Sample records for coal reference plants

  1. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  2. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  3. Dustfall design of open coal yard in the power plant-a case study on the closed reconstruction project of coal storage yard in shengli power plant

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Ji, Weidong; Zhang, Feifei; Yu, Wei; Zheng, Runqing

    2018-02-01

    This thesis, based on the closed reconstruction project of the coal storage yard of Shengli Power Plant which is affiliated to Sinopec Shengli Petroleum Administration, first makes an analysis on the significance of current dustfall reconstruction of open coal yard, then summarizes the methods widely adopted in the dustfall of large-scale open coal storage yard of current thermal power plant as well as their advantages and disadvantages, and finally focuses on this project, aiming at providing some reference and assistance to the future closed reconstruction project of open coal storage yard in thermal power plant.

  4. Preliminary assessment of alternative PFBC power plant systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less

  5. Determination of methane concentrations in shallow ground water and soil gas near Price, Utah

    USGS Publications Warehouse

    Naftz, David L.; Hadley, Heidi K.; Hunt, Gilbert L.

    1998-01-01

    Methane gas, commonly referred to as "natural gas," is being produced from coal beds in central Utah (fig. 1) at an increasing rate since the early 1990s. The methane was generated over millions of years during the formation of coal in the area. Coal originates as plant matter that has been deposited in a swamp-like environment and then decays as it is buried and compressed over geologic time. Giant fossilized footprints in the coal provide evidence that dinosaurs roamed and fed among the plentiful plants in these swamps (Hintze, 1979). Methane and carbon dioxide gas and water are produced in the coal as byproducts of coal formation (Sommer and Gloyn, 1993).

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  8. Coal-Quality Information - Key to the Efficient and Environmentally Sound Use of Coal

    USGS Publications Warehouse

    Finkleman, Robert B.

    1997-01-01

    The rock that we refer to as coal is derived principally from decomposed organic matter (plants) consisting primarily of the element carbon. When coal is burned, it produces energy in the form of heat, which is used to power machines such as steam engines or to drive turbines that produce electricity. Almost 60 percent of the electricity produced in the United States is derived from coal combustion. Coal is an extraordinarily complex material. In addition to organic matter, coal contains water (up to 40 or more percent by weight for some lignitic coals), oils, gases (such as methane), waxes (used to make shoe polish), and perhaps most importantly, inorganic matter (fig. 1). The inorganic matter--minerals and trace elements--cause many of the health, environmental, and technological problems attributed to coal use (fig. 2). 'Coal quality' is the term used to refer to the properties and characteristics of coal that influence its behavior and use. Among the coal-quality characteristics that will be important for future coal use are the concentrations, distribution, and forms of the many elements contained in the coal that we intend to burn. Knowledge of these quality characteristics in U.S. coal deposits may allow us to use this essential energy resource more efficiently and effectively and with less undesirable environmental impact.

  9. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  10. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.

    For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less

  12. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. P.N.; Peterson, G. R.

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less

  14. The Oligocene flora from the Uricani coalfield, Petrosani Basin, Romania

    NASA Astrophysics Data System (ADS)

    Pirnea, Roxana; Popa, Mihai E.

    2017-04-01

    The Petrosani Basin is a typical Oligocene - Miocene intramontaneous basin located in the South Carpathians. It has a SW-NE orientation and is 48-km long; its width is varying between 10 and 2 km, and it overlays the Danubian and Getic basements. The Oligocene sequences are filling the basin, with a thickness ranging between 300 and 500 m. They consist of clays, marls, bituminous shales, microconglomerates and limestones, including 22 coal beds. One essential feature of the Petrosani Basin is the occurrence of thick coal seams and the remains of a rich, 28 milion years old ecosystem. The studied material was collected from Uricani coal mine, from the „Lower Productive Horizon", Chattian in age (Upper Oligocene), and from Uricani coal waste dumps. The Lower Productive Horizon, also described as the Dalja-Uricani Formation, includes several coal seams and crops out in several areas (Buia et al., 2014). Collecting fossil plants from underground mining horizons represents a unique method for detailed understanding of coal bearing formations in a three-dimensional approach (Popa, 2011). Although the plant remains are represented by a large number of species, most specimens belong to the Family Lauraceae. The fossil flora is very well preserved, some of the leaves preserving their cuticles. The fossil plants from Uricani coal mine, Petro?ani Basin, are described, illustrated and discussed based on leaf impressions. The associated macroflora of Uricani coal mine comprises various leaf species of Daphnogene, Laurophyllum, Ocotea, Smilax and Alnus. Most of the studied woody plants are mesophytic, like Lauraceae (narrow-leaved Daphnogene, Laurophyllum), but the affinities of the plant remains from Uricani coalfield have not been clarified yet. Nonetheless, the taxonomic composition of the studied flora from Uricani coalfield points to a semi-tropical climate. The overall character of the depositional conditions of Petrosani Basin fit best to a flatland with surrounding uplands, within a typical intramontaneous depression. The fossil flora of the Petrosani Basin was first cited by Stur (1863). Pop (1975) contributed with a study on the geology of the Uricani mining field, with special emphasis on coalbeds. A paleobotanical overview of the plant remains from Petrosani Basin related to coal deposits was also published by Givulescu (1996). This paper refers to the Oligocene fossil flora of Uricani coalfield, as a part of the Petrosani Basin and to the reconstruction of its paleoenvironment. References: Buia, G., et al. (2014). Role of Jiu valley hard coal deposits between eastern and western european energetic constraints. 6th International Multidisciplinary Scientific Symposium „Universitaria Simpro 2014". Petrosani: 22-27. Givulescu, R. (1996). Flora Oligocena Superioara din Bazinul Petrosani (Flora fosila a Bazinului Vaii Jiului). Cluj-Napoca, Casa Cartii de Stiinta. Pop, E. (1975). Studiul geologic al campului minier Uricani cu privire speciala asupra caracteristicilor distinctive ale stratelor de carbuni si asupra tectonicii zacamantului: 206. Popa, M.E., 2011. Field and laboratory techniques in plant compressions: an integrated approach. Acta Palaeontologica Romaniae 7, 279-283. Stur, D. (1863). Bericht über die geoloische Übersichtsaufnahme des südliches Siebenbürgen im Sommer 1860. Jb. k.k. Geol. R.A. 13: 33-120.

  15. Chronic exposure to coal fly ash causes minimal changes in corticosterone and testosterone concentrations in male southern toads Bufo terrestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.K.; Mendonca, M.T.

    More than 50% of the electricity in the United States is produced by coal-burning power plants. The byproduct of coal-burning plants is coal fly ash, which contains increased concentrations of trace metals and is disposed of in collection basins. Southern toads (Bufo terrestris) frequently use these basins for reproduction. Male toads were collected in spring 2001 and 2002 from an ash basin and a reference site and divided into four groups: toads collected at the control site and maintained on (1) control substrate and food or (2) ash and contaminated food and toads collected at the ash site and maintainedmore » in (3) control or (4) ash conditions. Blood was collected periodically during 5 months to determine testosterone and corticosterone concentrations. Reference to ash toads exhibited a significant, transient increase in corticosterone at 4 weeks, but neither corticosterone nor testosterone continued to increase beyond this time. In contrast, toads caught and maintained on ash did not exhibit increased corticosterone. Testosterone in these toads appeared to be unrelated to ash exposure. This unexpected lack of a corticosterone response and no effect on testosterone suggests that toads chronically exposed to trace metals can acclimate to a polluted environment, but they may still experience subtle long-term consequences.« less

  16. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Coal procurement activities. Technica report No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-14

    This report consists of reference material taken from Erie Mining Company project files and includes the following: (1) Investigation of the Main Coal Producing Fields in the United States: This report identifies potential coal fiels for gasifier feedstock and factors influencing coal selection. The report analyzes coal fields located in five separate regions of the United States. Three design coals are discussed and lab reports have been included. Also included are cost considerations for selected coals and preliminary cost data and transportation routing. (2) Analysis of Test Coals Received at Erie Mining Company: Rosebud, Clarion, and Clarion-Brookfield-Kittaning coal samples weremore » received and analyzed at Erie Mining Company. The screen analysis indicated the severe decrepitation of the Rosebud western coal. (3) Criteria for Gasifier Coal: In this study, BCI states that gasifier feed should have the following characteristics: (1) the ratio between the upper and lower size for coal should be 3:1; (2) coal fines should not exceed 10%; (3) coal grading limits which can be handled are maximum range 3'' x 1'', minimum range - 1 1/2'' x 1/2''.« less

  17. Genotoxic and biochemical changes in Baccharis trimera induced by coal contamination.

    PubMed

    Menezes, A P S; Da Silva, J; Rossato, R R; Santos, M S; Decker, N; Da Silva, F R; Cruz, C; Dihl, R R; Lehmann, M; Ferraz, A B F

    2015-04-01

    The processing and combustion of coal in thermal power plants release anthropogenic chemicals into the environment. Baccharis trimera is a common plant used in folk medicine that grows readily in soils degraded by coal mining activities. This shrub bioaccumulates metals released into the environment, and thus its consumption may be harmful to health. The purpose of this study was to investigate the phytochemical profile, antioxidant capacity (DPPH), genotoxic (comet assay) and mutagenic potential (CBMN-cyt) in V79 cells of B. trimera aqueous extracts in the coal-mining region of Candiota (Bt-AEC), and in Bagé, a city that does not experience the effects of exposure to coal (Bt-AEB, a reference site). In the comet assay, only Bt-AEC was genotoxic at the highest doses (0.8mg/mL and 1.6mg/mL), compared to the control. For extracts from both areas, mutagenic effects were observed at higher concentrations compared to the control. The cell damage parameters were significantly high in both extracts; however, more striking values were observed for Bt-AEC, up to the dose of 0.8mg/mL. In chemical analysis, no variation was observed in the contents of flavonoids and phenolic compounds, neither the antioxidant activity, which may suggest that DNA damage observed in V79 cells was induced by the presence of coal contaminants absorbed by the plant. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Instrumental sensing of stationary source emissions. [sulphur dioxide remote sensing for coal-burning power plants

    NASA Technical Reports Server (NTRS)

    Herget, W. F.; Conner, W. D.

    1977-01-01

    A variety of programs have been conducted within EPA to evaluate the capability of various ground-based remote-sensing techniques for measuring the SO2 concentration, velocity, and opacity of effluents from coal-burning power plants. The results of the remote measurements were compared with the results of instack measurements made using EPA reference methods. Attention is given to infrared gas-filter correlation radiometry for SO2 concentration, Fourier-transform infrared spectroscopy for SO2 concentration, ultraviolet matched-filter correlation spectroscopy for SO2 concentration, infrared and ultraviolet television for velocity and SO2 concentration, infrared laser-Doppler velocimetry for plume velocity, and visible laser radar for plume opacity.

  19. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  20. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  1. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  2. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  3. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  4. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  5. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  6. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  7. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  8. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  9. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  10. Coal blending preparation for non-carbonized coal briquettes

    NASA Astrophysics Data System (ADS)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  11. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    NASA Astrophysics Data System (ADS)

    Bellmann, B.; Creutzenberg, O.; Ernst, H.; Muhle, H.

    2009-02-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m3. The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  12. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2004-12-02

    This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.« less

  13. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey.

    PubMed

    Parmaksiz, A; Arikan, P; Vural, M; Yeltepe, E; Tükenmez, I

    2011-11-01

    A total of 77 coal, slag and fly ash samples collected from six thermal power plants were measured by gamma-ray spectrometry. The average (226)Ra activity concentrations in coal, slag and fly ash were measured as 199.8±16.7, 380.3±21.8 and 431.5±29.0 Bq kg(-1), respectively. The average (232)Th activity concentrations in coal, slag and fly ash were measured as 32.0±2.4, 74.0±9.0 and 87.3±9.8 Bq kg(-1), respectively. The average (40)K activity concentrations in coal, slag and fly ash were found to be 152.8±12.1, 401.3±25.0 and 439.0±30.2 Bq kg(-1), respectively. The radium equivalent activities of samples varied from 147.6±8.5 to 1077.4±53.3 Bq kg(-1). The gamma and alpha index of one thermal power plant's fly ash were calculated to be 3.5 and 5 times higher than that of the reference values. The gamma absorbed dose rates were found to be higher than that of the average Earth's crust. The annual effective dose of residues measured in four thermal power plants were calculated higher than that of the permitted dose rate for public, i.e. 1 mSv y(-1).

  14. The distribution and sea-air transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.

    PubMed

    Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing

    2013-09-01

    The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.

  15. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  16. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    NASA Astrophysics Data System (ADS)

    Więckol-Ryk, Angelika; Smoliński, Adam

    2017-10-01

    Co-firing of biomass with coal for energy production is a well-known technology and plays an important role in the electricity sector. The post-combustion capture integrated with biomass-fired power plants (Bio-CCS) seems to be a new alternative for reducing greenhouse gas emissions. This study refers to the best known and advanced technology for post-combustion CO2 capture (PCC) based on a chemical absorption in monoethanolamine (MEA). The co-firing of hard coal with four types of biomass was investigated using a laboratory fixed bed reactor system. The comparison of gaseous products emitted from the combustion of coal and different biomass blends were determined using gas chromatography. Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  17. Study on the coal mixing ratio optimization for a power plant

    NASA Astrophysics Data System (ADS)

    Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.

    2017-12-01

    For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.

  18. Analysis of Combustion Process of Sewage Sludge in Reference to Coals and Biomass

    NASA Astrophysics Data System (ADS)

    Środa, Katarzyna; Kijo-Kleczkowska, Agnieszka

    2016-06-01

    Production of sewage sludge is an inseparable part of the treatment process. The chemical and sanitary composition of sewage sludge flowing into the treatment plant is a very important factor determining the further use of the final product obtained in these plants. The sewage sludge is characterized by heterogeneity and multi-components properties, because they have characteristics of the classical and fertilizer wastes and energetic fuels. The thermal utilization of sewage sludge is necessary due to the unfavorable sanitary characteristics and the addition of the industrial sewage. This method ensures use of sewage sludge energy and return of expenditure incurred for the treatment of these wastes and their disposal. Sewage sludge should be analyzed in relation to conventional fuels (coals and biomass). They must comply with the applicable requirements, for example by an appropriate degree of dehydration, which guarantee the stable and efficient combustion. This paper takes the issue of the combustion process of the different sewage sludge and their comparison of the coal and biomass fuels.

  19. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  20. Lichen deterioration about a coal-fired steam electric generating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, E.L.; Zeyen, R.J.

    1979-01-01

    A survey of three common epiphytic species of foliose lichens was conducted about a coal-fired steam electric station in North-Central Minnesota during the summer of 1977 to assess general lichen health on a gradient basis from a point-source of air pollution. Health, as judged by abnormal form and color, of nearly 3500 lichen specimens was recorded in 35 vegetation survey plots from a total of 291 trees. Lichen discoloration and degeneration decreased with increased distance from the power plant, and little deterioration was observed beyond 3 miles. Within the plant vicinity, lichen damage was noted on tree boles facing themore » plant which were impacted with fly ash. Maximum damage of lichens followed the pattern of prevailing winds (NW-SE). Sulfur analysis of lichen thalli was not correleated with visible damage distribution tended to decrease at the most distant plots (30 mi. from source). Considering the sensitivity of foliose lichens to declining air quality (especially SO/sub 2/ pollution), pollution sources in the rural environment are bound to affect lichen communities, as this study indicates. More sophisticated lichen surveys coupled with future monitoring of pollution would be a valuable contribution to the general environmental impact assessment of coal-fired electrical energy production. 19 references, 3 figures, 1 table.« less

  1. 75 FR 41838 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Institutional Coal Users;'' EIA-4, ``Weekly Coal Monitoring Report--Coke Plants'' (Standby); EIA-5, ``Quarterly Coal Consumption and Quality Report--Coke Plants;'' EIA-6Q (Schedule Q), ``Quarterly Coal Report... Coal Consumption and Quality Report--Coke Plants) EIA proposes to make changes to the Form EIA-5 survey...

  2. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  3. Environmental analysis for pipeline gas demonstration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plantmore » of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.« less

  4. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  5. Committed CO2 Emissions of China's Coal-fired Power Plants

    NASA Astrophysics Data System (ADS)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed emissions. The national and provincial CO2 emission mitigation objectives might be greatly restricted by existing and planned power plants in China. The policy implications of our results have also been discussed.

  6. Randolph Plant passes 60-million-ton milestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouls, M.W.; Adam, B.O.

    1983-09-01

    Peabody Coal Co.'s Randolph coal preparation plant has processed 60 million tons of coal during 10 years of operation. The plant, which is in Illinois, receives coal from 3 mines and 2 more will eventually send their output for cleaning. Coal from one mine travels 2 miles overland to a 30,000 ton conical bunker constructed of Reinforced Earth. Clean coal is supplied for electricity generation. The plant uses water-only processes, with a jig and three stages of hydrocyclones. A flowsheet of the scalper circuit is given.

  7. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  8. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  9. The influence of PM2.5 coal power plant emissions on environment PM2.5 in Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Li, Zhi; Zhang, Dan; Zhang, He; Zhang, Huafei

    2018-02-01

    In recent years, in the Northeast of China, the heating period comes with large range of haze weather. All the units of coal power plants in Jilin Province have completed the cogeneration reformation; they provide local city heat energy. Many people believe that coal power plants heating caused the heavy haze. In is paper, by compared concentration of PM2.5 in environment in heating period and non heating period, meanwhile the capacity of local coal power plants, conclude that the PM2.5 emission of coal power plants not directly cause the heavy haze in Changchun and Jilin in the end of October and early November. In addition, the water-soluble iron composition of PM2.5 coal power plant emissions is compared with environment, which further proves that the heating supply in coal power plants is not the cause of high concentration of PM2.5 in Jilin province.

  10. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  11. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  12. Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, W.A.; Congdon, J.; Ray, J.K.

    2000-04-01

    Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. The authors document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures of the spine, whereas zero and 4% of larvae from two reference sites had similar malformations. Larvae from the most heavily polluted site had significantly higher tissue concentrations of potentially toxic trace elements, including As, Cd, Se, Cu, Cr,more » and V, compared with conspecifics from the reference sites. In addition, malformed larvae from the cost contaminated site had decreased swimming speeds compared with those of normal larvae from the same site. The authors hypothesize that the complex mixture of contaminants produced by coal combustion is responsible for the high incidence of malformations and associated effects on swimming performance.« less

  13. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  14. JPRS Report, Science & Technology China: Energy

    DTIC Science & Technology

    1992-10-26

    The Xiaolongtan power plant is located at the Xiaolongtan open-cut coal mine and uses its coal directly from the conveyer belt. The first...which has resulted in high coal consumption, large power use by the plants, and low full-staff labor productivity and economic results. Examine coal ...consuming an additional 70 million tons-plus of raw coal . Examine the power used at power plants. The efficiency of the blowers, water pumps,

  15. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    PubMed

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases).

  16. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  17. Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran

    NASA Astrophysics Data System (ADS)

    Moore, F.; Esmaeili, A.

    2009-04-01

    Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.

  18. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 1, May--July, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during the first Quarter of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for this effort. An evaluation of the washability characteristics of five samples of two coals (Piast and Janina) showed that {open_quotes}compliance-quality{close_quotes} stoker coals could be produced which contained less than 640 g of SO{sub 2}/KJ (1.5 lbs SO{sub 2}/MMBtu) at acceptable plant yields by washing in heavy media cyclones. A search for long-term sources of raw coal to feed the proposed new 300 tph stoker coal preparation plant was initiated. As the quantity of stoker coal that will be produced (300 tph) at the new plant will exceed the demand by MPEC, a search for other and additional potential markets was begun. Because the final cost of the stoker coal will be influenced by such factors as the plant`s proximity to both the raw coal supply and the customers, the availability and cost of utilities, and the availability of suitable refuse disposal areas, these concerns were the topic of discussions at the many meetings that were held between EFH Coal and the Polish Partners.« less

  19. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  20. Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA

    USGS Publications Warehouse

    Oliphant, Adam J.; Wynne, R.H.; Zipper, Carl E.; Ford, W. Mark; Donovan, P. F.; Li, Jing

    2017-01-01

    Invasive plants threaten native plant communities. Surface coal mines in the Appalachian Mountains are among the most disturbed landscapes in North America, but information about land cover characteristics of Appalachian mined lands is lacking. The invasive shrub autumn olive (Elaeagnus umbellata) occurs on these sites and interferes with ecosystem recovery by outcompeting native trees, thus inhibiting re-establishment of the native woody-plant community. We analyzed Landsat 8 satellite imagery to describe autumn olive’s distribution on post-mined lands in southwestern Virginia within the Appalachian coalfield. Eight images from April 2013 through January 2015 served as input data. Calibration and validation data obtained from high-resolution aerial imagery were used to develop a land cover classification model that identified areas where autumn olive was a primary component of land cover. Results indicate that autumn olive cover was sufficiently dense to enable detection on approximately 12.6 % of post-mined lands within the study area. The classified map had user’s and producer’s accuracies of 85.3 and 78.6 %, respectively, for the autumn olive coverage class. Overall accuracy was assessed in reference to an independent validation dataset at 96.8 %. Autumn olive was detected more frequently on mines disturbed prior to 2003, the last year of known plantings, than on lands disturbed by more recent mining. These results indicate that autumn olive growing on reclaimed coal mines in Virginia and elsewhere in eastern USA can be mapped using Landsat 8 Operational Land Imager imagery; and that autumn olive occurrence is a significant landscape vegetation feature on former surface coal mines in the southwestern Virginia segment of the Appalachian coalfield.

  1. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  2. Radiological impact of airborne effluents of coal and nuclear plants.

    PubMed

    McBride, J P; Moore, R E; Witherspoon, J P; Blanco, R E

    1978-12-08

    Radiation doses from airborne effluents of model coal-fired and nuclear power plants (1000 megawatts electric) are compared. Assuming a 1 percent ash release to the atmosphere (Environmental Protection Agency regulation) and 1 part per million of uranium and 2 parts per million of thorium in the coal (approximately the U.S. average), population doses from the coal plant are typically higher than those from pressurized-water or boiling-water reactors that meet government regulations. Higher radionuclide contents and ash releases are common and would result in increased doses from the coal plant. The study does not assess the impact of non-radiological pollutants or the total radiological impacts of a coal versus a nuclear economy.

  3. Identification of plant megafossils in Pennsylvanian-age coal

    USGS Publications Warehouse

    Winston, R.B.

    1989-01-01

    Criteria are provided for identification of certain Pennsylvanian-age plant megafossils directly from coal based on their characteristic anatomical structures as documented from etched polished coal surfaces in comparison with other modes of preservation. Lepidophloios hallii periderm, Diaphorodendron periderm, an Alethopteris pinnule, and a Cordaites leaf were studied in material in continuity with adjacent permineralized peat (carbonate coal-ballas). Calamites wood in attachment to a pitch cast and a Psaronius stem in coal in attachment to a fusinitized Psaronius inner root mantle were studied. Sigillaria was identified in coal by comparison to its structure in permineralized peat. Other plant tissues with characteristic structures were found but could not be attributed to specific plants. ?? 1989.

  4. Homer City Multistream Coal Cleaning Demonstration: A progress report. Report for January 1979-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, D.W.; Higgins, S.T.; Slowik, A.A.

    1984-08-01

    The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed as a result of an extensive comparative evaluation of flue gas desulfurization (FGD) and physical coal cleaning. The Homer City System, the Multistream Coal Cleaning System (MCCS), was chosen as an economical alternative to FGD. The plant contains circuits for cleaning coarse, medium, and fine coals and for recovering fine and very fine coals.more » The dominant type of cleaning equipment used in the plant is the dense medium cyclone. The original '93 plant' configuration was never able to clean coal to the conditions specified in the plant design. An extensive test and evaluation program was begun to identify and correct the causes of plant operating problems. After extensive pilot plant equipment tests and engineering studies were completed, recommendations were made for plant modifications necessary to correct the design and operating deficiencies of the plant. Extensive modifications were made to one of two parallel processing trains in the plant (the 'B' circuits), and a test program was initiated to evaluate these corrective measures. The modified 'B' circuits have not yet met design conditions.« less

  5. Life Cycle Assessment of Coal-fired Power Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less

  6. Reports of coal’s terminal decline may be exaggerated

    NASA Astrophysics Data System (ADS)

    Edenhofer, Ottmar; Steckel, Jan Christoph; Jakob, Michael; Bertram, Christoph

    2018-02-01

    We estimate the cumulative future emissions expected to be released by coal power plants that are currently under construction, announced, or planned. Even though coal consumption has recently declined and plans to build new coal-fired capacities have been shelved, constructing all these planned coal-fired power plants would endanger national and international climate targets. Plans to build new coal-fired power capacity would likely undermine the credibility of some countries’ (Intended) Nationally Determined Contributions submitted to the UNFCCC. If all the coal-fired power plants that are currently planned were built, the carbon budget for reaching the 2 °C temperature target would nearly be depleted. Propositions about ‘coal’s terminal decline’ may thereby be premature. The phase-out of coal requires dedicated and well-designed policies. We discuss the political economy of policy options that could avoid a continued build-up of coal-fired power plants.

  7. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.

  8. Study of flue-gas temperature difference in supercritical once-through boiler

    NASA Astrophysics Data System (ADS)

    Kang, Yanchang; Li, Bing; Song, Ang

    2018-02-01

    The 600 MW coal-fired once-through Boilers with opposed firing at a power plant are found to experience marked temperature variation and even overtemperature on the wall of the heating surface as a result of flue-gas temperature (FGT) variation in the boiler. In this study, operational adjustments were made to the pulverizing, combustion, and secondary air box systems in these boilers, in order to solve problems in internal combustion. The adjustments were found to reduce FGT difference and optimize the boiler’ combustion conditions. The results of this study can provide a reference for optimization of coal-fired boiler of the same type in similar conditions.

  9. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2012-09-18

    Regulations monitoring SO(2), NO(X), mercury, and other metal emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment studies have previously estimated the environmental benefits of displacing coal with natural gas for electricity generation, by comparing systems that consist of individual natural gas and coal power plants. However, such system comparisons may not be appropriate to analyze impacts of coal plant retirement in existing power fleets. To meet this limitation, simplified economic dispatch models for PJM, MISO, and ERCOT regions are developed in this study to examine changes in regional power plant dispatch that occur when coal power plants are retired. These models estimate the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs, with cheaper plants being dispatched first. Five scenarios of coal plant retirement are considered: retiring top CO(2) emitters, top NO(X) emitters, top SO(2) emitters, small and inefficient plants, and old and inefficient plants. Changes in fuel use, life cycle greenhouse gas emissions (including uncertainty), and SO(2) and NO(X) emissions are estimated. Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. In addition, changes in marginal damage costs due to SO(2), and NO(X) emissions are estimated using the county level marginal damage costs reported in the Air Pollution Emissions Experiments and Policy (APEEP) model, which are a proxy for measuring regional impacts of SO(2) and NO(X) emissions. Results suggest that location specific parameters should be considered within environmental policy frameworks targeting coal plant retirement, to account for regional variability in the benefits of reducing the impact of SO(2) and NO(X) emissions.

  10. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 11, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of themore » many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.« less

  11. Coal resources of the eastern regions of Russia for power plants of the Asian super ring

    NASA Astrophysics Data System (ADS)

    Sokolov, Aleksander; Takaishvili, Liudmila

    2018-01-01

    The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.

  12. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers.

    PubMed

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, Kc

    2013-07-01

    Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities.

  13. Survey of electric utility demand for coal. [1972-1992; by utility and state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asbury, J.G.; Caruso, J.V.; Kouvalis, A.

    1979-08-01

    This report presents the results of a survey of electric utility demand for coal in the United States. The sources of survey information are: (1) Federal Energy Regulatory Commission Form 423 data on utility coal purchases during the period July 1972 through December 1978 and (2) direct telephone survey data on utility coal-purchase intentions for power plants to be constructed by 1992. Price and quantity data for coal used in existing plants are presented to illustrate price and market-share trends in individual coal-consuming states during recent years. Coal source, quality, quantity, and transportation data are reported for existing and plannedmore » generating plants.« less

  14. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  15. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin.

    PubMed

    Love, Amit; Banerjee, B D; Babu, C R

    2013-08-01

    Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.

  16. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized emissions were performed. Stage I toxicological assessments were carried out in Sprague-Dawley rats. Biological endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. No significant differences between exposed animals and sham animals (exposed to filtered air) were observed for any of the endpoints; histopathological results are pending and will be reported in the next semiannual report. The scenarios evaluated during this reporting period were slightly modified from those originally proposed. We substituted a new scenario, secondary aerosol + SOA, to investigate the effects of a strongly acidic aerosol with a biogenic component. Since we did not observe any biological response to this scenario, the neutralized secondary aerosol scenario (i.e., oxidized emissions + ammonia) was deemed unnecessary. Moreover, in light of the lack of response observed in the Stage I assessment, it was decided that a Stage II assessment (evaluation of cardiac function in a compromised rat model) was unlikely to provide useful information. However, this model will be employed at Plant 1 and/or 2. During this reporting period, significant progress was made in planning for fieldwork at Plant 1. Stack sampling was carried out at the plant in mid-December to determine the concentration of primary particles. It was found that PM{sub 2.5} mass concentrations were approximately three times higher than those observed at Plant 0. In mid-February, installation and setup for the mobile laboratories began. Animal exposures are scheduled to begin at this plant on March 21, 2005. During the next reporting period, we will initiate fieldwork at Plant 1. At either or both Plants 1 and 2, a detailed Stage II assessment will be performed, even if no significant findings are observed in Stage I. The next semiannual report is expected to include a detailed description of the fieldwork at Plant 1, including toxicological findings and interpretation.« less

  17. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGES

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  18. Emergence and growth of plant species in coal mine soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, A.D.; Mitchell, G.F.; Tucker, T.C.

    1979-01-01

    Experiments were conducted in the laboratory and greenhouse in Arizona with the following objectives: to evaluate the chemical properties of undisturbed soil, surface-mined coal land (coal mine soil) on the Black Mesa Coal Mine, and Gila loam soil; and to study the emergence of seven plant species in the greenhouse in Gila loam soil and coal mine soil. The pH of coal mine soil (6.2) was lower than the pH of undisturbed soil (7.5) or Gila loam (7.6). The total soluble salts in coal mine soil (3241) and undisturbed soil (4592) were much higher than in Gila loam (378); however,more » coal mine soil was lower in total soluble salts than undisturbed soil. The nitrogen content of coal mine soil was higher than the nitrogen content of undisturbed soil or gila loam. Emergence percentages for seven plant species grown in coal mine soil were similar to emergence percentages for the same species grown in Gila loam. Alfalfa (Medicago sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L. em Thell.) had from 84 to 93% emergence in coal mine soil. Indian ricegrass (Oryzopsis hymenoides Roem. and Shult), fourwing saltbush (Atriplex canescens Pursh), yellow sweetclover (Melilotus officinalis Lam.), and winterfat (Euroti lanata Pursh.) emerged <35% in coal mine soil and Gila loam. Plant growth data from forage species grown in the greenhouse indicate that coal mine soil has a lower fertility level than does Gila loam soil. When supplied with optimum soil moisture and plant nutrients, coal mine soil produced approximately the same yields of forage from alfalfa, barley, and wheat as were produced in Gila loam under the same soil-moisture and fertility conditions.« less

  19. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  20. A modification of procedures for petrographic analysis of tertiary Indonesian coals

    NASA Astrophysics Data System (ADS)

    Moore, T. A.; Ferm, J. C.

    A study undertaken to characterize the Eocene coals from southeast Kalimantan has shown that standard preparation procedures fail to capture some basic petrographic properties of the coal. Modification of these procedures permits recognition of distinct plant parts and tissues embedded in finer grained matrix components. Plant parts and tissues can be classified on the basis of morphology and degree of degradation. The highest concentration and best preservation of plant parts and tissues occurs in banded coal and is lowest in the non-banded coal. Use of these procedures, which relates megascopic appearance to petrographic character, should allow more precise utilization of the coal.

  1. The characterization of PM2.5 composition in flue gasses discharged into the air from selected coal-fueled power plants in Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Li, Zhi; Wang, Jian; Zhang, Dan; Gao, Yang; Zhang, He

    2018-02-01

    According to the installed capacity, coal type and the kinds of environmental protection facilities of coal-fired power plants in Jilin Province in China, five typical coal-fired units were chosen. PM2.5 from final stack outlet of five typical units was gain by Dekati PM2.5(Finland). The characteristics of PM2.5 composition in flue gases discharged into the air from selected coal-fueled power plants are analyzed in this paper.

  2. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  3. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less

  4. DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Hadley; R. Mike Mishra; Michael Placha

    1999-01-27

    The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less

  5. The use of tetragnathid spiders as bioindicators of metal exposure at a coal ash spill site.

    PubMed

    Otter, Ryan R; Hayden, Mary; Mathews, Teresa; Fortner, Allison; Bailey, Frank C

    2013-09-01

    On 22 December 2008, a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Fuel Plant (TN, USA) failed, resulting in the largest coal ash spill in US history. The present study was designed to determine sediment metal concentrations at multiple site locations and to determine whether site-specific bioaccumulation of metals existed in tetragnathid spiders. Selenium and nickel were the only 2 metals to exceed the US Environmental Protection Agency sediment screening levels. Selenium concentrations in spiders were significantly higher at ash-affected sites than in those from reference sites. The ratio of methylmercury to total mercury in spiders was found to be similar to that in other organisms (65-75%), which highlights the potential use of tetragnathid spiders as an indicator species for tracing contaminant transfer between the aquatic and terrestrial ecosystems. Copyright © 2013 SETAC.

  6. Mechanism and kinetics of uranium adsorption onto soil around coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yasim, Nurzulaifa Shaheera Erne Mohd; Ariffin, Nik Azlin Nik; Mohammed, Noradila; Ayob, Syafina

    2017-11-01

    Coal is the largest source of energy in Malaysia providing approximately 80 % of all entire power needs. The combustion of coal concentrates a high content of heavy metals and radioactive elements in the ashes and sludge. Hazardous emissions from coal combustion were deposited into the soil and most likely transported into the groundwater system. The presence of radioactive materials in the ground water system can cause a wide range of environmental impacts and adverse health effects like cancer, impairment of neurological function and cardiovascular disease. However, the soil has a natural capability in adsorption of radioactive materials. Thus, this study was evaluated the adsorption capacity of Uranium onto the soil samples collected nearby the coal-fired power plants. In the batch experiment, parameters that were set constant include pH, the amount of soil and contact time. Various initial concentrations of radionuclides elements in the range of 2 mg/L - 10 mg/L were used. The equilibrium adsorption data was analyzed by the Freundlich isotherm and Langmuir isotherms. Then, the influences of solution pH, contact time and temperature on the adsorption process were investigated. The kinetics of radioactive materials was discussed by pseudo-first-order and pseudo-second-order rate equation. Thus, the data from this study could provide information about the potentiality of soil in sorption of radioactive materials that can be leached into groundwater. Besides that, this study could also be used as baseline data for future reference in the development of adsorption modeling in the calculation of distribution coefficient.

  7. Subtask 4.27 - Evaluation of the Multielement Sorbent Trap (MEST) Method at an Illinois Coal-Fired Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlish, John; Thompson, Jeffrey; Dunham, Grant

    2014-09-30

    Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer amore » potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels that would interfere with accurate measurement at U.S. hazardous air pollutant emission limits for existing coal-fired power plant units. Longer sampling times employed during this test program did appear to improve comparative results for these metals. Although the sorbent contribution to the sample was reduced through improved trap design, additional research is still needed to explore lower-background materials before the MEST-M application can be considered as a potential alternative method for all of the trace metals. This subtask was funded through the EERC–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Electric Power Research Institute, the Illinois Clean Coal Institute, Southern Illinois Power Company, and the Center for Air Toxic Metals Affiliates Program.« less

  8. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    PubMed

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  9. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  10. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  11. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    PubMed

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  12. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  13. The joint Australia/Federal Republic of Germany feasibility study on the conversion of Australian coals into liquid fuels in Australia

    NASA Astrophysics Data System (ADS)

    Imhausen, K. H.

    1982-08-01

    The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.

  14. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    PubMed

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary for further reduction of elemental Hg discharge in the long-term.

  15. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous construction of new coal-fired power plants driven by increased electricity demand would pose a potential threat to climate change mitigation and China's peak carbon pledge, and more aggressive CO2 emission reduction policy should be implemented in the future.

  16. Strip mine reclamation: criteria and methods for measurement of revegetation success. Progress report, April 1, 1980-March 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrel, J.E.; Kucera, C.L.; Johannsen, C.J.

    1980-12-01

    During this contract period research was continued at finding suitable methods and criteria for determining the success of revegetation in Midwestern prime ag lands strip mined for coal. Particularly important to the experimental design was the concept of reference areas, which were nearby fields from which the performance standards for reclaimed areas were derived. Direct and remote sensing techniques for measuring plant ground cover, production, and species composition were tested. 15 mine sites were worked in which were permitted under interim permanent surface mine regulations and in 4 adjoining reference sites. Studies at 9 prelaw sites were continued. All sitesmore » were either in Missouri or Illinois. Data gathered in the 1980 growing season showed that 13 unmanaged or young mineland pastures generally had lower average ground cover and production than 2 reference pastures. In contrast, yields at approximately 40% of 11 recently reclaimed mine sites planted with winter wheat, soybeans, or milo were statistically similar to 3 reference values. Digital computer image analysis of color infrared aerial photographs, when compared to ground level measurements, was a fast, accurate, and inexpensive way to determine plant ground cover and areas. But the remote sensing approach was inferior to standard surface methods for detailing plant species abundance and composition.« less

  17. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2005-09-30

    This report documents progress made on the subject project during the period of March 1, 2005 through August 31, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 1, located in the Southeast. Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + secondary organic aerosol (SOA)--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Stage I assessment endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. Stage II assessments included continuous ECG monitoring via implanted telemeters and blood chemistry (complete blood count, circulating cytokines (interleukins-1 and -6), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-{alpha}), and endothelin-1). Only a subset of exposure data was available at the time of preparation of this report. Continuous PM{sub 2.5} mass (TEOM) results indicate a mass concentration of 14 {micro}g/m{sup 3} for the primary particle scenario, and a range of 151 to 385 {micro}g/m{sup 3} for the oxidized emissions scenarios. Toxicological results obtained to date from Plant 1 indicate subtle biological responses to some of the exposure scenarios. We observed statistically significant changes in several breathing pattern parameters, including tidal volume and frequency. For one scenario (oxidized emissions + SOA), we observed a significant increase in Enhanced Pause (Penh), a parameter that may reflect airflow restriction. However, the respiratory changes are very subtle and do not present a clear picture of a particular respiratory effect (e.g., airway restriction, sensory irritation, or pulmonary irritation). A significant increase in lung chemiluminescence (a marker of oxidative stress in lung tissue) in exposed animals (vs. air-exposed controls) was observed in animals exposed to oxidized emissions + SOA. No changes were observed in heart tissue, nor in any other scenario. Stage II assessments were conducted to the secondary + SOA scenario; ECG and blood analysis data are pending. Planning was initiated for Plant 2, located in the Midwest. Because of the requirement for both the FGD and the SCR to be concurrently operational for appropriate reaction conditions, fieldwork at Plant 2 is scheduled for Summer 2006. During the next reporting period, we will complete all remaining exposure and toxicological analyses for Plant 1, and the next semiannual report will include a detailed description of these data and their interpretation. We are also in the process of preparing a topical report for Plant 0.« less

  18. Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, U.S.A.

    USGS Publications Warehouse

    Winston, R.B.

    1988-01-01

    To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%. Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less). In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance. In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings. Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps. Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant. ?? 1988.

  19. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants thatmore » capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.« less

  20. Spatial Distribution and Trend of CH4, NO2, CO and Ozone during 2003-2015 over Coal Fired Power Plants in US

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Reyes, C.; Singh, R. P.

    2016-12-01

    Coal fired power plants are the sources of atmospheric pollution and poor air quality in many parts of the world especially in India and China. The greenhouse emissions from the coal fired power plants are considered as threat to the climate and human health. About 572 coal fired power plants (up to 2012) are operational, especially in the mid and eastern parts of US. We have analyzed satellite measured carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2), ozone (O3) and meteorological parameters for the period 2003-2015. In this study, we have considered 30 power plants, covering 10 x10surrounding area and over 11 regions of US in a grid of about 50 x50 to 60 x60. In general, most of the coal fired power plants show a decreasing trend of CO, whereas NO2 follow a similar trend over the power plants located in the eastern parts. Our analysis shows that the clean air act is strictly followed by the coal fired power plants in the eastern US compared to power plants located in the mid and western parts. The CH4 concentrations over the eastern parts show higher concentrations compared to mid and western regions in the period 2003-2015. Higher concentrations and seasonal variability of greenhouse gases is dependent on the prevailing meteorological conditions.

  1. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  3. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  4. Coal Data Browser

    EIA Publications

    The Coal Data Browser gives users easy access to coal information from EIA's electricity and coal surveys as well as data from the Mine Safety and Health Administration and trade information from the U.S. Census Bureau. Users can also see the shipment data from individual mines that deliver coal to the U.S. electric power fleet, have the ability to track supplies delivered to a given power plant, and to see which mines serve each particular plant.

  5. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 7, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1995-12-31

    This report describes the progress made during this reporting period of a two-year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions--MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators--for the execution of this effort. A long- term contract for the procurement of 750,000 tons of 20 mm. {times} 0 raw coal for the new plant has been negotiated with the Katowice Coal Holding Company. This long-term lease includes a site near the defunct Kazimierz-Julius preparation plant that has all of the infrastructure needed to build and operate the proposed 300 tph stoker coal preparation plant. The search for markets for utilizing surplus production from the new plant continues. Bid prices for a prefabricated (modular) 300-tph turnkey preparation plant delivered to Poland for preparing a stoker coal ranged from $3.2 to $3.5 million dollars (US). A commitment has been negotiated with Bank PKO S.A. to provide $2 million in cost-share financing toward the capital cost of the project. This sum, when added to the $2.4 million in DOE- BPU funds will be adequate to meet the $3 to $3.5 million needed to finance the purchase, erection and start-up of the 300 tph processing plant.« less

  6. Central Heating Plant Coal Use Handbook. Volume 1: Technical Reference.

    DTIC Science & Technology

    1996-11-01

    variation of a dry desulfurization system simply uses dry calcium hydroxide that is injected into the flue gas stream before entry to a fabric filter...97/14, Voll 173 competitive capital and operating costs compared with conventional technology using flue gas desulfurization reduced NOx emissions...ferric iron in slag, expressed as a percentage of the total iron calculated as ferric iron FGD: Flue gas desulfurization filter: A device for

  7. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  8. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  9. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 2, August--October, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during the second Quarter of a two year project to demonstrate that the air pollution, from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland, can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators for this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Staszic Mine were evaluated. The data show that the ash content of this coal can be reduced from 24.4 percent to 6.24 percent by washing in a heavy media cyclone at 1.825 sp.gr.; the actual yield of clean coal would be 76.1 percent. The quest for long-term sources of raw coal to feed the proposed 300 tph stoker coal preparation plant continued throughout the reporting period. Meetings were held with Polish coal preparation equipment suppliers to obtain price and delivery quotations for long lead-time process equipment. Preliminary cost evaluations were the topic of several meetings with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project. The search for markets for surplus production from the new plant continued.« less

  10. Experience in feeding coal into a liquefaction process development unit

    NASA Technical Reports Server (NTRS)

    Akhtar, S.; Friedman, S.; Mazzocco, N. J.; Yavorsky, P. M.

    1977-01-01

    A system for preparing coal slurry and feeding it into a high pressure liquefaction plant is described. The system was developed to provide supporting research and development for the Bureau of Mines coal liquefaction pilot plant. Operating experiences are included.

  11. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  12. Refining and end use study of coal liquids II - linear programming analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for themore » petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.« less

  13. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  14. Dose assessment for various coals in the coal-fired power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antic, D.; Sokcic-Kostic, M.

    1993-01-01

    The radiation exposure of the public in the vicinity of a coal-fired power plant has been studied. The experimental data on uranium, thorium, and potassium content in selected coals from Serbia and Bosnia have been used to calculate the release rates of natural radionuclides from the power plant. A generalized model for analysis of radiological impact of an energy source that includes the two-dimensional version of the cloud model simulates the transport of radionuclides released to the atmosphere. The inhalation dose rates are assessed for various meteorological conditions.

  15. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.

  16. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.; Andersson, L.

    1992-12-01

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage & Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less

  17. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.; Andersson, L.

    1992-12-01

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less

  18. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  19. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  20. RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT

    EPA Science Inventory

    Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...

  1. How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale.

    PubMed

    Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J

    2014-05-06

    One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.

  2. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  3. Economic assessment of coal-burning locomotives: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurrymore » as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.« less

  4. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  5. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).

  6. Coal liquefaction processes and development requirements analysis for synthetic fuels production

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Focus of the study is on: (1) developing a technical and programmatic data base on direct and indirect liquefaction processes which have potential for commercialization during the 1980's and beyond, and (2) performing analyses to assess technology readiness and development trends, development requirements, commercial plant costs, and projected synthetic fuel costs. Numerous data sources and references were used as the basis for the analysis results and information presented.

  7. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  8. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Treesearch

    David Nicholls; Zackery Wright; Daisy Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  9. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana

    2018-08-01

    This paper presents the environmental radiation risk assessment based on two software program approaches ERICA Tool (version 1.2) and RESRAD BIOTA (version 1.5) to estimate dose rates to terrestrial biota in the area around the largest coal fired power plant in Serbia. For dose rate assessment software's default reference animals and plants and the best estimated values of activity concentrations of 238 U, 234 U, 234 Th, 232 Th, 230 Th, 226 Ra, 210 Pb, 210 Po, 137 Cs in soil were used. Both approaches revealed the highest contribution to the internal dose rate due to 226 Ra and 210 Po, while 137 Cs contributed the most to the external dose rate. In the investigated area total dose rate to biota derived using ERICA Tool ranged from 0.3 to 14.4 μGy h -1 . The natural radionuclides exhibited significantly higher contribution to the total dose rate than the artificial one. In the investigated area, only dose rate for lichens and bryophytes exceeded ERICA Tool screening value of total dose rate of 10 μGy h -1 suggested as confident that environmental risks are negligible. The assessed total dose rates for reference animals and plants using RESRAD BIOTA were found to be 7 and 3 μGy h -1 , respectively. In RESRAD BIOTA - Level 3, 10 species (Lumbricus terrestris, Rana lessonae, Sciurus vulgaris, Anas platyrhynchos, Lepus europaeus, Vulpes vulpes, Capreolus capreolus, Suss crofa, Quercu srobur, Tilia spp.) representative for the study area were modeled. Among them the highest total dose rate (4.5 μGy h -1 ) was obtained for large mammals. Differences in the predicted dose rates to biota using the two software programs are the consequence of the difference in the values of transfer parameters used to calculate activity concentrations in biota. Doses of ionizing radiation estimated in this study will not exhibit deterministic effects at the population level. Thus, the obtained results indicate no significant radiation impact of coal fired power plant operation on terrestrial biota. This paper confirms the use ERICA Tool and RESRAD BIOTA softwares as flexible and effective means of radiation impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Small, modular, low-cost coal-fired power plants for the international market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Frain, B.; Borck, B.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermalmore » rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.« less

  11. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less

  12. Energy analysis of coal, fission, and fusion power plants

    NASA Astrophysics Data System (ADS)

    Tsoulfanidis, N.

    1981-04-01

    The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.

  13. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  14. Coal flow aids reduce coke plant operating costs and improve production rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  15. STUDY OF RADON, THORON EXHALATION AND NATURAL RADIOACTIVITY IN COAL AND FLY ASH SAMPLES OF KOTA SUPER THERMAL POWER PLANT, RAJASTHAN, INDIA.

    PubMed

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B K; Sapra, B K; Kumar, Rajesh

    2016-10-01

    Electricity generation in India is largely dependent on coal-based thermal power plants, and increasing demand of energy raised the coal consumption in the power plants. In recent years, study of natural radioactivity content and radon/thoron exhalation from combustion of coal and its by-products has given considerable attention as they have been recognised as one of the important technically enhanced naturally occurring radioactive materials. In the present study, radon, thoron exhalation rate and the radioactivity concentration of radionuclides in coal and fly ash samples collected from Kota Super Thermal Power Plant, Rajasthan, India have been measured and compared with data of natural soil samples. The results have been analysed and discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  17. Synfuels and the energy transition

    NASA Astrophysics Data System (ADS)

    Balzhiser, R. E.

    1981-08-01

    Various synfuel options and their impact on the electric utility industry are discussed. The energy transition for the U.S.A. is seen as moving from natural fluid fuels to solid fuels and renewable energy resources. The key to this transition is electrification, which can encompass both nuclear and renewable resources, centralized and dispersed technologies. It is shown that the fraction of total energy converted to electricity has risen steadily for the past 30 years, reaching 33% last year. The abundance and cost of production of the various fossil energy resources, including natural gas, heavy oil, oil shale, and coal are considered. EPRI analyses indicate that an integrated-combined-cycle power plant could be competitive with conventional coal plant technology. These plants would use only half the water of current coal-fired plants, would meet tighter sulfur emission standards, and would produce a vitreous ash that is less leachable than the ash from today's coal plants. Solvent-refined coal processes, currently being developed in the U.S.A. are a second approach to converting coal to liquid fuels. It is pointed out, however, that synfuels will complement, not replace, other sources of energy in the continued electrification of the U.S.A.

  18. H-Coal Pilot Plant: letdown-valve experience through Coal Run No. 7 in the H-Coal Pilot Plant, E-3. [Runs 1 thru 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, N.D.

    1982-05-01

    This report covers the development of the various letdown valves used for the two-stage high pressure and temperature coal slurry letdown system as used at the H-Coal Pilot Plant. The period covered in this report was from the prestart-up oil circulation through Coal Runs No. 1 - No. 7. The valves covered are the Willis, which was used exclusively from Coal Runs No. 1 - No. 5, the Cameron and the Kieley and Mueller. The LV-202B Kieley and Mueller and LV-204B Cameron valves again showed little valve wear during short Coal Run No. 7, which demonstrates that the full potentialmore » of these valve designs has not been achieved yet. The problem with the Kieley and Mueller plug freezing will be looked at further, with addition of grease ports and a possible new designed plug shaft and stem guide being made for the valve. The Willis valves developed the same body leaks around the bonnet areas that occurred during Coal Run No. 6. This will be looked at before Coal Run No. 8, but no further trim development is planned. To summarize the progress of the LV-202 and LV-204 valves, the Willis was developed to last about 100 hours, which is the expected life for this valve design in our coal liquefaction process; whereas, the Cameron and Kieley and Mueller valves have lasted for days with good results. The Cameron and Kieley and Mueller valves still have not reached their full potential in plant operation, and, along with the new Masoneilan Sasol, Masoneilan Prototype, Hammel Dahl and Paul valves, future progress in Coal Run No. 8 for the high pressure and temperature letdown valves is anticipated.« less

  19. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates aremore » high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, S.C.; Hamilton, L.D.

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaygusuz, K.

    Exergy analysis is a general method for efficiency analysis of systems and processes. The use of the exergy concept and the analysis of ultimate efficiencies of processes is more or less still limited to the academic world. There are several reasons why its industrial use is still limited. To overcome some of the difficulties in industrial applications of energy analysis, it has made use of exergy analysis. The chemical exergy of a substance is the maximum work that can be obtained from it by taking it to chemical equilibrium with the reference environment at a constant temperature and pressure. Themore » first law analysis gives only the quantity of energy, while the second law defines the quality of energy also. The projected increase in coal utilization in power plants makes it desirable to evaluate the energy content of coal both quantitatively and qualitatively. In the present study, the chemical exergies of some coals of good quality in Turkey were calculated with the BASIC program by using second law analysis and the results were given as tabulated.« less

  2. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less

  3. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  4. Coal mine burns drainage gas to generate power for profit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholes, W.A.

    A recently commissioned gas turbine power plant that uses methane gas recovered from a coal mine is described. The power plant uses the ASEA Stal GT35B series gas turbines with a base load rating on gas of 12.9 MW at 29.3% efficiency. The plant was installed at a cost of $4 million, as part of an extensive system for removing the methane from the coal mine, enabling higher ratio of coal production to be achieved in safety with modern longwall mining techniques. The plant will save the mine up to $250,000 per month on its electricity bill plus generate profitmore » from the sale of surplus power to the local activity.« less

  5. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  6. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  7. Pre-feasibility study for construction of a commercial coal hydrogenation plant

    NASA Astrophysics Data System (ADS)

    Hahn, W.; Wilhelm, H.; Kleinhueckelkotten, H.; Schmedeshagen, B.

    1982-11-01

    The technical problems, a suitable site and the unsatisfactory economics hinder the realization of a commercial coal liquefaction plant in Germany were identified. It is found that a plant for hydrogenation of coal and heavy oil according to the updated bergius-Pier process can be built. The improvement of acceptable reactor loading and increase of product yield was considered. The infrastructure aspects of a site for the plant which covers 300 hectars as well as eventually existing atmospheric pollution conditions in the environment are also considered.

  8. GE pilot plant gasifies all coal types and grades without pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    A pilot-scale coal gasification plant at General Electric Company's Research and Development Center, Schenectady, New York, is converting more than three-quarters of a ton of low-grade coal per hour into 100,000 cubic feet of fuel gas suitable for running electric power plants. GE is also going to test new ideas for coal feeding and stirring the reacting mixture to prevent caking. One unique approach will be the use of an extruder to feed coal continuously into the pressurized gasifier through a gas-tight seal, much as toothpaste is squeezed from a tube. The 6-inch-diameter rod of fuel that leaves the extrudermore » is comprised of a mixture of fine coal particles and tar (the latter is a by-product of the gasification process). Once inside, the rod is broken into chunks to form the bed being gasified.« less

  9. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  10. A study of industrial hydrogen and syngas supply systems

    NASA Technical Reports Server (NTRS)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  11. ACUTE PULMONARY AND SYSTEMIC EFFECTS OF INHALED COAL FLY ASH IN RATS: COMPARISON TO AMBIENT ENVIRONMENTAL PARTICLES

    EPA Science Inventory

    Although primary particle emissions of ash from coal-fired power plants are well controlled, coal fly ash (CFA) can still remain a significant fraction of the overall particle exposure for some plant workers and highly impacted communities. The effect of CFA on pulmonary and syst...

  12. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  13. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  14. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 6, July - September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1995-09-01

    This report describes the progress made during this reporting period of a project to demonstrate that the air pollution from a traveling- grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators -- for the execution of this effort. The terms of a long- term contract for the procurement of 750,000 tons of 20 mm x 0 raw coal for the new plant have been negotiated with the Katowice Holding Company. This draft contract currently is still under legal review. The negotiated price is near that of the Polish government`s established price of $32/ton. Biprostal, an engineering firm located in Krakow, continued performing the many environmental and permitting activities that are required by the various levels of the Polish government before the plant can be constructed and operated. The search for markets for utilizing surplus production from the new plant continues. Because of the unanticipated delays encountered during the onset of the project with forming the EFH Coal/Polish partnership and in negotiating long-term raw coal supply contracts, a third 90-day, no-cost time extension was requested.« less

  15. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  16. Baccharis trimera (Less.) DC as genotoxicity indicator of exposure to coal and emissions from a thermal power plant.

    PubMed

    Menezes, Ana Paula Simões; Da Silva, Juliana; Roloff, Joice; Reyes, Juliana; Debastiani, Rafaela; Dias, Johnny F; Rohr, Paula; de Barros Falcão Ferraz, Alexandre

    2013-10-01

    During coal combustion, hazardous elements are discharged that impair environmental quality. Plant cover is the first available surface for the atmospheric pollutants in terrestrial ecosystems. The aim of this study was to evaluate genotoxicity in the aqueous extract of the native plant, Baccharis trimera, exposed to coal and emissions from a thermal power plant (coal-fired power plant in Candiota, Brazil), correlating seasonality, wind tunnel predominance, and presence of inorganic elements. The presence of inorganic elements in the aerial parts of B. trimera was analyzed by particle-induced X-ray emission (PIXE) spectrometry, and genotoxicity was evaluated by ex vivo comet assay. The genotoxic effects of aqueous extracts of B. trimera from four sites located in the area around power plant were analyzed by comet assay in peripheral human lymphocytes. Winter samples showed greater levels of metals than summer samples. Genotoxicity was detected in B. trimera extracts collected from the region exposed to extraction and burning coal. Extracts from the site impacted by the dominant wind induced more damage to DNA than those from other sites. Based on our data, we can suggest that in winter the inorganic elements from extraction and burning of coal and carried through the wind tunnel were responsible for the genotoxicity observed in aqueous extract of B. trimera.

  17. Status of H-Coal commercial activities. [Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.N. Jr.

    1981-01-01

    The H-Coal process is a development of Hydrocarbon Research, Inc. (HRI). It converts coal by catalytic hydrogenation to substitutes for petroleum ranging from a low sulfur fuel oil to an all distillate synthetic crude, the latter representing a potential source of raw material for the petrochemical industry. The process is a related application to HRI's H-Oil process which is used commercially for the desulfurization of residual oils from crude oil refining. A large scale pilot plant was constructed at Catlettsburg, Kentucky that is designed to process 200 to 600 TPD of coal. The paper includes an update on the keymore » activities associated with the Breckinridge Project: Pilot Plant H-Coal at Catlettsburg, Kentucky; commercial design activities in Houston; and permit and EIS activities for the Addison, Kentucky plant site.« less

  18. CHANGES IN TERRESTRIAL ECOLOGY RELATED TO A COAL-FIRED POWER PLANT: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This report summarizes the effects of a coal-fired power plant on terrestrial plants and animals. Research was conducted from 1971 through 1977 at the Columbia Generating Station in the eastern flood-plain of the Wisconsin River in south-central Wisconsin. Initial studies were la...

  19. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  20. Optimization Review, Fairfield Coal Gasification Plant Superfund Site, Fairfield, Iowa

    EPA Pesticide Factsheets

    The Fairfield Coal Gasification Plant (FCGP) also known as the Fairfield Former Manufactured Gas Plant (MGP) is located in the southwest 1/4 of the southeast 1/4, Section 26, Township 72 North, Range 10 West of Jefferson County, Iowa.

  1. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  2. Opportunities for wind and solar to displace coal and associated health impacts in Texas

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.; Strasert, B.; Slusarewicz, J.

    2017-12-01

    Texas uses more coal for power production than any other state, but also leads the nation in wind power while lagging in solar. Many analysts expect that more than half of coal power plants may close within the next decade, unable to compete with cheaper natural gas and renewable electricity. To what extent could displacing coal with wind and solar yield benefits for air quality, health, and climate? Here, we present modeling of the ozone, particulate matter, and associated health impacts of each of 15 coal power plants in Texas, using the CAMx model for air quality and BenMAP for health effects. We show that health impacts from unscrubbed coal plants near urban areas can be an order of magnitude larger than some other facilities. We then analyze the temporal patterns of generation that could be obtained from solar and wind farms in various regions of Texas that could displace these coal plants. We find that winds along the southern Gulf coast of Texas exhibit strikingly different temporal patterns than in west Texas, peaking on summer afternoons rather than winter nights. Thus, wind farms from the two regions along with solar farms could provide complementary sources of power to displace coal. We quantify several metrics to characterize the extent to which wind and solar farms in different regions provide complementary sources of power that can reliably displace traditional sources of electricity.

  3. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  5. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.

    PubMed

    Tian, Hezhong; Wang, Yan; Xue, Zhigang; Qu, Yiping; Chai, Fahe; Hao, Jiming

    2011-07-15

    Over half of coal in China is burned directly by power plants, becoming an important source of hazardous trace element emissions, such as mercury (Hg), arsenic (As), and selenium (Se), etc. Based on coal consumption by each power plant, emission factors classified by different boiler patterns and air pollution control devices configuration, atmospheric emissions of Hg, As, and Se from coal-fired power plants in China are evaluated. The national total emissions of Hg, As, and Se from coal-fired power plants in 2007 are calculated at 132 t, 550 t, and 787 t, respectively. Furthermore, according to the percentage of coal consumed by units equipped with different types of PM devices and FGD systems, speciation of mercury is estimated as follows: 80.48 t of Hg, 49.98 t of Hg(2+), and 1.89 t of Hg(P), representing 60.81%, 37.76%, and 1.43% of the totals, respectively. The emissions of Hg, As, and Se in China's eastern and central provinces are much higher than those in the west, except for provinces involved in the program of electricity transmission from west to east China, such as Sichuan, Guizhou, Yunnan, Shaanxi, etc. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  7. Study of Natural Radioactivity, Radon Exhalation Rate and Radiation Doses in Coal and Flyash Samples from Thermal Power Plants, India

    NASA Astrophysics Data System (ADS)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B. K.; Sapra, B. K.; Kumar, Rajesh

    Coal is one of the most important source used for electrical power generation. Its combustion part known as fly ash is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products have significant amounts of radionuclide's including uranium, thorium which is the ultimate source of the radioactive gas radon and thoron respectively. Radiation hazard from airborne emissions of coal-fired power plants have been cited as possible causes of health in environmental. Assessment of the radiation exposure from coal burning is critically dependent on the concentration of radioactive elements in coal and in the fly ash. In the present study, samples of coal and flyash were collected from Rajghat Power Plant and Badarpur Thermal Power Plant, New Delhi, India. Radon exhalation is important parameter for the estimation of radiation risk from various materials. Solis State Nuclear Track Detector based sealed Can Technique (using LR-115 type II) has been used for measurement radon exhalation rate. Also accumulation chamber based Continuous Radon Monitor and Continuous Thoron Monitor have been used for radon masss exhalation and thoron surface exhalation rate respectively. Natural radioactivity has been measured using a low level NaI(Tl) detector based on gamma ray spectrometry.

  8. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 3, November--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.« less

  9. Environmental impact of coal industry and thermal power plants in India.

    PubMed

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs). The problems associated with the use of coal are low calorific value and very high ash content. The ash content is as high as 55-60%, with an average value of about 35-40%. Further, most of the coal is located in the eastern parts of the country and requires transportation over long distances, mostly by trains, which run on diesel. About 70% oil is imported and is a big drain on India's hard currency. In the foreseeable future, there is no other option likely to be available, as the nuclear power programme envisages installing 20,000 MWe by the year 2020, when it will still be around 5% of the installed capacity. Hence, attempts are being made to reduce the adverse environmental and ecological impact of coal-fired power plants. The installed electricity generating capacity has to increase very rapidly (at present around 8-10% per annum), as India has one of the lowest per capita electricity consumptions. Therefore, the problems for the future are formidable from ecological, radio-ecological and pollution viewpoints. A similar situation exists in many developing countries of the region, including the People's Republic of China, where coal is used extensively. The paper highlights some of these problems with the data generated in the author's laboratory and gives a brief description of the solutions being attempted. The extent of global warming in this century will be determined by how developing countries like India manage their energy generation plans. Some of the recommendations have been implemented for new plants, and the situation in the new plants is much better. A few coal washeries have also been established. It will be quite some time before the steps to improve the environmental releases are implemented in older plants and several coal mines due to resource constraints.

  10. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  11. Carbon dioxide emission factors for U.S. coal by origin and destination

    USGS Publications Warehouse

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  12. UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS AT A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report gives results of tests of a 1700 cu m/hr University of Washington Electrostatic Spray Scrubber pilot plant on a coal-fired boiler to demonstrate its effectiveness for controlling fine particle emissions. The multiple-pass, portable pilot plant combines oppositely charg...

  13. DOE studies on coal-to-liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  14. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    NASA Astrophysics Data System (ADS)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence suggests that CO2 degassing was important in coal-ball formation in the Herrin Coal, which mainly occurred sequentially upward with peat accumulation in the sites studied.

  15. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20 year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335 and 442 % for SO2, NOx and CO2, respectively, and decreased by 23 % for PM2.5. Driven by the accelerated economy growth, large power plants were constructed throughout the country after 2000, resulting in dramatic growth in emissions. Growth trend of emissions has been effective curbed since 2005 due to strengthened emission control measures including the installation of flue-gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination for temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  16. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  17. Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

  18. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  19. Alterations in antioxidant defense system of workers chronically exposed to arsenic, cadmium and mercury from coal flying ash.

    PubMed

    Zeneli, Lulzim; Sekovanić, Ankica; Ajvazi, Majlinda; Kurti, Leonard; Daci, Nexhat

    2016-02-01

    Humans are exposed to different stress factors that are responsible for over-production of reactive oxygen species. Exposure to heavy metals is one of these factors. The aim of the study was to analyze the effect of chronic exposure to heavy metals through coal flying ash on the efficiency of antioxidative defensive mechanisms, represented by the activity of superoxide dismutase, glutathione peroxidase and ascorbic acid. Nonessential elements such as arsenic and mercury levels showed a significant increase (p > 0.001) in the power plant workers rather than in the control subjects. There were no significant differences of blood cadmium between power plant workers and control subjects. We found a significant positive correlation (p < 0.05) between BAs/SZn (r = 0.211), BAs/BSe (r = 0.287), BCd/SCu (r = 0.32) and BHg/BSe (r = 0.263) in the plant workers. Red blood cell antioxidant enzymes and plasma ascorbic acid were significantly lower in power plants workers than in the control group (p < 0.002). We can conclude that levels of mercury, arsenic and cadmium in blood, despite their concentration within the reference values, significantly affect plasma ascorbic acid concentration, superoxide dismutase and glutathione peroxidase activity, which are able to increase the risk of oxidative stress.

  20. Water-carbon trade-off in China's coal power industry.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz; Mo, Hongpin; Zhao, Zhongnan; Liu, Zhu

    2014-10-07

    The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity.

  1. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  2. Yttria-stabilized zirconia solid oxide electrolyte fuel cells: Monolithic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at: (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H2 or simulated coal gas and air or oxygen.

  3. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less

  4. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Larson; Robert Williams; Thomas Kreutz

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less

  5. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  6. Breckinridge Project, initial effort. Report VII, Volume II. Environmental baseline report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Ashland Synthetic Fuels, Inc. (ASFI) and Airco Energy Company, Inc. (AECI) have recently formed the Breckinridge Project and are currently conducting a process and economic feasibility study of a commercial scale facility to produce synthetic liquid fuels from coal. The coal conversion process to be used is the H-COAL process, which is in the pilot plant testing stage under the auspices of the US Department of Energy at the H-COAL Pilot Plant Project near Catlettsburg, Kentucky. The preliminary plans for the commercial plant are for a 18,140 metric ton/day (24,000 ton/day) nominal coal assumption capacity utilizing the abundant high sulfurmore » Western Kentucky coals. The Western Kentucky area offers a source of the coal along with adequate water, power, labor, transportation and other factors critical to the successful siting of a plant. Various studies by federal and state governments, as well as private industry, have reached similar conclusions regarding the suitability of such plant sites in western Kentucky. Of the many individual sites evaluated, a site in Breckinridge County, Kentucky, approximately 4 kilometers (2.5 miles) west of the town of Stephensport, has been identified as the plant location. Actions have been taken to obtain options to insure that this site will be available when needed. This report contains an overview of the regional setting and results of the baseline environmental studies. These studies include collection of data on ambient air and water quality, sound, aquatic and terrestrial biology and geology. This report contains the following chapters; introduction, review of significant findings, ambient air quality monitoring, sound, aquatic ecology, vegetation, wildlife, geology, soils, surface water, and ground water.« less

  7. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  8. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  9. Coping with coal quality impacts on power plant operation and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less

  10. Cause and cure for high volatile coal and corrosive gases at TXI, Midlothian Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahid, A.; Bottelberghe, B.; Crowther, J.

    2007-07-01

    The plant has raw materials which are high in pyritic sulfur. The coal mill uses the preheater exhaust gases, which have elevated amounts of SO{sub 2}. The coal being used is highly volatile. Therefore the coal mill bag filter had few occurrences of smoldered bags causing potentially unsafe conditions. This problem was solved by implementing some operational changes like reducing the mill exit temperature based on dewatering curve of coal and making the system more inert. To achieve this water had to be added into the system. When the mill exit temperature was reduced, the operating temperatures were below themore » sulfuric and hydrochloric acid dew points. Because of this corrosive acid stream in the gas flow, the bag filter started corroding. En route to solving these issues, the plant neutralized the acid by adding the raw meal dust and changing the bag filter into a stainless steel construction. Furthermore, the requirement to spray water in the system was removed by adding a heat exchanger to the coal mill inlet. Also, there were some design changes made to the coal mill bag filter, which helped in stable operation and extended bag life in the bag filter. This paper discusses these issues and how these problems were solved. This paper would be of beneficial use for other plants, which have to deal with high volatile coal and highly corrosive gases.« less

  11. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    NASA Astrophysics Data System (ADS)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  12. The potential role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    EPA Science Inventory

    The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) is approximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plants with integrated carbon capture, NGCC has a lower inve...

  13. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-05-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.

  14. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    PubMed Central

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-01-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI’s food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks. PMID:28484233

  15. Pointing to potential reference areas to assess soil mutagenicity.

    PubMed

    Meyer, D D; Da Silva, F M R; Souza, J W M; Pohren, R S; Rocha, J A V; Vargas, V M F

    2015-04-01

    Several have been performed to evaluate the mutagenicity of soil samples in urban and industrial areas. The use of uncontaminated reference areas has been an obstacle to the study of environmental mutagenesis. The study aimed to indicate a methodology to define reference areas in studies of environmental contamination based on "Ambient Background Concentration" of metallic elements associated with the Salmonella/microsome assay. We looked at three potential reference areas, two of them close by the industrial sources of contamination (São Jerônimo reference, near the coal-fired power plant, and Triunfo reference, near the wood preservative plant), but not directly influenced by them and an area located inside a protected area (Itapuã reference). We also carried out chemical analyses of some metals to plot the metal profile of these potential reference areas and define basal levels of these metals in the soils. After examining the mutagenicity of the inorganic extracts using strains TA98, TA97a, and TA100, in the presence and absence of S9 mix, we indicated the São Jerônimo reference and the Itapuã reference as two sites that could be used in future studies of mutagenicity of soils in southern Brazil. The association between a mutagenicity bioassay and the "Ambient Background Concentration" seems to be a useful method to indicate the reference areas in studies of contamination by environmental mutagens, where these results were corroborated by canonical correspondence analysis.

  16. Coal Preparation and Processing Plants New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the NSPS regulation for coal preparation and processing plants by reading the rule summary, the rule history, the code of federal regulation text, the federal register, and additional docket documents

  17. Testing of the 15-inch air-sparged hydrocyclone for fine coal flotation at the Homer City preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.; Yi, Y.; Gopalakrishnan, S.

    1993-12-31

    Previous plant testing had been limited to the processing of minus 100 mesh classifier overflow (Upper Freeport Coal {approximately} 20% ash) with the 6-inch air-sparged hydrocyclone (ASH-6C) as reported at Coal Prep 92. The ASH-6C unit was found to provide separation efficiencies equivalent, or superior, to separations with the ASH-2C system. During the summer of 1992 the construction of the first 15-inch air-sparged hydrocyclone prototype was completed by the Advanced Processing Technologies, Inc. Installation at the Homer City Coal Preparation Plant was accomplished and testing began in October 1992. The ASH-15C unit can operate at a flowrate as high asmore » 1,000 gpm. Experimental results are reported with respect to capacity, combustible recovery and clean coal quality.« less

  18. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    PubMed

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Standard method of test for grindability of coal by the Hardgrove-machine method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    A procedure is described for sampling coal, grinding in a Hardgrove grinding machine, and passing through standard sieves to determine the degree of pulverization of coals. The grindability index of the coal tested is calculated from a calibration chart prepared by plotting weight of material passing a No. 200 sieve versus the Hardgrove Grindability Index for the standard reference samples. The Hardgrove machine is shown schematically. The method for preparing and determining grindability indexes of standard reference samples is given in the appendix. (BLM)

  20. Jim Walter Resources installs new overland conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-12-15

    Embarking on a major expansion plan, the company is constructing a new additional overland conveyor coal to a recently refurbished prep plant. Jim Walter Resources recently invested $20 million in a new 5-mile overland conveyor system to haul coal from the No.7 deep coal mine in Alabama to the No.5 coal preparation plant. The size of the No.7 mine was effectively doubled. The article describes how this expansion move was decided upon and describes the design and installation of the new conveyor which spans approximately 5 miles. 4 photos.

  1. The Hour of Truth: The Conflict in Ukraine - Implications for Europe’s Energy Security and the Lessons for the U.S. Army

    DTIC Science & Technology

    2015-11-01

    energy efficiency.25 The rules are scheduled to go into effect in 2016. One of the toughest components for coal power plants to meet will be the NOx...coal power plants out of business by the early-2020s.30 High Cost and Other Challenges of Renewables. Renewable energy has been a focus of the envi...will be explained later in detail. Coal: An Environmentally Problematic Energy Source. Besides CO2 emissions, burning coal pollutes the environment

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  3. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  4. Economic and Environmental Assessment of Natural Gas Plants with Carbon Capture and Storage (NGCC-CCS)

    EPA Science Inventory

    The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) isapproximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plantswith integrated carbon capture, NGCC has a lower invest...

  5. Effect of the fuel bias distribution in the primary air nozzle on the slagging near a swirl coal burner throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingyan Zeng; Zhengqi Li; Hong Cui

    2009-09-15

    Three-dimensional numerical simulations of slagging characteristics near the burner throat region were carried out for swirl coal combustion burners used in a 1025 tons/h boiler. The gas/particle two-phase numerical simulation results and the data measured by a particle-dynamics anemometer (PDA) show that the numeration model was reasonable. For the centrally fuel-rich swirl coal combustion burner, the coal particles move in the following way. The particles first flow into furnace with the primary air from the burner throat. After traversing a certain distance, they move back to the burner throat and then toward the furnace again. Thus, particle trajectories are extended.more » For the case with equal air mass fluxes in the inner and outer primary air/coal mixtures, as the ratio of the coal mass flux in the inner primary air/coal mixture to the total coal mass flux increased from 40 (the reference condition) to 50%, 50 to 70%, and 70 to 100%, the maximum number density declined by 22, 11, and 4%, respectively, relative to the reference condition. In addition, the sticking particle ratio declined by 13, 14, and 8%, respectively, compared to the reference condition. 22 refs., 12 figs., 3 tabs.« less

  6. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  7. Thief process for the removal of mercury from flue gas

    DOEpatents

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  8. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  9. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    NASA Astrophysics Data System (ADS)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  10. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in determining net emissions effects resulting from energy export projects and related policy decisions.

  11. System design study to reduce capital and operating cost of a moving distributor, AFB advanced concept - comparison with an oil-fired boiler. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mah, C.S.; West, L.K.; Anderson, R.E.

    1985-12-01

    The Aerojet Energy Conversion Company, under contract with the United States Department of Energy, has performed a comparative economic study of the Aerojet Universal Atmospheric Fluidized Bed Combustion (UAFBC) system and a coventional atmospheric fluidized bed combustion (AFBC) system. The program title, ''System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Moving Distributor, AFB Concept,'' is a good description of the general objective of the program. The specific objective was to compare the UAFBC with the conventional AFBC in terms of normalized steam cost. The boilers were designed for 150,00 lb/hr of steam atmore » 650 psig and 750/sup 0/F. The reference coal used in the analysis was Pittsburgh No. 8 coal with a sulfur content of 4.3% and a higher heating value of 12,919 Bru/lb. The analysis assumed a plant life of 20 years and a discount rate of 15%. The UAFBC systems included the usual elements of the conventional cola-fired AFBC steam plant, but the coal preparation sysbsystem for the UAFBC was considerably simpler because the system can use ''run-of-mine'' coal. The UAFBC boiler itself consisted of a staged-combustion fluidized-bed, superimposed over a static bed, the latter supported by a moving distributor. It incorporated a fines burnup combustor, an entrained reciculating gas cleanup bed, and conventional convection boiler. The key features of the UAFBC design were: High fuel flexibility; low NO/sub x/ emission; and superior turndown capability. 30 refs., 52 figs., 12 tabs.« less

  12. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  13. 35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  14. 34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  15. Coal-to-methanol: an engineering evaluation of Texaco gasification and ICI methanol-synthesis route. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, P.A.; Cobb, D.D.; Leavitt, A.A.

    1981-08-01

    This report presents the results of a technical and economic evaluation of producing methanol from bituminous coal using Texaco coal gasification and ICI methanol synthesis. The scope of work included the development of an overall configuration for a large plant comprising coal preparation, air separation, coal gasification, shift conversion, COS hydrolysis, acid gas removal, methanol synthesis, methanol refining, and all required utility systems and off-site facilities. Design data were received from both Texaco and ICI while a design and cost estimate were received from Lotepro covering the Rectisol acid gas removal unit. The plant processes 14,448 tons per day (drymore » basis) of Illinois No. 6 bituminous coal and produces 10,927 tons per day of fuel-grade methanol. An overall thermal efficiency of 57.86 percent was calculated on an HHV basis and 52.64 percent based on LHV. Total plant investment at an Illinois plant site was estimated to be $1159 million dollars in terms of 1979 investment. Using EPRI's economic premises, the first-year product costs were calculated to $4.74 per million Btu (HHV) which is equivalent to $30.3 cents per gallon and $5.37 per million Btu (LHV).« less

  16. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    PubMed

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  17. Delayed fungal evolution did not cause the Paleozoic peak in coal production

    PubMed Central

    Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin

    2016-01-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881

  18. GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH CONVEYORS. JIM WALTER RESOURCES INC. MINING DIVISION OPERATES FOUR UNDERGROUND COAL MINES IN THE BLUE CREEK COAL FIELD OF BIRMINGHAM DISTRICT, THREE IN TUSCALOOSA COUNTY AND ONE IN JEFFERSON COUNTY. TOTAL ANNUAL PRODUCTION IS 8,000,000 TONS. AT 2,300 DEEP, JIM WALTER'S BROOKWOOD MINES ARE THE DEEPEST UNDERGROUND COAL MINES IN NORTH AMERICA. THEY PRODUCE A HIGH-GRADE MEDIUM VOLATILE LOW SULPHUR METALLURGICAL COAL. THE BROOKWOOD NO. 5 MINE (PICTURED IN THIS PHOTOGRAPH) EMPLOYS THE LONGWALL MINING TECHNIQUES WITH BELTS CONVEYING COAL FROM UNDERGROUND OPERATIONS TO THE SURFACE. - JIm Walter Resources, Incorporated, Brookwood No. 5 Mine, 12972 Lock 17 Road, Brookwood, Tuscaloosa County, AL

  19. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  20. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  1. Final Techno-Economic Analysis of 550 MWe Supercritical PC Power Plant CO 2 Capture with Linde-BASF Advanced PCC Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Devin; Stoffregen, Torsten; Rigby, Sean

    This topical report presents the techno-economic evaluation of a 550 MWe supercritical pulverized coal (PC) power plant utilizing Illinois No. 6 coal as fuel, integrated with 1) a previously presented (for a subcritical PC plant) Linde-BASF post-combustion CO 2 capture (PCC) plant incorporating BASF’s OASE® blue aqueous amine-based solvent (LB1) [Ref. 6] and 2) a new Linde-BASF PCC plant incorporating the same BASF OASE® blue solvent that features an advanced stripper interstage heater design (SIH) to optimize heat recovery in the PCC process. The process simulation and modeling for this report is performed using Aspen Plus V8.8. Technical information frommore » the PCC plant is determined using BASF’s proprietary thermodynamic and process simulation models. The simulations developed and resulting cost estimates are first validated by reproducing the results of DOE/NETL Case 12 representing a 550 MWe supercritical PC-fired power plant with PCC incorporating a monoethanolamine (MEA) solvent as used in the DOE/NETL Case 12 reference [Ref. 2]. The results of the techno-economic assessment are shown comparing two specific options utilizing the BASF OASE® blue solvent technology (LB1 and SIH) to the DOE/NETL Case 12 reference. The results are shown comparing the energy demand for PCC, the incremental fuel requirement, and the net higher heating value (HHV) efficiency of the PC power plant integrated with the PCC plant. A comparison of the capital costs for each PCC plant configuration corresponding to a net 550 MWe power generation is also presented. Lastly, a cost of electricity (COE) and cost of CO 2 captured assessment is shown illustrating the substantial cost reductions achieved with the Linde-BASF PCC plant utilizing the advanced SIH configuration in combination with BASF’s OASE® blue solvent technology as compared to the DOE/NETL Case 12 reference. The key factors contributing to the reduction of COE and the cost of CO 2 captured, along with quantification of the magnitude of the reductions achieved by each of these factors, are also discussed. Additionally, a high-level techno-economic analysis of one more highly advanced Linde-BASF PCC configuration case (LB1-CREB) is also presented to demonstrate the significant impact of innovative PCC plant process design improvements on further reducing COE and cost of CO 2 captured for overall plant cost and performance comparison purposes. Overall, the net efficiency of the integrated 550 MWe supercritical PC power plant with CO 2 capture is increased from 28.4% with the DOE/NETL Case 12 reference to 30.9% with the Linde-BASF PCC plant previously presented utilizing the BASF OASE® blue solvent [Ref. 6], and is further increased to 31.4% using Linde-BASF PCC plant with BASF OASE® blue solvent and an advanced SIH configuration. The Linde-BASF PCC plant incorporating the BASF OASE® blue solvent also results in significantly lower overall capital costs, thereby reducing the COE and cost of CO 2 captured from $147.25/MWh and $56.49/MT CO 2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO 2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO 2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO2 captured can be further reduced to $125.51/MWh and $39.90/MT CO 2 for LB1-CREB. Most notably, the Linde-BASF process options presented here have already demonstrated the potential to lower the cost of CO2 captured below the DOE target of $40/MT CO 2 at the 550 MWe scale for second generation PCC technologies.« less

  2. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  3. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.

    1999-07-01

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units containmore » mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.« less

  4. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO 2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references.more » In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.« less

  5. Importance of hard coal in electricity generation in Poland

    NASA Astrophysics Data System (ADS)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  6. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies

    USGS Publications Warehouse

    Hower, J.C.; Eble, C.F.; Quick, J.C.

    2005-01-01

    Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.

  7. Simulation of the visual effects of power plant plumes

    Treesearch

    Evelyn F. Treiman; David B. Champion; Mona J. Wecksung; Glenn H. Moore; Andrew Ford; Michael D. Williams

    1979-01-01

    The Los Alamos Scientific Laboratory has developed a computer-assisted technique that can predict the visibility effects of potential energy sources in advance of their construction. This technique has been employed in an economic and environmental analysis comparing a single 3000 MW coal-fired power plant with six 500 MW coal-fired power plants located at hypothetical...

  8. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  9. Environmental impact assessment of coal power plants in operation

    NASA Astrophysics Data System (ADS)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  10. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant.

    PubMed

    Fisher, G L; Chrisp, C E; Raabe, O G

    1979-05-25

    The two finest, most respirable coal fly ash fractions collected from the smokestack of a power plant were more mutagenic than two coarser fractions. Mutagenicity was evaluated in the histidine-requiring bacterial strains TA 1538, TA 98, and TA 100 of Salmonella typhimurium. Ash samples collected from the hoppers of an electrostatic precipitator in the plant were not mutagenic. The mutagens in coal fly ash were resistant to x-ray or ultraviolet irradiation, possibly as a result of stabilization by fly ash surfaces. All mutagenic activity is lost with heating to 350 degrees C.

  11. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.

    PubMed

    Clark, Victoria R; Herzog, Howard J

    2014-07-15

    On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.

  12. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    USGS Publications Warehouse

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.

    2010-01-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  13. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  14. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.

    PubMed

    Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng

    2017-12-21

    Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.

  15. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  16. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  17. 40 CFR 434.10 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions § 434.10 Applicability. This part applies to discharges from any coal mine at which the extraction of coal is taking place or is planned to be undertaken and to coal preparation plants and associated...

  18. 40 CFR 434.10 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Provisions § 434.10 Applicability. This part applies to discharges from any coal mine at which the extraction of coal is taking place or is planned to be undertaken and to coal preparation plants and associated...

  19. 28. View looking Northeast, Huber Breaker (left), Retail Coal Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. View looking Northeast, Huber Breaker (left), Retail Coal Storage Bins (Center) Power Plant (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  20. 30. Looking to Huber Breaker (left), Retail Coal Storage Bins ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Looking to Huber Breaker (left), Retail Coal Storage Bins (center), and Power Plant (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  1. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  2. Coal feedstock base of the Yenakievo Coke and Chemical Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchuk, S.V.; Grinval'd, M.A.; Litvinenko, A.M.

    1978-01-01

    After comparing the data given, one can conclude that the vitrinite reflectivity index permits more precise determination of the rank and, with consideration of the proximate composition, it permits a more detailed classification of coals for carbonization; using this parameter one can also determine the regularity of supply of coals for coke and chemical plants and the composition of the charges. Poland and Czechoslovakia have developed a systematization of coals by vitrinite reflectivity index to monitor the supply and composition of charges by types. Some experience in the use of the reflectivity index for these purposes has been accumulated inmore » the USSR. In our opinion, this index is the most reliable parameter for separation of coals by class and may be used to create a unified industrial-genetic classification of the coals produced.« less

  3. Coal desulfurization by low temperature chlorinolysis, phase 2

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Grohmann, K.; Rohatgi, N.; Ernest, J.; Feller, D.

    1980-01-01

    An engineering scale reactor system was constructed and operated for the evaluation of five high sulfur bituminous coals obtained from Kentucky, Ohio, and Illinois. Forty-four test runs were conducted under conditions of 100 by 200 mesh coal,solvents - methlychloroform and water, 60 to 130 C, 0 to 60 psig, 45 to 90 minutes, and gaseous chlorine flow rate of up to 24 SCFH. Sulfur removals demonstrated for the five coals were: maximum total sulfur removal of 46 to 89% (4 of 5 coals with methylchloroform) and 0 to 24% with water. In addition, an integrated continuous flow mini-pilot plant was designed and constructed for a nominal coal rate of 2 kilograms/hour which will be operated as part of the follow-on program. Equipment flow sheets and design drawings are included for both the batch and continuous flow mini-pilot plants.

  4. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  5. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... investments that have been made on the basis of a long-term coal contract in power plants, railroads, coal... threatened species of animals or plants, uncommon geologic formations, paleontological sites, National... dunes, severe wind or soil erosion, frequent flooding, avalanches and areas of unstable geology...

  6. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling

    NASA Astrophysics Data System (ADS)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.

    2011-12-01

    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  7. Use of wood as an alternative fuel to coal and natural gas at the Holnam Cement Plant, north of LaPorte, Colorado

    Treesearch

    Kurt H. Mackes

    2001-01-01

    The Holnam Company currently operates a cement plant north of Laporte, CO. The plant is attempting to use wood as an alternate fuel to coal and natural gas. The principal objective of this project is to investigate the extended use of wood as an alternate fuel at the plant. Tests conducted at Holnam indicate that wood is suitable for use at the plant and Holnam could...

  8. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  9. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  10. Coal-to-liquids bill introduced in the Senate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, L.

    2006-06-15

    Of immense importance to the coal industry is the announcement, on 7 June 2006 by US Senators Barack Obama (D-IL) and Jim Bunning (R-KY) of S.3325, the 'Coal-to-Liquid Fund Promotion Act of 2006'. This legislation creates tax incentives for coal-to-liquids (CTL) technologies and construction of CTL plants. If passed, this will create the infrastructure needed to make CTL a viable energy resource throughout America. The article gives comment and background to this proposed legislation. Illinois Basin coal is well suited for CTL because of its high Btu content. If Sasol constructs a proposed plant in Illinois it would increase coalmore » production in the state by 10 mt. 1 fig.« less

  11. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Expenditures relating to disposal of coal or... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  12. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Expenditures relating to disposal of coal or... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  13. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Expenditures relating to disposal of coal or... relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special treatment... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  14. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  15. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  16. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  17. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  18. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  19. 30 CFR 700.11 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Noncommercial use does not include the extraction of coal by one unit of an integrated company or other business or nonprofit entity which uses the coal in its own manufacturing or power plants; (2) The extraction... all coal exploration and surface coal mining and reclamation operations, except: (1) The extraction of...

  20. 30 CFR 700.11 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Noncommercial use does not include the extraction of coal by one unit of an integrated company or other business or nonprofit entity which uses the coal in its own manufacturing or power plants; (2) The extraction... all coal exploration and surface coal mining and reclamation operations, except: (1) The extraction of...

  1. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  2. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  3. Experience with wear-resistant materials at the Homer City Coal Cleaning Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    1984-10-01

    The Homer City Coal Cleaning Plant is a multistream, dual-circuit facility with a total capacity of 1.22 x 10/sup 6/ Kg/hr (1200 TPH) raw feed and serves the three generating units of the Pennsylvania Electric Company's Homer City Generating Station. The complicated multi-cleaning circuit design requires considerably more power and piping (10.6 km/35,000 ft of plus 5 cm/2 in. process piping) than a more conventional plant of the same capacity. Coupled with the maintenance intensive aspects of the plant is the requirement to have a high availability due to the mine mouth-to-cleaning plant-to-generating station philosophy under which it operates. Thesemore » factors required a dedicated effort to improve equipment wear characteristics. Experiences in the use of a variety of wear and corrosion resistant materials at the Homer City Coal Cleaning Plant are described.« less

  4. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Xiong, Tianqi; Jiang, Wei; Gao, Weidong

    2016-01-01

    Shandong is considered to be the top provincial emitter of air pollutants in China due to its large consumption of coal in the power sector and its dense distribution of coal-fired plants. To explore the atmospheric emissions of the coal-fired power sector in Shandong, an updated emission inventory of coal-fired power plants for the year 2012 in Shandong was developed. The inventory is based on the following parameters: coal quality, unit capacity and unit starting year, plant location, boiler type and control technologies. The total SO2, NOx, fine particulate matter (PM2.5) and mercury (Hg) emissions are estimated at 705.93 kt, 754.30 kt, 63.99 kt and 10.19 kt, respectively. Larger units have cleaner emissions than smaller ones. The coal-fired units (≥300 MW) are estimated to account for 35.87% of SO2, 43.24% of NOx, 47.74% of PM2.5 and 49.83% of Hg emissions, which is attributed primarily to the improved penetration of desulfurization, LNBs, denitration and dust-removing devices in larger units. The major regional contributors are southwestern cities, such as Jining, Liaocheng, Zibo and Linyi, and eastern cities, such as Yantai and Qindao. Under the high-efficiency control technology (HECT) scenario analysis, emission reductions of approximately 58.61% SO2, 80.63% NOx, 34.20% PM2.5 and 50.08% Hg could be achieved by 2030 compared with a 2012 baseline. This inventory demonstrates why it is important for policymakers and researchers to assess control measure effectiveness and to supply necessary input for regional policymaking and the management of the coal-fired power sector in Shandong.

  5. Coal hydrogenation and environmental health.

    PubMed Central

    Wadden, R A

    1976-01-01

    Planning of coal hydrogenation processes, such as liquifaction and gasification, requires consideration of public health implications. Commercial plants will require coal quantities greater than or equal to 20,000 tons/day and the large size of these plants calls for careful consideration of the potential health hazards from the wastes and products of such processes. Analysis of pollution potential can roughly be divided into three categories: raw material structure and constituents, process design, and mode of plant operation. Identifiable pollutants include hydrogen cyanide, phenols, cresols, carbonyl and hydrogen sulfides, ammonia, mercaptans, thiocyanides, aniline, arsenic, trace metals and various polycyclic hydrocarbons. One study of workers in a hydrogenation process has revealed an incidence of skin cancer 16-37 times that expected in the chemical industry. In addition, a number of high boiling point liquid products were identified as being carcinogenic, and air concentrations of benzo[a]pyrene up to 18,000 mug/1000 m3 were reported. Health statistics on occupational groups in other coal conversion industries have shown significantly higher lung cancer rates, relative to groups without such occupational exposures. These data suggest that coal hydrogenation plants must be carefully planned and controlled to avoid harm to environmentally and occupationally exposed populations. PMID:789066

  6. Study on test of coal co-firing for 600MW ultra supercritical boiler with four walls tangential burning

    NASA Astrophysics Data System (ADS)

    Ying, Wu; Yong-lu, Zhong; Guo-mingi, Yin

    2018-06-01

    On account of nine commonly used coals in a Jiangxi Power Plant,two kinds of coal were selected to be applied in coal co-firing test through industrial analysis,elementary analysis and thermogravimetric analysis of coal.During the coal co-firing test,two load points were selected,three coal mixtures were prepared.Moreover,under each coal blending scheme, the optimal oxygen content was obtained by oxygen varying test. At last,by measuring the boiler efficiency and coal consumption of power supply in different coal co-firing schemes, the recommended coal co-firing scheme was obtained.

  7. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  8. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  9. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  10. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutzler, M.J.

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest marketmore » for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.« less

  12. Energy and remote sensing. [satellite exploration, monitoring, siting

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Some say beauty is in the eye of the beholder, but when United Coal purchased the assets of White Mountain Mining in late 2005, the attractiveness of the acquired assets did not require much debate. Whilst the Pocahontas Coal reserves included in the acquisition were very desirable for producing coke, the East Gulf preparation plant was in poor condition. In order to minimize cost, maintenance and manpower whilst increasing production, the circuits in the existing plant were modified and the Barvoy Vessel was replaced with a single, pump fed, 30-inch Krebs HM cyclone. A spiral circuit was added as weremore » screen bowl centrifuges. Finally the plant was given a structural upgrade and a new siding was installed. With the East Gulf restoration project complete, the United Coal Co. (UCC) and Pocahontas Coal are now considering expanding the Affinity complex. 2 figs., 6 photos.« less

  14. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  15. Local deposition of mercury in topsoils around coal-fired power plants: is it always true?

    PubMed

    Rodriguez Martin, José Antonio; Nanos, Nikos; Grigoratos, Theodoros; Carbonell, Gregoria; Samara, Constantini

    2014-09-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani-Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km(2). We were surprised to find a low Hg content in soil (range 1-59 μg kg(-1)) and 50 % of samples with a concentration lower than 6 μg kg(-1). The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5-24.5 μg kg(-1)) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani-Ptolemais basin is present in low concentrations.

  16. The determination of methane resources from liquidated coal mines

    NASA Astrophysics Data System (ADS)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  17. 43 CFR 2203.0-9 - Cross references.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Fee Federal Coal Deposits § 2203.0-9 Cross references. The authorized officer shall implement a fee exchange of Federal coal deposits in compliance with the requirements of subparts 2200 and 2201 on this...-9 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  18. 43 CFR 2203.0-9 - Cross references.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fee Federal Coal Deposits § 2203.0-9 Cross references. The authorized officer shall implement a fee exchange of Federal coal deposits in compliance with the requirements of subparts 2200 and 2201 on this...-9 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  19. 43 CFR 2203.0-9 - Cross references.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fee Federal Coal Deposits § 2203.0-9 Cross references. The authorized officer shall implement a fee exchange of Federal coal deposits in compliance with the requirements of subparts 2200 and 2201 on this...-9 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  20. 43 CFR 2203.0-9 - Cross references.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fee Federal Coal Deposits § 2203.0-9 Cross references. The authorized officer shall implement a fee exchange of Federal coal deposits in compliance with the requirements of subparts 2200 and 2201 on this...-9 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  1. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  2. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  3. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan,T.; Adams,J.; Bender, M.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots ofmore » mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.« less

  4. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  5. COAL PREPARATION PLANT COMPUTER MODEL: VOLUME I. USER DOCUMENTATION

    EPA Science Inventory

    The two-volume report describes a steady state modeling system that simulates the performance of coal preparation plants. The system was developed originally under the technical leadership of the U.S. Bureau of Mines and the sponsorship of the EPA. The modified form described in ...

  6. Coal Formation and Geochemistry

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its technological behavior, by-product characteristics, and environmental and human health impacts. In this chapter, we will try to make geochemical sense of this wonderfully complex and important resource. (5K)Figure 1. Photograph of a low rank coal bed (lignite of Pliocene age) from southwestern Romania.

  7. Homogeneous catalytic hydrogenations of complex carbonaceous substrates. [16 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, J L; Wilcox, W A; Roberts, G L

    1976-11-05

    Results of homogeneous catalytic hydrogenation of complex unsaturated substrates including coal and coal-derived materials are reported, with organic soluble molecular complexes as catalysts. Among the substrates used were Hvab coal, solvent-refined coal, and COED pyrolysate. The hydrogenations were carried out in an autoclave. The results are summarized in tables.

  8. The Carbon Crisis in 90 Seconds

    NASA Technical Reports Server (NTRS)

    Griffith, Peter

    2011-01-01

    This is a banana; and this is a chunk of coal. The banana is sweet and delicious and fun to eat... the coal is ... none of those things. But they are much more alike than they seem. Both were made by plants and store energy from the sun and carbon gas from the air around us. When you eat the banana, you use the energy stored in the banana to run and jump; and you release carbon gas back into the air around you. Now, carbon in the banana is young fast carbon: just weeks ago the banana was carbon gas in the air, and hours after you eat it, you breathe out the same carbon back into the air. When we burn coal in power plants, we use the energy stored in the coal to generate electricity that powers our homes and factories; and we release carbon gas back into the air around us. But, the carbon in the coal is old slow carbon. Plants took the coal carbon out of the air hundreds of millions of years ago. That carbon has been locked up ever since, and would stay locked up, if people hadn't dug up the coal and burned it. So now by burning coal and oil, people are adding lots and lots of old carbon to the atmosphere, faster than plants and the oceans can take it out. Why do I care? Because carbon gas in the atmosphere acts like a blanket, trapping heat, and making the whole planet warmer. My name is Peter, and I'm a carbon cycle scientist at NASA. We use satellites to watch how the world is warming. We can see the glaciers and the ice caps melting; and the air, land, and oceans warming. So we know we all have to change the way we produce and use energy, to burn less coal and oil, to prevent the planet from getting too warm.

  9. Some regional costs of a synthetic fuel industry: The case of illinois

    USGS Publications Warehouse

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  10. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.

  11. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    PubMed

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.

    PubMed

    Li, Ya-Ru; Gibson, Jacqueline MacDonald

    2014-09-02

    We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions.

  13. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.

    PubMed

    Lu, Zifeng; Streets, David G; de Foy, Benjamin; Krotkov, Nickolay A

    2013-12-17

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  14. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    PubMed

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  15. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  16. Relocatable dense medium coal preparation plants for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, R.

    1994-12-31

    The major recent coal mine developments in Indonesia have been situated along the east coast of Kalimantan (Borneo). Design and construction in these remote areas require a high level of innovation and ingenuity to ensure that the plants can be brought on line effectively. This paper describes the design, installation, and operation of two relocatable modular dense medium plants. The plants were specifically built to overcome the difficulties of remote areas and can be assembled by a semi-skilled workforce. The two relocatable dense medium coal preparation plants recently built for mines in Kalimantan are unique in that the plants weremore » fabricated, preassembled, and wet-commissioned in Brisbane, Australia, before shipment to Indonesia. The plants are a 3OO t/h dense medium bath, cyclone, and spirals plant and a 250 t/h dense medium cyclone and spirals with reject and tailings co-disposal. The relocatable plant concept has enabled a low capital cost per ton per hour and an extremely fast construction timetable-20 weeks from contract award to completion of wet-commissioning for shipment to Indonesia.« less

  17. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of Re-vegetation on Herbaceous Species Composition and Biological Soil Crusts Development in a Coal Mine Dumping Site

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Peng; Hu, Yigang; Huang, Lei

    2016-02-01

    Despite the critical roles of plant species' diversity and biological soil crusts (BSCs) in arid and semi-arid ecosystems, the restoration of the diversity of herbaceous species and BSCs are rarely discussed during the process of vegetation restoration of anthropogenically damaged areas in these regions. In this study, the herbaceous plant species composition, along with the BSCs coverage and thicknesses, was investigated at six different re-vegetation type sites, and the natural vegetation site of the Heidaigou open pit coal mine in China's Inner Mongolia Autonomous Region was used as a reference. The highest total species richness (16), as well as the species richness (4.4), occurred in the Tree and Herbaceous vegetation type site. The species composition similarities between the restored sites and the reference site were shown to be very low, and ranged from 0.09 to 0.42. Also, among the restored sites, the similarities of the species were fairly high and similar, and ranged from 0.45 to 0.93. The density and height of the re-vegetated woody plants were significantly correlated with the indexes of the diversity of the species. The Shrub vegetation type site showed the greatest total coverage (80 %) of BSCs and algae crust coverage (48 %). The Shrub and Herbaceous type had the greatest thicknesses of BSCs, with as much as 3.06 mm observed, which was followed by 2.64 mm for the Shrub type. There was a significant correlation observed between the coverage of the total BSCs, and the total vegetation and herbaceous vegetation coverage, as well as between the algae crust coverage and the herbaceous vegetation coverage. It has been suggested that the re-vegetated dwarf woody plant species (such as shrubs and semi-shrubs) should be chosen for the optimal methods of the restoration of herbaceous species diversity at dumping sites, and these should be planted with low density. Furthermore, the effects of vegetation coverage on the colonization and development the BSCs should be considered in order to reconstruct the vegetation in disturbed environments, such as mine dumpsites in arid areas.

  19. 33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  20. HOMER CITY MULTISTREAM COAL CLEANING DEMONSTRATION: A PROGRESS REPORT

    EPA Science Inventory

    The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed...

  1. CHARACTERIZATION AND MANAGEMENT OF RESIDUES FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) determined on December 15, 2000, that regulations are needed to control the risks of mercury air emissions from coal-fired power plants. The thrust of these new regulations is to remove mercury from the air stream of fossil-fuel-fire...

  2. Phytoremediation of Pb in the sediment of a mangrove ecosystem

    USDA-ARS?s Scientific Manuscript database

    Lead (Pb) is a naturally occurring element that poses environmental risks and hazards if present at elevated concentration. It is being released into the environment because of industrial uses, combustion of fossils fuels and from coal-fired power plants. Coal-fired power plants can discharge hazard...

  3. 40 CFR 420.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...

  4. 40 CFR 420.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...

  5. 40 CFR 420.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...

  6. 40 CFR 420.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...

  7. 40 CFR 420.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the above limitations, shall be provided for process wastewaters from coke oven gas wet... from coal charging and coke pushing emission controls), coal tar processing operations and coke plant... optimization of coke plant biological treatment systems. (b) Cokemaking—non-recovery. Except as provided in 40...

  8. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Preparation and Processing Plants § 60.255 Performance tests and other compliance requirements. (a) An owner... within a 60-minute period of) PM performance tests. (c) If any affected coal processing and conveying...) when the coal preparation and processing plant is in operation. Each observation must be recorded as...

  9. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Preparation and Processing Plants § 60.255 Performance tests and other compliance requirements. (a) An owner... within a 60-minute period of) PM performance tests. (c) If any affected coal processing and conveying...) when the coal preparation and processing plant is in operation. Each observation must be recorded as...

  10. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Preparation and Processing Plants § 60.255 Performance tests and other compliance requirements. (a) An owner... within a 60-minute period of) PM performance tests. (c) If any affected coal processing and conveying...) when the coal preparation and processing plant is in operation. Each observation must be recorded as...

  11. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Preparation and Processing Plants § 60.255 Performance tests and other compliance requirements. (a) An owner... within a 60-minute period of) PM performance tests. (c) If any affected coal processing and conveying...) when the coal preparation and processing plant is in operation. Each observation must be recorded as...

  12. Control of mercury emissions from coal fired electric uitlity boilers: An update

    EPA Science Inventory

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  13. 30 CFR 1206.251 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... delivery remote from both the lease and mine or wash plant. Area means a geographic region in which coal... exploration for, development or extraction of, or removal of coal—or the land covered by that authorization... coal that a washing plant produces. Netting is the deduction of an allowance from the sales value by...

  14. 30 CFR 206.251 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... remote from both the lease and mine or wash plant. Area means a geographic region in which coal has... exploration for, development or extraction of, or removal of coal—or the land covered by that authorization... coal that a washing plant produces. Netting is the deduction of an allowance from the sales value by...

  15. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less

  16. Ways to Improve Russian Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G.

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas.more » Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.« less

  17. Air quality as a constraint to the use of coal in California

    NASA Technical Reports Server (NTRS)

    Austin, T. C.

    1978-01-01

    Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.

  18. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  19. Impacts of coal burning on ambient PM2.5 pollution in China

    NASA Astrophysics Data System (ADS)

    Ma, Qiao; Cai, Siyi; Wang, Shuxiao; Zhao, Bin; Martin, Randall V.; Brauer, Michael; Cohen, Aaron; Jiang, Jingkun; Zhou, Wei; Hao, Jiming; Frostad, Joseph; Forouzanfar, Mohammad H.; Burnett, Richard T.

    2017-04-01

    High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m-3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m-3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m-3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m-3 (46 %) in summer and 28 µg m-3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.

  20. The Methanisation of Coal Gas Information Obtained from Dr. Martin of Ruhrchemie A.G. and from Dr. Traenckner of Rhurgas A.G.

    DTIC Science & Technology

    1945-07-04

    A process has been developed for effecting the catalytic methanisation of coal gas, and plants for operating this process on the scale of 6,200 cu...plant were elicited, and some items of the equipment inspected. The locations of six methanisation plants are given in the report. None of these was visited. jg p.4

  1. An a priori study of different tabulation methods for turbulent pulverised coal combustion

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2018-05-01

    In many practical pulverised coal combustion systems, different oxidiser streams exist, e.g. the primary- and secondary-air streams in the power plant boilers, which makes the modelling of these systems challenging. In this work, three tabulation methods for modelling pulverised coal combustion are evaluated through an a priori study. Pulverised coal flames stabilised in a three-dimensional turbulent counterflow, consisting of different oxidiser streams, are simulated with detailed chemistry first. Then, the thermo-chemical quantities calculated with different tabulation methods are compared to those from detailed chemistry solutions. The comparison shows that the conventional two-stream flamelet model with a fixed oxidiser temperature cannot predict the flame temperature correctly. The conventional two-stream flamelet model is then modified to set the oxidiser temperature equal to the fuel temperature, both of which are varied in the flamelets. By this means, the variations of oxidiser temperature can be considered. It is found that this modified tabulation method performs very well on prediction of the flame temperature. The third tabulation method is an extended three-stream flamelet model that was initially proposed for gaseous combustion. The results show that the reference gaseous temperature profile can be overall reproduced by the extended three-stream flamelet model. Interestingly, it is found that the predictions of major species mass fractions are not sensitive to the oxidiser temperature boundary conditions for the flamelet equations in the a priori analyses.

  2. Connect the Spheres with the Coal Cycle

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    Coal fueled the Industrial Revolution and, as a result, changed the course of human history. However, the geologic history of coal is much, much longer than that which is recorded by humans. In your classroom, the coal cycle can be used to trace the formation of this important economic resource from its plant origins, through its lithification, or…

  3. 30 CFR 936.15 - Approval of Oklahoma regulatory program amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... “surface coal mining operations”, 701.5: definitions of “coal preparation” and “coal preparation plant....11(b)(4), and part 702, concerning an exemption for operations when the extraction of coal is incidental to the extraction of other minerals. June 21, 1990 January 9, 1991 DOM/RR 772.12(b)(12); 773.5(a...

  4. 30 CFR 936.15 - Approval of Oklahoma regulatory program amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... “surface coal mining operations”, 701.5: definitions of “coal preparation” and “coal preparation plant....11(b)(4), and part 702, concerning an exemption for operations when the extraction of coal is incidental to the extraction of other minerals. June 21, 1990 January 9, 1991 DOM/RR 772.12(b)(12); 773.5(a...

  5. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  6. EXXON donor solvent coal liquefaction process

    NASA Technical Reports Server (NTRS)

    Epperly, W. R.; Swabb, L. E., Jr.; Tauton, J. W.

    1978-01-01

    A solvent coal liquefaction process to produce low-sulfur liquid products from a wide range of coals is described. An integrated program of laboratory and engineering research and development in conjunction with operation of a 250 T/D pilot plant is discussed.

  7. Paleobotany and palynology of the Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of the Illinois Basin (Upper Pennsylvanian)

    USGS Publications Warehouse

    Willard, D.A.; Phillips, T.L.

    1993-01-01

    Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psarnius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals. -from Authors

  8. Performance, cost and environmental assessment of gasification-based electricity in India: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba

    2017-07-01

    Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.

  9. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  10. Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash--influence of parameters important for environmental pollution.

    PubMed

    Pergal, Miodrag M; Relić, Dubravka; Tešić, Zivoslav Lj; Popović, Aleksandar R

    2014-03-01

    Nikola Tesla B power plant (TENT B), located at the Sava River, in Obrenovac, 50 km west from the Serbian's capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks, each of 620 MW capacity. In order to investigate the threat polycyclic aromatic hydrocarbons (PAHs) from deposited coal ash, obtained by coal combustion in this power plant, can represent for the surrounding environment, samples of coal ash were submitted to extraction with river water used for transport of coal ash to the dump, as well as with water of different ionic strength and acidity. It was found that, out of 16 EPA priority PAHs, only naphthalene, acenaphthylene, fluorene, phenantrene, fluoranthene, and pyrene were found in measurable concentrations in the different extracts. Their combined concentration was around 0.1 μg/L, so they do not, in terms of leached concentrations, represent serious danger for the surrounding environment. In all cases of established (and leached) PAH compounds, changes of ionic strength, acidity, or the presence of organic compounds in river water may to some extent influence the leached concentrations. However, under the examined conditions, similar to those present in the environment, leached concentrations were not more than 50 % greater than the concentrations leached by distilled water. Therefore, water desorption is likely the most important mechanism responsible for leaching of PAH compounds from filter coal ash.

  11. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.

    PubMed

    Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L

    2011-09-01

    This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.

    PubMed

    Low, Fiona; Zhang, Lian

    2012-11-15

    In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    PubMed

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  15. 30 CFR 700.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../federal_register/code_of_federal_regulations/ibr_locations.html. Incorporation by reference provisions... pursuant to section 523 of the Act to regulate surface coal mining and reclamation operations on Federal... no approved State or Federal program and coal exploration and surface coal mining and reclamation...

  16. A simplified approach to analyze the effectiveness of NO2 and SO2 emission reduction of coal-fired power plant from OMI retrievals

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Wu, Lixin; Zhou, Yuan; Li, Ding

    2017-04-01

    Nitrogen oxides (NOX) and sulfur dioxide (SO2) emissions from coal combustion, which is oxidized quickly in the atmosphere resulting in secondary aerosol formation and acid deposition, are the main resource causing China's regional fog-haze pollution. Extensive literature has estimated quantitatively the lifetimes and emissions of NO2 and SO2 for large point sources such as coal-fired power plants and cities using satellite measurements. However, rare of these methods is suitable for sources located in a heterogeneously polluted background. In this work, we present a simplified emission effective radius extraction model for point source to study the NO2 and SO2 reduction trend in China with complex polluted sources. First, to find out the time range during which actual emissions could be derived from satellite observations, the spatial distribution characteristics of mean daily, monthly, seasonal and annual concentration of OMI NO2 and SO2 around a single power plant were analyzed and compared. Then, a 100 km × 100 km geographical grid with a 1 km step was established around the source and the mean concentration of all satellite pixels covered in each grid point is calculated by the area weight pixel-averaging approach. The emission effective radius is defined by the concentration gradient values near the power plant. Finally, the developed model is employed to investigate the characteristic and evolution of NO2 and SO2 emissions and verify the effectiveness of flue gas desulfurization (FGD) and selective catalytic reduction (SCR) devices applied in coal-fired power plants during the period of 10 years from 2006 to 2015. It can be observed that the the spatial distribution pattern of NO2 and SO2 concentration in the vicinity of large coal-burning source was not only affected by the emission of coal-burning itself, but also closely related to the process of pollutant transmission and diffusion caused by meteorological factors in different seasons. Our proposed model can be used to identify the effective operation time of FGD and SCR equipped in coal-fired power plant.

  17. Stable isotope compositions of gases and vegetation near naturally burning coal

    USGS Publications Warehouse

    Gleason, J.D.; Kyser, T.K.

    1984-01-01

    Our measurements of stable isotope compositions of CO2 issuing from vents produced by naturally burning coal indicate that the coal is oxidized through a kinetic process in which groundwater is the oxidizing agent. The CO2 produced by the oxidation of the coal is extremely depleted in 13C relative to normal atmospheric CO2. The change in the ??13C value of atmospheric CO2 near the vents resulting from the burning coal was not recorded in tree rings from red cedars, but the ??13C values of some C3 and C4 type plants collected from within the area were greatly affected. Our results indicate that the ??13C values of some species of plants may be sensitive indicators of changes in the carbon isotopic composition of atmospheric CO2. ?? 1984 Nature Publishing Group.

  18. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    USDA-ARS?s Scientific Manuscript database

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  19. Coal Gasification Processes for Retrofitting Military Central Heating Plants: Overview

    DTIC Science & Technology

    1992-11-01

    the water runoff has minimum contamination. The coal pile is located on a waterproof base to prevent water seepage into the ground. All runoff water...United Arab Naphtha Republic Chemical Fertili - Lignite Dust 1 217,000 Ammonia 1963 zer Company Ltd. Synthesis of Thailand, Ferti- lizer Plant in Mae Moh

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less

  1. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    PubMed

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  2. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.

  3. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    NASA Technical Reports Server (NTRS)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  4. Review of the Badger report FE-2416-24, conceptual design of a coal to methanol commercial plant, February 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, R.; Hartman, H.F.; Niemann, B.

    1979-10-01

    This report gives the results of a review by Oak Ridge National Laboratory of the conceptual design study of a 415,000-bbl/day coal-to-methanol facility published in February 1978 by Badger Plants, Incorporated. A critical assessment is made of the technology and economics of the proposed plant and of the Badger-recommended program for concurrent development and construction.

  5. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  6. 26 CFR 1.272-1 - Expenditures relating to disposal of coal or domestic iron ore.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... domestic iron ore. 1.272-1 Section 1.272-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Expenditures relating to disposal of coal or domestic iron ore. (a) Introduction. Section 272 provides special... sometimes referred to as a “coal royalty contract” or “iron ore royalty contract”) for the disposal of coal...

  7. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    DTIC Science & Technology

    2011-03-31

    2.1 Experimental Investigation of Coal and Biomass Gasification using In-situ Diagnostics ................ 31  2.2 References...need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis, advanced coal gasification and liquid fuel...experimental findings will improve the scientific knowledge of catalytic biomass fast-hydropyrolysis, coal/ biomass gasification and liquid fuel combustion

  8. EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin C. Galbreath

    2002-08-01

    Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed.more » An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.« less

  9. Recent experience with the CQE{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, C.D.; Kehoe, D.B.; O`Connor, D.C.

    1997-12-31

    CQE (the Coal Quality Expert) is a software tool that brings a new level of sophistication to fuel decisions by seamlessly integrating the system-wide effects of fuel purchase decisions on power plant performance, emissions, and power generation costs. The CQE technology, which addresses fuel quality from the coal mine to the busbar and the stack, is an integration and improvement of predecessor software tools including: EPRI`s Coal Quality Information System, EPRI`s Coal Cleaning Cost Model, EPRI`s Coal Quality Impact Model, and EPRI and DOE models to predict slagging and fouling. CQE can be used as a stand-alone workstation or asmore » a network application for utilities, coal producers, and equipment manufacturers to perform detailed analyses of the impacts of coal quality, capital improvements, operational changes, and/or environmental compliance alternatives on power plant emissions, performance and production costs. It can be used as a comprehensive, precise and organized methodology for systematically evaluating all such impacts or it may be used in pieces with some default data to perform more strategic or comparative studies.« less

  10. Bio-mass utilization in high pressure cogeneration boiler

    NASA Astrophysics Data System (ADS)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  11. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].

    PubMed

    Wang, Yu-xiu; Peng, Lin; Wang, Yan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    The ashes under dust catcher of typical power plants in Yangquan was collected and the contents of elements, irons, EC (elemental carbon) and OC (organic carbon) were measured in PM₂. The characteristics of its chemical composition was studied and the degree of similarity of coal dust's source profiles of PM₂.₅ between Yangquan and other cities were compared using the coefficient of divergence method. The result indicated that the main chemical components of PM₂.₅ from the coal dust were SO₄²⁻,Ca, NO₃⁻, OC, EC, Al, Si, Na, Fe, Mg and Cl⁻, accounting for 57.22% of the total mass. The enrichment factor of Pb in PM₂.₅ of coal dust was the largest with a significant enrichment condition, reaching 10.66-15.91. The coefficient of divergence of source profiles of PM₂.₅ between blind coal and fault coal was 0.072, so it was believed that they must be similar. Compared with other cities, the chemical composition of coal dust in Yangquan had specificity, in particular, the content of Ca was obviously higher than those in other domestic cities.

  12. Bear's bullish in tight market. [Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.

    Bear Coal Co. have re-opened an old mine near Somerset, Colorado, which will produce 300,000 tpy of coal. This is mined from the super section, consisting of two complete sets of production equipment. The mine alternates development and room-and-pillar mining. Coal is crushed and sized at the Terror Creek plant, along with coal from three other mines in the area.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootten, J.M.

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  14. Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems

    USGS Publications Warehouse

    Willard, D.A.; Phillips, T.L.; Lesnikowska, A.D.; DiMichele, W.A.

    2007-01-01

    Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations.

  15. 30 CFR 77.403-2 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...

  16. 30 CFR 77.403-2 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...

  17. An integrated simulation and optimization approach for managing human health risks of atmospheric pollutants by coal-fired power plants.

    PubMed

    Dai, C; Cai, X H; Cai, Y P; Guo, H C; Sun, W; Tan, Q; Huang, G H

    2014-06-01

    This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk. A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-offbetween coal purchase cost and health risk.

  18. The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China

    NASA Astrophysics Data System (ADS)

    Weng, Yuqing

    Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.

  19. Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons

    USGS Publications Warehouse

    Warwick, Peter D.

    2005-01-01

    Coal is an important and required energy source for today's world. Current rates of world coal consumption are projected to continue at approximately the same (or greater) levels well into the twenty-first century. This paper will provide an introduction to the concept of coal systems analysis and the accompanying volume of papers will provide examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Coal systems analysis incorporates the various disciplines of coal geology to provide a complete characterization of the resource. The coal system is divided into four stages: (1) accumulation, (2) preservation-burial, (3) diagenesis-coalification, and (4) coal and hydrocarbon resources. These stages are briefly discussed and key references and examples of the application of coal systems analysis are provided.

  20. 77 FR 70745 - Proposed Change to Data Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... DEPARTMENT OF ENERGY U.S. Energy Information Administration Proposed Change to Data Protection... Coal Production and Preparation Report--Coal Mines and Preparation Plants; and EIA-8A, the Coal Stocks Report--Traders and Brokers. DOE's proposed changes will release or publish data received from mandatory...

  1. Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2014-01-01

    The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephalesmore » promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.« less

  2. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.

    PubMed

    Duarte, Jessica Hartwig; de Morais, Etiele Greque; Radmann, Elisângela Martha; Costa, Jorge Alberto Vieira

    2017-06-01

    CO 2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO 2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO 2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO 2 than Spirulina sp. The maximum daily CO 2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL -1 d -1 ), showing a specific growth rate of 0.17±<0.01d -1 . The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO 2 from coal flue gas, and sequential biomass production with different biotechnological destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  4. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a totalmore » of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.« less

  5. Dips, ramps, and rolls- Evidence for paleotopographic and syn-depositional fault control on the Western Kentucky No. 4 coal bed, tradewater formation (Bolsovian) Illinois Basin

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.

    2001-01-01

    The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide subtle evidence of faulting within a specific increment of the coal itself. The sudden increase in L. orbicula (produced by Paralycopodites) in a single increment of a down-ramp sample of the Western Kentucky No. 4 coal records the reestablishment of a rheotrophic mire following a sudden change in edaphic conditions. Paralycopodites was a colonizing lycopod, which in this case became locally abundant after the peat was well established along a fault with obvious growth during peat accumulation. Because many coal-mire plants were susceptible to sudden edaphic changes as might accompany faulting or flooding, changes in palynology would be expected in coals affected by syn-depositional faulting. ?? 2001 Elsevier Science B.V. All rights reserved.

  6. Diagenetic trends of a tertiary low-rank coal series

    NASA Astrophysics Data System (ADS)

    Boudou, Jean-Paul; Durand, Bernard; Oudin, Jean-Louis

    1984-10-01

    The Mahakam delta (Kalimantan, Indonesia) coals represent all the evolution stages between freshly-deposited plant/peat material, lignites and bituminous coals. The geochemical techniques used to study this coal series included elemental analysis, extraction of humic compounds, infrared spectroscopy and 13C nuclear magnetic resonance of the total coal. The main mechanisms of early maturation in this series are loss of oxygenated compounds, aromatisation and condensation of the organic matter. These changes, which have already been suggested for other coal series and partially reported for sedimentary organic matter, were confirmed and described in more detail for the Mahakam coal series.

  7. Map showing outcrop of the coal-bearing units and land use in the Gulf Coast region

    USGS Publications Warehouse

    Warwick, Peter D.; SanFilipo, John R.; Crowley, Sharon S.; Thomas, Roger E.; Freid, John; Tully, John K.

    1997-01-01

    This map is a preliminary compilation of the outcrop geology of the known coal-bearing units in the Gulf Coast Coal region. The map has been compiled for use in the National Coal Resource Assessment Project currently being conducted by the U.S. Geological Survey, and will be updated as the assessment progresses. The purpose of the map is to show the distribution of coal-bearing rocks in the Gulf Coastal Plain Region and to show stratigraphic correlations, transportation network, fossil-fuel burning power plants, and federally managed lands in the region. It is hoped that this map may aid coal exploration and development in the region. Geologic contacts were digitized from paper copies of the maps listed in the reference section below. The primary source of information was the 1:500,000-scale state geology map series, but larger scale maps were use to better define certain areas, notably the Jackson-Claiborne contact in western Kentucky and Tennessee for example (Olive, 1980). Contacts along state boundaries were modified to best-fit information available from the border areas. Note that coal distribution in the mapped units is not uniform. For example, the Jackson Group contains coal in Texas, but in Mississippi is not presently known to contain significant coal deposits. The unit is widespread and in part non-marine and thus of potential future interest. In contrast, the Jackson Group is not shown in Georgia where it is mostly marine and residuum (weathered material) at the surface. Tertiary age coal has also been noted in the Vicksburg Group (Oligocene) of Louisiana and Mississippi, but is not shown on this map. Contacts with mapped surficial units are not always shown. The locations of coal mine permit boundaries are based on information available at the time of publication and were obtained from the Division of Surface Mining and Reclamation, Railroad Commission of Texas, Austin, and the Injection and Mining Division, Department of Natural Resources, Baton Rouge, Louisiana. The correlation of map units and formation names generally follow Galloway and others (1991). We have placed the Paleocene-Eocene boundary in the middle of the Calvert Bluff Formation in Texas based on unpublished pollen biostratigraphy reports (N.O. Fredericksen, unpublished data, 1993; D.J. Nichols, unpublished data, 1996).

  8. Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, G.O.; Copeland, R.; Dubovik, M.

    2002-09-20

    Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in powermore » plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while maintaining an arsine outlet concentration at less than 10 ppb.« less

  9. Study of Natural Radioactivity in Coal Samples of Baganuur Coal Mine, Mongolia

    NASA Astrophysics Data System (ADS)

    Altangerel, M.; Norov, N.; Altangerel, D.

    2009-03-01

    Coal and soil samples from Baganuur Coal Mine (BCM) of Mongolia have been investigated. The activities of 226Ra, 232Th and 40K have been measured by gamma-ray spectrometry using shielded HPGe detector. Contents of natural radionuclide elements (U, Th and K) have been determined. Also the activities and contents of radionuclide of ashes were determined which generated in Thermal Power Plant ♯3 of Ulaanbaatar from coal supplied from BCM.

  10. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    PubMed

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  12. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  13. 77 FR 25868 - Iowa Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... and program and 702. exemption for coal extraction incidental to the extraction of other minerals. 27... for coal Part 707. extraction incident to government-- financed highway or other constructions. 27-40... standards--coal preparation plants not located within the permit area of a mine. 27-40.71 (207) State...

  14. Shrub and tree establishment on coal spoils in northern High Plains - USA

    Treesearch

    Ardell J. Bjugstad

    1984-01-01

    Trickle irrigation, during establishment, increased survival two fold for seven species of shrubs and trees planted on coal mine spoil in the semiarid area of northeastern Wyoming, USA. Increased survival of irrigated plants persisted for five years after initiation of this study, which included two growing and winter seasons after cessation of irrigation. Species...

  15. Performance of red pine and Japanese larch planted on anthracite coal-breaker refuse

    Treesearch

    Miroslaw M. Czapowskyj

    1973-01-01

    Red pine (Pinus resinosa Ait.) and Japanese larch (Larix leptolepis (Sieb. and Zucc.) Gord.) seedlings were planted on coal-breaker refuse with all combinations of two levels of lime, two levels of fertilizer, and four mulch treatments. The site was highly unfavorable as a medium for tree growth, and the 4-year results show...

  16. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME I - INTRODUCTION AND METHODOLOGY

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  17. Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites

    NASA Astrophysics Data System (ADS)

    Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm

    2006-12-01

    Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian Stephanian (≈Kasimovian Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.

  18. Ecological response of plant consumers to Middle-Upper Pennsylvanian extinctions in Illinois Basin coal swamps: Evidence from plant/arthropod interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labandeira, C.; Phillips, T.

    1992-01-01

    Paleobotanical studies of coal-swamp vegetation during the Middle to Upper Pennsylvanian of North America indicate major changes from lycopsid dominated to tree-fern dominated coal-swamp forests as a result of extinction. This taxonomic shift from lycopsids to tree ferns should have implications on dependent feeding guilds, such as detritivores and herbivores. Comparative coal-ball evidence from the Springfield and Herrin Coals (Carbondale Fm.) and Calhoun Coal (Mattoon Fm.) is used to address this issue. The two major feeding guilds of Pennsylvanian coal-swamps were detritivores and herbivores. Detritivores were dominant throughout the interval. Evidence suggests an increasing presence of herbivores during the Desmoinesianmore » and especially during the Missourian. Based on identifications of tissue types found in coprolite types and plant tissue damage patterns, detritivores such as oribatid mites and an unknown stem-parenchyma consumer of Psaronius tree ferns occur before and after the extinction. Based on available evidence, detritivores apparently exhibited stability, particularly since the taxonomic affiliation of their food resource shifted considerably, thus indicating dietary specificities based instead on tissue type. There is evidence for herbivory by stem-miners on Missourian age tree-fern petioles; this distinctive behavior has not been reported for Desmoinesean or older deposits. The arthropod body-fossil record is consistent with this pattern: detritivore groups such as roaches survive the extinction largely intact, whereas other groups such as diverse protorthopterans,'' some of which were most likely herbivorous, experienced a significant extinction.« less

  19. Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites.

    PubMed

    Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm

    2006-12-01

    Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian ( identical with Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian-Stephanian ( approximately Kasimovian-Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.

  20. Energy choices and risk beliefs: is it just global warming and fear of a nuclear power plant accident?

    PubMed

    Greenberg, Michael; Truelove, Heather Barnes

    2011-05-01

    A survey of 3,200 U.S. residents focused on two issues associated with the use of nuclear and coal fuels to produce electrical energy. The first was the association between risk beliefs and preferences for coal and nuclear energy. As expected, concern about nuclear power plant accidents led to decreased support for nuclear power, and those who believed that coal causes global warming preferred less coal use. Yet other risk beliefs about the coal and nuclear energy fuel cycles were stronger or equal correlates of public preferences. The second issue is the existence of what we call acknowledged risk takers, respondents who favored increased reliance on nuclear energy, although also noting that there could be a serious nuclear plant accident, and those who favored greater coal use, despite acknowledging a link to global warming. The pro-nuclear group disproportionately was affluent educated white males, and the pro-coal group was relatively poor less educated African-American and Latino females. Yet both shared four similarities: older age, trust in management, belief that the energy facilities help the local economy, and individualistic personal values. These findings show that there is no single public with regard to energy preferences and risk beliefs. Rather, there are multiple populations with different viewpoints that surely would benefit by hearing a clear and comprehensive national energy life cycle policy from the national government. © 2010 Society for Risk Analysis.

  1. Freight Calculation Model: A Case Study of Coal Distribution

    NASA Astrophysics Data System (ADS)

    Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.

    2018-03-01

    Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.

  2. Coal-derived humus: plant growth effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, P.G.; Fowkes, W.W.

    The growth-promoting properties of coal-derived humus were tested by a variety of bioassay methods. Humate materials used included leonardite, a form of naturally oxidized lignite, and humic acids extracted from leonardite. It was found that the greatest effects were evident when water-soluble humic acid was applied to excised root tips. No significant short-term effect was noted when water-soluble humic acid was applied to stem or coleoptile sections. Root initiation was promoted in bean stems when high concentrations of coal-derived humate were applied. Gross weight of tomato plants was increased by up to 40 percent when coal-derived humates were added inmore » concentrations of 10/sup 1/ to 10/sup 4/ ppM to the nutrient in a hydroponic growth test of 6 weeks' duration. It is concluded that coal-derived humate promotes the uptake of minerals, specifically iron, by serving as a metal chelate.« less

  3. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  4. Research on coal-water fuel combustion in a circulating fluidized bed / Badanie spalania zawiesinowych paliw węglowo-wodnych w cyrkulacyjnej warstwie fluidalnej

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2012-10-01

    In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.

  5. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Krish R.

    Post-combustion CO 2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirementsmore » using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to August 2016 at a selected process condition to evaluate process performance and solvent stability over a longer period similar to how the process would operate as a continuously running large-scale PCC plant. The pilot plant integrated a number of unique features of the Linde-BASF technology aimed at lowering overall energy consumption and capital costs. During the overall test period including startup, parametric testing and long-duration testing, the pilot plant was operated for a total of 6,764 hours out of which testing with flue gas was performed for 4,109 hours. The pilot plant testing demonstrated all of the performance targets including CO 2 capture rate exceeding 90%, CO 2 purity exceeding 99.9 mol% (dry), flue gas processing capacity up to 15,500 lbs/hr (equivalent to 1.5 MWe capacity slipstream), regeneration energy as low as 2.7 GJ/tonne CO 2, and regenerator operating pressure up to 3.4 bara. Excellent solvent stability performance data was measured and verified by Linde and BASF during both test campaigns. In addition to process data, significant operational learnings were gained from pilot tests that will contribute greatly to the commercial success of PCC. Based on a thorough techno-economic assessment (TEA) of the Linde-BASF PCC process integrated with a 550 MWe supercritical coal-fired power plant, the net efficiency of the integrated power plant with CO 2 capture is increased from 28.4% with the DOE/NETL Case 12 reference to 30.9% with the Linde-BASF PCC plant previously presented utilizing the BASF OASE® blue solvent [Ref. 4], and is further increased to 31.4% using a Linde-BASF PCC plant with BASF OASE® blue solvent and an advanced stripper interstage heater (SIH) configuration. The Linde-BASF PCC plant incorporating the BASF OASE® blue solvent also results in significantly lower overall capital costs, thereby reducing the cost of electricity (COE) and cost of CO 2 captured from $147.25/MWh and $56.49/MT CO 2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO 2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO 2 captured can be further reduced to $125.51/MWh and $39.90/MT CO 2 for a further optimized PCC process defined as LB1-CREB. Most notably, the Linde-BASF process options assessed have already demonstrated the potential to lower the cost of CO 2 captured below the DOE target of $40/MT CO 2 at the 550 MWe scale for second generation PCC technologies. Project organization, structure, goals, tasks, accomplishments, process criteria and milestones will be presented in this report along with highlights and key results from parametric and long-duration testing of the Linde-BASF PCC pilot. The parametric and long-duration testing campaigns were aimed at validating the performance of the PCC technology against targets determined from a preliminary techno-economic assessment. The stability of the solvent with extended operation in a realistic power plant setting was measured with performance verified. Additionally, general solvent classification information, process operating conditions, normalized solvent performance data, solvent stability test results, flue gas conditions data, CO 2 purity data in the gaseous product stream, steam requirements and process flow diagrams, and updated process economic data for a scaled-up 550 MWe supercritical power plant with CO 2 capture are presented and discussed in this report.« less

  6. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  7. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Publications - IC 17 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 17 Publication Details Title: Coal resources of Alaska Authors: Alaska Division of Geological Statewide Bibliographic Reference Alaska Division of Geological & Geophysical Surveys, 1983, Coal Alaska Statewide Maps; Coal; Healy; Resource Assessment; Usibelli Mine Top of Page Department of Natural

  9. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  10. Conversion of Coal Mine Gas to LNG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools withmore » which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.« less

  11. Mercury Emissions Capture Efficiency with Activated Carbon ...

    EPA Pesticide Factsheets

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Russian coals are similar to those found at U.S. plants burning US coals. (The US funding was from funds provided to the EPA by the Department of State pursuant to the Bio-Chemical Redirect Program which engages former Russian (and other former Soviet) weapons scientists in research projects with US collaborators.) Among other things, this report will aid the major task, of developing guidance on best available mercury control technology/best environmental practices (BAT/BEP) for coal-fired power plants, a major source a global anthropogenic emissions. (The new Minamata Convention requires BAT/BEP for new power plants and other major emission sources within five years of treaty ratification.)

  12. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  13. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  14. List of Publicly Accessible Internet Sites Hosting Compliance Data and Information Required by the Disposal of Coal Combustion Residuals Rule

    EPA Pesticide Factsheets

    This page is to make accessible a list of the websites coal-fired power plants have created to post for the public to view with respect to their compliance with the disposal of coal combustion residuals final rule.

  15. Characterization of Coal Combustion Residues from Electric Utilities--Leaching and Characterization Data

    EPA Science Inventory

    This report evaluates changes in composition and constituent release by leaching that may occur to fly ash and other coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants. The addition of flue-gas desulfurization (FG...

  16. Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China.

    PubMed

    Lu, Xinwei; Li, Xiaoxue; Yun, Pujun; Luo, Dacheng; Wang, Lijun; Ren, Chunhui; Chen, Cancan

    2012-01-01

    Activity concentrations of natural radionuclides (226)Ra, (232)Th and (40)K in soil around Baoji Second coal-fired thermal power plant of China were determined using gamma ray spectrometry. The mean activity concentrations of (226)Ra, (232)Th and (40)K in soil were found to be 40.3 ± 3.5, 59.6 ± 3.1 and 751.2 ± 12.4 Bq kg(-1), respectively, which are all higher than the corresponding average values in Shaanxi, Chinese and world soil. The radium equivalent activity (Ra(eq)), the air absorbed dose rate (D), the annual effective dose (E), the external hazard index (H(ex)) and internal hazard index (H(in)) were evaluated and compared with the internationally reported or reference values. All the soil samples have Ra(eq) lower than the limit of 370 Bq kg(-1) and H(ex) and H(in) less than unity. The overall mean outdoor terrestrial gamma air absorbed dose rate is ∼86.6 ± 3.4 nGy h(-1) and the corresponding outdoor annual effective dose is 0.106 ± 0.004 mSv, which is higher than the worldwide average (0.07 mSv y(-1)) for outdoor's annual effective dose.

  17. 47 CFR 1.1704 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... System (COALS) § 1.1704 Station files. Applications, notifications, correspondence, electronic filings... Television Relay Service (CARS) are maintained by the Commission in COALS and the Public Reference Room...

  18. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  19. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    PubMed

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils.

    PubMed

    Guo, Wei; Zhao, Renxin; Fu, Ruiying; Bi, Na; Wang, Lixin; Zhao, Wenjing; Guo, Jiangyuan; Zhang, Jun

    2014-03-01

    Coal mine spoils are usually unfavorable for plant growth and have different properties according to dumping years, weathering degree, and the occurrence of spontaneous combustion. The establishment of plant cover in mine spoils can be facilitated by arbuscular mycorrhizal fungi (AMF). A greenhouse pot experiment was conducted to evaluate the importance of AMF in plant adaptation to different mine spoils and the potential role of AMF for revegetation practices. We investigated the effects of Glomus aggregatum, Rhizophagus intraradices (syn. Glomus intraradices), and Funneliformis mosseae (syn. Glomus mosseae) on the growth, nutritional status, and metal uptake of maize (Zea mays L.) grown in recent discharged (S1), weathered (S2), and spontaneous combusted (S3) coal mine spoils. Symbiotic associations were successfully established between AMF and maize in three substrates. Mycorrhizal colonization effectively promoted plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K), adjusting C:N:P stoichiometry and alleviating toxic effects of heavy metals. G. aggregatum, R. intraradices, and F. mosseae exhibited different mycorrhizal effects in response to mine spoil types. F. mosseae was the most effective in the development of maize in S1 and may be the most appropriate for revegetation of this substrate, while R. intraradices played the most beneficial role in S2 and S3. Our results suggest that inoculation with AMF can enhance plant adaptation to different types of coal mine spoils and play a positive role in the revegetation of coal mine spoil banks.

  1. The Development of Environmentally Friendly Technologies of Using Coals and Products of Their Enrichment in the Form of Coal Water Slurries

    NASA Astrophysics Data System (ADS)

    Murko, Vasily; Hamalainen, Veniamin

    2017-11-01

    The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.

  2. Baseload coal investment decisions under uncertain carbon legislation.

    PubMed

    Bergerson, Joule A; Lave, Lester B

    2007-05-15

    More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO2 from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be Pulverized Coal (PC) or IGCC. Do stricter emissions standards (PM, SO2, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO2, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A C02 tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO2. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC w/CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society.

  3. Assessment on the Benefits from Energy Structure Optimization and Coal-fired Emission Control in Beijing: 1998-2013

    NASA Astrophysics Data System (ADS)

    Zong, Y.; He, K.; Zhang, Q.; Hong, C.

    2016-12-01

    Coal has long been an important energy type of Beijing's energy consumption. Since 1998, to improve urban air quality, Beijing has vigorously promoted the structure optimization of energy consumption. Primary measures included the implementation of strict emission standards for coal-fired power plant boilers, subsidized replacement and after-treatment retrofit of coal-fired boilers, the mandatory application of low-sulfur coal, and the accelerated use of natural gas, imported electricity and other clean energy. This work attempts to assess the emission reduction benefits on measures of three sectors, including replacing with clean energy and application of end-of-pipe control technologies in power plants, comprehensive control on coal-fired boilers and residential heating renovation. This study employs the model of Multi-resolution Emission Inventory for China (MEIC) to quantify emission reductions from upfront measures. These control measures have effectively reduced local emissions of major air pollutants in Beijing. The total emissions of PM2.5, PM10, SO2 and NOX from power plants in Beijing are estimated to have reduced 14.5 kt, 23.7 kt, 45.0 kt and 7.6 kt from 1998 to 2013, representing reductions of 86%, 87%, 85% and 16%, respectively. Totally, 14.3 kt, 24.0 kt, 136 kt and 48.7kt of PM2.5, PM10, SO2 and NOX emissions have been mitigated due to the comprehensive control measures on coal-fired boilers from 1998 to 2013. Residential heating renovation projects by replacing coal with electricity in Beijing's conventional old house areas contribute to emission reductions of 630 t, 870 t, 2070 t and 790 t for PM2.5, PM10, SO2 and NOX, respectively.

  4. Synthetic natural gas in California: When and why. [from coal

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1978-01-01

    A coal gasification plant planned for northwestern New Mexico to produce 250 MMCFD of pipeline quality gas (SNG) using the German Lurgi process is discussed. The SNG will be commingled with natural gas in existing pipelines for delivery to southern California and the Midwest. Cost of the plant is figured at more than $1.4 billion in January 1978 dollars with a current inflation rate of $255,000 for each day of delay. Plant start-up is now scheduled for 1984.

  5. Colorado Springs dedicates zero-discharge coal plant. [Ray D. Nixon plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessy, M.; Zeien, C.T.

    1980-12-01

    The zero-discharge Ray D. Nixon coal-fired power plant was designed to treat and recycle effluents in a region with limited water supplies. The site purchase included groundwater rights and some diversion rights, but a properly-managed local aquifer was determined to be adequate. The closed-loop design recovers 95 percent of the water for reuse. The overall water-management system produces adequate water and treats effluents at less cost and with higher water-quality protection than alternate systems. (DCK)

  6. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfurmore » middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.« less

  7. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Bergin

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfurmore » middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.« less

  8. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfurmore » middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.« less

  9. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM 2.5 ), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM 2.5 concentration. Both PM 2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM 2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM 2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM 2.5 concentration increased from an adjusted R 2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM 2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM 2.5 at 12 EPA ground stations; further research on PM 2.5 emissions from unconventional natural gas extraction is needed. With many coal-fired power plants scheduled to close across the United States in the coming years, there is interest in the potential impact on regional PM 2.5 concentrations. In southwestern Pennsylvania, recent coal-fired power plant closings were coupled with a boom in unconventional natural gas extraction. Natural gas is currently seen as an economically viable bridge fuel between coal and renewable energy. This study provides policymakers with more information on the potential ambient concentration changes associated with coal-fired power plant closings as the nation's energy reliance shifts toward natural gas.

  10. Plans moving to tap Rocky Mountain and Eastern US coal for innovative projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-18

    Energy Transition Corp. is conducting a study for W.R. Grace and Co. to determine the feasibility of using coal-derived methanol and liquefied carbon dioxide to transport coal in a proposed $500 million coal slurry pipeline from northwestern Colorado to an as-yet unchosen destination. If, as expected, the study shows that the three products can be separated upon delivery, and if suitable synthetic fuels legislation is passed, Grace would decide whether to proceed with the project, which would use technology developed by Koppers Co., Inc., to produce 5000 tons/day of fuel-grade methanol. Permitting and construction would probably take at least fivemore » years. With funding by the US Department of Energy for the initial stages, the Ashland Synthetic Fuels Inc./Airco Energy Co., Inc., Breckenridge Project will plan an H-Coal process plant that will convert 18,000 tons/day of coal to about 50,000 bbl/day of liquid hydrocarbons. The site will be Addison in Breckenridge County, Ky., and the project will probably use high-sulfur Illinois basin coal. The design and construction of the $1.5 billion commercial plant would require about 6.5 yr.« less

  11. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less

  12. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  13. Molecular and neurodevelopmental benefits to children of closure of a coal burning power plant in China.

    PubMed

    Tang, Deliang; Lee, Joan; Muirhead, Loren; Li, Ting Yu; Qu, Lirong; Yu, Jie; Perera, Frederica

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are major toxic air pollutants released during incomplete combustion of coal. PAH emissions are especially problematic in China because of their reliance on coal-powered energy. The prenatal period is a window of susceptibility to neurotoxicants. To determine the health benefits of reducing air pollution related to coal-burning, we compared molecular biomarkers of exposure and preclinical effects in umbilical cord blood to neurodevelopmental outcomes from two successive birth cohorts enrolled before and after a highly polluting, coal-fired power plant in Tongliang County, China had ceased operation. Women and their newborns in the two successive cohorts were enrolled at the time of delivery. We measured PAH-DNA adducts, a biomarker of PAH-exposure and DNA damage, and brain-derived neurotrophic factor (BDNF), a protein involved in neuronal growth, in umbilical cord blood. At age two, children were tested using the Gesell Developmental Schedules (GDS). The two cohorts were compared with respect to levels of both biomarkers in cord blood as well as developmental quotient (DQ) scores across 5 domains. Lower levels of PAH-DNA adducts, higher concentrations of the mature BDNF protein (mBDNF) and higher DQ scores were seen in the 2005 cohort enrolled after closure of the power plant. In the two cohorts combined, PAH-DNA adducts were inversely associated with mBDNF as well as scores for motor (p = 0.05), adaptive (p = 0.022), and average (p = 0.014) DQ. BDNF levels were positively associated with motor (p = 0.018), social (p = 0.001), and average (p = 0.017) DQ scores. The findings indicate that the closure of a coal-burning plant resulted in the reduction of PAH-DNA adducts in newborns and increased mBDNF levels that in turn, were positively associated with neurocognitive development. They provide further evidence of the direct benefits to children's health as a result of the coal plant shut down, supporting clean energy and environmental policies in China and elsewhere.

  14. Coal desulfurization by low temperature chlorinolysis, phase 1

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.

    1977-01-01

    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.

  15. 30 CFR 72.710 - Selection, fit, use, and maintenance of approved respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../code_of_federal_regulations/ibr_locations.html. This incorporation by reference was approved by the..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.710...; http://www.ansi.org, and may be inspected at any MSHA Coal Mine Safety and Health district office, or...

  16. 30 CFR 72.710 - Selection, fit, use, and maintenance of approved respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../code_of_federal_regulations/ibr_locations.html. This incorporation by reference was approved by the..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.710...; http://www.ansi.org, and may be inspected at any MSHA Coal Mine Safety and Health district office, or...

  17. 30 CFR 72.710 - Selection, fit, use, and maintenance of approved respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../code_of_federal_regulations/ibr_locations.html. This incorporation by reference was approved by the..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.710...; http://www.ansi.org, and may be inspected at any MSHA Coal Mine Safety and Health district office, or...

  18. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible electric face equipment; coal seams... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory Provision] On and after March 30, 1974, all electric face equipment, other than equipment referred to in...

  19. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  20. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  1. Near-term implications of a ban on new coal-fired power plants in the United States.

    PubMed

    Newcomer, Adam; Apt, Jay

    2009-06-01

    Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.

  2. 40 yr phase-out for conventional coal? If only!

    NASA Astrophysics Data System (ADS)

    Socolow, Robert

    2012-03-01

    Myhrvold and Caldeira worked out the climate consequences of various ways in which the world's current fleet of coal power plants could evolve into something different [1]. They imagined one-fortieth of the world's coal plants being closed down each year for 40 years. Two limiting cases are (1) nothing is built to take the place of this power, because efficiency gains have made them unnecessary, and (2) coal plants exactly like those now running take their place. Since coal power is the most carbon-intensive form of power, all other options fall between these limits. They looked at six single-technology alternatives: taking over from coal as we know it are coal with carbon dioxide capture and storage, natural gas, nuclear power and three forms of intermittent renewables (presented as baseload options). Moreover, whatever the alternative, it remains in place unchanged from year 40 through year 100. Results are presented as 100 yr trajectories for the increment in the average global surface temperature due only to this power production. For the coal-for-coal scenario, the surface temperature increase is about 0.13 °C in 40 yr and 0.31 °C in 100 yr. For the efficiency-for-coal scenario, the rise is 0.07 °C in 40 yr and 0.06 °C in 100 yr. Clearly, temperature rise is approximately proportional to emissions and these are self-consistent answers. For example, after 40 yr efficiency-for-coal has brought approximately half the temperature rise of coal-for-coal, and there have been exactly half the emissions. The efficiency-for-coal trajectory falls ever so slightly between years 40 and 100, because once CO2 enters the atmosphere it lingers. As for the absolute magnitude of the coal-to-coal trajectory, today's global coal power production (8300 TWh in 2008) is almost exactly what would be produced from one thousand one-gigawatt coal plants running flat out (8760 TWh), which is the coal power production assumed by Myhrvold and Caldeira. From table S1 of their paper, each GW-year of coal power production is accompanied by 6.59 Mt of CO2 emissions. Thus, a century of this coal will emit 659 billion tons of CO2. A rule of thumb recently promoted associates each trillion tons of carbon emissions (each 3.7 trillion tons of CO2 emissions) with a long-term temperature rise whose fifth and 95th per cent confidence intervals are 1.0 and 2.1 °C [2]. With this rule of thumb, the long-term temperature rise should fall between 0.18 and 0.38 °C, so the estimated rise of 0.31 °C agrees with the rule of thumb. Much of the paper is about estimates of the emissions for the alternatives to coal and efficiency. Emissions are estimated for building the physical stock as well as running it. The authors cite a high and a low value for each alternative, and the lower limits, with one exception, are close to what most analysis assumes. (The exception is natural gas, whose lower limit is 60% of the value for coal, even though values of 50% or lower are widely claimed.) The high limits are unorthodox and are already creating consternation. The high limit for hydropower reflects large emissions of methane from the lakes that form behind dams. In the cases of nuclear power, solar electric power, solar thermal power and wind power, the high limits can be attributed to emissions during construction. One suspects that these high values are straw men, avoidable with care. It is illuminating to compare the Myhrvold-Caldeira partial emissions scenarios with the two full blown scenarios of the International Energy Agency (IEA)—the Current Policy Scenario and the 450 Scenario, presented in World Energy Outlook 2010 [3]. Both IEA scenarios go only to 2035. In the Current Policies Scenario, coal emissions approximately double by 2035 (to 16 500 TWh) Myhrvold and Caldeira actually do not tell us that this is where global coal power is heading, in the absence of new policies and priorities. As for the IEA's 450 Scenario, it provides insight into the 40 yr phase-out for global coal power chosen by Myhrvold and Caldeira as their base case. In the 450 Scenario, global coal power falls to 5600 TWh in 2035, down one third from its 2008 value. By contrast, the pace for coal phase-out explored in the Myhrvold and Caldeira paper is about twice as fast: if their 40 yr phase-out had started in 2008, by 2035—27 yr later—global coal production would have fallen by about two thirds. I think one can view the 450 Scenario as capturing the IEA's judgment about the fastest achievable decarbonization of the world energy system. It is sobering to realize that allowing 40 yr for the closing out of world coal power production, which might strike some readers as relaxed, is actually so intense as to stretch credibility. The IEA 450 Scenario also sheds light on the small fraction of the potential change in the future of the global energy system that the Myhrvold-Caldeira paper captures. The 2700 TWh reduction in coal power production between 2008 and 2035 in the 450 Scenario is smaller in magnitude than the increases in wind power (3900 TWh), nuclear power (3700 TWh), and hydropower (2800 TWh) in the same interval. Myhrvold and Caldeira present a textbook exercise, not to be confused with an exploration of the full range of possible futures. I would not recommend this paper for its insight into energy systems. Rather, I would recommend it, strongly, as one of the rare papers that adequately confronts both of the sources of inertia that characterize our world: the inertia of the climate system epitomized by the durability of atmospheric CO2 and the inertia of the energy system epitomized by the durability of our capital stock. Confronting this inertia can lead us to despair that what we can change for the better each year matters so little. Or it can inspire us, because what we do each year that points in the wrong direction will take so long to undo. References [1] Myhrvold N P and Caldeira K 2012 Greenhouse gases, climate change and the transition from coal to low-carbon electricity Environ. Res. Lett. 7 014019 [2] Matthews H D, Gillett N P, Stott P A and Zickfeld K 2009 Nature 459 829 [3] IEA 2010 World Energy Outlook 2010 (Paris: IEA)

  3. Mercury and Pregnancy

    MedlinePlus

    ... through industrial processes, like burning waste or burning coal in power plants. It can fall from the ... volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in ...

  4. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.

    PubMed

    Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim

    2015-04-01

    Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, C.H.; Shipper, E.S. Jr.

    The cost of transporting coal is the most important aspect of the nation's failure to turn to coal and energy independence. The coal consumer is interested only in comparing the delivered costs of competitive sources of energy, and coal is frequently prohibitively high. The case for coal slurry pipelines and the need for federal legislation granting eminent domain and water rights is clear. The benefits to the public derive from increased use of domestic coal reserves at lower costs and from increased coal exports. Coal slurry pipelines will not be dependent upon federal largesse. While passage of legislation does notmore » guarantee construction, it will ensure that a genuine element of competition will be introduced. Without new legislation, slurry pipelines will remain ''pipe dreams.'' 108 references.« less

  6. In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Maanen, J.M.; Borm, P.J.; Knaapen, A

    1999-12-15

    The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less

  7. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993-March 31, 1995

    NASA Astrophysics Data System (ADS)

    Carlson, Paul T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.

  8. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less

  10. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME IV - SITE SPECIFIC STUDIES FOR MO, MS, NC, NH, NJ, NY, OH

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  11. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME V - SITE SPECIFIC STUDIES FOR PA, SC, TN, VA, WI, WV

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  12. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME II - SITE SPECIFIC STUDIES FOR AL, DE. FL, GA, IL

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  13. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME III - SITE SPECIFIC STUDIES FOR IN, KY, MA, MD, MI, MN

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  14. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  15. Fuel Cost Estimation for Sumatra Grid System

    NASA Astrophysics Data System (ADS)

    Liun, Edwaren

    2010-06-01

    Sumatra has a high growth rate electricity energy demand from the first decade in this century. At the medium of this decade the growth is 11% per annum. On the other side capability of Government of Indonesia cq. PLN authority is limited, while many and most old existing power plants will be retired. The electricity demand growth of Sumatra is increasing the fuel consumption for several next decades. Based on several cases by vary growth scenarios and economic parameters, it shown that some kinds of fossil fuel keep to be required until next several decades. Although Sumatra has abundant coal resource, however, the other fuel types such as fuel oil, diesel, gas and nuclear are needed. On the Base Scenario and discount rate of 10%, the Sumatra System will require 11.6 million tones of coal until 2030 producing 866 TWh with cost of US10558 million. Nuclear plants produce about 501 TWh or 32% by cost of US3.1 billion. On the High Scenario and discount rate 10%, the coal consumption becomes 486.6 million tones by fuel cost of US12.7 billion producing 1033 TWh electricity energy. Nuclear fuel cost required in this scenario is US7.06 billion. The other fuel in large amount consumed is natural gas for combined cycle plants by cost of US1.38 billion producing 11.7 TWh of electricity energy on the Base Scenario and discount rate of 10%. In the High Scenario and discount rate 10% coal plants take role in power generation in Sumatra producing about 866 TWh or 54% of electricity energy. Coal consumption will be the highest on the Base Scenario with discount rate of 12% producing 756 TWh and required cost of US17.1 billion. Nuclear plants will not applicable in this scenario due to its un-competitiveness. The fuel cost will depend on nuclear power role in Sumatra system. Fuel cost will increase correspond to the increasing of coal consumption on the case where nuclear power plants not appear.

  16. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    NASA Astrophysics Data System (ADS)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  17. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  18. Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers

    NASA Astrophysics Data System (ADS)

    Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.

    2018-04-01

    The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal thermal power plants, as a result of which they become single-fuel.

  19. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  20. RADIOACTIVITY IN THE ATMOSPHERIC EFFLUENTS OF POWER PLANTS THAT USE FOSSIL FUELS.

    PubMed

    EISENBUD, M; PETROW, H G

    1964-04-17

    Analysis of the fly ash produced by combustion of pulverized Appalachian coal has shown that a 1000-megawatt coal-burning power plant will discharge into the atmosphere from about 28 millicuries to nearly 1 curie per year of radium-226 and radium-228. An oil-burning plant of similar size will discharge about 0.5 millicurie of radium per year. Comparison of these data with data on the release of fission products from nuclear-powered generating stations shows that when the physical and biological properties of the various radionuclides are taken into consideration, the conventional fossil-fueled plants discharge relatively greater quantities of radioactive materials into the atmosphere than nuclearpowered plants of comparable size.

  1. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Underground thermal generation of hydrocarbons from dry, southwestern coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderborgh, N.E.; Elliott, G.R.B.

    1978-01-01

    The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less

  3. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Nehrozoglu

    2004-12-01

    Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438more » $/kW vs. 1111 $$/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $$/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.« less

  5. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  6. Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts

    NASA Astrophysics Data System (ADS)

    The organization of a national coal science program and the production of electricity from coal using magnetohydrodynamic processes were the topics of a hearing before the subcommittee on energy research and development. The analysis of commercial energy at electric power plants, with an emphasis on the protection of the environment, were the main issues discussed.

  7. EVALUATION OF THE IMPACT OF CHLORINE ON MERCURY OXIDATION IN A PILOT-SCALE COAL COMBUSTION--THE EFFECT OF COAL BLENDING

    EPA Science Inventory

    Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...

  8. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  9. 40 CFR 98.284 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...

  10. 40 CFR 98.284 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...

  11. 40 CFR 98.284 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...

  12. 40 CFR 98.284 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by reference, see § 98.7). (d) For... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal (incorporated by...

  13. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  14. Respiratory disability in coal miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, W.K.C.; Lapp, N.L.; Seaton, D.

    1980-06-20

    It has been suggested that the assessment of ventilatory capacity alone is inadequate for the determination of disabling occupational respiratory impairment in coal miners. The Department of Labor has accepted this view and now routinely requests blood gas analyses in those claimants not meeting the ventilatory criteria. We tested the validity of this contention by selecting two groups of coal miners claiming total disability. The first consisted of 150 claimants who were referred for spirometry, while the second consisted of 50 claimants who had been referred for blood gas studies. Of those in group 1, eight met the extant criteriamore » for disability, while only two of those in group 2 satisfied the criteria, and, in both, cardiac disease was responsible. We conclude that blood gas analyses are unnecessary in the determination of pulmonary disability in coal miners.« less

  15. VIEW FROM CHARGING FLOOR LOOKING EAST AT COAL HOPPER, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM CHARGING FLOOR LOOKING EAST AT COAL HOPPER, AND PHYSICAL REMAINS OF GAS PRODUCER SYSTEM. - Pittsburgh Steel Company, Monessen Works, Open Hearth Plant, Donner Avenue, Monessen, Westmoreland County, PA

  16. Minnesota Power Settlement

    EPA Pesticide Factsheets

    EPA and DOJ announced a Clean Air Act settlement with Minnesota Power, an ALLETE company based in Duluth, that will cover its three coal-fired power plants and one biomass-and-coal-fired steam and electricity cogeneration plan

  17. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  18. Topping cycle for coal-fueled electric power plants using the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, B.; Landingham, R.; Mohr, P.

    Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less

  19. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-08-28

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  20. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    PubMed Central

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  1. Retention of elemental mercury in fly ashes in different atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. Inmore » this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.« less

  2. Relating fish health and reproductive metrics to contaminant bioaccumulation at the Tennessee Valley Authority Kingston coal ash spill site.

    PubMed

    Pracheil, Brenda M; Marshall Adams, S; Bevelhimer, Mark S; Fortner, Allison M; Greeley, Mark S; Murphy, Cheryl A; Mathews, Teresa J; Peterson, Mark J

    2016-08-01

    A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.

  3. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    PubMed

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future.

  4. Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite

    USGS Publications Warehouse

    Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.; Volk, T.J.; Richardson, A.R.; Satterwhite, A.B.; Hatch, R.S.; Kostova, I.J.

    2011-01-01

    The association of fungus with plant leaves and roots is ubiquitous. While many of these occurrences are considered to be pathogenic, mycorrhizzal fungal associations with roots are essential for plant growth. Despite the common knowledge of such relationships in plant science, with a few exceptions, the fungus/leaf/root/stem association as the macerals funginite, cutinite, and suberinite in coals has not been extensively studied. In this work, examples of funginite associations with cutinite and suberinite are discussed. ?? 2010 Elsevier B.V.

  5. Development of modified FT (MFT) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinglai Zhou; Zhixin Zhang; Wenjie Shen

    1995-12-31

    Two-Stage Modified FT (MFT) process has been developed for producing high-octane gasoline from coal-based syngas. The main R&D are focused on the development of catalysts and technologies process. Duration tests were finished in the single-tube reactor, pilot plant (100T/Y), and industrial demonstration plant (2000T/Y). A series of satisfactory results has been obtained in terms of operating reliability of equipments, performance of catalysts, purification of coal - based syngas, optimum operating conditions, properties of gasoline and economics etc. Further scaling - up commercial plant is being considered.

  6. Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrens, I.M.; Stenzel, W.C.

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less

  8. Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India.

    PubMed

    Agrawal, Prashant; Mittal, Anugya; Prakash, Rajiv; Kumar, Manoj; Singh, T B; Tripathi, S K

    2010-08-01

    In the present study, an attempt was made to measure contamination of soil around four large coal-based Thermal Power Plants. The concentration of Cadmium, Lead, Arsenic and Nickel was estimated in all four directions from Thermal Power Plants. The soil in the study area was found to be contaminated to varying degrees from coal combustion byproducts. The soil drawn from various selected sites in each direction was largely contaminated by metals, predominantly higher within 2-4 km distance from Thermal Power Plant. Within 2-4 km, the mean maximum concentration of Cadmium, Lead, Arsenic and Nickel was 0.69, 13.69, 17.76, and 3.51 mg/kg, respectively. It was also observed that concentration was maximum in the prevalent wind direction. The concentration of Cadmium, Lead, Arsenic and Nickel was highest 0.69, 13.23, 17.29 and 3.56 mg/kg, respectively in west direction where wind was prevalent.

  9. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  10. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    PubMed

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  11. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vories, K.C.

    2003-07-01

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less

  12. Report on the operations of the coal-testing plant of the United States Geological Survey at the Louisiana Purchase Exposition, Saint Louis, Missouri, 1904: Part I.--Field work, classification of coals, chemical work

    USGS Publications Warehouse

    Parker, E.W.; Holmes, J.A.; Campbell, M.R.

    1906-01-01

    Notwithstanding these delays, the committee feels that through the hearty and patriotic cooperation of a large number of manufacturers of apparatus and machinery it was able to collect and install, within a notably short time, a testing plant that was well suited for such pioneer work.

  13. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  14. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  15. Gas recirculation flash drying of filtercake as a safe and economic alternative to fluidized bed drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalb, G.W.; Sisti, D.

    1996-12-31

    Although approximately 50% of the thermal coal dryers in North America have been idled or demolished in the past twelve years, thermal coal dryers are currently operating at the highest yearly evaporative load in their history. This is due to the combination of idling/demolishing the marginally required thermal dryers, and replacing the evaporative capacity with more efficient centrifugal dryers while operating the remaining thermal dryers at significantly higher evaporative loads for a greater number of hours. Although previously unheard of in this industry, many of the remaining thermal coal dryers are operating at and above their design evaporative capacity. Thermalmore » coal dryers are used to meet the common moisture specifications of 6.0% in the United States and 7.5 to 8.0% in Canada and are normally required when (1) the Hardgrove grindability exceeds 90, (2) the preparation plant feed topsize is less than 1 {1/2}-inch and/or (3) for transportation reasons in northern climates. It is anticipated that thermal coal drying will be rejuvenated as a result of (1) addressing inherent moisture in low raw coals, (2) the Australian need to address their 10% moisture bituminous coal shipments, and (3) the increased ash and sulfur liberation with decreasing topsize of preparation plant feeds.« less

  16. Analysis of natural radioactivity in Yatağan coal - fired power plant in Turkey

    NASA Astrophysics Data System (ADS)

    Altıkulaç, Aydan; Turhan, Şeref; Gümüş, Hasan

    2017-09-01

    Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal-Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl) scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED) from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  17. Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia.

    PubMed

    Koplitz, Shannon N; Jacob, Daniel J; Sulprizio, Melissa P; Myllyvirta, Lauri; Reid, Colleen

    2017-02-07

    Southeast Asia has a very high population density and is on a fast track to economic development, with most of the growth in electricity demand currently projected to be met by coal. From a detailed analysis of coal-fired power plants presently planned or under construction in Southeast Asia, we project in a business-as-usual scenario that emissions from coal in the region will triple to 2.6 Tg a -1 SO 2 and 2.6 Tg a -1 NO x by 2030, with the largest increases occurring in Indonesia and Vietnam. Simulations with the GEOS-Chem chemical transport model show large resulting increases in surface air pollution, up to 11 μg m -3 for annual mean fine particulate matter (PM 2.5 ) in northern Vietnam and up to 15 ppb for seasonal maximum 1 h ozone in Indonesia. We estimate 19 880 (11 400-28 400) excess deaths per year from Southeast Asian coal emissions at present, increasing to 69 660 (40 080-126 710) by 2030. 9000 of these excess deaths in 2030 are in China. As Chinese emissions from coal decline in coming decades, transboundary pollution influence from rising coal emissions in Southeast Asia may become an increasing issue.

  18. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals.

    PubMed

    Guerrero-Castilla, Angélica; Olivero-Verbel, Jesús; Marrugo-Negrete, José

    2014-03-01

    Coal mining is a source of pollutants that impact on environmental and human health. This study examined the metal content and the transcriptional status of gene markers associated with oxidative stress, metal transport and DNA damage in livers of feral mice collected near coal-mining operations, in comparison with mice obtained from a reference site. Mus musculus specimens were caught from La Loma and La Jagua, two coal-mining sites in the north of Colombia, as well as from Valledupar (Cesar Department), a city located 100km north of the mines. Concentrations in liver tissue of Hg, Zn, Pb, Cd, Cu and As were determined by differential stripping voltammetry, and real-time PCR was used to measure gene expression. Compared with the reference group (Valledupar), hepatic concentrations of Cd, Cu and Zn were significantly higher in animals living near mining areas. In exposed animals, the mRNA expression of NQ01, MT1, SOD1, MT2, and DDIT3 was 4.2-, 7.3-, 2.5-, 4.6- and 3.4-fold greater in coal mining sites, respectively, than in animals from the reference site (p<0.05). These results suggest that activities related to coal mining may generate pollutants that could affect the biota, inducing the transcription of biochemical markers related to oxidative stress, metal exposure, and DNA damage. These changes may be in part linked to metal toxicity, and could have implications for the development of chronic disease. Therefore, it is essential to implement preventive measures to minimize the effects of coal mining on its nearby environment, in order to protect human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.

    Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less

  20. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension firedmore » combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.« less

  1. Liquid CO 2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO 2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO 2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO 2 is much lower than water. This means it should take less energy to pump liquid CO 2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, whichmore » should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO 2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO 2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO 2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO 2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO 2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO 2/coal slurry properties.« less

  2. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less

  3. New projects for CCGTs with coal gasification (Review)

    NASA Astrophysics Data System (ADS)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  4. Cost and performance of coal-based energy in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temchin, J.; DeLallo, M.R.

    1998-07-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less

  5. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less

  6. Publications - GMC 31 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 31 Publication Details Title: Vitrinite reflectance data on 34 Alaskan coal samples Authors . Bibliographic Reference Unknown, [n.d.], Vitrinite reflectance data on 34 Alaskan coal samples: Alaska Division

  7. Forces Shaping Future U.S. Coal Production and Use

    USGS Publications Warehouse

    Attanasi, E.D.; Pierce, Brenda S.

    2001-01-01

    More than half of the electricity in the United States is generated by coal-fired powerplants. U.S. coal producers sell almost 90 percent of their product for electricity generation, and so, the future of the U.S. coal industry will be determined by the future of coal-fired electricity-generation plants. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment (NCRA) of five major coal-producing regions of the United States (fig. 1): (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coast, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The Powder River and Williston Basins are the principal producing areas of the Northern Rocky Mountains and Great Plains region.

  8. Geochemistry of vanadium (V) in Chinese coals.

    PubMed

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  9. Features of the Asynchronous Correlation between the China Coal Price Index and Coal Mining Accidental Deaths.

    PubMed

    Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin

    2016-01-01

    The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices.

  10. Evaluating the thermal stability of mercury and other metals in coal combustion residues used in the production of cement clinker, asphalt, and wallboard

    EPA Science Inventory

    Research is underway by the U.S. Environmental Protection Agency (EPA) to document any changes that may occur to coal combustion residues (CCRs) as a result of implementation of mercury and multiipollutant control technology at coal-fired power plants. This work was cited as a pr...

  11. Soil as an archive of coal-fired power plant mercury deposition.

    PubMed

    Rodríguez Martín, José Antonio; Nanos, Nikos

    2016-05-05

    Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods.

    PubMed

    Quick, Jeffrey C

    2014-01-01

    Annual CO2 emission tallies for 210 coal-fired power plants during 2009 were more accurately calculated from fuel consumption records reported by the US. Energy Information Administration (EIA) than measurements from Continuous Emissions Monitoring Systems (CEMS) reported by the US. Environmental Protection Agency. Results from these accounting methods for individual plants vary by +/- 10.8%. Although the differences systematically vary with the method used to certify flue-gas flow instruments in CEMS, additional sources of CEMS measurement error remain to be identified. Limitations of the EIA fuel consumption data are also discussed. Consideration of weighing, sample collection, laboratory analysis, emission factor, and stock adjustment errors showed that the minimum error for CO2 emissions calculated from the fuel consumption data ranged from +/- 1.3% to +/- 7.2% with a plant average of +/- 1.6%. This error might be reduced by 50% if the carbon content of coal delivered to U.S. power plants were reported. Potentially, this study might inform efforts to regulate CO2 emissions (such as CO2 performance standards or taxes) and more immediately, the U.S. Greenhouse Gas Reporting Rule where large coal-fired power plants currently use CEMS to measure CO2 emissions. Moreover, if, as suggested here, the flue-gas flow measurement limits the accuracy of CO2 emission tallies from CEMS, then the accuracy of other emission tallies from CEMS (such as SO2, NOx, and Hg) would be similarly affected. Consequently, improved flue gas flow measurements are needed to increase the reliability of emission measurements from CEMS.

  13. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose

    PubMed Central

    dos Santos, Ricardo Pires; Martins, Jorge; Gadelha, Carlos; Cavada, Benildo; Albertini, Alessandro Victor; Arruda, Francisco; Vasconcelos, Mayron; Teixeira, Edson; Alves, Francisca; Lima Filho, José; Freire, Valder

    2014-01-01

    Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa) and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction) and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g) and amount of immobilized enzyme per g of support (76.6 mg/g). In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81%) even after nine reuses and 30 days' storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose. PMID:25110726

  14. Research of processes of heat exchange in horizontal pipeline

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. K.; Dokoukin, V. P.; Lykov, Y. V.; Fetisov, V. G.

    2018-03-01

    The energy crisis, which becomes more evident in Russia, stems in many respects from unjustified high consumption of energy resources. Development and exploitation of principal oil and gas deposits located in remote areas with severe climatic conditions require considerable investments increasing essentially the cost of power generation. Account should be taken also of the fact that oil and gas resources are nonrenewable. An alternative fuel for heat and power generation is coal, the reserves of which in Russia are quite substantial. For this reason the coal extraction by 2020 will amount to 450-550 million tons. The use of coal, as a solid fuel for heat power plants and heating plants, is complicated by its transportation from extraction to processing and consumption sites. Remoteness of the principal coal mining areas (Kuzbass, Kansk-Achinsk field, Vorkuta) from the main centers of its consumption in the European part of the country, Siberia and Far East makes the problem of coal transportation urgent. Of all possible transportation methods (railway, conveyor, pipeline), the most efficient is hydrotransport which provides continuous transportation at comparatively low capital and working costs, as confirmed by construction and operation of extended coal pipelines in many countries.

  15. Near-term implications of a ban on new coal-fired power plants in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Newcomer; Jay Apt

    2009-06-15

    Large numbers of proposed new coal power generators in the United States have been cancelled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO{sub 2} emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changesmore » in dispatch order, CO{sub 2} emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO{sub 2} reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies. 50 refs., 5 figs., 4 tabs.« less

  16. Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China.

    PubMed

    Tang, Quan; Sheng, Wanqi; Li, Liyuan; Zheng, Liugen; Miao, Chunhui; Sun, Ruoyu

    2018-08-01

    The alteration behavior of minerals and hazardous elements during simulated combustion (100-1200 °C) of a raw coal collected from a power plant were studied. Thermogravimetric analysis indicated that there were mainly four alteration stages during coal combustion. The transformation behavior of mineral phases of raw coal, which were detected by X-ray polycrystalline diffraction (XRD) technique, mainly relied on the combustion temperature. A series of changes were derived from the intensities of mineral (e.g. clays) diffraction peaks when temperature surpassed 600 °C. Mineral phases tended to be simple and collapsed to amorphous glass when temperature reached up to 1200 °C. The characteristics of functional groups for raw coal and high-temperature (1200 °C) ash studied by Fourier transform infrared spectroscopy (FTIR) were in accordance with the result obtained from XRD analysis. The volatilization ratios of Co, Cr, Ni and V increased consistently with the increase of combustion temperature, suggesting these elements were gradually released from the organic matter and inorganic minerals of coal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Peat in modern swamps mimics coal origins 300 M years ago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Given, P.H.; Ryan, N.J.; Rhoads, C.A.

    1985-07-01

    Peat swamps can provide excellent models of ancient coal-forming processes. Peats of differing salinity and vegetational cover exhibit different trends of chemistry with depth, which have been studied in order to clarify ideas of coal origins. Thus changes with depth of phenolic structures determined by pyrolysis/gas chromatography/mass spectrometry reflect changes in plant source and partial microbial degradation of lignin, which will be reflected in the structure of coals that may form later. 12 refs., 3 figs.

  18. Macronutrient and boron ratios in tall fescue: relationship to yields on pyritic coal wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B.G.

    A previous greenhouse study had demonstrated that yield of tall fescue (Festuca arundinacea Schreb.) grown directly on a pyritic waste was not significantly different from yield on a soil despite low tissue concentrations of P and K in the waste-grown plants. In an attempt to explain this result, and to determine if this phenomenon was typical of such waste, a greenhouse study was carried out with pyritic waste from five disposal sites for coal-cleaning refuse in southern Illinois. The wastes and an agricultural soil (Eilliott silt loam: fine, illitic, mesic Aquic Arguidolls) were treated with limestone (to pH 6.5) andmore » fertilizers. Yields of 8-week-old shoots of tall fescue grown on the wastes were significantly lower than yield of plants grown on the soil when the Ca/B ratio in the shoots was outside a range of 1.7 to 2.8 (where Ca/B is the ratio of log/sub 10/ concentrations of Ca and B expressed as microgram-atoms per gram dry matter). Within this range, yields were not significantly different from yield on the soil despite significantly lower concentrations of P and K in the shoots of the waste-grown plants. It is suggested that elemental interactions should not be ignored in reclamation of waste sites, particularly where ''trace'' element concentrations are either higher or lower than concentrations in typical soils. Results also suggest a P- and K-sparing effect of elevated B concentrations in tall fescue. 23 references.« less

  19. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  20. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2011-04-01

    Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.

Top