Mineralogy, coal chemistry and 21 potentially hazardous trace elements (PHTEs) of 44 coal samples from the Qianxi Fault Depression Area (QFDA) in southwestern Guizhou province, China have been systematically studied. The major minerals in coals studied are quartz, kaolinite, illite, pyrite, calcite, smectite, marcasite and accessory minerals, including rutile, dolomite, siderite, gypsum, chlorite, melanterite, apatite, collophane and florencite. The SiO2 content shows a broad variation (0.8-30.7%). A high SiO2 content in Late Permian coals reflects their enrichment in quartz. The Al2O3 content varies from 0.8% to 13.4%, Fe2O3 from 0.2% to 14.6%, CaO from Al>K>Ti>Na>Mg>Ca>Fe>S. A comparison with World coal averages shows that the Late Permian coals in QFDA are highly enriched in As, Hg, F and U, and are slightly enriched in Mo, Se, Th, V and Zn. The Late Triassic coals in QFDA are highly enriched in As and Hg, and are slightly enriched in Mo, Th and U. The concentrations of As, Hg, Mo, Se, Tl and Zn in the QFDA coal are higher than other Guizhou coal and Liupanshui coal nearby. The QFDA is an area strongly affected by the low-temperature hydrothermal activity during its geologic history (Yanshanian Age, about 189 Ma). The coals in QFDA are enriched in volatile PHTEs, including As, Hg, Se, Sb, Mo, among others. The regions where the coals are enriched in As, Hg and F have been mapped. The regions of coals enriched in volatile PHTEs overlap with the regions of noble metal ore deposits. These coals are located in the cores of anticline and anticlinorium, which are connected with the profound faults through the normal faults. Coals are enriched in volatile PHTEs as a result of the low-temperature hydrothermal activity associated with tectonic faulting. ?? 2003 Elsevier B.V. All rights reserved.

  12. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  13. Performance potential of the coal strip mining in the east of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheskidov, V.I.

    2007-07-15

    The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, B.B.

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating amore » potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.« less

  15. Similar simulation study on the characteristics of the electric potential response to coal mining

    NASA Astrophysics Data System (ADS)

    Niu, Yue; Li, Zhonghui; Kong, Biao; Wang, Enyuan; Lou, Quan; Qiu, Liming; Kong, Xiangguo; Wang, Jiali; Dong, Mingfu; Li, Baolin

    2018-02-01

    An electric potential (EP) can be generated during the failure process of coal and rock. In this article, a similar physical model of coal rock was built and the characteristics of the EP responding to the process of coal mining were studied. The results showed that, at the early mining stage, the structure of coal rock strata were stable in the simulation model, the support stress of overlying coal rock strata was low and the maximum subsidence was little, while the EP change was less. With the advancement of the working face, the support stress of the overlying coal rock strata in the mined-out area changed dramatically, the maximum subsidence increased constantly, the deformation and destruction were aggravated, and cracks expanded continuously. Meanwhile, the EP response was significant with fluctuation. When significant macro damage appeared in coal rock strata, the EP signal fluctuation was violent. The overlying coal rock strata were influenced by gravity and mining activity. During the mining process, the crack growth and the friction, together with slip between coal and rock particles, resulted in the response of EP. The change in EP was closely related to the damage state and stress distribution of the coal rock strata. EP monitoring has the advantages of accurate reflection and strong anti-interference in the field. Therefore, with further study, an EP monitoring method could be applied for monitoring and early warning of coal and rock dynamic disaster, and risk evaluation in the future. The strength of the EP and its fluctuation degree could serve as the key discrimination indexes.

  16. Coal depositional models in some Tertiary and Cretaceous coal fields in the U.S. Western Interior

    USGS Publications Warehouse

    Flores, R.M.

    1979-01-01

    Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and 'back-barrier'. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and 'back-barrier', which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. ?? 1979.

  17. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  18. Geochemistry of vanadium (V) in Chinese coals.

    PubMed

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  19. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  20. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  1. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  2. Assessment on the Benefits from Energy Structure Optimization and Coal-fired Emission Control in Beijing: 1998-2013

    NASA Astrophysics Data System (ADS)

    Zong, Y.; He, K.; Zhang, Q.; Hong, C.

    2016-12-01

    Coal has long been an important energy type of Beijing's energy consumption. Since 1998, to improve urban air quality, Beijing has vigorously promoted the structure optimization of energy consumption. Primary measures included the implementation of strict emission standards for coal-fired power plant boilers, subsidized replacement and after-treatment retrofit of coal-fired boilers, the mandatory application of low-sulfur coal, and the accelerated use of natural gas, imported electricity and other clean energy. This work attempts to assess the emission reduction benefits on measures of three sectors, including replacing with clean energy and application of end-of-pipe control technologies in power plants, comprehensive control on coal-fired boilers and residential heating renovation. This study employs the model of Multi-resolution Emission Inventory for China (MEIC) to quantify emission reductions from upfront measures. These control measures have effectively reduced local emissions of major air pollutants in Beijing. The total emissions of PM2.5, PM10, SO2 and NOX from power plants in Beijing are estimated to have reduced 14.5 kt, 23.7 kt, 45.0 kt and 7.6 kt from 1998 to 2013, representing reductions of 86%, 87%, 85% and 16%, respectively. Totally, 14.3 kt, 24.0 kt, 136 kt and 48.7kt of PM2.5, PM10, SO2 and NOX emissions have been mitigated due to the comprehensive control measures on coal-fired boilers from 1998 to 2013. Residential heating renovation projects by replacing coal with electricity in Beijing's conventional old house areas contribute to emission reductions of 630 t, 870 t, 2070 t and 790 t for PM2.5, PM10, SO2 and NOX, respectively.

  3. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the use of advanced coal gasification technology. Without such controls, the impacts of air pollution on public health, presently considerable, will increase substantially by 2020.

  4. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P

    2016-05-13

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  5. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  6. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    NASA Astrophysics Data System (ADS)

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-05-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l-1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l-1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  7. Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China

    NASA Astrophysics Data System (ADS)

    Chen, Shancheng; Wu, Dun; Liu, Guijian; Sun, Ruoyu

    2017-01-01

    Normal burial metamorphism of coal superimposed by magmatic-contact metamorphism makes the characteristics of the Raman spectrum of coal changed. Nine coal samples were chosen at a coal transect perpendicular to the intrusive dike, at the No. 3 coal seam, Zhuji Coal Mine, Huainan Coalfield, China, with different distances from dike-coal boundary (DCB). Geochemical (proximate and ultimate) analysis and mean random vitrinite reflectance (R0, %) indicate that there is a significant relationship between the values of volatile matter and R0 in metamorphosed coals. Raman spectra show that the graphite band (G band) becomes the major band but the disordered band (D band) disappears progressively, with the increase of metamorphic temperature in coals, showing that the structural organization in high-rank contact-metamorphosed coals is close to that of well-crystallized graphite. Evident relationships are observed between the calculated Raman spectral parameters and the peak metamorphic temperature, suggesting some spectral parameters have the potentials to be used as geothermometers for contact-metamorphic coals.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, S.C.; Manwani, P.

    Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less

  9. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less

  10. The Sohagpur Coalfield Project - A collaborative study of potential coking coal resources by the Geological Survey of India and the U.S. Geological Survey

    USGS Publications Warehouse

    Milici, Robert C.; Mukhopadhyay, Abhijit; Warwick, Peter D.; Adhikari, S.; Landis, Edwin R.; Mukhopadhyay, S.K.; Ghose, Ajoy K.; Bose, L.K.

    2003-01-01

    The Geological Survey of India (GSI), Coal Wing, and the U.S. Geological Survey (USGS), Energy Resources Team, conducted a collaborative study of the potential for coking coal resources within the Sohagpur coalfield, Madhya Pradesh, India from 1995 to 2001. The coalfield is located within an extensional basin that contains Permian- and Triassic-age strata of the Gondwana Supergroup (Figs. 1 and 2). The purposes of the study were to perform a synthesis of previous work and. an integrated analysis of the basin of deposition with particular emphasis on the regional stratigraphy and depositional environments of the coal-bearing strata, the geologic structure of the basin, and the geochemistry of the coal in order to understand the geologic controls on the distribution of coking coals within the basin. The results of this study have been published previously (Mukhopadhyay and others, 2001a, b), and this paper provides a general overview of our findings.

  11. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  12. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  13. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  14. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Final report, April 1, 1993--June 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bool, L.E. III; Helble, J.J.; Shah, N.

    1995-09-01

    The technical objectives of this project are: (1) To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions are considered. (2) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis is placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. (3) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation.

  15. Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, U.S.A.

    USGS Publications Warehouse

    Winston, R.B.

    1988-01-01

    To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%. Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less). In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance. In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings. Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps. Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant. ?? 1988.

  16. Cumulative potential hydrologic impacts of surface coal mining in the eastern Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G.

    1988-01-01

    There are 16 existing and six proposed surface coal mines in the eastern Powder River structural basin of northeastern Wyoming. Coal mining companies predict water level declines of 5 ft or more in the Wasatch aquifer to extend form about 1,000 to about 2,000 ft beyond the mine pits. The predicted 5 ft water level decline in the Wyodak coal aquifer generally extends 4-8 mi beyond the lease areas. About 3,000 wells are in the area of potential cumulative water level declines resulting from all anticipated mining. Of these 3,000 wells, about 1,200 are outside the areas of anticipated mining: about 1,000 wells supply water for domestic or livestock uses, and about 200 wells supply water for municipal, industrial, irrigation, and miscellaneous uses. The 1,800 remaining wells are used by coal mining companies. Future surface coal mining probably will result in postmining groundwater of similar quality to that currently present in the study area. By use of geochemical modeling techniques, the results of a hypothetical reaction path exercise indicate the potential for marked improvements in postmining water quality because of chemical reactions as postmining groundwater with a large dissolved solids concentration (3,540 mg/L) moves into a coal aquifer with relatively small dissolved solids concentrations (910 mg/L). Results of the modeling exercise also indicate geochemical conditions that are most ideal for large decreases in dissolved solids concentrations in coal aquifers receiving recharge from a spoil aquifer. (Lantz-PTT)

  17. Shell-armored wood cobbles as a potential criterion for detrital coal deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, M.J.; Nummedal, D.

    1986-01-01

    Shell-armored wood cobbles occur on detrital-peat beaches along the seaward edge of the Mississippi Delta. Shell material consists exclusively of Mulinia lateralis, a dwarf surf clam. Soft, heavy, waterlogged wood fragments are abraded and become armored by hard shells in response to wave activity on the beach. Although their preservation potential is suspect, fossilized shell-armored wood clasts would probably be recognized as a type of coal ball and might indicate an allochthonous origin for the host coal.

  18. COMPARATIVE U.S./USSR TESTS OF A HOT-SIDE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report describes a U.S./USSR cooperative test program to quantify and characterize particulate emissions from a U.S. coal-burning power plant boiler, equipped with a hot-side electrostatic precipitator, at Duke Power Co.'s Allen Steam Station in March 1976. U.S. and Soviet eq...

  19. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    USGS Publications Warehouse

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  20. Variations in coal characteristics and their possible implications for CO2 sequestration: Tanquary injection site, southeastern Illinois, USA

    USGS Publications Warehouse

    Morse, D.G.; Mastalerz, Maria; Drobniak, A.; Rupp, J.A.; Harpalani, S.

    2010-01-01

    As part of the U.S. Department of Energy's Regional Sequestration Partnership program, the potential for sequestering CO2 in the largest bituminous coal reserve in United States - the Illinois Basin - is being assessed at the Tanquary site in Wabash County, southeastern Illinois. To accomplish the main project objectives, which are to determine CO2 injection rates and storage capacity, we developed a detailed coal characterization program. The targeted Springfield Coal occurs at 274m (900ft) depth, is 2.1m (7ft) thick, and is of high volatile B bituminous rank, having an average vitrinite reflectance (Ro) of 0.63%. Desorbed Springfield Coal gas content in cores from four wells ~15 to ~30m (50 to 100ft) apart varies from 4.7-6.6cm3/g (150 to 210scf/ton, dmmf) and consists, generally, of >92% CH4 with lesser amounts of N2 and then CO2. Adsorption isotherms indicate that at least three molecules of CO2 can be stored for each displaced CH4 molecule. Whole seam petrographic composition, which affects sequestration potential, averages 76.5% vitrinite, 4.2% liptinite, 11.6% inertinite, and 7.7% mineral matter. Sulfur content averages 1.59%. Well-developed coal cleats with 1 to 2cm spacing contain partial calcite and/or kaolinite fillings that may decrease coal permeability. The shallow geophysical induction log curves show much higher resistivity in the lower part of the Springfield Coal than the medium or deep curves because of invasion by freshwater drilling fluid, possibly indicating higher permeability. Gamma-ray and bulk density vary, reflecting differences in maceral, ash, and pyrite content. Because coal properties vary across the basin, it is critical to characterize injection site coals to best predict the potential for CO2 injection and storage capacity. ?? 2010 Elsevier B.V.

  1. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    USGS Publications Warehouse

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  2. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the mechanisms involved in this economically important activity.

  3. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  4. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  5. FURNACE SORBENT REACTIVITY TESTING FOR CONTROL OF SO2 EMISSIONS FROM ILLINOIS COALS

    EPA Science Inventory

    Research was undertaken to evaluate the potential of furnai sorbent injection (FSI) for sulf dioxide (S02) emission controlcoal-fired boilers utilizing coals indigenous to Illinois. Tests were run using four coals from the Illinois Basin and six calcium hydroxide [Ca(OH)2], sorbe...

  6. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  7. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  8. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Coal procurement activities. Technica report No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-14

    This report consists of reference material taken from Erie Mining Company project files and includes the following: (1) Investigation of the Main Coal Producing Fields in the United States: This report identifies potential coal fiels for gasifier feedstock and factors influencing coal selection. The report analyzes coal fields located in five separate regions of the United States. Three design coals are discussed and lab reports have been included. Also included are cost considerations for selected coals and preliminary cost data and transportation routing. (2) Analysis of Test Coals Received at Erie Mining Company: Rosebud, Clarion, and Clarion-Brookfield-Kittaning coal samples weremore » received and analyzed at Erie Mining Company. The screen analysis indicated the severe decrepitation of the Rosebud western coal. (3) Criteria for Gasifier Coal: In this study, BCI states that gasifier feed should have the following characteristics: (1) the ratio between the upper and lower size for coal should be 3:1; (2) coal fines should not exceed 10%; (3) coal grading limits which can be handled are maximum range 3'' x 1'', minimum range - 1 1/2'' x 1/2''.« less

  9. Preliminary report on the coal resources of the National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Martin, G.C.; Callahan, J.E.

    1978-01-01

    NPR-A, located on the Arctic slope of Northern Alaska, is underlain by a thick sequence of sedimentary rocks of Cretaceous age which attain a thickness of as much as 4600 m (15,000 feet). The bulk of the coal resources occurs in rocks of the Nanushuk Group of Early and Late Cretaceous age. The Nanushuk Group is a wedge-shaped unit of marginal marine and nonmarine rocks that is as thick as 3300 m (11,000 feet) just west of NPR-A. Within the reserve, coal occurs primarily in the middle and thicker portions of this clastic wedge and occurs stratigraphically in the upper half of the section. Specific data on individual coal beds or zones are scarce, and estimates of identified coal resources of about 49.5 billion tons represent a sampling of coal resources too small to give a realistic indication of the potential resources for an area so large. Estimates of undiscovered resources suggest hypothetical resources of between 330 billion and 3.3 trillion tons. The wide range in the undiscovered resource estimates reflects the scarcity and ambiguity of the available data but also suggests the presence of a potentially large coal resource.

  10. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    PubMed Central

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l−1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l−1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems. PMID:27174014

  11. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-06-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  12. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Astrophysics Data System (ADS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-07-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  13. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  14. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Coalbed methane resource potential and current prospects in Pennsylvania

    USGS Publications Warehouse

    Markowski, A.K.

    1998-01-01

    Coalbed methane gas content analyses from exploratory coal cores and existing data indicate that gas content generally increases with increasing depth and rank. The coal beds studied are from the Main Bituminous field of Pennsylvania (which currently contains 24 coalbed methane pools) and the Northern and Southern Anthracite coal fields. They range from the Middle Pennsylvanian Allegheny Group to the Late Pennsylvanian-Early Permian Dunkard Group. Previous US Bureau of Mines studies revealed gas contents from 0.4 to 13.8 cm3/g at depths of 99 to 432 m for the bituminous coal beds of the Allegheny Group. More recent core data from the Allegheny Group yielded gas contents from 2.2 to 8.9 cm3/g at depths from 167 to 387 m. In the Anthracite region of eastern Pennsylvania, the little data that are available show that gas content is anomalously high or low. Gas yields from test holes in eastern Pennsylvania are low with or without artificial stimulation mainly due to the lack of a good cleat system. Overall estimates of coalbed methane resources indicate there may be 1.7 Tm3 (61 Tcf) of gas-in-place contained in the Northern Appalachian coal basin. The amount of technically recoverable coalbed methane resources is projected by the US Geological Survey National Oil and Gas Resource Assessment Team [US Geological Survey National Oil and Gas Resource Assessment Team, 1996. 1995 National assessment of United States oil and gas resources-results, methodology, and supporting data, US Geological Survey Digital Data Series DDS-30, CD-ROM, Denver, CO, 80 pp.] and Lyons [Lyons, P.C., 1997. Central-northern Appalachian coalbed methane flow grows. Oil and Gas Journal 95 (27) 76-79] at 0.3 Tm3 (11.48 Tcf). This includes portions of Pennsylvania, Ohio, West Virginia, and a small part of Maryland. Consequently, a mapping investigation was conducted to evaluate the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval of southwestern Pennsylvania. Phase II focused on a stratigraphic delineation and evaluation of Allegheny Group coal beds and associated sandstones. Several prospective coal beds and associated facies relationships with channel-fill sandstones were determined. Possible non-coal scenarios for coalbed methane include erosional contacts between coal beds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden, and are also potential coalbed methane targets. Additional Pennsylvania Geological Survey drilling/coalbed methane sampling occurred in Armstrong, Beaver, Cambria, Greene, Lawrence, Somerset, and Washington Counties. Raw coalbed methane desorption data tables/graphical displays of gas contents versus depth, thickness, and time, and average composition and heating values from coal beds of the Allegheny Group to the Dunkard Group are available at the Pennsylvania Geological Survey. Further information on cross-sections, isopleth maps, isopach maps, raw drillhole data, and ownership issues can also be obtained from the same source.A mapping of the regional geology of the bituminous coal-bearing intervals in southwestern Pennsylvania reveal several prospective coal beds and associated facies relationships with channel-fill sandstones. Possible non-coal scenarios for coalbed methane include erosional contacts between coalbeds and overlying channel-fill sandstones and areas of stacked channel-fill sandstones. Repetitive sequences of coal accumulation are stacked, commonly with shale interburden. and are also potential coalbed methane targets.

  16. Tertiary coals in South Texas: Anomalous cannel-like coals of Webb County (Claiborne Group, Eocene) and lignites of Atascosa County (Jackson Group, Eocene) - Geologic setting, character, source-rock and coal-bed methane potential

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, Claire E.; Willett, Jason C.

    1999-01-01

    The coal-bearing Gulf of Mexico Coastal Plain of North America contains a variety of depositional settings and coal types. The coal-bearing region extends westward from Alabama and Mississippi, across Louisiana to the northern part of the Mississippi Embayment, and then southward to eastern Arkansas, Texas and northern Mexico (fig. 1). Most of the coal currently mined in Texas is lignite from the upper part of the Wilcox Group (Paleocene-Eocene) and, in Louisiana, lignite is mined from the lower part of the Wilcox (fig. 2). Gulf Coast coal is used primarily as fuel for mine-mouth electric plants. On this field trip we will visit the only two non-Wilcox coal mining intervals in the Texas-Louisiana Coastal Plain; these include the San Pedro - Santo Tomas bituminous cannel-like coal zone of the Eocene Claiborne Group, and the San Miguel lignite coal zone of the Eocene Jackson Group (fig. 2). Other coal-mining areas in northern Mexico are currently producing bituminous coal from the Cretaceous Olmos Formation of the Navaro Group (fig. 2).

  17. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    USGS Publications Warehouse

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.

    2017-01-01

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).

  18. Coal-bed methane water: effects on soil properties and camelina productivity

    USDA-ARS?s Scientific Manuscript database

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  19. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue

    2018-02-01

    In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.

  1. Coal resources available for development; a methodology and pilot study

    USGS Publications Warehouse

    Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.

    1990-01-01

    Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated original 986.5 million short tons of coal resources in Kentucky's Matewan quadrangle, 13 percent has been mined, 2 percent is restricted by land-use considerations, and 23 percent is restricted by technological considerations. This leaves an estimated 62 percent of the original resource, or approximately 612 million short tons available for mining. However, only 44 percent of this available coal (266 million short tons) will meet current Environmental Protection Agency new-source performance standards for sulfur emissions from electric generating plants in the United States. In addition, coal tonnage lost during mining and cleaning would further reduce the amount of coal actually arriving at the market.

  2. New maps of Federal coal ( USA).

    USGS Publications Warehouse

    Wayland, R.G.

    1981-01-01

    Compilation and analysis of publicly available data on Federal coal are resulting in voluminous map sets showing coal isopachs, structure contours, and overburden isopachs on each known minable coal bed. As of spring 1981, there are available from the US Geological Survey Open-File Services Section in Denver map sets at 1:24 000 scale or microfiche sets covering approximately 470 of the ultimately 1400 quadrangles in the program. A typical map set has a short text and about 20 plates, including a data sheet; a Federal mineral ownership map; and correlation charts. For each coal bed, there are isopachs, structure contours, stripping limits, and mining ratios extending as far as the data will permit, regardless of coal ownership. Reserve base tonnages and relative development potentials are calculated, but only for unleased Federal coal areas. -from Author

  3. Microbial production of natural gas from coal and organic-rich shale

    USGS Publications Warehouse

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  4. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  5. A preliminary review of coal exploration activities conducted by the government of Armenia and the coal resource potential of Armenia

    USGS Publications Warehouse

    Warwick, Peter D.; Pierce, B.S.; Landis, E.R.

    1993-01-01

    A coal resource assessment team from the U.S. Geological Survey (USGS), in cooperation with the Armenian Department of Underground Resources (DUR) and elements of the Ministry of Energy and Fuel, has completed an initial visit to Armenia under the auspices of the U.S. Agency for International Development JUSAID). The visit included discussions of the coal resources, identification of problems associated with on-going exploration and development activities, and field visits to selected solid fuel areas. The USGS team will return in November with a draft of the final report for discussion of conclusions and recommendations with Armenian counterparts, representatives of USAID, and the American Embassy. The final report, which will contain tabulated coal-sample analytical results and detailed recommendations, will be submitted to the USAID by the end of December 1993.Preliminary conclusions are that: 1) Armenia has usable deposits of coal that could form a viable, though relatively small, component of Armenia's energy budget; 2) on-going exploration and development activities must be augmented and expedited to increase understanding of the coal resource potential and subsequent utilization; 3) deficiencies in supplies (primarily fuel) and equipment (replacement of aging parts and units) have greatly reduced the gathering of necessary resource data; and 4) training of Armenian counterparts in conducting and managing coal exploration activities is desirable.

  6. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  7. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  8. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  9. Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR

    NASA Astrophysics Data System (ADS)

    Pan, Guanfu

    2018-01-01

    The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.

  10. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  11. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  12. Classification of Structural Coal-Controlling Styles and Analysis on Structural Coal-Controlling Actions

    NASA Astrophysics Data System (ADS)

    Zhan, Wen-feng

    2017-11-01

    Tectonism was the primary geologic factors for controlling the formation, deformation, and occurrence of coal measures. As the core of a new round of prediction and evaluation on the coalfield resource potential, the effect of coal-controlling structure was further strengthened and deepened in related researches. By systematically combing the tectonic coal-controlling effect and structure, this study determined the geodynamical classification basis for coal-controlling structures. According to the systematic analysis and summary on the related research results, the coal-controlling structure was categorized into extensional structure, compressive structure, shearing and rotational structure, inverted structure, as well as the sliding structure, syndepositional structure with coalfield structure characteristics. In accordance with the structure combination and distribution characteristics, the six major classes were further classified into 32 subclasses. Moreover, corresponding mode maps were drawn to discuss the basic characteristics and effect of the coal-controlling structures.

  13. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    PubMed Central

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649

  14. Thermo-optical properties of residential coals and combustion aerosols

    NASA Astrophysics Data System (ADS)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  15. Characterisation of DOC and its relation to the deep terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian

    2010-05-01

    The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic-rich layers like coals and source rocks which may provide carbon sources for the deep biosphere by leaching water soluble organic compounds. We investigated the potential of a series of Eocene-Pleistocene coals, mudstones and sandstones from New Zealand with different maturities (Ro between 0.29 and 0.39) and total organic carbon content (TOC) regarding their potential to release such compounds. The water extraction of these New Zealand coals using Soxhlet apparatus resulted in yields of LMWOA that may feed the local deep terrestrial biosphere over geological periods of time (VIETH et al., 2008). However, the DOC of the water extracts mainly consisted of humic substances. To investigate the effect of thermal maturity of the organic matter as well as the effect of the organic matter type on the extraction yields, we examined additional coal samples (Ro between 0.29 and 0.80) and source rock samples from low to medium maturity (Ro between 0.3 to 1.1). Within our presentation we would like to show the compositional diversity and variability of dissolved organic compounds in natural formation fluids as well as in water extracts from a series of very different lithologies and discuss their effects on the carbon cycling in the deep terrestrial subsurface. References: Andrews, J. N., Youngman, M. J., Goldbrunner, J. E., and Darling, W. G., 1987. The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environmental Geology 10, 43-57. Vieth, A., Mangelsdorf, K., Sykes, R., and Horsfield, B., 2008. Water extraction of coals - potential to estimate low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere? Organic Geochemistry 39, 985-991.

  16. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  17. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  18. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    PubMed

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  19. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    USGS Publications Warehouse

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  20. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.« less

  1. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    PubMed

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.; Tselev, A.; Jesse, S.

    The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and the development of rheological models of coal to coke transformations and for advancing novel approaches. Here, we explore the relationship between the local structural, chemical composition and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy (BE-AFAM) for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size,more » the bond-bending disorder of sp2 aromatic double bonds and the defect density. This methodology hence allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modelling and optimization of coal utilization processes.« less

  3. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  4. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  5. Spatial Variation of Selenium in Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.

    2013-12-01

    The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.

  6. Potentially hazardous elements in coal: Modes of occurrence and summary of concentration data for coal components

    USGS Publications Warehouse

    Kolker, A.; Finkelman, R.B.

    1998-01-01

    Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  7. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  8. U.S. Port Development and the Expanding World Coal Trade: A Study of Alternatives.

    DTIC Science & Technology

    1982-06-01

    Dredging Program . . ... 70 4. Growth Potential Index . . . . . . . . . . 71 B. SENSITIVITY ANALYSIS . . . . . . . . . . .. . 74 1. Dredging Effect... PROGRAM TO ’:OMPUTE COST AND COAL CAPACITIES ............ .. 95 LIST OPREFRENCES .. . .. .. . . 999 INITIAL DISTRIBUTION LIST .... ....... .. 102 7 LIST...Deepuater Terminal Evaluation Summary ...... 64 Vi. Coal Export Capacities by Port ......... 68 VII. Optimal and Next Best Programs for Various

  9. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  10. Petrographic And Geochemical Relationships And Environmentally Significant Trace Element Contents Of Miocene Coals in The Çayirli (Erzincan) Area, Eastern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Yalcin Erik, Nazan

    2014-05-01

    This study has done related to the petrographic, coal-quality and the environmental influences of the Çayırlı coal field in the Eastern Anatolia. The region is one of the best examples of a continental collision zone in the world and located in a North-south converging collision zone between the Eurasian and the Arabian Plates. The geological units on the North of the basin are the peridotites and on the South, the Upper Triassic to Lower Cretaceous limestone. Tertiary sedimentary units also occupy a significant part of the geological features. Lower Miocene sediments include recifal limestone, marls, green clay and coal seams. The Çayırlı mining area in Eastern Anatolia region, contains these Miocene aged coals. These coals is characterized by high vitrinite and inertinite and low liptinite contents. The coals are Bituminous coal rank, with vitrinite reflectance ranging from 0.53 to 0.58%. Chemically, the coal in this study is characterised by low moisture, ash yield and sulfur content. The Çayırlı coal consist mainly of SiO2 and CaO, with secondary Fe2O3, Al2O3, and minor proportions of TiO2, P2O5 and other oxides. Several trace elements of environmental concern namely As, U and Be in Çayırlı coal are above the world averages, while Ni and Pb concentrations are less than the world average. However, As, Co, Cr, Ni, Pb, U and V contents of this coal are below Turkish averages. It can clearly observed that the concentration of the elements is highest in the high ash coal levels. Among the potentially hazardous trace elements, Be, Co, Ni, Se and U may be of little or no health and environmental concerns, wheras As, Pb, Sb, and Th require further examination for their potential health and environmental concerns. These properties may be related to evaluation of the coal forming environment from more reducing contitions in a marine influenced lower delta plain environment for investigated coals. On the basis of analytical data, there is no possibility that the Çayırlı coals could be used for residential heating or industrial applications; when used, they cause significant of air pollution and healt problems.

  11. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  12. Health effects research in direct coal liquefaction. Studies of H-coal distillates: Phase I. PDU samples - the effects of hydrotreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epler, J.L.; Fry, R.J.M.; Larimer, F.W.

    1981-11-01

    A multi-divisional effort aimed at the integrated assessment of the health and environmental effects of various coal conversion and shale oil technologies is being carried out. The feasibility of using health effects bioassays to predict the potential biohazard of various H-Coal derived test materials is examined in a coupled chemical and biological approach. The primary focus of the research is the use of preliminary chemical characterizations and preparation for bioassay, followed by testing in short-term assays in order to rapidly ascertain the potential biohazard. Mammalian toxicological assays parallel the testing. Raw and hydrotreated product liquids from process development units ofmore » H-Coal and the pilot plant solvent refined coal process were examined for acute toxicity monitored as population growth impairment of Tetrahymena exposed to aqueous extracts and for mutagenic activity monitored as revertants of Salmonella exposed to metabolically activated chemical class fractions. Medium to high severity hydrotreatment appears to be an effective means of reducing biological activity, presumably by reducing the aromaticity and heteroatom content. Five basic mammalian, acute toxicity tests have been conducted with selected H-coal samples and shale oil derivatives. The data show that H-Coal samples are moderately toxic whereas the toxicity of shale oil derived products is slight and comparable to samples obtained from naturally occurring petroleums. No overt skin or eye toxicity was found. The present data reveal that coal-derived distillates generated by the H-coal process are highly carcinogenic to mouse skin. An extreme form of neurotoxicity associated with dermal exposure to one of the lighter, minimally carcinogenic, materials was noted. (DMC)« less

  13. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  14. Coal-tar-based pavement sealcoat—Potential concerns for human health and aquatic life

    USGS Publications Warehouse

    Mahler, Barbara J.; Woodside, Michael D.; Van Metre, Peter C.

    2016-04-20

    Aquatic Life Concerns—Runoff from coal-tar-sealcoated pavement, even runoff collected more than 3 months after sealcoat application, is acutely toxic to fathead minnows and water fleas, two species commonly used to assess toxicity to aquatic life. Exposure to even highly diluted runoff from coal-tar-sealcoated pavement can cause DNA damage and impair DNA repair. These findings demonstrate that coal-tar-sealcoat runoff can remain a risk to aquatic life for months after application.

  15. Bibliography of US geological survey reports on coal drilling and geophysical logging projects, and related reports on geologic uses, Powder River Basin, Montana and Wyoming, 1973-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.D.

    1984-01-01

    This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.

  16. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    NASA Astrophysics Data System (ADS)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  17. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  18. An integrated simulation and optimization approach for managing human health risks of atmospheric pollutants by coal-fired power plants.

    PubMed

    Dai, C; Cai, X H; Cai, Y P; Guo, H C; Sun, W; Tan, Q; Huang, G H

    2014-06-01

    This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk. A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-offbetween coal purchase cost and health risk.

  19. Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1983-01-01

    Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)

  20. Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming

    USGS Publications Warehouse

    Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.

    2011-01-01

    A total of 37 coal beds were identified during this assessment, 23 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Southwestern Powder River Basin assessment area for these 23 coal beds, with no restrictions applied was calculated to be 369 billion short tons. Available coal resources, which are part of the original resource that is accessible for potential mine development after subtracting all restrictions, are about 341 billion short tons (92.4 percent of the total original resource). Approximately 61 percent are at depths between 1,000 and 2,000 ft, with a modeled price of about $30 per short ton. Therefore, the majority of coal resources in the South-western Powder River Basin assessment area are considered sub-economic.

  1. Environmental issues and economic performance of the coal industry in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, E.A.; Seabra, F.; Wendhausen, J.

    1996-12-31

    The purpose of this study is to investigate the main sources of inefficiency of the Brazilian coal industry. In addition, the authors examine the current and the future competitiveness of the Brazilian coal industry taking into account the effects of globalization, the modernization of the mining techniques and, most important, the environmental costs regarded under the concept of sustainable development. This paper examines some of the causes behind the alleged inefficiency of coal production and coal-electric generation, with special emphasis to environmental issues. The rest of the paper is organized as follows. Section 2 outlines a profile of the energeticmore » potential of coal reserves in Brazil. In section 3, the authors discuss environmental restrictions and other features that can be related to the performance of the coal industry in Brazil.« less

  2. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  3. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less

  4. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    DOE PAGES

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; ...

    2017-01-05

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less

  5. Analysis of the current rib support practices and techniques in U.S. coal mines

    PubMed Central

    Mohamed, Khaled M.; Murphy, Michael M.; Lawson, Heather E.; Klemetti, Ted

    2016-01-01

    Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins, coal seams, geology, loading conditions, and rib control strategies. The key findings are: (1) any rib design guideline or tool should take into account external rib support as well as internal bolting; (2) rib bolts on their own cannot contain rib spall, especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing; (3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration; (4) potential rib instability occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line, claystone partings, and soft coal bench overlain by rock strata; (5) 47% of the studied rib spall was classified as blocky—this could indicate a high potential of rib hazards; and (6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m. PMID:27648341

  6. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    USGS Publications Warehouse

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydin, M.E.; Yildirim, I.; Dogan, M.Z.

    The Istanbul Region coals are characterized by high moisture contents (avg. 35%), high volatile matter values (avg. 45%), and more importantly high levels of sulfur in the range of 1 to 5%. These lignitic coals generally have relatively low ash (10%), and higher levels of calorific values over 5,000 Kcal/kg. The Multi-Gravity Separator (MGS), a new fine size gravity separation equipment, was tested to evaluate its potential for the desulfurization of these low-rank coals. Systematic tests conducted on two different samples of minus 1 mm size indicate that despite the finely distributed nature of coal and relatively small difference betweenmore » coal and its associated gangue minerals, the degree of pyritic sulfur removal is 65.7% and 85.9% for the respective coals.« less

  8. Static Holdup of Liquid Slag in Simulated Packed Coke Bed Under Oxygen Blast Furnace Ironmaking Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Liu, Yingli; Zhou, Zhenfeng; Wang, Jingsong; Xue, Qingguo

    2018-01-01

    The liquid-phase flow behavior of slag in the lower zone of a blast furnace affects the furnace permeability, performance, and productivity. The effects of pulverized coal injection (PCI) on the behavior of simulated primary slag flow were investigated by quantifying the effect of key variables including Al/Si ratio [Al2O3 (wt.%) to SiO2 (wt.%)] and the amount of unburnt pulverized coal (UPC) at 1500°C. Viscosity analysis demonstrated that the slag fluidity decreased as the Al/Si ratio was increased (from 0.35 to 0.50), resulting in gradual increase of the static holdup. Increasing the amount of UPC resulted in a significant increase of the static holdup. Flooding analysis was applied to determine the maximum static holdup, which was found to be 11.5%. It was inferred that the burnout rates of pulverized coal should exceed 78.6% and 83.9% in traditional and oxygen blast furnaces, respectively.

  9. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Lijun; Wei Haiyan; Wang Lingqing

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq})more » higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  11. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, L.J.; Wei, H.Y.; Wang, L.Q.

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than themore » threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  12. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    NASA Astrophysics Data System (ADS)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  13. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    PubMed

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  14. Coal-tar-based sealcoated pavement: a major PAH source to urban stream sediments.

    PubMed

    Witter, Amy E; Nguyen, Minh H; Baidar, Sunil; Sak, Peter B

    2014-02-01

    We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (~1303 km(2)) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69-0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China.

    PubMed

    Qin, Hai-bo; Zhu, Jian-ming; Su, Hui

    2012-02-01

    A high degree of association between Selenium (Se) and organic matter has been demonstrated in natural environments, but Se fractions and speciation in organic matter is unclear. In this study, a method for quantifying organic matter associated with Se (OM-Se) was developed to investigate Se fractions in organic matter in Se-rich soils and weathered stone coal from Enshi, China, where Se poisoning of humans and livestock has been documented. Initially, Se was extracted using water and a phosphate buffer. Subsequently, OM-Se was extracted using NaOH, and then speciated into Se associated with fulvic acids (FA-Se) and humic acids (HA-Se). Both FA-Se and HA-Se were further speciated into the weakly bound and strongly bound fractions using a customized hydride generation reactor. The results show that FA-Se (1.91-479 mg kg(-1)) is the predominant form of Se in all Se-rich soils and the weathered stone coal samples, accounting for more than 62% of OM-Se (3.07-484 mg kg(-1)). Weakly bound FA-Se (1.33-450 mg kg(-1)) was prevalent in the total FA-Se, while weakly bound HA-Se (0.62-26.2 mg kg(-1)) was variable in the total HA-Se (1.15-32.5 mg kg(-1)). These data indicate that OM-Se could play a significant source and sink role in the biogeochemical cycling of Se in the supergene environment. Weakly bound FA-Se seems to act as a potential source for bioavailable Se, whereas strongly bound HA-Se is a possible OM-Se sink which is not readily transformed into bioavailable Se. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evaluation of coalbed gas potential of the Seelyville Coal Member, Indiana, USA

    USGS Publications Warehouse

    Drobniak, A.; Mastalerz, Maria; Rupp, J.; Eaton, N.

    2004-01-01

    The Seelyville Coal Member of the Linton Formation in Indiana potentially contains 0.03 trillion m3 (1.1 TCF) of coalbed gas. The gas content determined by canister desorption technique ranges from 0.5 to 5.7 cm3/g on dry ash free basis (15.4 to 182.2 scf/ton). The controls on gas content distribution are complex, and cannot be explained by the coal rank alone. Ash content and the lithology of the overlying strata, among other factors, may influence this distribution. ?? 2004 Elsevier B.V. All rights reserved.

  17. Coal in sub-Saharan-African countries undergoing desertification

    NASA Astrophysics Data System (ADS)

    Weaver, J. N.; Brownfield, M. E.; Bergin, M. J.

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation.

  18. Coal in sub-Saharan-African countries undergoing desertification

    USGS Publications Warehouse

    Weaver, J.N.; Brownfield, M.E.; Bergin, M.J.

    1990-01-01

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation. ?? 1991.

  19. Geology, coal quality, and resources of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia

    USGS Publications Warehouse

    Pierce, B.S.; Martirosyan, A.; Malkhasian, G.; Harutunian, S.; Harutunian, G.

    2001-01-01

    The Antaramut-Kurta-Dzoragukh (AKD) coal deposit is a previously unrecognized coal field in north-central Armenia. Coal has been known to exist in the general vicinity since the turn of the century, but coal was thought to be restricted to a small (1 km2) area only near the village of Antaramut. However, through detailed field work and exploratory drilling, this coal deposit has been expanded to at least 20 km2, and thus renamed the Antaramut-Kurtan-Dzoragukh coal field, for the three villages that the coal field encompasses. The entire coal-bearing horizon, a series of tuffaceous sandstones, siltstones, and claystones, is approximately 50 m thick. The AKD coal field contains two coal beds, each greater than 1 m thick, and numerous small rider beds, with a total resource of approximately 31,000,000 metric tonnes. The coals are late Eocene in age, high volatile bituminous in rank, relatively high in ash yield (approximately 40%, as-determined basis) and moderate in sulfur content (approximately 3%, as-determined basis). The two coal beds (No. 1 and No. 2), on a moist, mineral-matter-free basis, have high calorific values of 32.6 MJ/kg (7796 cal/g) and 36.0 MJ/kg (8599 cal/g), respectively. Coal is one of the few indigenous fossil fuel resources occurring in Armenia and thus, the AKD coal field could potentially provide fuel for heating and possibly energy generation in the Armenian energy budget. Published by Elsevier Science B.V.

  20. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG reactors. Fault reactivation resulting from fault shear and normal displacements is discussed under consideration of potentially induced seismicity. Here, the coupled simulation results indicate that seismic hazard during UCG operation remains negligible with a seismic moment magnitude of MW < 3.

  1. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine

    PubMed Central

    Karacan, C. Özgen; Goodman, Gerrit V.R.

    2015-01-01

    This paper presents a study assessing potential factors and migration paths of methane emissions experienced in a room-and-pillar mine in Lower Kittanning coal, Indiana County, Pennsylvania. Methane emissions were not excessive at idle mining areas, but significant methane was measured during coal mining and loading. Although methane concentrations in the mine did not exceed 1% limit during operation due to the presence of adequate dilution airflow, the source of methane and its migration into the mine was still a concern. In the course of this study, structural and depositional properties of the area were evaluated to assess complexity and sealing capacity of roof rocks. Composition, gas content, and permeability of Lower Kittanning coal, results of flotation tests, and geochemistry of groundwater obtained from observation boreholes were studied to understand the properties of coal and potential effects of old abandoned mines within the same area. These data were combined with the data obtained from exploration boreholes, such as depths, elevations, thicknesses, ash content, and heat value of coal. Univariate statistical and principal component analyses (PCA), as well as geostatistical simulations and co-simulations, were performed on various spatial attributes to reveal interrelationships and to establish area-wide distributions. These studies helped in analyzing groundwater quality and determining gas-in-place (GIP) of the Lower Kittanning seam. Furthermore, groundwater level and head on the Lower Kittanning coal were modeled and flow gradients within the study area were examined. Modeling results were interpreted with the structural geology of the Allegheny Group of formations above the Lower Kittanning coal to understand the potential source of gas and its migration paths. Analyses suggested that the source of methane was likely the overlying seams such as the Middle and Upper Kittanning coals and Freeport seams of the Allegheny Group. Simulated ground-water water elevations, gradients of groundwater flow, and the presence of recharge and discharge locations at very close proximity to the mine indicated that methane likely was carried with groundwater towards the mine entries. Existing fractures within the overlying strata and their orientation due to the geologic conditions of the area, and activation of slickensides between shale and sandstones due to differential compaction during mining, were interpreted as the potential flow paths. PMID:26478644

  2. A multi-tracer study in the Hutton Sandstone aquifer, Australia: How "wrong ages" give us deeper insights into aquifer structure and effective deep recharge to a double porosity system

    NASA Astrophysics Data System (ADS)

    Suckow, Axel; Taylor, Andrew; Davies, Phil; Leaney, Fred

    2017-04-01

    Depressurisation of coal seams in the Walloon Coal Measures in Queensland, Australia, may influence aquifers both over- and underlying the formation. The Gubberamunda Sandstone aquifer, which overlies the Walloon Coal Measures, is the starting point of the Great Artesian Basin (GAB) flow system and has been the focus of numerous recharge studies. In comparison, the Hutton Sandstone aquifer, which underlies the Walloon Coal Measures, has received much less attention. This aquifer however, is the main supply of stock water for the beef industry in the area. A multi-environmental tracer study of the Hutton Sandstone aquifer was undertaken at the Mimosa Syncline and was complemented by a few samples taken from the underlying Precipice Sandstone aquifer. This multi-tracer study (comprising 18O, 2H, 3H, CFCs, SF6, 14C, 36Cl, and 4He) demonstrated that the Hutton Sandstone aquifer behaves as a double porosity system. At the regional scale, the system features a relatively small fraction of conductive rock within a fairly large fraction of low permeability rock. Tracer migration therefore occurs mainly by advection in the conductive fraction and mainly by diffusion in the low-permeability fraction of the aquifer. Groundwater flow velocities, derived from exponential decrease of 14C and 36Cl concentrations with distance, differ by a factor of ten and therefore do not indicate the real groundwater flow velocity. However, accounting for a double porosity interpretation of the tracer data leads to a single groundwater flow velocity that is consistent with all observed data. Advective velocity in this double porosity model differs from face value flow velocities derived from 14C and 36Cl by a factor of 4 and 40 respectively. As a consequence of this interpretation, the deeper groundwater flow system of the Hutton Sandstone aquifer is estimated to receive only 3% of the recharge previously estimated using the Chloride Mass Balance approach at the intake beds. The other 97% is assumed to be rejected recharge which discharges through spring complexes in the Surat Basin and contributes to base flow of the Dawson River. This interpretation also suggests: 1) that the Hutton Sandstone aquifer is potentially more vulnerable to impacts from groundwater abstraction, including from stock and domestic water supply and coal seam gas production, than previously anticipated; 2) that other "groundwater age records" around the world likely observe similar double porosity effects and their apparent ages may be similarly distorted; and 3) that the multi-tracer approach used here is a suitable method for identifying other previously unknown double porosity aquifer systems and can potentially quantify deep effective recharge where important water resources are subject of economic development.

  3. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  4. Central Appalachia: Production potential of low-sulfur coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J.

    The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates ofmore » active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.« less

  5. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  6. The Coal-Seq III Consortium. Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to modeling software to enhance model robustness. Research was also conducted to improve algorithms and generalized adsorption models to facilitate realistic simulation of CO2 sequestration in coal seams and shale gas reservoirs. The interaction among water and the adsorbed gases, carbon dioxide (CO2), methane (CH4), and nitrogen (N2) in coalbeds is examined using experimental in situ laboratory techniques to comprehensively model CBM production and CO2 sequestration in coals. An equation of state (EOS) module was developed which is capable of predicting the density of pure components and mixtures involving the wet CBM gases CH4, CO2, and N2 at typical reservoir condition, and is used to inform CO2 injection models. The final research objective examined the effects adsorbed CO2 has on coal strength and permeability. This research studied the weakening or failure of coal by the adsorption of CO2 from empirically derived gas production data to develop models for advanced modeling of permeability changes during CO2 sequestration. The results of this research effort have been used to construct a new and improved model for assessing changes in permeability of coal reservoirs due CO2 injection. The modules developed from these studies and knowledge learned are applied to field validation and basin assessment studies. These data were used to assess the flow and storage of CO2 in a shale reservoir, test newly developed code against large-scale projects, and conduct a basin-oriented review of coal storage potential in the San Juan Basin. The storage potential and flow of CO2 was modeled for shale sequestration of a proprietary Marcellus Shale horizontal gas production well using COMET3 simulation software. Simulation results from five model runs indicate that stored CO2 quantities are linked to the duration of primary production preceding injection. Matrix CO2 saturation is observed to increase in each shale zone after injection with an increase in primary production, and the size of the CO2 plume is also observed to increase in size the longer initial production is sustained. The simulation modules developed around the Coal-Seq experimental work are also incorporated into a pre-existing large-scale numerical simulation model of the Pump Canyon CO2-ECBM pilot in the San Juan Basin. The new model was applied to re-history match the data set to explore the improvements made in permeability prediction against previously published data sets and to validate this module. The assessment of the new data, however, indicates that the impact of the variable Cp is negligible on the overall behavior of the coal for CO2 storage purposes. Applying these new modules, the San Juan Basin and the Marcellus Shale are assessed for their technical ECBM/AGR and CO2 storage potential and the economic potential of these operations. The San Juan Basin was divided into 4 unique geographic zones based on production history, and the Marcellus was divided into nine. Each was assessed based upon each zone’s properties, and simulations were run to assess the potential of full Basin development. Models of a fully developed San Juan Basin suggest the potential for up to 104 Tcf of CO2 storage, and 12.3 Tcf of methane recovery. The Marcellus models suggest 1,248 Tcf of CO2 storage and 924 Tcf of AGR. The economics are deemed favorable where credits cover the cost of CO2 in the San Juan Basin, and in many cases in the Marcellus, but to maximize storage potential, credits need to extend to pay the operator to store CO2.« less

  7. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  8. Preliminary assessment of alternative PFBC power plant systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less

  9. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  10. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  11. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B.

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel,more » zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Vivak

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However.more » the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, however, when the coal was pressurized with CO2 at ambient ≤ P ≤ 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.« less

  13. The role of coal in industrialization: A case study of Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarakiri, J.B.

    1989-01-01

    Coal is a mineral matter found in layers or beds in sedimentary rocks. It is a very highly variable substance. In addition to the variations from lignite to bituminous and anthracite, there are vast differences in its heating value, amount of volatiles, sulfur, moisture and so on. The chemical and physical properties of coal make it an important industrial raw material. There is proven 639 million tonnes of coal reserves in Nigeria. This paper examines the potential and current role of coal in the industrialization of Nigeria. Industries are now dependent on fuel oil as a source of fuel becausemore » of its economic and technological advantages over coal. Coal is a source of industrial energy for the future after the known oil reserves might have been exhausted. In the short term, coal can be used as a material for chemicals, iron and steel production as well as a substitute for wood energy in the process of industrialization.« less

  14. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  15. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  16. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  17. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  18. Geochemical evaluation of upper cretaceous fruitland formation coals, San Juan Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Michael, G.E.; Anders, D.E.; Law, B.E.

    1993-01-01

    Geochemical analyses of coal samples from the Upper Cretaceous Fruitland Formation in the San Juan Basin of New Mexico and Colorado were used to determine thermal maturity, type of kerogen, and hydrocarbon generation potential. Mean random vitrinite reflectance (%Rm) of the Fruitland coal ranges from 0.42 to 1.54%. Rock-Eval pyrolysis data and saturated to aromatic hydrocarbon ratio indicate that the onset of thermal hydrocarbon generation begins at about 0.60% Rm and peak generation occurs at about 0.85% Rm. Several samples have hydrogen index values between 200 and 400, indicating some potential for liquid hydrocarbon generation and a mixed Type III and II kerogen. Pentacyclic and tricyclic terpanes, steranes, aromatic steroids and methylphenanthrene maturity parameters were observed through the complete range of thermal maturity in the Fruitland coals. Aromatic pentacyclic terpanes, similar to those found in brown coals of Australia, were observed in low maturity samples, but not found above 0.80% Rm. N-alkane depleted coal samples, which occur at a thermal maturity of approx. 0.90% Rm, paralleling peak hydrocarbon generation, are fairly widespread throughout the basin. Depletion of n-alkanes in these samples may be due to gas solution stripping and migration fromthe coal seams coincident with the development of pressure induced fracturing due to hydrocarbon generation; however, biodegradation may also effect these samples. ?? 1993.

  19. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  20. Coal gasification systems engineering and analysis. Appendix E: Cost estimation and economic evaluation methodology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The cost estimation and economic evaluation methodologies presented are consistent with industry practice for assessing capital investment requirements and operating costs of coal conversion systems. All values stated are based on January, 1980 dollars with appropriate recognition of the time value of money. Evaluation of project economic feasibility can be considered a two step process (subject to considerable refinement). First, the costs of the project must be quantified and second, the price at which the product can be manufacturd must be determined. These two major categories are discussed. The summary of methodology is divided into five parts: (1) systems costs, (2)instant plant costs, (3) annual operating costs, (4) escalation and discounting process, and (5) product pricing.

  1. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  2. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  3. Preliminary evaluation of the coalbed methane potential of the Gulf Coastal Plain, USA and Mexico

    USGS Publications Warehouse

    Warwick, Peter D.; Barker, Charles E.; SanFilipo, John R.; Schwochow, S.D.; Nuccio, V.F.

    2002-01-01

    Several areas in the Gulf Coast have potential for coalbed gas accumulations. These areas include parts of southern Alabama and Mississippi, north-central Louisiana, northeast, east-central and south Texas and northeastern Mexico. The coal deposits in these areas vary in rank, thickness, lateral extent and gas content, and range in age from Late Cretaceous to Eocene.Gas desorption tests conducted by the U.S. Geological Survey (USGS) on shallow (2,000 ft [609 m]) Paleocene (Wilcox-Midway Groups) coals of southeastern Mississippi indicate that the coalbeds contain some methane. Measured gas contents range from 0 to 19 scf/ton (0.19 to 0.59 cc/g; dry, ash-free) and average about 15 scf/ton (0.5 cc/g). These coals have apparent ranks of lignite to subbituminous (vitrinite reflectance of 0.3 to 0.4% Romax) at shallow depths and subbituminous to bituminous (0.5 to 0.6% Romax) in the deeper parts of the basin. Adsorption isotherm data indicate that Wilcox Group coals are undersaturated and have methane gas-storage capacities similar to those of the subbituminous coals in the Powder River basin, Wyoming. In the primary areas where Wilcox Group coalbeds are mined and subsurface data are available, net coal thickness ranges from about 10 to 50 ft (3 to 15 m), which is much less than coal thickness in the Powder River basin, which can be 300 ft (91 m).Upper Cretaceous and Paleocene-Eocene coals of south Texas and northeastern Mexico are subbituminous to bituminous rank (up to 0.6% Romax). Some methane has been produced commercially from thin coal beds (13 ft [4 m] net) and associated sandstone at shallow depths (

  4. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  5. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  6. Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique

    NASA Astrophysics Data System (ADS)

    Nimaje, Devidas; Tripathy, Debi Prasad

    2017-04-01

    Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  8. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification.

    PubMed

    Herndon, J Marvin

    2016-01-01

    U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.

  9. Health hazard evaluation report HETA 81-472-1380, Pennsylvania Power and Light, Martins Creek Steam Electric Station, Martins Creek, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, F.A.

    1983-10-01

    In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less

  10. CRANBERRY WILDERNESS STUDY AREA, WEST VIRGINIA.

    USGS Publications Warehouse

    Meissner, Charles R.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness Study Area, West Virginia contains a large demonstrated resource of bituminous coal of coking quality. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56. 5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout the State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.

  11. The enviornmental assessment of a contemporary coal mining system

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Sullivan, P. J.; Hutchinson, C. F.; Stevens, C. M.

    1980-01-01

    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected.

  12. A new approach to enhance the selectivity of liberation and the efficiency of coal grinding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.H.; Guo, Q.; Parekh, B.K.

    1993-12-31

    An innovative process has been developed at the University of Kentucky to enhance the liberation of mineral matter from coal and the efficiency of grinding energy utilization. Through treating coal with a swelling agent prior to grinding, the grindability of coals can be considerably improved. The Hardgrove Grindability tests show that the HGI of a KY. No. 9 coal increases from 41 for the untreated coal to 60-90 after swelling pretreatment for a short time. Batch stirred ball mill grinding results demonstrate that this new technique has a great potential in reducing the energy consumption of fine coal grinding. Dependingmore » on the pretreatment conditions, the specific energy consumption of producing less than 10 {mu}m product is reduced to 41-60% of that of the untreated coal feed. The production rate of -10 {mu}m particles increases considerably for the pretreated coal. The Energy-Dispersive-X-ray Analytical Scanning Electron Microscope (EDXA-SEM) studies clearly demonstrate that intensive cracking and fracturing were developed during the swelling pretreatment. Cracks and fractures were induced in the coal matrix, preferentially along the boundaries between the pyrite particles and coal matrix. These may be responsible for enhancement in both the efficiency of grinding energy consumption and the selectivity of liberation.« less

  13. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.

  14. Black carbon emissions from biomass and coal in rural China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated withmore » the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households« less

  15. Black carbon emissions from biomass and coal in rural China

    NASA Astrophysics Data System (ADS)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  16. Preliminary Investigations of the Distribution and Resources of Coal in the Kaiparowits Plateau, Southern Utah

    USGS Publications Warehouse

    Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.

    1996-01-01

    EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits Plateau are laterally discontinuous relative to many other coal bearing regions of the United States. That is, they end more abruptly and are more likely to fragment or split into thinner beds. Because of these characteristics, the data from approximately 160 drill holes and 40 measured sections available for use in this study are not sufficient to determine what proportion of the resources is technologically and economically recoverable. The Kaiparowits Plateau contains an original resource of 62 billion short tons of coal in the ground. Original resource is defined to include all coal beds greater than one foot thick in the area studied. None of the resource is recoverable by surface mining. However, the total resource figure must be regarded with caution because it does not reflect geologic, technological, land-use, and environmental restrictions that may affect the availability and the recoverability of the coal. At least 32 billion tons of coal are unlikely to be mined in the foreseeable future because the coal beds are either too deep, too thin to mine, inclined at more than 12?, or in beds that are too thick to be completely recovered in underground mining. The estimated balance of 30 billion tons of coal resources does not reflect land use or environmental restrictions, does not account for coal that would be bypassed due to mining of adjacent coal beds, does not consider the amount of coal that must remain in the ground for roof support, and does not take into consideration the continuity of beds for mining. Although all of these factors will reduce the amount of coal that could be recovered, there is not sufficient data available to estimate recoverable coal resources. For purposes of comparison, studies of coal resources in the eastern United States have determined that less than 10 percent of the original coal resource, in the areas studied, could be mined economically at today's prices (Rohrbacher and others, 1994).

  17. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    PubMed

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  18. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  19. Application of the Exergy UCG technology in international UCG projects

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Underground Coal Gasification is a subject of continuing global interest in the energy sector. While the international scenario in UCG is promising, it is deeply desirable that advances in this area are seen in India as well. This is particularly so with the Paris Climate Agreement bringing in more stringent challenges for clean energy development. India has many potential coal basins which may be suitable for UCG deployment. India is in dire need of indigenous source of gaseous and liquid hydrocarbons that could compete with imported products. It is also the country with exceptionally large and diverse coal and lignite resources, large part of which could not be mined due to geological complexity and prohibitive cost. Thus, there is a rationale that the εUCG™ technology plays a decisive role in realizing the potential of Indian coal resources for the benefit of Indian industry and population. This article has been adapted by Dr. Ajay K. Singh from a lecture delivered at the “Workshop on Challenges and Opportunities of Underground Coal Gasification”, Vigyan Bhawan, New Delhi on 14 February 2017.

  20. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects.

    PubMed

    Silva, Luis F O; da Boit, Kátia M

    2011-03-01

    Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al-Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.

  1. Valuing environmental health for informed policy-making.

    PubMed

    Máca, Vojtěch; Melichar, Jan; Ščasný, Milan; Kohlová, Markéta Braun

    2017-03-01

    Monetized environmental health impact assessments help to better evaluate the environmental burden of a wide range of economic activities. Apart from the limitations and uncertainties in physical and biological science used in such assessments, assumptions taken from economic valuation may also substantially influence subsequent policy-making considerations. This study attempts to demonstrate the impact of normative policy assumptions on quantified external costs using a case study of recently discussed variants of future coal mining and use of extracted coal in electricity and heat generation in the Czech Republic. A bottom-up impact-pathway approach is used for quantification of external costs. Several policy perspectives are elaborated for aggregating impacts that differ in geographic coverage and in how valuation of quantified impacts is adjusted in a particular perspective. We find that the fraction of monetized external impacts taken into policy-making considerations may vary according to choice of decision perspective up to a factor of 10. At present there are virtually no hard rules for defining geographical boundaries or adjusting values for a summation of monetized environmental impacts. We, however, stress that any rigorous external cost assessment should, for instance in a separate calculation, take account of impacts occurring beyond country borders.

  2. Coal-bed methane potential in Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campen, E.

    1991-06-01

    Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less

  3. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  4. DOLLY SODS WILDERNESS, WEST VIRGINIA.

    USGS Publications Warehouse

    Englund, Kenneth J.; Hill, James J.

    1984-01-01

    Coal, the principal mineral resource of the Dolly Sods Wilderness, West Virginia is in at least seven beds of low- to medium-volatile bituminous rank. Of these beds, four are of sufficient thickness, quality, and extent to contain demonstrated coal resources which are estimated to total about 15. 5 million short tons in areas of substantiated coal resource potential. A Small-scale development of the coal resources of the Dolly Sods Wilderness has been by several shallow adits which provided fuel for locomotives during early logging operations and by a one truck mine. All mine entries are now abandoned. Peat, shale, clay, and sandstone, occur in the area but because of remoteness of markets and inaccessability they are not classified as resources in this report. Natural gas may occur in rocks underlying the area, but because of a lack of subsurface information an estimate of resource potential has not been made. No evidence of metallic-mineral resources was found during this investigation.

  5. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    NASA Astrophysics Data System (ADS)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  6. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment.

    PubMed

    Liu, WeiJian; Xu, YunSong; Liu, WenXin; Liu, QingYang; Yu, ShuangYu; Liu, Yang; Wang, Xin; Tao, Shu

    2018-05-01

    Emissions of air pollutants from primary and secondary sources in China are considerably higher than those in developed countries, and exposure to air pollution is main risk of public health. Identifying specific particulate matter (PM) compositions and sources are essential for policy makers to propose effective control measures for pollutant emissions. Ambient PM 2.5 samples covered a whole year were collected from three coastal cities of the Bohai Sea. Oxidative potential (OP) was selected as the indicator to characterize associated PM compositions and sources most responsible for adverse impacts on human health. Positive matrix factorization (PMF) and multiple linear regression (MLR) were employed to estimate correlations of PM 2.5 sources with OP. The volume- and mass-based dithiothreitol (DTT v and DTT m ) activities of PM 2.5 were significantly higher in local winter or autumn (p < 0.01). Spatial and seasonal variations in DTT v and DTT m were much larger than mass concentrations of PM 2.5 , indicated specific chemical components are responsible for PM 2.5 derived OP. Strong correlations (r > 0.700, p < 0.01) were found between DTT activity and water-soluble organic carbon (WSOC) and some transition metals. Using PMF, source fractions of PM 2.5 were resolved as secondary source, traffic source, biomass burning, sea spray and urban dust, industry, coal combustion, and mineral dust. Further quantified by MLR, coal combustion, biomass burning, secondary sources, industry, and traffic source were dominant contributors to the water-soluble DTT v activity. Our results also suggested large differences in seasonal contributions of different sources to DTT v variability. A higher contribution of DTT v was derived from coal combustion during the local heating period. Secondary sources exhibited a greater fraction of DTT v in summer, when there was stronger solar radiation. Traffic sources exhibited a prevailing contribution in summer, and industry contributed larger proportions in spring and winter. Future abatement priority of air pollution should reduce the sources contributing to OP of PM 2.5 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  8. Quality of selected coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.

    2000-07-01

    As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  9. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  10. Coal-mine spoil banks offer good potential for timber and wildlife production

    Treesearch

    Grant Davis; Walter H. Davidson

    1968-01-01

    More than 300,000 acres have been strip-mined for coal in the Anthracite and Bituminous Regions of Pennsylvania—most of this since World War II. And an additional 10,000 to 15,000 acres are strip-mined each year. Since 1945 coal operators have been required to revegetate the areas disturbed by mining. Although the primary purpose of revegetation is to provide permanent...

  11. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Treesearch

    David Nicholls; John Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  12. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Treesearch

    David Nicholls; Zackery Wright; Daisy Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  13. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  14. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    USGS Publications Warehouse

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  15. Characterization and Recovery of Rare Earths from Coal and By-Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a dramatic paradigm shift for coal.« less

  16. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  17. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  18. Coal resources of the eastern regions of Russia for power plants of the Asian super ring

    NASA Astrophysics Data System (ADS)

    Sokolov, Aleksander; Takaishvili, Liudmila

    2018-01-01

    The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.

  19. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  20. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less

  1. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    NASA Astrophysics Data System (ADS)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  2. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Study of the effect of bacteria on the disappearance and transformation of CO in the sealed fire zone of coal mine

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaowei; Wu, Shibo; Deng, Jun; Yang, Yifan; Jiang, Hua; Wang, Kai

    2017-01-01

    When the underground coal mine gob area has been sealed due to the coal spontaneous combustion, under the low oxygen and potentially high temperature environment, the CO concentration could drop sharply and disappear quickly. But it could rise rapidly after re-opening. These indicate that the disappearance is the only index for coal burnt out. In order to find a way how let CO disappear, experiments have been conducted using the newly developed experiment setup for three samples, raw, watered and bacteria-free coal sample. The CO and CO2 concentration have been monitored and analyzed. The results show the bacteria in the coal do consume CO and increase the chance of CO transfer to CO2. These results reveal how let CO disappear in a sealed zone from a new aspect. And the accuracy was improved when used gas index to determine combustion status for coal spontaneous combustion.

  4. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    PubMed Central

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  5. Political and technical issues of coal fire extinction in the Kyoto framework

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  6. Cranberry Wilderness study area, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissner, C.R. Jr.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness study area contains a large demonstrated resource of bituminous coal of coking quality according to studies made in 1977. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56.5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout themore » State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.« less

  7. Evaluation of ocular irritancy of coal-tar dyes used in cosmetics employing reconstructed human cornea-like epithelium and short time exposure tests.

    PubMed

    Lee, Miri; Nam, Ki Taek; Kim, Jungah; Lim, Song E; Yeon, Sang Hyeon; Lee, Buhyun; Lee, Joo Young; Lim, Kyung-Min

    2017-10-01

    Coal-tar dyes in cosmetics may elicit adverse effects in the skin and eyes. Countries, like the US, have banned the use of coal-tar dyes in cosmetics for the eye area due to the potential for ocular irritation. We evaluated the eye irritation potential of 15 coal-tar dyes permitted as cosmetic ingredients in reconstructed human cornea-like epithelium (RhCEs [EpiOcular™ and MCTT HCE™]) tests and the short time exposure (STE) test. Eosin YS, phloxine B, tetrachlorotetrabromofluorescein, and tetrabromofluorescein were identified as irritants in RhCEs; dibromofluorescein and uranine yielded discrepant results. STE enabled further classification in accordance with the UN Globally Harmonized System of Classification and Labelling of Chemicals, as follows: eosin YS as Cat 2; phloxine B, Cat 1; and tetrachlorotetrabromofluorescein and tetrabromofluorescein, Cat 1/2. STE indicated dibromofluorescein (irritant in EpiOcular™) and uranine (irritant in MCTT HCE™) as No Cat, resulting in the classification of "No prediction can be made." based on bottom-up approach with each model. These results demonstrated that in vitro eye irritation tests can be utilized to evaluate the potential ocular irritancy of cosmetic ingredients and provide significant evidence with which to determine whether precautions should be given for the use of coal-tar dyes in cosmetics or other substances applied to the eye area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  9. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  10. Quantifying the signature of the industrial revolution from Pb and Cd isotopes in the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Herndon, E.; Jin, L.; Sanchez, D.; Brantley, S. L.

    2013-12-01

    Anthropogenic forcings have dominated metal cycling in many environments. During the period of the industrial revolution, mining and smelting of ores and combustion of fossil fuels released non-negligible amounts of potentially toxic metals such as Pb, Cd, Mn, and Zn into the environment. The extent and fate of these metal depositions in soils during that period however, have not been adequately evaluated. Here, we combine Pb isotopes with Cd isotopes to trace the sources of metal pollutants in a small temperate watershed (Shale Hills) in Pennsylvania. Previous work has shown that Mn additions to soils in central PA was caused by early iron production, as well as coal burning and steel making upwind. Comparison of the Pb and Cd concentrations in the bedrock and soils from this watershed show that Pb and Cd in soils at Shale Hills are best characterized by addition profiles, consistent with atmospheric additions. Three soil profiles at Shale Hills on the same hillslope have very similar anthropogenic Pb inventories. Pb isotope results further reveal that the extensive use of local coals during iron production in early 19th century in Pennsylvania is most likely the anthropogenic Pb source for the surface soils at Shale Hills. Pb concentrations and isotope ratios were used to calculate mass balance and diffusive transport models in soil profiles. The model results further reveal that during the 1850s to 1920s, coal burning in local iron blasting furnaces significantly increased the Pb deposition rates to 8-14 μg cm-2 yr-1, even more than modern Pb deposition rates derived from the use of leaded gasoline in the 1940s to 1980s. Furthermore, Cd has a low boiling point (~760 °C) and easily evaporates and condenses. The evaporation and condensation processes could generate systematic mass-dependent isotope fractionation between Cd in coal burning products and the naturally occurring Cd in the sulfide minerals of coals. This fractionation indicates that Cd isotopes can be used as a novel tracer of materials that have been affected by industrial high temperature processes, distinguishing them from natural Cd sources. Our ongoing Cd isotope measurements in the same soil profiles thus hold significant promise for tracing anthropogenic sources of this highly toxic metal in the environment. This will be the first time that Cd isotopes are characterized for polluted soils related to coal-burning activities. Such information will provide the first Cd isotope dataset to assess the environmental impacts due to the use of coals on a global scale. These new Pb and Cd isotope results, along with previous observations of Mn enrichment at Shale Hills, suggest that historical point sources from the industrial revolution could contribute significant amounts of metal contamination to top-soils. Our study highlights the importance of using multiple isotope systems to investigate Critical Zone processes in identical lithology and environmental settings.

  11. Potential for Recoverable Coalbed Methane Resources on Navy Lands.

    DTIC Science & Technology

    1985-06-01

    into the Tertiary Period (up to 12 Ma). This deposition occurred in a series of basins in the west-central United States. These are the Piceance, Uinta ...14 5. Average Composition of Gas From Coalbeds, % ...................... 16 6. Gas Content and Rank of Coals From Several Major Coal Basins ...Industry Manual (Reference 2) indicates over 30 Army or Air Force installations that appear to lie within or adjacent to major coal basins . Therefore

  12. Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-09-01

    This paper presents a unique hierarchical structure on various occupational health hazards including physical, chemical, biological, ergonomic and psychosocial hazards, and associated adverse consequences in relation to an underground coal mine. The study proposes a systematic health hazard risk assessment methodology for estimating extent of hazard risk using three important measuring parameters: consequence of exposure, period of exposure and probability of exposure. An improved decision making method using fuzzy set theory has been attempted herein for converting linguistic data into numeric risk ratings. The concept of 'centre of area' method for generalized triangular fuzzy numbers has been explored to quantify the 'degree of hazard risk' in terms of crisp ratings. Finally, a logical framework for categorizing health hazards into different risk levels has been constructed on the basis of distinguished ranges of evaluated risk ratings (crisp). Subsequently, an action requirement plan has been suggested, which could provide guideline to the managers for successfully managing health hazard risks in the context of underground coal mining exercise.

  13. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  14. 75 FR 6178 - Mission Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... geothermal, biomass, hydropower, wind, solar, and energy efficiency sectors. The mission will focus on... offers potential growth, barriers still exist that prevent U.S. companies from accessing the market and... additional opportunities in solar, biomass, ``clean coal'' technology such as gasification or wet coal...

  15. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  16. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    PubMed

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Preliminary Toxicological Analysis of the Effect of Coal Slurry Impoundment Water on Human Liver Cells

    USGS Publications Warehouse

    Bunnell, Joseph E.

    2008-01-01

    Coal is usually 'washed' with water and a variety of chemicals to reduce its content of sulfur and mineral matter. The 'washings' or 'coal slurry' derived from this process is a viscous black liquid containing fine particles of coal, mineral matter, and other dissolved and particulate substances. Coal slurry may be stored in impoundments or in abandoned underground mines. Human health and environmental effects potentially resulting from leakage of chemical substances from coal slurry into drinking water supplies or aquatic ecosystems have not been systematically examined. Impoundments are semipermeable, presenting the possibility that inorganic and organic substances, some of which may be toxic, may contaminate ground or surface water. The Agency for Toxic Substances and Disease Registry, part of the Centers for Disease Control and Prevention, has concluded that well water in Mingo County, West Virginia, constitutes a public health hazard.

  18. Assessment of subclinical right ventricular systolic dysfunction in coal miners using myocardial isovolumic acceleration.

    PubMed

    Ozcan Abacıoglu, Ozge; Kaplan, Mehmet; Abacıoglu, Serkan; Quisi, Ala

    2017-09-01

    Several studies have been conducted regarding the effects of coal mining on the respiratory system. However, there is a lack of data concerning potential effects of coal mining on the cardiovascular system. In this study, we aimed to evaluate the potential subclinical right and left ventricular dysfunction in coal miners. This single-center, prospective study included a total of 102 patients. Patient and control groups consisted of 54 coal miners and 48 healthy men, respectively. All patients underwent 12-lead electrocardiography, transthoracic echocardiography, and pulmonary function test. As compared to control group, coal miners had significantly higher right ventricular myocardial performance index (RVMPI) (0.41 ± 0.03 vs 0.37 ± 0.02, P < .001), lower right ventricular fractional area change (RVFAC) (33.55% ± 6.70% vs 37.04 ± 9.26 P < .05), lower tricuspid annular plane systolic excursion (TAPSE) (1.54 ± 0.17 vs 1.73 ± 0.25, P < .001), lower myocardial isovolumic acceleration (IVA) (2.13 ± 0.16 vs 2.56 ± 0.36 P < .001) and decreased aortic distensibility (AD) (4.14 ± 2.18 vs 6.63 ± 3.91 P < .001). All of the echocardiographic parameters were positively correlated with exposure time to coal mine dust, except IVA. Echocardiographic parameters of both right and left ventricular dysfunction, including RVMPI, RVFAC, TAPSE, IVA, and AD, are impaired in coal miners. © 2017 The Authors Echocardiography Published by Wiley Periodicals, Inc.

  19. Coal Fires in the United States: A Case Study in Government Inattention

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2006-12-01

    Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.

  20. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  1. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were addressed, especially on raw coal.

  2. The source rock potential of the Karroo coals of the south western Rift Basin of Tanzania

    NASA Astrophysics Data System (ADS)

    Mpanju, F.; Ntomola, S.; Kagya, M.

    For many years geoscientists believed that coals (Type III Kerogen) generate gas only. The geochemical study of Durand and Parrante ( Petrolum Geochemistry and Exploration of Europe, pp. 255-265, 1983) revealed that coals have reasonable potential for oil generation. On this basis forty outcrop samples of Lower and Upper Permian age, i.e. coals and carbonaceous shales, were collected from the south western Rift Basin of Tanzania. The aim of the study was to determine the richness, type, maturity and hydrocarbon potential of the above samples. These samples were subjected to both geochemical and petrological analyses. Geochemical analyses included solvent extraction, TOC, GC, GC-MS and pyrolysis. The petrological analysis included vitrinite reflectance, spore fluorescence and maceral content. The geochemical analyses showed all samples to be rich in organic matter of Types II and III and samples from Songwe Kiwira, Namwele, Mbamba Bay, Njuga and Mhukuru coalfields were in an early mature-mature stage of hydrocarbon generation. Whereas samples from Ketewaka and Ngaka coalfields showed a GC-trace of early generated waxy oil. All samples contained organic matter derived from terrestrial material which was deposited under oxic environment. The Hydrogen Index of most coals and carbonaceous shales was greater than 200 indicating that they can generate oil or light oil. Petrological observations showed all samples to be in the range of 0.47-0.67% Ro and some of them were rich in both liptinite and vitrinite macerals. From both geochemical and petrological observations it was concluded that the Lower and Upper Permian coals and carbonaceous shales under study are probably capable of generating oil. The oil generated has the same characteristics as that generated by Cretaceous and Tertiary coals discovered from other parts of the world, i.e. Adjuna and Kutei Basins in Indonesia and the Gippsland Basin in Australia (Kirkland et al., AAPG Bull.71, 577, 1987).

  3. Coal + Biomass → Liquids + Electricity (with CCS)

    EPA Science Inventory

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  4. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    PubMed

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    PubMed

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biochemical bond breaking in coal: Third quarterly report, (April through June 1987)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-07-01

    Major research efforts are presently being conducted in three principal areas of focus: (1) optimization of coal biosolubilization; (2) characterization of the solubilized products resulting from microbial coal depolymerization; and (3) degradation of model compounds to assess potential interunit linkages which may be attacked by whole culture or cell-free culture supernatants containing extracellular enzymes. Initial evaluations of the various combinations of microbes, coals, and coal pretreatments indicated that CP1 and CP1 + 2 solubilized all of the coals selected for this project at substantially higher rates than S. setonii or T. versicolor. The ARC CP1 + 2 consortium was chosenmore » as the primary culture for detailed evaluation of coal biosolubilization and model compound degradation. Studies were conducted to determine if solubilization of coal by CP1 + 2 supernatants could be enhanced by elevating the temperature. Solubilization of both untreated Leonardite and HNO3 treated Wyodak (Smith-Roland) subbituminous coal was increased when elevating the temperature from ambient to 35C. The initial solubilization rate (T0 - 1 hour) of Leonardite at 22C was 16 OD units/hour and at 35C was 18 OD units/hour. Thus, an elevation of 13C enhanced solubilization of this coal by 12.5%. The effect of temperature on solubilization of Wyodak coal appeared to be more pronounced. Solubilization of HNO3 treated coals by the CP organisms is not only relatively rapid, but is also extensive. The relatively rapid and extensive coal solubilization attainable by CP1 + 2 has enabled us to produce quantities of product sufficient for analytical methods development and for characterization of the coal products. Initial attempts have been made to characterize the depolymerized products using HPLC and GC/MS. 9 figs., 3 tabs.« less

  7. Low-maturity Kulthieth Formation coal: A possible source of polycyclic aromatic hydrocarbons in benthic sediment of the northern Gulf of Alaska

    USGS Publications Warehouse

    Van Kooten, G. K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low - i.e. the coals are over mature - to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  8. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Mariethoz, Gregoire; Schrank, Christoph; Cox, Malcolm; Timms, Wendy

    2016-12-01

    Coal-seam gas production requires groundwater extraction from coal-bearing formations to reduce the hydraulic pressure and improve gas recovery. In layered sedimentary basins, the coalbeds are often separated from freshwater aquifers by low-permeability aquitards. However, hydraulic connection between the coalbed and aquifers is possible due to the heterogeneity in the aquitard such as the existence of conductive faults or sandy channel deposits. For coal-seam gas extraction operations, it is desirable to identify areas in a basin where the probability of hydraulic connection between the coalbed and aquifers is low in order to avoid unnecessary loss of groundwater from aquifers and gas production problems. A connection indicator, the groundwater age indictor (GAI), is proposed, to quantify the degree of hydraulic connection. The spatial distribution of GAI can indicate the optimum positions for gas/water extraction in the coalbed. Depressurizing the coalbed at locations with a low GAI would result in little or no interaction with the aquifer when compared to the other positions. The concept of GAI is validated on synthetic cases and is then applied to the north Galilee Basin, Australia, to assess the degree of hydraulic connection between the Aramac Coal Measure and the water-bearing formations in the Great Artesian Basin, which are separated by an aquitard, the Betts Creek Beds. It is found that the GAI is higher in the western part of the basin, indicating a higher risk to depressurization of the coalbed in this region due to the strong hydraulic connection between the coalbed and the overlying aquifer.

  9. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study

    PubMed Central

    Tian, Linwei; Dai, Shifeng; Wang, Jianfang; Huang, Yunchao; Ho, Suzanne C; Zhou, Yiping; Lucas, Donald; Koshland, Catherine P

    2008-01-01

    Background The Pearl River Origin area, Qujing District of Yunnan Province, has one of the highest female lung cancer mortality rates in China. Smoking was excluded as a cause of the lung cancer excess because almost all women were non-smokers. Crystalline silica embedded in the soot emissions from coal combustion was found to be associated with the lung cancer risk in a geographical correlation study. Lung cancer rates tend to be higher in places where the Late Permian C1 coal is produced. Therefore, we have hypothesized the two processes: C1 coal combustion --> nanoquartz in ambient air --> lung cancer excess in non-smoking women. Methods/Design We propose to conduct a retrospective cohort study to test the hypothesis above. We will search historical records and compile an inventory of the coal mines in operation during 1930–2009. To estimate the study subjects' retrospective exposure, we will reconstruct the historical exposure scenario by burning the coal samples, collected from operating or deserted coal mines by coal geologists, in a traditional firepit of an old house. Indoor air particulate samples will be collected for nanoquartz and polycyclic aromatic hydrocarbons (PAHs) analyses. Bulk quartz content will be quantified by X-ray diffraction analysis. Size distribution of quartz will be examined by electron microscopes and by centrifugation techniques. Lifetime cumulative exposure to nanoquartz will be estimated for each subject. Using the epidemiology data, we will examine whether the use of C1 coal and the cumulative exposure to nanoquartz are associated with an elevated risk of lung cancer. Discussion The high incidence rate of lung cancer in Xuan Wei, one of the counties in the current study area, was once attributed to high indoor air concentrations of PAHs. The research results have been cited for qualitative and quantitative cancer risk assessment of PAHs by the World Health Organization and other agencies. If nanoquartz is found to be the main underlying cause of the lung cancer epidemic in the study area, cancer potency estimates for PAHs by the international agencies based on the lung cancer data in this study setting should then be updated. PMID:19055719

  10. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE PAGES

    Holland, Troy; Fletcher, Thomas H.

    2017-02-22

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  11. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy; Fletcher, Thomas H.

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  12. Coal hydrogenation and environmental health.

    PubMed Central

    Wadden, R A

    1976-01-01

    Planning of coal hydrogenation processes, such as liquifaction and gasification, requires consideration of public health implications. Commercial plants will require coal quantities greater than or equal to 20,000 tons/day and the large size of these plants calls for careful consideration of the potential health hazards from the wastes and products of such processes. Analysis of pollution potential can roughly be divided into three categories: raw material structure and constituents, process design, and mode of plant operation. Identifiable pollutants include hydrogen cyanide, phenols, cresols, carbonyl and hydrogen sulfides, ammonia, mercaptans, thiocyanides, aniline, arsenic, trace metals and various polycyclic hydrocarbons. One study of workers in a hydrogenation process has revealed an incidence of skin cancer 16-37 times that expected in the chemical industry. In addition, a number of high boiling point liquid products were identified as being carcinogenic, and air concentrations of benzo[a]pyrene up to 18,000 mug/1000 m3 were reported. Health statistics on occupational groups in other coal conversion industries have shown significantly higher lung cancer rates, relative to groups without such occupational exposures. These data suggest that coal hydrogenation plants must be carefully planned and controlled to avoid harm to environmentally and occupationally exposed populations. PMID:789066

  13. Evaluation of detection and response times of fire sensors using an atmospheric monitoring system

    PubMed Central

    Rowland, J.H.; Litton, C.D.; Thomas, R.A.

    2017-01-01

    Atmospheric monitoring systems (AMS) are required when using air from conveyor belt entries to ventilate working sections in U.S. underground coal mines. AMS technology has the potential to increase fire safety mine-wide, but research is needed to determine the detection and response times for fires of a variety of combustible materials. To evaluate the potential of an AMS for fire detection in other areas of a coal mine, a series of full-scale fire experiments were conducted to determine detection and response times from fires of different combustible materials that are found in U.S. underground coal mines, including high- and low-volatility coals, conveyor belts, brattice materials, different types of wood, diesel fuel, and a foam sealant. These experiments were conducted in the Safety Research Coal Mine (SRCM) of the U.S. National Institute for Occupational Safety and Health (NIOSH) located in Pittsburgh, PA, using a commercially available AMS that is typical of current technology. The results showed that through proper selection of sensors and their locations, a mine-wide AMS can provide sufficient early fire warning times and improve the health and safety of miners. PMID:28529442

  14. Oil-generating coals of the San Juan Basin, New Mexico and Colorado, U.S.A.

    USGS Publications Warehouse

    Clayton, J.L.; Rice, D.D.; Michael, G.E.

    1991-01-01

    Coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin of northwestern New Mexico and southwestern Colorado have significant liquid hydrocarbon generation potential as indicated by typical Rock-Eval Hydrogen Indexes in the range of 200-400 mg hydrocarbon/g organic carbon (type II and III organic matter). Small, non-commercial quantities of oil have been produced from the coal beds at several locations. The oils are characterized by high pristane/phytane (ca 4) and pristane/n-C17 ratios (ca 1.2), abundant C21+ alkanes in the C10+ fraction with a slight predominance of odd carbon-numbered n-alkanes, abundant branched-chain alkanes in the C15+ region, and a predominance of methylcyclohexane in the C4-C10 fraction. The oils are indigenous to the Fruitland Formation coals and probably migrated at thermal maturities corresponding to vitrinite reflectance values in the range 0.7-0.8%. Although the oils found to date are not present in commercial amounts, these findings illustrate the potential of some coals to generate and expel oil under conditions of moderate thermal heating. ?? 1991.

  15. Evaluation of detection and response times of fire sensors using an atmospheric monitoring system.

    PubMed

    Rowland, J H; Litton, C D; Thomas, R A

    2016-01-01

    Atmospheric monitoring systems (AMS) are required when using air from conveyor belt entries to ventilate working sections in U.S. underground coal mines. AMS technology has the potential to increase fire safety mine-wide, but research is needed to determine the detection and response times for fires of a variety of combustible materials. To evaluate the potential of an AMS for fire detection in other areas of a coal mine, a series of full-scale fire experiments were conducted to determine detection and response times from fires of different combustible materials that are found in U.S. underground coal mines, including high- and low-volatility coals, conveyor belts, brattice materials, different types of wood, diesel fuel, and a foam sealant. These experiments were conducted in the Safety Research Coal Mine (SRCM) of the U.S. National Institute for Occupational Safety and Health (NIOSH) located in Pittsburgh, PA, using a commercially available AMS that is typical of current technology. The results showed that through proper selection of sensors and their locations, a mine-wide AMS can provide sufficient early fire warning times and improve the health and safety of miners.

  16. Status of H-Coal commercial activities. [Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.N. Jr.

    1981-01-01

    The H-Coal process is a development of Hydrocarbon Research, Inc. (HRI). It converts coal by catalytic hydrogenation to substitutes for petroleum ranging from a low sulfur fuel oil to an all distillate synthetic crude, the latter representing a potential source of raw material for the petrochemical industry. The process is a related application to HRI's H-Oil process which is used commercially for the desulfurization of residual oils from crude oil refining. A large scale pilot plant was constructed at Catlettsburg, Kentucky that is designed to process 200 to 600 TPD of coal. The paper includes an update on the keymore » activities associated with the Breckinridge Project: Pilot Plant H-Coal at Catlettsburg, Kentucky; commercial design activities in Houston; and permit and EIS activities for the Addison, Kentucky plant site.« less

  17. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, E.; Hart, D.; Lethi, M.

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of themore » case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.« less

  18. Evaluation of ERDA-sponsored coal feed system development

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.

  19. Evaluation of engineering properties for the use of leached brown coal ash in soil covers.

    PubMed

    Mudd, Gavin M; Chakrabarti, Srijib; Kodikara, Jayantha

    2007-01-31

    The need to engineer cover systems for the successful rehabilitation or remediation of a wide variety of solid wastes is increasing. Some common applications include landfills, hazardous waste repositories, or mine tailings dams and waste rock/overburden dumps. The brown coal industry of the Latrobe Valley region of Victoria, Australia, produces significant quantities of coal ash and overburden annually. There are some site-specific acid mine drainage (AMD) issues associated with overburden material. This needs to be addressed both during the operational phase of a project and during rehabilitation. An innovative approach was taken to investigate the potential to use leached brown coal ash in engineered soil covers on this overburden dump. The basis for this is two-fold: first, the ash has favourable physical characteristics for use in cover systems (such as high storage capacity/porosity, moderately low permeability, and an ability to act as a capillary break layer generating minimal leachate or seepage); and second, the leachate from the ash is mildly alkaline (which can help to mitigate and reduce the risk of AMD). This paper will review the engineering issues involved in using leached brown coal ash in designing soil covers for potentially acid-forming overburden dumps. It presents the results of laboratory work investigating the technical feasibility of using leached brown coal ash in engineered solid waste cover systems.

  20. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  1. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.« less

  2. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview

    USGS Publications Warehouse

    Pashin, J.C.

    1998-01-01

    Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.

  3. Coal Rank and Stratigraphy of Pennsylvanian Coal and Coaly Shale Samples, Young County, North-Central Texas

    USGS Publications Warehouse

    Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.

    2007-01-01

    Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.

  4. Fungal degradation of coal as a pretreatment for methane production

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  5. Concentration and distribution of sixty-one elements in coals from DPR Korea

    USGS Publications Warehouse

    Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.

    2006-01-01

    Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Development and testing of synthetic RIPRAP constructed from coal combustion products.

    DOT National Transportation Integrated Search

    2013-11-01

    Even with an increase in the amount of CCPs used in concrete construction, soil stabilization, and other applications, the coal power : industry must dispose of a significant amount of fly ash and bottom ash. One potential avenue for the material is ...

  7. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  8. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples

    DOE PAGES

    Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...

    2017-07-03

    Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less

  9. US fossil fuel technologies for Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite depositsmore » that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.« less

  10. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  11. Accumulation of coal combustion residues and their immunological effects in the yellow-bellied slider (Trachemys scripta scripta).

    PubMed

    Haskins, David L; Hamilton, Matthew T; Jones, Amanda L; Finger, John W; Bringolf, Robert B; Tuberville, Tracey D

    2017-05-01

    Anthropogenic activities such as industrial processes often produce copious amounts of contaminants that have the potential to negatively impact growth, survival, and reproduction of exposed wildlife. Coal combustion residues (CCRs) represent a major source of pollutants globally, resulting in the release of potentially harmful trace elements such as arsenic (As), cadmium (Cd), and selenium (Se) into the environment. In the United States, CCRs are typically stored in aquatic settling basins that may become attractive nuisances to wildlife. Trace element contaminants, such as CCRs, may pose a threat to biota yet little is known about their sublethal effects on reptiles. To assess the effects of CCR exposure in turtles, we sampled 81 yellow-bellied sliders (Trachemys scripta scripta) in 2014-2015 from CCR-contaminated and uncontaminated reference wetlands located on the Savannah River Site (Aiken, SC, USA). Specific aims were to (1) compare the accumulation of trace elements in T. s. scripta claw and blood samples between reference and CCR-contaminated site types, (2) evaluate potential immunological effects of CCRs via bacterial killing assays and phytohaemagglutinin (PHA) assays, and (3) quantify differences in hemogregarine parasite loads between site types. Claw As, Cd, copper (Cu), and Se (all p ≤ 0.001) and blood As, Cu, Se, and strontium (Sr; p ≤ 0.015) were significantly elevated in turtles from CCR-contaminated wetlands compared to turtles from reference wetlands. Turtles from reference wetlands exhibited lower bacterial killing (p = 0.015) abilities than individuals from contaminated sites but neither PHA responses (p = 0.566) nor parasite loads (p = 0.980) differed by site type. Despite relatively high CCR body burdens, sliders did not exhibit apparent impairment of immunological response or parasite load. In addition, the high correlation between claw and blood concentrations within individuals suggests that nonlethal tissue sampling may be useful for monitoring CCR exposure in turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A

    2016-04-15

    A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Competitiveness and potentials of UCG-CCS on the European energy market

    NASA Astrophysics Data System (ADS)

    Kempka, T.; Nakaten, N.; Schlüter, R.; Fernandez-Steeger, T.; Azzam, R.

    2009-04-01

    The world-wide coal reserves can satisfy the world's primary energy demand for several hundred years. However, deep coal deposits with seams of low thickness and structural complexity do currently not allow an economic exploitation of many deposits. Here, underground coal gasification (UCG) can offer an economical approach for coal extraction. The intended overall process relies on coal deposit exploitation using directed drillings located at the coal seam base and the subsequent in situ coal conversion into a synthesis gas. The resulting synthesis gas is used for electricity generation in a combined cycle plant at the surface. A reduction of the CO2 emissions resulting from the combined process is realized by subsequent CO2 capture and its injection into the previously gasified coal seams. The scope of the present study was the investigation of UCG-CCS competitiveness on the European energy market and the determination of the impacting factors. For that purpose, a modular model for calculation of UCG-CCS electricity generation costs was implemented and adapted to the most relevant process parameters. Furthermore, the range of energy supply coverage was estimated based on different German energy generation scenarios.

  14. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Wang; Jianmin Wang; Yulin Tang

    2009-05-15

    Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less

  15. Coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  16. Assessment of negotiation options for coal-lease sales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothkopf, M.H.; McGuire, C.B.

    The Commission on Fair Market Value Policy for Federal Coal Leasing recommended that the government have authority to negotiate a fair price for coal leases when competitive bids cannot be obtained. This report analyzes the choices the government faces in designing a coal lease sale mechanism. It considers the impact of the alternatives on economic efficiency, government revenue, administrative workability, fairness and the appearance of fairness. The report concludes that there are advantageous ways for the government to negotiate coal leases when there is only one serious potential bidder for a lease. First, the report notes the advantages of negotiatingmore » exchanges that leave the government with economically logical potentially minable tracts. It also notes the advantages of negotiating shares for the ''cooperative leasing'' by auction of such tracts. For other one bidder tracts, the report concludes that there are potential advantages to ease negotiation provided that: (1) all negotiations are tentative subject to ''validation'' of their one bidder nature in a post-negotiation formal sale process, (2) the government negotiate on more leases than it will conclude, using whenever possible, a ''round-robin'' negotiation procedure, (3) government employees and not independent agents negotiate for the government, and (4) negotiations are narrowly confined to the amount of bonus. The report also suggests that the government may wish to consider use of final-offer arbitration on those leases, such as bypasses, on which both the government and the private party have high interest in reaching an agreement.« less

  17. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek Basin, Mesa County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1986-01-01

    The U.S. Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. (Author 's abstract)

  18. Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1981-August 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohue, M.D.

    It is the purpose of this research program to develop a model to predict the thermodynamic properties of coal derivatives. Unlike natural gas and petroleum, coal and its gasification and liquefaction products are predominantly aromatic and have substantial quadrupole moments. Because of these quadrupole forces, the numerous correlational techniques that have been developed for petroleum products cannot be used to predict the thermodynamic properties of coal derivatives. We are presently developing a correlation that will be useful in predicting the thermodynamic properties of coal derivatives. This theory is based on the Perturbed-Hard-Chain theory, but is different from PHCT in twomore » respects. First, PHCT uses a square-well to describe the intermolecular potential energy between two molecules. In our new theory, the Lennard-Jones potential energy function is used. The second difference is that we take into account the effect of quadrupole forces on the intermolecular potential energy. In PHCT these forces were ignored. In PHCT the contributions to the partition function (or equation of state) that arise from the attractive forces between molecules (regardless of whether these forces are treated as a square-well or by Lennard-Jones) are calculated by assuming that they are perturbations on a hard sphere. In calculating the contributions to the partition function that arise from the quadrupole-quadrupole interactions, we use a second order perturbation about the Lennard-Jones. For aromatic molecules, the effect of this additional perturbation is significant.« less

  19. Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.

    2017-12-01

    A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.

  20. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  1. 30 CFR 77.1100 - Fire protection; training and organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1100 Section 77.1100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF... facilities and equipment shall be provided commensurate with the potential fire hazards at each structure...

  2. Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit

    USGS Publications Warehouse

    Olea, R.A.; Luppens, J.A.; Tewalt, S.J.

    2011-01-01

    A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.

  3. Evaluating the CO 2 emissions reduction potential and cost of power sector re-dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel C.; Bielen, David A.; Townsend, Aaron

    Prior studies of the U.S. electricity sector have recognized the potential to reduce carbon dioxide (CO2) emissions by substituting generation from coal-fired units with generation from under-utilized and lower-emitting natural gas-fired units; in fact, this type of 're-dispatch' was invoked as one of the three building blocks used to set the emissions targets under the Environmental Protection Agency's Clean Power Plan. Despite the existence of surplus natural gas capacity in the U.S., power system operational constraints not often considered in power sector policy analyses, such as transmission congestion, generator ramping constraints, minimum generation constraints, planned and unplanned generator outages, andmore » ancillary service requirements, could limit the potential and increase the cost of coal-to-gas re-dispatch. Using a highly detailed power system unit commitment and dispatch model, we estimate the maximum potential for re-dispatch in the Eastern Interconnection, which accounts for the majority of coal capacity and generation in the U.S. Under our reference assumptions, we find that maximizing coal-to-gas re-dispatch yields emissions reductions of 230 million metric tons (Mt), or 13% of power sector emissions in the Eastern Interconnection, with a corresponding average abatement cost of $15-$44 per metric ton of CO2, depending on the assumed supply elasticity of natural gas.« less

  4. Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India

    NASA Astrophysics Data System (ADS)

    Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.

    2017-12-01

    Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems. Collaboration between geoscientists and public health researchers are essential to assess complex geohealth issues such as those that may be caused by uncontrolled coal fires. This type of multidisciplinary collaboration must be maintained and expanded to include engineers, social scientists, and others to help minimize or avoid these problems.

  5. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate electricity with efficiency as high as 55% and overall UCG-IGCC process efficiency reaching 43%. Regarding to environmental problems the UCG minimize environmental impacts (waste piles/acid mine drainage) and reduce CO2 emissions because syngas contains CO2 that can be captured with relatively low-energy penalty. The Clean Coal Technologies (CCT), especially UCG and ECBM projects, will be a key factor to maintain the annual state's economy expansion associated with energy efficiency improvement programs.

  6. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal

    USGS Publications Warehouse

    Strapoc, D.; Schimmelmann, A.; Mastalerz, Maria

    2006-01-01

    Canister desorption of coal gas from freshly sampled coal is commonly used for exploratory assessment of the coalbed methane (CBM) potential of a basin or prospect, as well as for the sampling of gas for isotopic determination of the gas origin. Compositional and ??13C isotopic time-series of desorbing CBM and carbon dioxide (CO2) over 3-4 months demonstrate considerable compositional and isotopic shifts over time. Non-stationary chemical and isotopic characteristics are due to differences in diffusivity and adsorbance behavior of gas molecules and must be taken into account when attempting to reproducibly sample coal gases. Off-line gas processing on a vacuum line and on-line GC/MS analyses were performed on coal gas samples from the Springfield and Seelyville Coal Members of the Pennsylvanian age that were cored in the SE Illinois Basin in SW Indiana, USA. The coals cover a narrow range of maturity from 0.54% to 0.64% vitrinite reflectance. Methane initially desorbed faster than CO2, resulting in a 50% increase of the CO 2 content in bulk desorbing gas on the 50th day relative to the first day of desorption. After 50 days of desorption, about 90% of all coal gas was desorbed. Over the same time period, ??13C values of incrementally sampled coal gas increased by 2??? and 9???, for CH 4 and CO2, respectively, testifying to the greater retention of 13CH4 and 13CO2 relative to 12CH4 and 12CO2. An isotopic mass balance of the individual, sequentially desorbed and sampled gas amounts yielded weighted mean ??13CCH4 and ??13CCO2 values for characterizing the cumulatively desorbed gas. The overall mean ??13C values were equivalent to ??13C values of gases that desorbed at a time when half of the potentially available gas had been desorbed from coal, corresponding in this study to a time between day 5 and day 12 of canister desorption at 15-18??C. The total expected gas volume and the ???50% midpoint can thus be approximated for a desorbing coal gas sample, based on a dynamic prediction after the first five days of canister desorption. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Development of Kinetics and Mathematical Models for High-Pressure Gasification of Lignite-Switchgrass Blends: Cooperative Research and Development Final Report, CRADA Number CRD-11-447

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina

    2016-04-06

    NREL will work with Participant as a subtier partner under DE-FOA-0000240 titled "Co-Production of Power, Fuels, and Chemicals via Coal/Biomass Mixtures." The goal of the project is to determine the gasification characteristics of switchgrass and lignite mixtures and develop kinetic models. NREL will utilize a pressurized thermogravimetric analyzer to measure the reactivity of chars generated in a pressurized entrained-flow reactor at Participant's facilities and to determine the evolution of gaseous species during pyrolysis of switchgrass-lignite mixtures. Mass spectrometry and Fourier-transform infrared analysis will be used to identify and quantify the gaseous species. The results of the project will aid inmore » defining key reactive properties of mixed coal biomass fuels.« less

  8. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    NASA Astrophysics Data System (ADS)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  9. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  10. Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal

    PubMed Central

    Wang, Lu; Nie, Yong; Tang, Yue-Qin; Song, Xin-Min; Cao, Kun; Sun, Li-Zhu; Wang, Zhi-Jian; Wu, Xiao-Lei

    2016-01-01

    Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank. PMID:27667989

  11. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    PubMed

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.

    PubMed

    Duarte, Jessica Hartwig; de Morais, Etiele Greque; Radmann, Elisângela Martha; Costa, Jorge Alberto Vieira

    2017-06-01

    CO 2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO 2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO 2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO 2 than Spirulina sp. The maximum daily CO 2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL -1 d -1 ), showing a specific growth rate of 0.17±<0.01d -1 . The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO 2 from coal flue gas, and sequential biomass production with different biotechnological destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantifying CO2 Emissions from Individual Power Plants using OCO-2 Observations

    NASA Astrophysics Data System (ADS)

    Nassar, R.; Hill, T. G.; McLinden, C. A.; Wunch, D.; Jones, D. B. A.; Crisp, D.

    2017-12-01

    In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in select cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual mid- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for US power plants are within 1-13% of reported daily emission values enabling application of the approach to international sites that lack detailed emission information. These results affirm that a constellation of future CO2 imaging satellites, optimized for point sources, could be used for the Monitoring, Reporting and Verification (MRV) of CO2 emissions from individual power plants to support the implementation of climate policies.

  14. Quantifying CO2 Emissions From Individual Power Plants From Space

    NASA Astrophysics Data System (ADS)

    Nassar, Ray; Hill, Timothy G.; McLinden, Chris A.; Wunch, Debra; Jones, Dylan B. A.; Crisp, David

    2017-10-01

    In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in some cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual middle- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for U.S. power plants are within 1-17% of reported daily emission values, enabling application of the approach to international sites that lack detailed emission information. This affirms that a constellation of future CO2 imaging satellites, optimized for point sources, could monitor emissions from individual power plants to support the implementation of climate policies.

  15. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado

    USGS Publications Warehouse

    Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N.

    1998-01-01

    Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions of the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resources potential for coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions on the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resource potential of coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.

  16. VEGETATIVE REHABILITATION OF ARID LAND DISTURBED IN THE DEVELOPMENT OF OIL SHALE AND COAL

    EPA Science Inventory

    Field experiments were established on sites disturbed by exploratory drilling in the oil shale region of northeastern Utah and on disturbed sites on a potential coal mine in south central Utah. Concurrently, greenhouse studies were carried out using soil samples from disturbed si...

  17. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash : [summary].

    DOT National Transportation Integrated Search

    2015-04-01

    Fly ash produced when pulverized coal is burned in electrical generators can be used as a : concrete additive with many benefits. However, fly ash can have a high ammonia content, : which is released when used in concrete, potentially exposing worker...

  18. OVERBURDEN MINERALOGY AS RELATED TO GROUND-WATER CHEMICAL CHANGES IN COAL STRIP MINING

    EPA Science Inventory

    A research program was initiated to define and develop an inclusive, effective, and economical method for predicting potential ground-water quality changes resulting from the strip mining of coal in the Western United States. To utilize the predictive method, it is necessary to s...

  19. Sediment and epilithon metabolism and hydrolytic activity in streams affected by mountaintop removal coal mining, West Virginia, U.S.A.

    EPA Science Inventory

    Mountaintop removal and valley filling (MTR/VF) is a method of coal mining used in the Central Appalachians. Despite regulations requiring that potential mpacts to stream function be considered in determining compensatory mitigation associated with permitted fill activities, asse...

  20. CHARACTERIZATION OF MERCURY-ENRICHED COAL COMBUSTION RESIDUES FROM ELECTRIC UTILITIES USING ENHANCED SORBENTS FOR MERCURY CONTROL

    EPA Science Inventory

    Leaching of mercury and other constituents of potential concern during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. The specific objectives of the research was to: (1) evaluate mercury, arsenic an...

  1. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero-Gallardo, Karina, E-mail: kcaballerog@unicartagena.edu.co; Olivero-Verbel, Jesus, E-mail: joliverov@unicartagena.edu.co

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containingmore » this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose–response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. - Highlights: • Mice were exposed to coal dust-contaminated sand. • mRNA Markers for PAH exposure, lipid metabolism and oxidative stress increased. • ALT activity in plasma increased at the highest exposure to coal dust. • Liver tissues of exposed mice showed steatosis and inflammation. • Coal dust exposure produced changes in several blood components.« less

  2. Environmental and economic evaluation of bioenergy in Ontario, Canada.

    PubMed

    Zhang, Yimin; Habibi, Shiva; MacLean, Heather L

    2007-08-01

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.

  3. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma*

    PubMed Central

    Stockmann, Chris; Romero, Erin G.; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L.; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A.; Ward, Robert M.; Veranth, John M.; Reilly, Christopher A.

    2016-01-01

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. PMID:27758864

  4. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    PubMed

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire.

    PubMed

    Sehn, Janaína L; de Leão, Felipe B; da Boit, Kátia; Oliveira, Marcos L S; Hidalgo, Gelsa E; Sampaio, Carlos H; Silva, Luis F O

    2016-03-01

    Detailed geochemistry similarities between the burning coal cleaning rejects (BCCRs) and non-anthropogenic geological environments are outlined here. While no visible flames were detected, this research revealed that auto-combustion existed in the studied area for many years. The occurrence of several amorphous phases, mullite, hematite and many other Al/Fe-minerals formed by high temperature was found. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present work using multi-analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and newmineral creation. It recording huge numbers of rare minerals with alunite, montmorillonite, szmolnockite, halotrichite, coquimbite and copiapite at the BCCRs. The information presented the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing potential hazardous elements (PHEs), such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. Most of the nano-particles and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important impact to environment and subsequently animal and human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  7. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource

    USGS Publications Warehouse

    Montgomery, S.L.; Barker, C.E.

    2003-01-01

    Cook Inlet Basin of south-central Alaska is a forearc basin containing voluminous Tertiary coal deposits with sufficient methane content to suggest a major coalbed gas resource. Coals ranging in thickness from 2 to 50 ft (0.6 to 15 m) and in gas content from 50 to 250 scf/ton (1.6 to 7.8 cm2/g) occur in Miocene-Oligocene fluvial deposits of the Kenai Group. These coals have been identified as the probable source of more than 8 tcf gas that has been produced from conventional sandstone reservoirs in the basin. Cook Inlet coals can be divided into two main groups: (1) those of bituminous rank in the Tyonek Formation that contain mainly thermogenic methane and are confined to the northeastern part of the basin (Matanuska Valley) and to deep levels elsewhere; and (2) subbituminous coals at shallow depths (<5000 ft [1524 m]) in the Tyonek and overlying Beluga formations, which contain mainly biogenic methane and cover most of the central and southern basin. Based on core and corrected cuttings-desorption analyses, gas contents average 230 scf/ton (7.2 cm2/g) for bituminous coals and 80 scf/ton (2.5 cm2/g) for subbituminous coals. Isotherms constructed for samples of both coal ranks suggest that bituminous coals are saturated with respect to methane, whereas subbituminous coals at shallow depths along the eroded west-central basin margin are locally unsaturated. A preliminary estimate of 140 tcf gas in place is derived for the basin.

  8. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  9. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less

  11. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  12. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  13. H-Coal Pilot Plant: letdown-valve experience through Coal Run No. 7 in the H-Coal Pilot Plant, E-3. [Runs 1 thru 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, N.D.

    1982-05-01

    This report covers the development of the various letdown valves used for the two-stage high pressure and temperature coal slurry letdown system as used at the H-Coal Pilot Plant. The period covered in this report was from the prestart-up oil circulation through Coal Runs No. 1 - No. 7. The valves covered are the Willis, which was used exclusively from Coal Runs No. 1 - No. 5, the Cameron and the Kieley and Mueller. The LV-202B Kieley and Mueller and LV-204B Cameron valves again showed little valve wear during short Coal Run No. 7, which demonstrates that the full potentialmore » of these valve designs has not been achieved yet. The problem with the Kieley and Mueller plug freezing will be looked at further, with addition of grease ports and a possible new designed plug shaft and stem guide being made for the valve. The Willis valves developed the same body leaks around the bonnet areas that occurred during Coal Run No. 6. This will be looked at before Coal Run No. 8, but no further trim development is planned. To summarize the progress of the LV-202 and LV-204 valves, the Willis was developed to last about 100 hours, which is the expected life for this valve design in our coal liquefaction process; whereas, the Cameron and Kieley and Mueller valves have lasted for days with good results. The Cameron and Kieley and Mueller valves still have not reached their full potential in plant operation, and, along with the new Masoneilan Sasol, Masoneilan Prototype, Hammel Dahl and Paul valves, future progress in Coal Run No. 8 for the high pressure and temperature letdown valves is anticipated.« less

  14. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less

  15. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in complete agreement. PSO technique had already been found a well-established technique to model SP anomalies. Therefore for successful control and mitigation, SP surveys coupled with Neural Network and PSO technique proves to be novel and economical approach along with other existing geophysical techniques. Keywords: PSO, Coal fire, Self-Potential, Inversion, Neural Network

  16. Feasibility study on the application of coal gangue as landfill liner material.

    PubMed

    Wu, Hui; Wen, Qingbo; Hu, Liming; Gong, Meng; Tang, Zili

    2017-05-01

    Coal gangue is one of the largest industrial solid waste all over the world, and many methods have been proposed for the recycling of coal gangue. In the present study, the feasibility of using coal gangue as landfill liner material is studied through a series of laboratory tests in terms of hydraulic conductivity, sorption characteristics and leaching behavior. The results indicated that the hydraulic conductivity of coal gangue could be smaller than the regulatory requirement 1×10 -7 cm/s with a void ratio less than 0.60. The batch sorption experiments performed on Pb 2+ and Zn 2+ illustrated that the coal gangue showed remarkable sorption capacity for the two heavy metals, and the sorption capacity for Pb 2+ was larger than that for Zn 2+ . Both the pseudo first-order and pseudo second-order models fitted well with the sorption kinetics data of the Pb 2+ and Zn 2+ on the coal gangue, and the Langmuir model was found to best-fit the sorption isotherms. The sorption capacity decreased in presence of multiple heavy metals, both for Pb 2+ and Zn 2+ . Concentrations of heavy metals leached from the coal gangue were all below the regulatory limits from China MEP and U.S. EPA. These desirable characteristics indicated that the coal gangue has potential to be used as landfill liner materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Towards "a different kind of beauty": responses to coal-based pollution in the Witbank coalfield between 1903 and 1948.

    PubMed

    Singer, Michal

    2011-01-01

    This article assesses the changing conceptions of the environmental impact of South African coal mining in the first half of the twentieth century, with special reference to the Witbank coalfield in the Mpumalanga province of South Africa. The anticipated development of the emerging coal town of Witbank was founded on the growing demand for coal. As Witbank's local landscape became visibly scarred, coal-based pollution was continually challenged and redefined. In an attempt to market electricity, and appease the doubts of potential consumers, attempts were made by Escom to romanticise features of Witbank's industrialised environment. Once mines were decommissioned, they were abandoned. Coal production increased dramatically during the Second World War, which provided an economic windfall for the local electrical, steel and chemical industries, placing undue pressure on the coal industry to step up production. The severe damage caused by coal mining during this period resulted in the ecological devastation of affected landscapes. The findings of an inter-departmental committee established to conduct research during the mid-1940s revealed the gravity of coal-based pollution, and set a precedent in the way that the state conceived of the impact of industry and mining. The report of this committee was completed in the wake of the war, by which time the Witbank coalfield had become one of the most heavily polluted regions of South Africa.

  18. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  19. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.

    PubMed

    Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng

    2017-12-21

    Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.

  20. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    USGS Publications Warehouse

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    Coal beds are considered to be a major source of nonassociated gas in the Rocky Mountain basins of the United States. In the San Juan basin of northwestern New Mexico and southwestern Colorado, significant quantities of natural gas are being produced from coal beds of the Upper Cretaceous Fruitland Formation and from adjacent sandstone reservoirs. Analysis of gas samples from the various gas-producing intervals provided a means of determining their origin and of evaluating coal beds as source rocks. The rank of coal beds in the Fruitland Formation in the central part of the San Juan basin, where major gas production occurs, increases to the northeast and ranges from high-volatile B bituminous coal to medium-volatile bituminous coal (Rm values range from 0.70 to 1.45%). On the basis of chemical, isotopic and coal-rank data, the gases are interpreted to be thermogenic. Gases from the coal beds show little isotopic variation (??13C1 values range -43.6 to -40.5 ppt), are chemically dry (C1/C1-5 values are > 0.99), and contain significant amounts of CO2 (as much as 6%). These gases are interpreted to have resulted from devolatilization of the humic-type bituminous coal that is composed mainly of vitrinite. The primary products of this process are CH4, CO2 and H2O. The coal-generated, methane-rich gas is usually contained in the coal beds of the Fruitland Formation, and has not been expelled and has not migrated into the adjacent sandstone reservoirs. In addition, the coal-bed reservoirs produce a distinctive bicarbonate-type connate water and have higher reservoir pressures than adjacent sandstones. The combination of these factors indicates that coal beds are a closed reservoir system created by the gases, waters, and associated pressures in the micropore coal structure. In contrast, gases produced from overlying sandstones in the Fruitland Formation and underlying Pictured Cliffs Sandstone have a wider range of isotopic values (??13C1 values range from -43.5 to -38.5 ppt), are chemically wetter (C1/C1-5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7). ?? 1989.

  1. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGES

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  2. Health Implications of Increased Coal Use in the Western States

    PubMed Central

    Guidotti, Tee L.

    1979-01-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803

  3. Health implications of increased coal use in the Western States.

    PubMed

    Guidotti, T L

    1979-07-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.

  4. Environmentally critical elements in channel and cleaned samples of Illinois coals

    USGS Publications Warehouse

    Demir, I.; Ruch, R.R.; Damberger, H.H.; Harvey, R.D.; Steele, J.D.; Ho, K.K.

    1998-01-01

    Sixteen trace and minor elements that occur in coal are listed among 189 substances identified as 'hazardous air pollutants' (HAPs) in the US Clean Air Act Amendments of 1990. We investigated the occurrence and cleanability of the 16 HAPs in Illinois coals, as a contribution to the discussion about the potential effect of pending environmental regulations on the future use of these coals in power generation. The average ash content of the samples of conventionally cleaned as-shipped coals is about 20% lower than that of standard channel samples. Conventional cleaning reduces the average concentrations of As, Cd, Co, Hg, Mn, Ni, Pb, Sb and Th in the as-shipped coals by more than 20% relative to channel samples. Thus, basing assessments of health risks from emissions of HAPs during coal combustion on channel samples without appropriate adjustment would overestimate the risk. Additional cleaning by froth-flotation reduces the ash content of finely-ground as-shipped coals by as much as 76% at an 80% combustibles recovery. Although the average froth-flotation cleanability for the majority of HAPs is less than that for ash, the cleanabilities in some individual cases approaches, or even exceeds, the cleanability for ash, depending on the modes of occurrences of the elements. ?? 1997 Elsevier Science Ltd.

  5. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614

  6. Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.

    PubMed

    Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M

    2015-12-15

    Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations.

  7. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  8. Effect of ground control mesh on dust sampling and explosion mitigation.

    PubMed

    Alexander, D W; Chasko, L L

    2015-07-01

    Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.

  9. Effect of ground control mesh on dust sampling and explosion mitigation

    PubMed Central

    Alexander, D.W.; Chasko, L.L.

    2017-01-01

    Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000

  10. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  11. Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash.

    PubMed

    Medunić, Gordana; Ahel, Marijan; Mihalić, Iva Božičević; Srček, Višnja Gaurina; Kopjar, Nevenka; Fiket, Željka; Bituh, Tomislav; Mikac, Iva

    2016-10-01

    This paper presents the levels of sulphur, polycyclic aromatic hydrocarbons (PAHs), and potentially toxic trace elements in soils surrounding the Plomin coal-fired power plant (Croatia). It used domestic superhigh-organic-sulphur Raša coal from 1970 until 2000. Raša coal was characterised by exceptionally high values of S, up to 14%, making the downwind southwest (SW) area surrounding the power plant a significant hotspot. The analytical results show that the SW soil locations are severely polluted with S (up to 4%), and PAHs (up to 13,535ng/g), while moderately with Se (up to 6.8mg/kg), and Cd (up to 4.7mg/kg). The composition and distribution pattern of PAHs in the polluted soils indicate that their main source could be airborne unburnt coal particles. The atmospheric dispersion processes of SO2 and ash particles have influenced the composition and distribution patterns of sulphur and potentially toxic trace elements in studied soils, respectively. A possible adverse impact of analysed soil on the local karstic environment was evaluated by cytotoxic and genotoxic methods. The cytotoxicity effects of soil and ash water extracts on the channel catfish ovary (CCO) cell line were found to be statistically significant in the case of the most polluted soil and ash samples. However, the primary DNA-damaging potential of the most polluted soil samples on the CCO cells was found to be within acceptable boundaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire.

    PubMed

    Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O

    2016-02-15

    Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important role to environment and human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    PubMed

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  14. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    PubMed Central

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants. PMID:26274060

  15. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  16. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  17. Atmospheric pollution in a coal mine region of Romania and solutions to assure sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irimie, I.I.; Tulbure, I.

    1996-12-31

    The present paper presents the following subjects regarding the atmospheric pollution in the Jiu-Valley coal mining region of Romania: identifying polluting sources, pointing out the pollution favoring conditions, the pollution impacts, and measures for short, middle, and long time, which could be taken in order to obtain a sustainable future development of this region. The importance of the problems presented in this paper is emphasized by the fact, that beside coking and fuel coal reserves, this region has a high touristic potential the year round.

  18. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    PubMed

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  19. Air quality and climate benefits of long-distance electricity transmission in China

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  20. Comparative assessment of water use and environmental implications of coal slurry pipelines

    USGS Publications Warehouse

    Palmer, Richard N.; James II, I. C.; Hirsch, R.M.

    1977-01-01

    With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)

  1. Prospects for coal briquettes as a substitute fuel for wood and charcoal in US Agency for International Development Assisted countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.

    1986-02-01

    Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer formmore » for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.« less

  2. Hydrolytic activity and metabolism of sediment and epilithon in streams draining mountaintop removal coal mining, West Virginia, U.S.A.

    EPA Science Inventory

    Mountaintop removal and valley filling (MTR/VF) is a method of coal mining used in the Central Appalachians. Regulations require that potential impacts to stream functions must be considered when determining the compensatory mitigation necessary for replacing aquatic resources un...

  3. THE USE OF A PRB TO TREAT GROUNDWATER IMPACTED BY COAL-COMBUSTION BY-PRODUCTS

    EPA Science Inventory

    The burning of coal for the production of electricity generates combustion by-products such as boiler bottom ash and fly ash. These ashes have the potential to release arsenic (As), boron (B), chromium (Cr), molybdenum (Mo), selenium (Se), vanadium (V), and zinc (Zn) to the envi...

  4. 30 CFR 764.17 - Hearing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... record of the hearing shall be made and preserved according to State law. No person shall bear the burden... State law. (2) Notice of the hearing shall be sent by certified mail to petitioners and intervenors, and... information on the potential coal resources of the area, the demand for coal resources, and the impact of such...

  5. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal.

    PubMed

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-06-01

    The aim of this work was to study the thermal properties and interactions during co-combustion of rape straw (RS) before and after water-washing with bituminous coal. A series of experiments was conducted to investigate the properties and interactions during co-combustion of RS with bituminous coal (at 10, 20, 40 and 60% RS). The feasibility and potential of water-washing as an RS pre-treatment was also explored. Reactivity and the amount of heat released followed a quadratic trend, while changes to the degree of interactions between the fuels conformed to a cosine curve. Water-washing increased the ignition and burn-out temperatures and slightly decreased reactivity. Demineralization negatively affected the previously synergistic co-firing relationship, nevertheless, the amount of heat released increased by 10.28% and the average activation energy (146kJ/mol) was lower than that of the unwashed blend (186kJ/mol). Overall, water-washing of RS could prove a useful pre-treatment before co-combustion with bituminous coal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Geochemistry of coalbed gas - a review

    USGS Publications Warehouse

    Clayton, J.L.

    1998-01-01

    Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, S.C.; Hamilton, L.D.

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less

  8. Depletion of Appalachian coal reserves - how soon?

    USGS Publications Warehouse

    Milici, R.C.

    2000-01-01

    Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, 'potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century. Published by Elsevier Science B.V.Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, `potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century.

  9. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and the main absorption bands and scattering bands were located and their association with composition and structure were analyzed and discussed. SEM micrographs will be collected and the composition and structure derived from the SEM micrographs will be discussed and compared with those derived from the Raman spectra and hyperspectral spectra.

  10. Water resources and potential effects of surface coal mining in the area of the Woodson Preference Right Lease Application, Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1987-01-01

    Federal coal lands of the Woodson Preference Right Lease Application are located in Dawson and Richland Counties, northeastern Montana. A probable mine area, comprised of the lease area and adjacent coal lands, contains about 220 million tons of recoverable lignite coal in the 12-37 ft thick Pust coal bed. A hydrologic study has been conducted in the area to describe the water resources and to evaluate potential effects of coal mining on the water resources. Geohydrologic data collected from wells and springs indicate that several aquifers exist in the area. Sandstone beds in the Tongue River Member of the Fort Union Formation (Paleocene age) are the most common aquifers and probably underlie the entire area. The Pust coal bed in the Tongue River Member is water saturated in part of the probable mine area and is dry in other parts of the probable mine area. Other aquifers, located mostly outside of the probable mine area, exist in gravel of the Flaxville Formation (Miocene of Pliocene age) and valley alluvium (Pleistocene and Holocene age). Chemical analyses of groundwater indicate a range in dissolved solids concentration of 240-2,280 mg/L. Surface water resources are limited. Most streams in the area are ephemeral and flow only in response to rainfall or snowmelt. Small reaches of the North and Middle Forks of Burns Creek have intermittent flow. Water sampled from a small perennial reach of the Middle Fork had a dissolved solids concentration of 700 mg/L. Mining of the Pust coal bed would destroy one spring and four stock wells, dewater areas of the Pust coal and sandstone aquifers, and probably lower water levels in seven stock and domestic wells. Mining in the valley of Middle Fork Burns Creek would intercept streamflow and alter flow characteristics of a small perennial reach of stream. Leaching of soluble minerals from mine spoils may cause a long-term degradation of the quality of water in the spoils and in aquifers downgradient from the spoils. Some of the effects on local water supplies could be mitigated by development of new wells in deeper sandstones of the Tongue River Member. Effects of mining on water resources would be minimized if only areas of dry coal were mined. (Author 's abstract)

  11. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  12. Inter-annual variability of wintertime PM2.5 chemical composition in Xi'an, China: Evidences of changing source emissions.

    PubMed

    Xu, Hongmei; Cao, Junji; Chow, Judith C; Huang, R-J; Shen, Zhenxing; Chen, L W Antony; Ho, Kin Fai; Watson, John G

    2016-03-01

    Chemical characteristics of PM2.5 in Xi'an in wintertime of 2006, 2008, and 2010 were investigated. Markers of OC2, EC1, and NO3(-)/SO4(2-) ratio were calculated to investigate the changes in PM2.5 emission sources over the 5-year period. Positive matrix factorization (PMF) model was used to identify and quantify the main sources of PM2.5 and their contributions. The results showed that coal combustion, motor vehicular emissions, fugitive dust, and secondary inorganic aerosol accounted for more than 80% of PM2.5 mass. The importance of these major sources to the PM2.5 mass varied yearly: coal combustion was the largest contributor (31.2% ± 5.2%), followed by secondary inorganic aerosol (20.9% ± 5.2%) and motor vehicular emissions (19.3% ± 4.8%) in 2006; the order was still coal combustion emissions (27.6% ± 3.4%), secondary inorganic aerosol (23.2% ± 6.9%), and motor vehicular emissions (20.9% ± 4.6%) in 2008; while coal combustion emission further decreased (24.1% ± 3.1%) with fugitive dust (19.4% ± 5.5%) increasing in 2010. The changes in PM2.5 chemical compositions and source contributions can be attributed to the social and economic developments in Xi'an, China, including energy structure adjustment, energy consumption, the expansion of civil vehicles, and the increase of urban construction activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less

  14. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    DOE R&D Accomplishments Database

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  16. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.

  17. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  18. Coalbed methane resources of the Appalachian Basin, eastern USA

    USGS Publications Warehouse

    Milici, Robert C.; Hatch, Joseph R.; Pawlewicz, Mark J.

    2010-01-01

    In 2002, the U.S. Geological Survey (USGS) assessed the technically recoverable, undiscovered coalbed-gas resources in the Appalachian basin and Black Warrior basin Assessment Provinces as about 15.5 trillion cubic feet. Although these resources are almost equally divided between the two areas, most of the production occurs within relatively small areas within these Provinces, where local geological and geochemical attributes have resulted in the generation and retention of large amounts of methane within the coal beds and have enhanced the producibility of the gas from the coal. In the Appalachian basin, coalbed methane (CBM) tests are commonly commercial where the cumulative coal thickness completed in wells is greater than three meters (10 ft), the depth of burial of the coal beds is greater than 100 m (350 ft), and the coal is in the thermogenic gas window. In addition to the ubiquitous cleating within the coal beds, commercial production may be enhanced by secondary fracture porosity related to supplemental fracture systems within the coal beds. In order to release the methane from microporus coal matrix, most wells are dewatered prior to commercial production of gas. Two Total Petroleum Systems (TPS) were defined by the USGS during the assessment: the Pottsville Coal-bed gas TPS in Alabama, and the Carboniferous Coal-bed Gas TPS in Pennsylvania, Ohio, West Virginia, eastern Kentucky, Virginia, Tennessee, and Alabama. These were divided into seven assessment units, of which three had sufficient data to be assessed. Production rates are higher in most horizontal wells drilled into relatively thick coal beds, than in vertical wells; recovery per unit area is greater, and potential adverse environmental impact is decreased.

  19. Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.

    2014-03-01

    In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.

  20. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    PubMed

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  1. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less

  2. Coalbed gas potential in the Pittsburgh-Huntington synclinorium, northern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Schwietering, J.F.; Repine, T.E.

    1991-03-01

    The West Virginia Geological and Economic Survey (WVGES) received a subcontract from the Texas Bureau of Economic Geology to conduct a geologic evaluation of critical production parameters for coalbed methane resources in the northern Appalachian coal basin. The study area is a northeast-southwest-trending ellipse that coincides with the axis of the Pittsburgh-Huntington Synclinorium in north central West Virginia and southwestern Pennsylvania. Coalbed gas resources there have been estimated to be 61 bcf in previous work funded by the Gas Research institute. Data used in that study were mainly core descriptions and drillers' logs from coal exploration cores. The current researchmore » will integrate data from the WVGES' coal, oil and gas, and ground water databases to more carefully determine the number and thicknesses of coals below the Pittsburgh, and their hydrologic setting. Main objectives are to determine: the number of coals present; the geographic and stratigraphic positions of the thickest coals; locations of depocenters with stacked coals; the pressure regime of the area and geologic factors contributing to it; ground-water circulation patterns; and the presence of any potentiometric anomalies. Local and regional stratigraphic and structural cross sections and lithofacies and coal occurrence maps will be made for the coal-bearing interval below the Pittsburgh coal to show the distribution, structural attitude, and depositional systems. Regional and local control of structural elements, including fractures, on gas producibility from coalbeds will be determined. Gas and water production data will be collected from two small areas of current production and mapped and compared to maps of geologic parameters. The goal is to measure the effect on production of geologic parameters in these coalbed gas fields, and determine the locations of other 'sweet spots' in these coal beds.« less

  3. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    USGS Publications Warehouse

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit accessibility of supercritical CO2 to coal matrix porosity, limiting the extent to which hydrocarbons are mobilized. Conversely, the enhanced recovery of some surrogates from core plugs relative to dry, ground coal samples might indicate that, once mobilized, supercritical CO2 is capable of transporting these constituents through coal beds. These results underscore the need for using intact coal samples, and for better characterization of forms of water in coal, to understand fate and transport of organic compounds during supercritical CO2 injection into coal beds.

  4. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    USGS Publications Warehouse

    Hackley, P.C.; Guevara, E.H.; Hentz, T.F.; Hook, R.W.

    2009-01-01

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600??m; 2000??ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100??m; 300??ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650??m; 5400??ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1??m; 3.3??ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.

  5. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    USGS Publications Warehouse

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  6. Coal conversion: description of technologies and necessary biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-08-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  7. Balanced program plan. Volume IV. Coal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C. R.; Reichle, D. E.; Gehrs, C. W.

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants. (auth)« less

  8. Balanced program plan. Volume 4. Coal conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  9. Study on systems based on coal and natural gas for producing dimethyl ether

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, L.; Hu, S.Y.; Chen, D.J.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systemsmore » with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.« less

  10. Coal liquefaction process streams characterization and evaluation: Analysis of Black Thunder coal and liquefaction products from HRI Bench Unit Run CC-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugmire, R.J.; Solum, M.S.

    This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less

  11. Importance of hard coal in electricity generation in Poland

    NASA Astrophysics Data System (ADS)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  12. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target themore » recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.« less

  13. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles

    NASA Astrophysics Data System (ADS)

    Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred

    2015-12-01

    A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (<3%). In Ústí nad Labem combustion of domestic brown coal was the most important source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with similar problems of atmospheric pollution to calculate the relative risk in epidemiological health studies for different sub-fractions of PM and UFP. This will enhance the meaningfulness of published relative risks in health studies based on total PM and UFP number concentrations.

  14. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health.

    PubMed

    Oliveira, Marcos L S; da Boit, Kátia; Pacheco, Fernanda; Teixeira, Elba C; Schneider, Ismael L; Crissien, Tito J; Pinto, Diana C; Oyaga, Rafael M; Silva, Luis F O

    2018-01-01

    Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning.

    PubMed

    Yang, Yi; Chen, Bo; Hower, James; Schindler, Michael; Winkler, Christopher; Brandt, Jessica; Di Giulio, Richard; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yuru; Priya, Shashank; Hochella, Michael F

    2017-08-08

    Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO 2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O 2x-1 with 4 ≤ x ≤ 9) from TiO 2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO 2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.

  16. Coal resources of the Fruitland Formation in part of the Ute Mountain Ute Indian Reservation, San Juan County, New Mexico

    USGS Publications Warehouse

    Roberts, Laura N. Robinson

    1991-01-01

    The coal-bearing Upper Cretaceous Fruitland Formation occupies an area of about 14 square miles in the extreme southeast corner of the Ute Mountain Ute Indian Reservation in San Juan County, New Mexico. In this area, the Fruitland Formation contains an estimated 252 million short tons of coal in beds that range from 1.2 to 14 feet thick. About 100 million short tons of coal occur under less than 500 feet of overburden in the Ute Canyon, Upper Main, and Main coal beds. These three coal beds reach a cumulative coal thickness of about 18 feet in a stratigraphic interval that averages about 120 feet thick in the prospecting permit area, which is located in the extreme southwestern part of the study area. The southwestern part of the study area is probably best suited for surface mining, although steep dips may reduce minability locally. A major haul road that was recently constructed across the eastern half of the study area greatly improves the potential for surface mining. Core sample analyses indicate that the apparent rank of the Ute Canyon, Upper Main, and Main coal beds is high-volatile C bituminous. Average heat-of-combustion on an as-received basis is 10,250 British thermal units per pound, average ash content is 15.5 percent, and average sulfur content is 1.0 percent.

  17. Simulation of the visual effects of power plant plumes

    Treesearch

    Evelyn F. Treiman; David B. Champion; Mona J. Wecksung; Glenn H. Moore; Andrew Ford; Michael D. Williams

    1979-01-01

    The Los Alamos Scientific Laboratory has developed a computer-assisted technique that can predict the visibility effects of potential energy sources in advance of their construction. This technique has been employed in an economic and environmental analysis comparing a single 3000 MW coal-fired power plant with six 500 MW coal-fired power plants located at hypothetical...

  18. Assessment of corn and banana leaves as potential standardized substrates for leaf decomposition in streams affected by mountaintop removal coal mining, West Virginia, USA

    EPA Science Inventory

    Mountaintop removal and valley filling is a method of coal mining that buries Central Appalachian headwater streams. A 2007 federal court ruling highlighted the need for measurement of both ecosystem structure and function when assessing streams for mitigaton. Rapid functional as...

  19. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    PubMed

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Quantifying the Impacts of Droughts on the Electricity Sector and its Associated Greenhouse Gas Emissions in the American West

    NASA Astrophysics Data System (ADS)

    Herrera-Estrada, J. E.; Sheffield, J.

    2016-12-01

    The electricity sector relies heavily on water, as it is needed for hydroelectric generation and to cool thermoelectric power plants. Droughts decrease river and reservoir levels, reducing the affected region's capacity for electricity generation. These cuts in electricity supply have to be replaced by more expensive alternatives with potentially higher associated greenhouse gas emissions (e.g. coal, natural gas, or imports) to meet the region's demand. To date, the quantification of the impacts of droughts on the electricity sector tends to be restricted to individual events, such as the recent California drought. In this work, the impacts of droughts on electricity prices paid by consumers and on greenhouse gas emissions from the electricity sector are calculated over the American West from 2001 to 2014 using monthly data. This region was selected because it falls within the Western Interconnection power grid, because of its important reliance on hydropower, and because it has large areas that are vulnerable to droughts due to their semi-arid climates. Furthermore, this regional approach allows us to quantify the effects of non-local droughts, i.e. droughts in neighboring states that affect electricity imports into a given state. Results show large heterogeneities in the effects of droughts across the region, given the diversity of energy sources used in each state. As expected, the effect of a local drought event on hydroelectricity is largest in California, Oregon, and Washington since they have the highest hydropower capacity. California and Oregon tend to replace a large portion of their lost hydroelectricity with natural gas, while Washington appears to rely more on imports from its neighbors. On the other hand, Montana, Nevada, and Utah, tend to rely more heavily on coal. The results also show that consumers in the residential, commercial, and industrial sectors may sometimes pay millions of dollars more for their electricity use at the state level due to the effects of a drought on the state's energy mix, as has been the case in California.

Top